
Fitness Guided Vulnerability Detection with Greybox Fuzzing

Raveendra Kumar Medicherla
raveendra.kumar@tcs.com

Tata Consultancy Services

Bangalore, India

Raghavan Komondoor
raghavan@iisc.ac.in

Indian Institute of Science

Bangalore, India

Abhik Roychoudhury
abhik@comp.nus.edu.sg

National University of Singapore

Singapore

ABSTRACT

Greybox fuzzing is an automated test-input generation technique

that aims to uncover program errors by searching for bug-inducing

inputs using a fitness-guided search process. Existing fuzzing ap-

proaches are primarily coverage-based. That is, they regard a test

input that covers a new region of code as being fit to be retained.

However, a vulnerability at a program location may not get ex-

hibited in every execution that happens to visit to this program

location; only certain program executions that lead to the location

may expose the vulnerability. In this paper, we introduce a unified

fitness metric called headroom, which can be used within greybox

fuzzers, and which is explicitly oriented towards searching for test

inputs that come closer to exposing vulnerabilities.

We have implemented our approach by enhancing AFL, which

is a production quality fuzzing tool. We have instantiated our ap-

proach to detecting buffer overrun as well as integer-overflow vul-

nerabilities. We have evaluated our approach on a suite of bench-

mark programs, and compared it with AFL, as well as a recent

extension over AFL called AFLGo. Our approach could uncover

more number of vulnerabilities in a given amount of fuzzing time

and also uncover the vulnerabilities faster than these two tools.

CCS CONCEPTS

• Security and privacy→ Penetration testing; • Software and its

engineering → Search-based software engineering; Empiri-

cal software validation.

ACM Reference Format:

Raveendra Kumar Medicherla, Raghavan Komondoor, and Abhik Roychoud-

hury. 2020. Fitness Guided Vulnerability Detection with Greybox Fuzzing. In

IEEE/ACM 42nd International Conference on Software Engineering Workshops

(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3387940.3391457

1 INTRODUCTION

Software vulnerabilities are bugs in code that can lead to unexpected

behaviors of the software, which can potentially be exploited by

the malicious attackers to gain control over the software during its

execution. Automatically identifying test inputs that uncover such

vulnerabilities in an existing software can help developers make

software secure.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391457

Search based software testing (SBST) [11, 18, 26] is a class of

techniques that can be used to uncover run-time errors in programs

by executing the target program with a large number of test inputs

generated automatically. These techniques rely on a fitness metric

for test inputs to guide the search towards test inputs that meet

a testing objective, such as exposing an error. A test input with a

higher fitness metric than other test inputs is closer to meeting the

testing objective, and is hence used to generate newer inputs. In

this way, a test input that reaches the test objective is likely to get

generated eventually.

Greybox fuzzing is a specific kind of SBST approach that is em-

ployed in several practical tools and approaches [4, 9, 21, 27]. Here,

the idea is to use lightweight instrumentation to collect a profile

from a run of the program on each test input, and to use this profile

to compute the fitness metric of the corresponding test input. Many

of these approaches have the objective of finding test inputs as

quickly as possible that cause execution to reach as many parts of

the program as possible. Such approaches are known as coverage-

based fuzzers. Another class of greybox fuzzing tools, known as

directed fuzzers [4], use a fitness metric that gives preference to

inputs that bring the program execution closer to a specified vul-

nerability location.

However, a vulnerability at a program point may not get revealed

in every visit to the program point. Only certain executions that

reach the vulnerability point may exhibit the vulnerable behavior.

For instance, a buffer overrun vulnerability at a buffer access loca-

tion will get exhibited only in test runs in which the buffer access

pointer points outside the buffer when the location is reached. As

another example, an integer overflow vulnerability at a program

location will get exhibited only in test runs in which the variable

being incremented at the location has a high enough value when

the location is reached. A test input that causes a vulnerability

location to be reached may need to be fuzzed further to produce

an input that not only reaches the vulnerability location but also

exposes the vulnerability. However, coverage-based fuzzers and

directed fuzzers would consider the objective as being met when a

test run reaches the vulnerability location, and would not fuzz the

corresponding test input further.

This motivates our key hypothesis, which is that one needs

vulnerability specific fitness metrics, which guide the search towards

test inputs that not only reach the vulnerability locations, but reach

them along execution paths that result in program states that cause

the vulnerability to be exposed. We develop this intuition in the

rest of this section.

1.1 Motivating example

The example program shown in Figure 1 serves as a motivating and

running example. This program first reads its input into a buffer

inp (Statement 2). It copies all occurrences of the character ‘b’ in

513

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

݅ = 0݆ = 0ܿܽ = [250]ܤݐݑ0

ܿܽ = ܿܽ + 1
݆]ܤݐݑ + +] = ‘ܾ’

݊ݎݑݐ݁ݎ ܿܽ

,݂݀)݀ܽ݁ݎ ,݊݅ 500)
݊݅ ݅ ! = ‘\0’

Atrue

false

࢘

ࢋ
݅ = ݅ + 1

[݅]݊݅ == ‘ܽ’
[݅]݊݅ == ‘ܾ’

F

false
C

true

E
false

true

1

2

3

4

5

6

7

8

9

B

D

Figure 1: Example program with buffer overflow vulnerabil-

ity at Statement 7

inp into a another buffer outB (Statement 7). The branches in this

program are labelled with letters A to F.

Note that this program is vulnerable to buffer overflow errors

at Statement 7. Since the size of buffer outB is 250, if the input

contains more than 250 occurrences of character ‘b’, then outB will

overflow at this statement.

AFL [27] is a well-known coverage-based greybox fuzzing tool,

which we refer to here in order to discuss why coverage-based

fuzzing may not suffice to find vulnerabilities. A branch pair is a

pair of consecutively executable branches in the program; e.g., in

Figure 1, AB, AC, BD, BE, CE, and EF, are examples of branch pairs.

A branch pair profile is a profile that records the number of visits to

each branch pair in an execution. AFL considers a newly generated

test input 𝑡 to be fit and retains it for further fuzzing iff for at least
one branch pair bp, the visit count of bp by the execution on 𝑡 is
significantly different from the visit count of the same branch pair

by each execution on each other retained test input so far. Roughly

speaking, two counts are significantly different if their logarithms

to the base 2 are different. AFL uses the higher bar of significant

difference as retaining too many test inputs dramatically slows

down the efficiency and effectiveness of the search process.

Figure 2 shows (partially) a candidate tree of generated test

inputs that may be generated by AFL for our running example.

Due to randomization in the mutation operations that are used, the

same tree may not be produced in every run of AFL. The root node

is the given seed input “a”. The edges represent the parent-child

relationships between test inputs. The branch pair profile of each

test input is shown in blue color to the right of the input. We may

focus in particular on the path in the tree that runs vertically down

the middle. The number that is indicated within round parentheses

for each test input in this path depicts the number of ‘b’s in the input

1.0

"ܾܾܾܾ. . "(131)0.5

"bbbbbb.."(261)"… "
"… " "… "

"… "

AC:131,CD:131,DA:130,DF:1

"ܾܾܾܾܾܾ. . “(196)0.2

Error

AC:196,CD:196,DA:195,DF:1

"ܽ"
"ܽܽ" "ܾ" "ܿ"

"ܾܾܾ … (66)""… " "… "
"… " "… "

AB:1,BE:1,EF:1

AC:1,CD:1,DF:1

AC:66,CD:66,DA:65,DF:1

AC:1,CE:1,EF:1AB:2,BE:2,EF:1

1.0

0.7

Figure 2: Generation of test inputs during fuzzing

(there are no letters other than ‘b’ in the inputs in this path). We

can ignore the red colored numbers within boxes for the moment,

as they do not pertain to AFL. The first four inputs in this path will

be retained, but the fifth input (with 196 ‘b’s) will actually not be

retained as its branch-pair profile is not significantly different from

the profile of its parent (i.e., 131 ‘b’s). Therefore, the sixth input (i.e.,

261 ‘b’s) would not actually be generated from the fifth input. Note

that the sixth input would have been the first one in this path to

cause a buffer overflow at Statement 7.

In other words, AFL would need to generate an input containing

more than 250 ‘b’s directly by mutating the fourth test input (i.e.,

131 ‘b’s). This can happen only via a mutation operation that inserts

129 or more ‘b’s in a single operation. The randomization in AFL is

setup in a way that the probability of inserting a larger number of

characters in a single mutation operation is directly proportional to

the number of mutant test inputs generated by AFL so far. Therefore,

a lot of time could elapse before such “large” mutations are tried.

A naive suggestion here would be to increase the probability of

inserting larger number of bytes in mutation operations early in

the run of AFL. However, this is a blunt idea, which would produce

large input files early on, hence increasing the running time of each

test input and hence slowing down the number of mutants that

are generated by per unit time. Many of these large mutations may

not useful also, e.g., ones that insert more number of ‘a’s than ‘b’s.

Hence, the likelihood of finding vulnerabilities early may not be

achieved.

Even directed fuzzing [4] is not necessarily effective in address-

ing this issue. In our example, a directed fuzzer would consider its

objective as having been met the first time Statement 7 is reached.

This would happen with the simple input “b” itself, which obviously

does not expose the vulnerability.

514

1.2 Our test generation strategy

To address the issues mentioned above, we introduce a novel idea

of using a vulnerability-oriented fitness metric, which we call head-

room. A headroom is a number between zero and one, which indi-

cates how close an execution using a test input came to exposing a

potential vulnerability at a given vulnerability location. The value

zero indicates that the vulnerability was actually exposed at the

location, while the value one indicates that run did not come close

at all to exposing the vulnerability. How to calculate the headroom

depends on the type of vulnerability being targeted, which we will

discuss subsequently in this paper. The remainder of our proposal,

in a nutshell, is to retain a newly generated test input not only if

its coverage is significant different from the coverage attained by

previously generated test inputs, but also if achieves significantly

lower headroom at any of the given potential vulnerability locations

in the program than other test inputs retained so far.

Figure 2 also illustrates the functioning of our proposed approach

on our running example. When targeting buffer overrun vulnera-

bilities, we define the headroom of a run at a buffer access location

(such as Statement 7) as the minimum distance between the location

pointed to by the buffer access pointer and the end of the buffer

across all visits to this location in the run, divided by the size of

the buffer. The red numbers within boxes indicate the headroom

achieved by each test input for the buffer access at Statement 7.

With our approach, the fifth input in the central path in the tree

(i.e., the input with 196 ‘b’s) will be retained, because its headroom

of 0.2 is significantly lower than the headrooms achieved by other

test inputs generated so far (we will discuss the exact definition

of significantly lower headroom in Section 2). Now, the test input

with 261 ‘b’s, which overflows the buffer, is likely to be produced

sooner than if the fifth input was not retained, because a mutation

operation that inserts 65 ‘b’s (65 is 261-196) is much more likely to

be tried than one that inserts 130 ‘b’s (which would be required to

directly generated the sixth input from the fourth input).

To summarize, our key idea is to retain and then further fuzz

test inputs that may not be achieving new coverage, but that are

effectively getting closer to exposing complex vulnerabilities, with

closeness defined in a vulnerability-specific manner. This obviates

the need towait for undirected, low-probability events of generating

large mutations that happen to find the same vulnerabilities.

In the context of grey-box fuzzing, our work is the first to the best

of our knowledge that proposes the use of vulnerability-specific

fitness metrics to detect complex vulnerabilities. The closest related

approaches are optimization formulations in SBST to expose excep-

tion conditions [12, 25], and extending fuzzers with domain-specific

objectives [20].

Our approach being a generic one, not aimed at a single kind

of vulnerability, we describe instantiations of our approach to two

different kinds of vulnerabilities, namely, buffer overruns and in-

teger overflows. We describe an implementation of our approach,

which is an extension over the popular greybox fuzzing tool AFL.

We evaluate our approach using standard benchmarks – namely,

the MIT Benchmarks [28], and the SV-COMP benchmarks. Our

evaluation reveals that our approach finds 1.8 times more buffer

overrun vulnerabilities than two baseline tools, namely, AFL [27]

and AFLGo [4], in a given time budget. Our approach finds integer

overflow vulnerabilities many times faster than the two baseline

tools.

The rest of this paper is organized as follows. Section 2 describes

our approach. Section 3 discusses how to instantiate the headroom

notion to a few different types of vulnerabilities. Section 4 discusses

our implementation, while Section 5 summarizes the evaluation

of our approach. Section 6 discusses related work, while Section 7

concludes the paper.

2 VULNERABILITY DETECTION APPROACH

In this section we present our approach in detail. Before we present

our approach, we introduce the terminology that is central to our

approach.

2.1 Terminology

A vulnerability is a bug at a vulnerability location 𝑣𝑙 in a program
𝑃 such that along certain executions paths that reach 𝑣𝑙 an error
occurs, such that the error leads to unexpected behaviors that may

cause malicious attackers to exploit the execution for their pur-

poses. Vulnerabilities can be of different types, e.g., buffer overruns,

integer overflows, use after free, etc. Let 𝑉𝐿 be the set of all such
vulnerability locations in a given program 𝑃 . (Our approach allows
for different vulnerability locations to exhibit different types of

vulnerabilities.) A headroom ℎ ∈ [0, 1] is a measure of how close a

test run came to exposing a vulnerability at a vulnerability location

𝑣𝑙 . A lower value of ℎ represents more closeness to exposing the

vulnerability. The value ℎ = 0 means that in the run the vulnerabil-

ity got manifested at 𝑣𝑙 . The vulnerability profile 𝐼ℎ : 𝑉𝐿 → [0, 1]
of a test run is a map from all vulnerability locations 𝑉𝐿 to their
corresponding head rooms as attained in the run.

In order to determine the fitness of a test input 𝑡 , the vulnerability
profile 𝐼ℎ from the test run on 𝑡 is compared against the vulnerability
profiles of the test runs on previously generated inputs so far. Least

headrooms 𝐼𝐿 : 𝑉𝐿 → [0, 1] is a global map that contains the least
headroom at each vulnerability location witnessed across all test

runs retained so far. We define an operation isCloser that takes a

vulnerability profile 𝐼ℎ from a run as argument, compares it with

𝐼𝐿 and returns a boolean answer, and also updates 𝐼𝐿 .
bool isCloser(𝐼ℎ) {

ret = ∃𝑣𝑙 ∈ 𝑉𝐿 . 𝐼ℎ (𝑣𝑙) ≺ 𝐼𝐿 (𝑣𝑙)
𝐼𝐿 = min(𝐼𝐿, 𝐼ℎ)
return ret

}

The operation ≺ is a comparison in the log2 scale; i.e., if its

second argument is above 0.5 it returns true iff the first argument is

below 0.5; if the second argument is between 0.25 and 0.5, it returns

true iff the first argument is below 0.25, and so on.

2.2 Our approach

Our approach is a co-evolutionary computation model [14], where

two (or more) populations of test inputs evolve simultaneously

in a co-operative manner using their own fitness functions. We

retain two populations of generated test inputs. Population 1: Test

inputs that reach new regions of code compared to previous test

inputs. This notion is inherited from coverage-guided fuzzing, and

is meant to ensure that runs that progressively reach points closer

515

Algorithm 1 Test generation for vulnerability detection

Require: Program 𝑃 , and a initial input 𝑠 .
Ensure: A tree of test inputs 𝑇𝐺 for 𝑃 .
1: Create an empty tree 𝑇𝐺 of test inputs.

2: (𝑒𝑠 , ℎ𝑠) = Run(𝑃 ,𝑠 .data)
3: 𝑡𝑟 .data = 𝑠 ⊲ 𝑡𝑟 is a new tree node

4: 𝑡𝑟 .fitness = computeFitness(𝑒𝑠)
5: 𝑡𝑟 .reasonToRetain = “default”
6: 𝑇𝐺 .𝑠𝑒𝑡𝑅𝑜𝑜𝑡 (𝑡𝑟).
7: 𝐼𝐿 = 𝜆𝑣𝑙 ∈ 𝑉𝐿 . 1
8: repeat

9: Let 𝑡 = selectNextH(𝑇𝐺)
10: Let 𝑁 = getFuzzPotentialH(𝑡)
11: Let 𝑇𝑛 = generateOffspring(𝑡 ,𝑁)
12: for all 𝑡𝑔 in 𝑇𝑛 do

13: Let (𝑒𝑔, ℎ𝑔) = run(𝑃 ,𝑡𝑔 .data)
14: Let 𝐼𝑔 = computeFitness(𝑒𝑔)
15: Let 𝐼ℎ = getVProfile(ℎ𝑔)
16: if isFit(𝐼𝑔) ∨ (𝑏 = isCloser(𝐼ℎ)) then
17: 𝑡𝑔 .fitness = 𝐼𝑔
18: 𝑡𝑔 .reasonToRetain = “default”
19: if 𝑏 then

20: 𝑡𝑔 .closeness = 𝐼ℎ
21: 𝑡𝑔 .reasonToRetain = “headroom”
22: end if

23: addChild(𝑇𝐺 ,𝑡 ,𝑡𝑔)
24: end if

25: end for

26: until user terminates the run

27: return 𝑇𝐺

and closer to vulnerability locations are generated. Population 2:

Test inputs that don’t reach new code regions, but reduce headroom

at vulnerability locations more than other previously generated

test inputs.

Algorithm 1 describes our approach. The approach is basically

an enhancement to the widely used greybox fuzzing tool AFL.

Given a program 𝑃 and an initial test input 𝑠 , the algorithm
iteratively generates test inputs, and retains some of them in a

tree 𝑇𝐺 . Each node of the tree corresponds to a test input, and

has four fields. The “data” field contains the actual test input (a

sequence of bytes). The field “reasonToRetain” indicates which of

the two populations the test input belongs to, with value “default”

indicating the first population and value “headroom” indicating

the second population. The “fitness” field contains the branch-pair

coverage profile corresponding to this test input. The field “closeness”

is used only for test inputs in the second population, and stores the

vulnerability profile.

Lines 2-7 create the root of this tree using the given seed test

input 𝑠 . We assume that the program has been instrumented in

a way that each run returns a pair of data structures (𝑒𝑠 , ℎ𝑠) such
that the branch-pair profile and the vulnerability profile can be

computed from these data structures, respectively. Specifically, the

routine computeFitness computes the branch-pair profile.

The algorithm then works iteratively and continually using the

loop that begins at Line 8, generating one or more child test inputs

from a selected test input in each iteration. The selection opera-

tion selectNextH (called in Line 9) works as follows. In its even-

numbered invocations, it selects a Population 1 test input from 𝑇𝐺
using AFL’s underlying selection algorithm. In its odd-numbered

invocations, it selects one of the Population 2 test-inputs from 𝑇𝐺
randomly in a way that that the probability of a test input getting

selected is high if it has never been fuzzed before (i.e., is a leaf of𝑇𝐺)
or has low headroom for some vulnerability location, is moderate

if it was fuzzed many iterations back in the run of the algorithm,

and is low if it was fuzzed in a recent iteration. The exact values of

these thresholds is a tunable parameter.

The fuzzing potential of a test case 𝑡 is a number, denoted as 𝑁 ,
and is obtained by invoking the getFuzzPotentialH operation

in Line 10. This operation invokes AFL’s underlying fuzzing po-

tential operation in case 𝑡 is a Population 1 test input, and returns
a number that is inversely proportional to the least entry in the

vulnerability profile of 𝑡 in case 𝑡 belongs to Population 2. Again,
the proportionality factor is tunable.

In Line 11, 𝑁 test inputs are generated as offspring of 𝑡 (by
fuzzing 𝑡 .data), using AFL’s approach as-is. AFL uses different ge-
netic operators such as flipping bits at specific locations in the 𝑡 .data,
copying bytes from one location in 𝑡 .data and writing them to some

other location, etc. For simplicity, we do not depict cross-over oper-

ations that generate a single child test input from multiple parent

test inputs.

Each newly generated test input 𝑡𝑔 is executed in Line 13. The
routine getVProfile creates the the vulnerability profile of the

test input (see Line 15). The instrumentation that is required to

generate a vulnerability profile depends on the type of vulnerability.

We discuss this in further detail in Sections 3 and 4.

Lines 16-23 of Algorithm 1 add the newly generated test input 𝑡𝑔
if either 𝑡𝑔 achieves a different branch-pair profile than other inputs
in 𝑇𝐺 , as tested by AFL’s built-in routine isFit, or has attained less
headroom than previously generated test inputs for some vulner-

ability location, as tested by the routine isCloser, which we had

already presented in Section 2.1.

After Algorithm 1 is terminated, the vulnerability exposing test

inputs are obtained by picking up the test inputs in 𝑇𝐺 whose vul-

nerability profiles have a zero entry for any vulnerability location.

3 INSTANTIATING HEADROOM TO SPECIFIC
VULNERABILITY TYPES

In this section we demonstrate the generality of the notion of head-

room by instantiating it to two types of real-life vulnerabilities.

3.1 Buffer overrun vulnerabilities

Abuffer overrun occurs when a buffer (or array) is written to beyond

its limits. It is a very prevalent vulnerability in real world software;

for instance, it ranks third in the top 10 most dangerous software

errors in the CVE database [8].

Consider a buffer access location 𝑣𝑙 of the form “*ptr = . . .”,
where ptr is a pointer, and consider a specific visit to this location

during a run. Let 𝐴𝑐 be the value of ptr during this visit, and let

𝐴ℎ and 𝑠 be the starting address and size of the allocated buffer

516

within which ptr is supposed to point to during this visit (how to

determine this is discussed in further detail in Section 4). We define

the headroom ℎ𝑙 during this visit as follows:

ℎ𝑙 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if 𝐴𝑐 ≥ 𝐴ℎ + 𝑠
(𝐴ℎ+𝑠−𝐴𝑐)

𝑠 , if 𝐴ℎ ≤ 𝐴𝑐 < 𝐴ℎ + 𝑠

1, otherwise.

(1)

Finally, the headroom for the entire run at 𝑣𝑙 , i.e., 𝐼ℎ (𝑣𝑙), is defined
as the least value of ℎ𝑙 as defined above across all visits to 𝑣𝑙 during
the run (it is taken as 1 if 𝑣𝑙 was not visited at all during the run).

3.2 Integer overflow vulnerabilities

Integer overflow (or wraparound) occurs when the result of an

operation that involves integer variables goes beyond the range

of values that can be represented by the integer type [10]. These

operations could be arithmetic operations, value-losing type cast-

ings, or bit shift operations. An integer overflow can lead to other

vulnerabilities such as buffer overflows or non-termination of pro-

grams.

Integer overflows can be of two types. The first type ismaximum

value wrap around, where a value greater than the maximum repre-

sentable integer 𝐼max is attempted to be computed, hence causing
the result to erroneously wrap around to the negative side. Let 𝑖𝑜
be the value that is sought to be computed at a vulnerability loca-

tion (that is, a location where one of the operations named above

occurs) during a specific visit to this location during a run. Then,

the headroom corresponding to this visit can be defined as:

ℎ𝑙 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if 𝑖𝑜 > 𝐼max
(𝐼max+1−𝑖𝑜)

𝐼max
, if 0 < 𝑖𝑜 ≤ 𝐼max

1, otherwise.

(2)

Finally, the headroom for the entire run at 𝑣𝑙 , i.e., 𝐼ℎ (𝑣𝑙), is defined
as the least value of ℎ𝑙 as defined above across all visits to 𝑣𝑙 during
the run (it is taken as 1 if 𝑣𝑙 was not visited at all during the run).
Intuitively, the headroom is the difference between the highest

value sought to be computed at the location 𝑣𝑙 during the run and
𝐼max , expressed as a ratio of 𝐼max itself.
The headroom can be defined for minimum value wrap around

analogously. We provide more details about how the formula above

can be computed by actual instrumentation in Section 4.

4 IMPLEMENTATION

In this section we describe the implementation of our approach,

along with instantiation of this approach for finding buffer overrun

and integer overflow vulnerabilities as described in Section 3. We

have implemented our approach as an extension of AFL. AFL has

been a popular platform for researchers to implement and evaluate

extensions to fuzzing [4, 17, 24]. AFL is a fuzzer for C programs. Our

extensions to AFL include changes to maintain two populations of

test inputs, to select test inputs from Population 2 for fuzzing, to

calculate the fuzzing potential for a Population 2 test input, and

logic to retain a Population 2 test input if it achieved a significantly

better than vulnerability profile than other Population 2 test inputs

in the tree 𝑇𝐺 . We had described all these changes conceptually in

Section 2.

1 void *glb_obuf;int glb_size_obuf;

2 void main(){

3 char inp[100],obuf[50], char c; int i = 0;

4 glb_obuf=(void *) obuf;

5 glb_size_obuf = 50;

6 fgets(inp,100,stdin);

7 while((c = in[i++]) != NULL){

8 _hdr_calc_bov(1,glb_obuf,(void *)out,glb_size_obuf);

9 *out++ = c;

10 }

11 }

Figure 3: Example instrumented program for buff. overrun

AFL comes with a compiler that instruments the given program

to compute the branch-pair profile at run-time. Using the CIL [19]

program transformation framework, we have implemented a source-

to-source pre-processor that adds extra instrumentation to the pro-

gram to-be-tested to populate the vulnerability profile at run-time.

Our instrumentor runs first, and our instrumented program is sup-

plied to AFL’s compiler for AFL’s instrumentation to be added. Our

instrumentor adds a separate table in shared memory for communi-

cating the vulnerability profile from the test run. Similar to AFL’s

visit-count table, each entry of our table (which is a headroom at a

vulnerability location) is a 8-bit value.

4.1 Buffer overrun instrumentation

Here we describe how we have implemented buffer overrun instru-

mentation. CIL’s simplifier converts all buffer-writing statements

into the form “*ptr = exp”. Hence, we only need to instrument

statements of this form.

We illustrate the buffer-writing instrumentation using the ex-

ample program in Figure 3. The code shown in blue colour is not

part of the given program, and is instrumentation added by our

approach. This program reads a NULL delimited string into an input

buffer ‘inp’ in Line 6 and copies this string into an output buffer

‘obuf’ in Line 9. In this program there is a potential buffer overrun

at Line 9, which will be exposed by any input string with length

more than 50 characters.

To instrument a buffer-writing statement, our instrumentor uses

CIL’s built-in pointer analysis. The pointer analysis identifies the

statement(s) where the buffer(s) that ptr may potentially point to

are declared/allocated. The instrumentor adds actual headroom

instrumentation for a buffer-writing statement only in cases where

the pointer analysis returns a unique buffer declaration/allocation

site.

In our example program, the pointer ‘out’ at Line 9 is deter-

mined by pointer analysis to point to the buffer ‘obuf’ that is de-

clared in Line 3. Our instrumentor introduces and initializes two

global instrumentation variables right after each such buffer decla-

ration/allocation site. Lines 4-5 show this code. The first variable

records the starting address of the buffer, while the second records

the size of the buffer (see symbols 𝐴ℎ and 𝑠 in Section 3.1).
The actual headroom calculation is implemented in a separate

function _hdr_calc_bov. The instrumentor adds a call to this func-

tion just before each vulnerability location (see Line 8). The param-

eters to this function are: a constant representing the vulnerability

517

1 /* v_prof is a global array.
It is the vuln profile. */

2 void _hdr_calc_bov(int v_id,
3 void *buf_head,
4 void *cur_pos,
5 int buf_size){
6 double hr = 1.0;int tmp;
7 if(cur_pos < buf_head)
8 return;
9 tmp = buf_head + buf_size;
10 if (cur_pos >= tmp){
11 v_prof[v_id] = 0;
12 return;
13 }
14 tmp -= cur_pos
15 hr = (double)tmp/buf_size;
16 if(hr < v_prof[v_id])
17 v_prof[v_id] = hr;
18 return;
19 }

1 /* v_prof is a global array */
2 void _hdr_calc_iov(int v_id,

long expVal){
3 double hr = 1.0;int tmp;
4 if(expVal <= 0)
5 return;
6 if(expVal > INT_MAX){
8 v_prof[v_id] = 0;
9 return;
10 }
11 tmp = INT_MAX - expVal + 1;
12 hr = (double)tmp/INT_MAX;
13 if(hr < v_prof[v_id])
14 v_prof[v_id] = hr;
15 return;
16 }

(a) (b)

Figure 4: Instrumentation functions (a) buffer overflow (b)

integer overflow

location, the starting address of the (unique) buffer to which the

access-pointer points to, the current value of the access pointer,

and the size of the buffer.

Figure 4(a) shows the pseudo code for the function

_hdr_calc_bov. This function encodes the calculation that

was described in Section 3.1. This function first checks for

underrun condition, and simply returns if so (Lines 7-8). It then

checks for overrun condition. If an overrun has already occurred,

it sets the headroom in the vulnerability profile to zero (Line 11).

Otherwise, it calculates and sets the headroom in the vulnerability

profile in Line 17.

Our current implementation has some limitations, and does not

handle the following scenarios: (a) An access pointer pointing to

more than one buffer as per pointer analysis, (b) Buffer underflows,

(c) Buffers allocated within loops, and (d) Buffer over reads. We

believe it would be possible to alleviate most of these limitations

via appropriate extensions as part of future work.

4.2 Integer overflow instrumentation

For integer overflow checking, our automated approach instru-

ments arithmetic operation statements of the form v1 = v2 + v3,

v1 = v2 * v3, v1 = v2 - v3. In computing the headroom, we

have adopted width extension test [10] approach. In this approach,

the operands of each integer expression are first converted into

wider bit-width numbers, and the expression is computed using

the higher bit-width. The result (which is in the higher bit-width)

is checked to see whether it is within the range of values repre-

sented by the original bit-width. In our implementation, we target

expressions whose original operands are 32-bit integers, and we

use 64-bit “long” integers as the extended bit-width.

Figure 4(b) shows pseudo code for the function _hdr_calc_iov,

a call to which is inserted by our instrumentor just before each

vulnerability location. The arguments to the function are the ID

of the vulnerability location, and the result from the evaluation of

the expression at the higher bit-width. This function encodes the

calculation that was described in Section 3.2 for maximum value

wraparound checking. (We use an analogous function for minimum

value wraparound checking, which we use only for “minus” state-

ments.) This function first checks whether expVal is a negative

number, in which case maximum value wraparound has not hap-

pened. It then checks if the maximum value wraparound overflow

has already happened (Lines 6-10). Otherwise, it calculates and

stores the headroom in Line 14.

Currently, our implementation does not check overflows that

occur due to type casting and bit-shift operations. Also, it does not

handle integer types with bit-widths other than standard 32-bit

integers.

5 EVALUATION

In this section we provide evaluation of our approach in the context

of buffer overrun vulnerabilities (BOV) as well as integer overflow

vulnerabilities (IOV).

5.1 Benchmark programs

For our evaluations we have used a set of eight “MIT Bench-

marks”1 [28] programs, as well as the “SV-COMP benchmarks”.

The MIT Benchmark suite has been used by previous researchers

to evaluate symbolic-execution based techniques that detect buffer

overflow vulnerabilities [22]. The SV-COMP benchmarks are used

in premier competitions such as SV-COMP [1] and Test-comp [2],

to compare and evaluate state-of-the-art tools that are based on

static analysis [3], symbolic execution [6], or fuzz testing [7, 16],

and that identify vulnerabilities such as integer overflows, errors

such as assertion violations, etc.

We compare the performance of our tool, which we call AFL-HR,

with two baselines: AFL, and the directed fuzzer AFLGo [4]. We

used two machines in our evaluations: one with an Intel i7-6700

processor and 32 GB RAM, and one with an Intel i7-8700 processor

and 64 GB RAM.

5.2 Buffer overrun vulnerabilities

The names of the MIT Benchmarks that we use are s1, s3, s4, s5, b1,

b3, b4, and f1. These eight MIT Benchmarks, between them, have

46 vulnerable buffer overrun locations. These locations have been

identified by the suite designers, and serve as a ground truth for

our evaluations (although this information is not made available

to the tools in our evaluation). For each benchmark we made a

single small seed test input, and gave it to all three tools. Each tool

was given a budget of 3 hours for each run on each benchmark,

and was run 5 times on each benchmark in order to mitigate the

effects of randomness that is present in each tool. Note that this

evaluation is more rigorous than tool evaluations in competitions

like SV-COMP and Test-Comp, as they evaluate each tool based

on only one run on each benchmark. We have used Mann-Witney

U-Test [15] for validating the performance of our tool with respect

to the two baseline tools.

Table 1 and Figure 5 summarizes the results of the evaluation. In

Table 1, Column 2 shows the benchmark name. Column 3 shows the

number of known vulnerability locations. Columns A to C show the

mean number of buffer overflows detected by AFL-baseline, AFLGo,

and AFL-HR modes across five runs. Column D shows whether the

number of buffer violations detected by AFL-HR are statistically

1http://bitblaze.cs.berkeley.edu/lese/lese_benchmark_100208.tar.gz

518

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

N
um

be
r

of
 B

O
V

bu
gs

 fo
un

d

Time in Seconds

AFL-HR
AFL

AFLGo

Figure 5: Results for buffer overrun detection

S.No Bench- Number # vuln. locations detected Statistically

mark vulnerable AFL AFLGo AFL-HR Significant?

locations (A) (B) (C) (D) (E)

1 s1 28 8 10 17 Y Y

2 s3 3 2 2 3 Y Y

3 s4 4 3 3 4 Y Y

4 s5 3 0 0 1 Y Y

5 b1 1 1 1 1 N N

6 b3 1 0 1 1 Y N

7 b4 2 1 1 1 N N

8 f1 4 1 1 1 N N

Table 1: Average number of buffer overflow violations de-

tected by each tool and results of statistical significance

tests.

significantly different when compared to AFL or not. Column E

shows the same evaluation with respect to AFLGo.

In Figure 5, each plot shows the cumulative number of vulnera-

bilities found by a single tool over the three hour duration across all

the benchmarks, by starting all the runs simultaneously and letting

them run concurrently. For each benchmark, at any point of time

in the three hour window, the average number of vulnerabilities

found in this benchmark across the five runs corresponding to this

benchmark up to this point is considered.

In summary, our approach AFL-HR finds a total of 29 (from the

total of 46) vulnerabilities within 3 hours, while AFLGo and AFL

find 19 and 16 vulnerabilities, respectively. All the vulnerabilities

found by AFLGo and AFL also found by AFL-HR. Furthermore, as

the plots reveal, AFL-HR finds the vulnerabilities much faster. For

instance, by 1 hour, AFL-HR has found 26 vulnerabilities, while in

the same time AFL has found only 16 vulnerabilities and AFLGo

has found 17 vulnerabilities. The statistical significance test shows

that AFL-HR detected significantly more buffer overflow violations

than AFL and AFLGo in 50% of the programs.

5.3 Integer overflow vulnerabilities

Our primary benchmark suite for this evaluation is the suite of

SV-COMP 2019 benchmarks. We use 177 integer overflow bench-

marks, with each benchmark known to have one vulnerable integer

operation. These benchmarks being smaller in size, each tool was

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 IO

V
bu

gs
 fo

un
d

Time in Seconds

AFL-HR
AFL

AFLGo

Figure 6: Results for integer overflow detection

given a budget of 900 seconds per benchmark (this timeout is a

standard in the SV-COMP and Test-comp competitions). Each tool

was given three seeds, which contained zero, the smallest negative

number and the largest positive number, respectively. Each tool

was run 5 times on each benchmark.

Figure 6 summarizes the results, in the same format as in Fig-

ure 5. We show the plots only until the first 400 seconds, as after

that point all tools have identified almost the same number of vul-

nerabilities. It is notable that in the first 15 seconds itself, AFL-HR

found 143 vulnerabilities, while AFLGo found 118 vulnerabilities

and AFL found 110 vulnerabilities. Further, when we consider all

vulnerabilities in all benchmarks, the increased number of vulner-

abilities found by AFL-HR compared with both AFL and AFLGo

in the first 15 seconds is statistically significant. At the end of the

entire 900 seconds, AFL-HR found 148 vulnerabilities, AFLGo found

146 vulnerabilities, and AFL found 147 vulnerabilities. On average,

AFL-HR needed 7 seconds to find each vulnerability, while AFLGo

needed 27 seconds and AFL needed 42 seconds.

6 RELATED WORK

In this section we compare our work with related work across three

different categories.

In recent years there has been a large body of reported work

on greybox fuzz testing [11, 21, 27], as this approach has been

found to be scalable and practical. Basic coverage-based greybox

fuzzing approaches came first. Subsequently, researchers have pro-

posed extensions such as to prioritize the coverage of low-frequency

paths [5, 7, 21, 24], and to direct fuzzers to reach more quickly a

given set of target program locations [4].

FuzzFactory [20] is a framework for instantiating a fuzzer with

domain-specific testing objectives. Our approach cannot be seen as

a possible instantiation of their approach, as they maintain a single

population of test inputs, and use AFL’s default selection logic to

select test inputs to fuzz from this population. In other words, test

inputs that are more fit as per the domain-specific objective may

not be fuzzed more, unlike in our approach. Also, their paper does

not focus on detecting vulnerabilities.

None of the approaches mentioned above are targeted at identify-

ing difficult vulnerabilities that get exhibited only in runs that reach

519

vulnerability locations with certain specific vulnerability-inducing

program states.

Whitebox techniques employ deep analysis of code using sym-

bolic or concolic execution, which enumerates paths systematically

and symbolically up to a timeout [6, 13]. These techniques should

be able to identify vulnerability exposing test runs. However, their

scalability is known to be low. Unlike greybox fuzzers, they are

generally not good at finding vulnerabilities that are induced by

execution paths that need to iterate loops numerous times.

A number of SBST approaches [12, 25] calculate how close a

conditional came in a run to evaluating to a desired value (true or

false) that would send control to an exception statement. They use

this distance as a fitness metric to guide the test exploration effort

towards the exception statement. Our headroom notion is similar

to this closeness. The main novelty of our work is to bring this

idea into a prototypical greybox fuzzer (AFL) with a set of practical

design decisions. The main contrast between fuzzers and SBST is

that fuzzers use lightweight and scalable heuristics to maintain

and evolve a population of test cases, whereas SBST approaches

typically use an optimization formulation to search for ideal test

inputs or test suites.

7 CONCLUSIONS AND FUTUREWORK

In this paper we addressed the challenging problem of exposing

vulnerabilities that are exposed by runs that reach vulnerability

locations with specific vulnerability-inducing program states. We

proposed an approach that for the first time uses vulnerability-

specific fitness metrics to generate and retain test inputs that come

closer to exposing vulnerabilities. An evaluation of our tool on com-

monly used benchmarks reveals that our approach either detects

multiple times more vulnerabilities or detects them much quicker

over the baseline AFL as well as over a recent directed fuzzer.

A limitation of this paper is that while we have evaluated the

approach on benchmarks that are used by researchers or in com-

petitions, we have not evaluated it on large programs. For this, we

feel we need to migrate our instrumentation approach to use LLVM

(rather than CIL), for example, by enhancing runtime memory

checkers such as Address Sanitizer (ASAN) [23] to instrument the

program to precisely track memory operations and their headroom

during the program execution. These would constitute interesting

directions for future work. It would also be interesting to instan-

tiate our approach to other challenging types of vulnerabilities,

like failing assertions, using memory after freeing, SQL injection

attacks.

Acknowledgments. This work was partially supported by a grant

from TCS Limited to Indian Institute of Science, Bangalore.

REFERENCES
[1] Dirk Beyer. 2019. Automatic verification of C and Java programs: SV-COMP

2019. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 133–155.

[2] Dirk Beyer. 2019. International competition on software testing (Test-Comp). In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 167–175.

[3] Dirk Beyer and M Erkan Keremoglu. 2011. CPAchecker: A tool for configurable
software verification. In International Conference on Computer Aided Verification.
Springer, 184–190.

[4] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security (CCS). ACM, 2329–2344.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 1032–1043.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI, Vol. 8. 209–224.

[7] Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and R Venkatesh.
2019. VeriFuzz: Program aware fuzzing. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 244–249.

[8] CVE database. 2017. CVE Details - Vulnerabilities by type. Technical Report.
https://www.cvedetails.com/vulnerabilities-by-types.php

[9] Jared DeMott, Richard Enbody, and William F Punch. 2007. Revolutionizing the
field of grey-box attack surface testing with evolutionary fuzzing. BlackHat and
Defcon (2007).

[10] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding integer
overflow in C/C++. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 1 (2015), 2.

[11] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2012), 276–291.

[12] Gordon Fraser and Andrea Arcuri. 2015. 1600 faults in 100 projects: automatically
finding faults while achieving high coverage with EvoSuite. Empirical software
engineering 20, 3 (2015), 611–639.

[13] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
Whitebox Fuzz Testing.. In NDSS, Vol. 8. 151–166.

[14] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. ACM Computing
Surveys (CSUR) 45, 1 (2012), 11.

[15] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2123–2138.

[16] Hoang M. Le. 2019. KLUZZER: Whitebox Fuzzing on Top of LLVM. In Automated
Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28-31, 2019, Proceedings. 246–252.

[17] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, 254–
265.

[18] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[19] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. 2002. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In International Conference on Compiler Construction. Springer, 213–228.

[20] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: domain-specific fuzzing with waypoints. Pro-
ceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–29.

[21] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In USENIX
security. 1–14.

[22] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended symbolic execution on binary programs. In Proc. Int. Symposium
on Softw. Testing and Analysis (ISSTA). 225–236.

[23] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.. In USENIX
Annual Technical Conference. 309–318.

[24] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).
1–16.

[25] Nigel Tracey, John Clark, Keith Mander, and John McDermid. 2000. Automated
test-data generation for exception conditions. Software: Practice and Experience
30, 1 (2000), 61–79.

[26] Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary
test environment for automatic structural testing. Information and Software
Technology 43, 14 (2001), 841–854.

[27] Michael Zalewski. [n.d.]. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/
[28] Misha Zitser, Richard Lippmann, and Tim Leek. 2004. Testing Static Analysis

Tools Using Exploitable Buffer Overflows from Open Source Code. In Proceedings
of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering (FSE) (Newport Beach, CA, USA). New York, NY, USA,
97–106.

520

