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T  HE INTERNET AND the world’s 
Digital Economy run on a shared, 
critical open source software infra-
structure. A security flaw in a single 
library can have severe consequences. 
For instance, OpenSSL implements 
protocols for secure communication 
and is widely used by Internet serv-
ers, including the majority of HTTPS 
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL 
would leak secret data and caused 

huge financial losses. It is important 
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale. 
Today, fuzzing is one of the most 
promising techniques in this regard. 
Fuzzing is an automatic bug and vul-
nerability discovery technique that 
continuously generates inputs and 
reports those that crash the program. 
There are three main categories of 
fuzzing tools and techniques: black-, 
gray-, and white-box fuzzing.

Black-box fuzzing generates in-
puts without any knowledge of the 

program. There are two main vari-
ants of black-box fuzzing: mutational 
and generational. In mutational 
black-box fuzzing, the fuzz campaign 
starts with one or more seed inputs. 
These seeds are modified to gener-
ate new inputs. Random mutations 
are applied to random locations in 
the input. For instance, a file fuzzer 
may flip random bits in a seed file. 
The process continues until a time 
budget is exhausted. In generational 
black-box fuzzing, inputs are gen-
erated from scratch. If a structural 
specification of the input format is 
provided, new inputs are generated 
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one 
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to 
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an 
initial seed corpus is provided. Seed 
inputs are mutated to generate new in-
puts. Generated inputs that cover new 
control locations and, thus, increase 
code coverage are added to the seed 
corpus. The coverage feedback allows 
a gray-box fuzzer to gradually reach 
deeper into the code. To identify bugs 
and vulnerabilities, sanitizers inject 
assertions into the program. Existing 
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https://lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and 
Honggfuzz (https: //github.com/
google/honggfuzz).

White-box fuzzing is based on 
a technique called symbolic execu-
tion,1 which uses program analysis 
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers 
used as the back end in white-box 
fuzzing are Satisfiability Modulo 
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Theory (SMT) solvers, which al-
low for reasoning about (quantifier-
free) first-order logic formulas with 
equality and function/predicate 
symbols drawn from different back-
ground theories. White-box fuzzers 
calculate the path condition of an in-
put i—the set of inputs that traverse 
the same path as i. The path condition 
is represented as an SMT formula, 
e.g., .i ii 00 42 1 7[ ] [ ][ ] / 2= -

Given seed input s, the path con-
dition is calculated and mutated (as 
opposed to mutating the program 
input). The mutated path condition 
is then sent to a constraint solver 
to generate new inputs. The main 
benefit of this technique is that by 
carefully keeping track of path con-
ditions of all inputs seen so far, it al-
ways generates an input traversing a 
new path (new control flow). Exist-
ing white-box fuzzing tools include 
KLEE2 and SAGE.3

In this article, we provide reflec-
tions on recent advances in the field 
as well as concrete directions for fu-
ture research. We discuss recent im-
pacts and enumerate open research 
challenges from the perspective of 
both practitioners and researchers. 
For a detailed, technical review, we 
refer the reader to Godefroid.4

Recent Impact
Fuzzing for automatic bug and vul-
nerability discovery has taken both 
the software industry and the re-
search community by storm. The 
research problem of finding bugs in 
a program by automatic input gen-
eration has a long-standing history, 
which began well before Miller’s 
inception of the term “fuzzing” in 
1990,5 yet only now do we see main-
stream deployment of fuzzing tech-
nology in industry.

Using gray-box fuzzing, Google 
has discovered more than 16,000 

bugs in the Chrome browser over 
the past eight years and more than 
11,000 bugs in more than 160 open 
source software projects over the 
past three years (https://google 
.github.io/clusterfuzz/#trophies). 
Microsoft credits its white-box fuzz-
ing tool SAGE with saving millions 
of dollars during the development of 
Windows 7.3 Trail of Bits has been 
developing various fuzzing tools, 
including DeepState, a unit testing 
framework that allows developers 
to fuzz the various units of their sys-
tem (https://github.com/trailofbits/
deepstate). The 2016 DARPA Cyber 
Grand Challenge had machines at-
tack and defend against other ma-
chines by exploiting and hardening 
against software vulnerabilities. 
The Mayhem system,6 which was 
awarded US$2 million for winning 
the competition, made extensive use 
of white-box fuzzing.7

What has enabled this recent 
surge of interest in fuzzing? First, 
there is a tremendous need. Life 
and business are increasingly per-
meated by software systems, and 
a security vulnerability in even the 
smallest system can have dire con-
sequences. Second, we now have the 
incentives and the required mindset.  
Some software companies have 
established lucrative bug bounty 
programs that pay top dollar for 
critical bugs. Anyone, including the 
reader, can offer vulnerability re-
wards on bug bounty platforms, 
such as HackerOne (https://www 
.hackerone.com/), which provides 
ethical coordination and responsible 
disclosure. Independent security re-
searchers can report the discovered 
vulnerabilities and collect the boun-
ties. Some stakeholders take matters 
into their own hands, with several 
companies continuously fuzzing 
their own software.

Third, we now have the tools. 
Many fuzzers are open source, freely 
available, easy to use, and very suc-
cessful in finding bugs. For instance, 
the KLEE symbolic execution engine 
(https://klee.github.io/) has been 
freely available, maintained, and 
widely used for more than 10 years. 
As a result, several companies, such 
as Baidu, Fujitsu, and Samsung, have 
used and extended it to test their 
software products. Similarly, the 
AFL gray-box fuzzer (http://lcamtuf 
.coredump.cx/afl/) is highly effective 
and easy to use. Its trophy case in-
cludes bugs and security vulnerabili-
ties found in a large number of open 
source systems.

Finally, this open science ap-
proach and meaningful engagement 
between industry and academia have 
facilitated rapid advances in fuzz-
ing. For instance, fuzzers are getting 
faster, find more types of bugs, and 
work for more application domains.

Challenges
In September 2019, we organized a 
Shonan Meeting on Fuzzing and Sym-
bolic Execution in Shonan Vil-
lage Center, Japan (https://shonan 
.nii.ac.jp/seminars/160/). The meeting 
brought together thought leaders, dis-
tinguished researchers, tool builders, 
founders, and promising young scien-
tists from the gray- and white-box 
fuzzing (symbolic execution) commu-
nities. Next, we discuss the main chal-
lenges identified during the meeting. We 
phrase the challenges as research ques-
tions and hope that they provide guid-
ance and direction going forward.

Automation
Automated vulnerability discovery is 
a game between adversaries. Given 
the same resources, the adversary 
with the fuzzer that finds more vul-
nerabilities has the advantage.
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More Software 

How can we efficiently fuzz more types of 
software systems? We already know 
how to fuzz command-line tools 
(AFL and KLEE) and application 
programming interfaces (APIs) (Lib-
Fuzzer). The fuzzer generates inputs 
and observes the program’s output. 
The community is actively working 
on how to fuzz programs that take 
highly structured inputs, such as file 
parsers or object-oriented programs. 
However, fuzzing cyberphysical 
systems, which interact with the 
environment as part of their execu-
tion, or machine learning systems, 
whose behavior is determined by 
their training data, is an underex-
plored area.

How do we fuzz stateful software, 
such as protocol implementations, 
which can produce different outputs 
for the same input? Most gray-and 
white-box fuzzers are written with 
a single programming language in 
mind. How do we fuzz polyglot soft-
ware, which is written in several lan-
guages? How do we fuzz GUI-based 
programs that take as inputs a se-
quence of events executed on a user 
interface? For white-box fuzzing, we 
already know how symbolic execu-
tion can formulate constraints on nu-
meric or string-based input domains. 
However, given a program whose in-
put domain is defined by a grammar 
and/or protocol, how can a symbolic 
execution tool effectively formulate 
constraints on such “structured” in-
put domains?

More Bug Types 

How can the fuzzer identify more types 
of vulnerabilities? A significant por-
tion of current work on fuzzing fo-
cuses on simple oracles, such as 
finding crashes. We need studies of 

security-critical classes of bugs that 
do not manifest as crashes and de-
velop oracles that can efficiently de-
tect them. Vulnerabilities are often 
encoded as assertions on the pro-
gram state. Using such assertions, we 
already know how we can discover 
memory- or concurrency-related er-
rors. The discovery of side-channel 
vulnerabilities, such as information 
leaks or timing, cache, or energy-re-
lated side channels, is currently an ac-
tive research topic.8 Going forward, 
we should invent techniques to auto-
matically detect and invoke privilege 
escalation, remote code execution, 
and other types of critical security 
flaws not only in C/C++ but also in 
other programming languages.

More Difficult Bugs 

How can we find “deep bugs” for which ef-
ficient oracles exist but which nevertheless 
evade detection? There are bugs that 
evade discovery despite long fuzz-
ing campaigns, e.g., because they are 
guarded by complex conditions or 
because existing techniques require 
impractical amounts of resources to 
find them. Are there certain kinds 
of deep bugs that can be found effi-
ciently with specialized approaches? 
Structure-aware and grammar-based 
fuzzing as well as the integration of 
static analysis and symbolic execu-
tion with gray-box fuzzing are prom-
ising directions.9,10 Second, software 
also changes all of the time—tech-
niques that can target software 
patches will prove essential for find-
ing bugs as they are introduced.11,12 
Third, we should investigate strate-
gies to boost fault finding, such as 
AFLFast, which enables faster crash 
detection in gray-box fuzzers,13 and 
study the utility of GPUs and other 
means of efficient parallelization to 
maximize the number of executions 

per unit time.14 Finally, ranking bugs 
in terms of their importance can also 
improve the effectiveness of fuzzing 
in practice.

More Empirical Studies 

What is the nature of vulnerabilities that 
have evaded discovery despite long fuzz-
ing campaigns? Why have they evaded 
discovery? We need empirical studies 
to understand the nature and distri-
bution of security vulnerabilities in 
source code.

The Human Component

Human-in-the-Loop Approach 

How can fuzzers leverage the ingenuity of 
the auditor? Many researchers think 
of fuzzing as a fully automated pro-
cess that involves the human only at 
the beginning, when the software 
system is prepared for the fuzzer, 
and at the end, when the fuzzer-dis-
covered vulnerabilities need to be re-
ported. In reality, security auditors 
use fuzzers in an iterative manner. 
During our meeting, Ned William-
son, a prolific security researcher at 
Google, demonstrated his semiauto-
mated approach to vulnerability dis-
covery. Williamson would first audit 
the code to identify units that may 
contain a security flaw. He would 
prepare the unit for fuzzing, run 
the fuzzer for a while, and identify 
roadblocks for the fuzzer. He would 
manually patch out the roadblock to 
help the fuzzer make better progress. 
If the fuzzer spent more time fuzzing 
less relevant portions of the code, 
he would adjust the test driver and 
refocus the fuzzer. Once a potential 
vulnerability was found, he would 
backtrack, add each roadblock back, 
and adjust the vulnerability-expos-
ing input accordingly.
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This semiautomated process raises 
several research questions. How can 
we facilitate a more effective commu-
nication between fuzzer and security au-
ditor? How can the security auditor 

dynamically direct the fuzzer? How 
can the fuzzer explain what prevents 
it from progressing, and how can the 
auditor instruct the fuzzer to over-
come the roadblock?

Usability 

How can we improve the usability of fuzz-
ing tools? Ethical hacking requires 
a very special set of skills. Fuzzing 
already simplifies the process by au-
tomating at least the test input gen-
eration. How can we make fuzzing 
more accessible to developers and 
software engineers? How can we 
make it easier to develop test drivers 
for fuzzers? How can we integrate 
fuzzing into the day-to-day develop-
ment process, e.g., as a component 
of the continuous integration pipe-
line pipeline or as a fuzz-driven unit 
testing tool in the IDE? In particu-
lar, our industry participants and re-
spondents identified usability as the 
most important.

How can we prepare the output of 
a fuzzer for human consumption? A 
fuzzer produces an input that crashes 
the program, and the developer must 
find out why it crashes. How can we 

extend the fuzzer such that it gener-
ates a detailed bug report or even a 
bug fix for each identified vulnerabil-
ity? Automated repair techniques that 
have emerged recently can help in 

this regard.15 Recent work on Linux 
kernel fuzzing16 discusses techniques 
to address usability challenges while 
deploying the kernel fuzzer syzkaller 
on enterprise Linux distributions. 
Generalizing such enhancements to 
a fuzzer for general-purpose software 
remains a challenge.

Fuzzing Theory
It is important for any discipline to 
stand on a firm scientific founda-
tion. We have seen many technical 
advances in the engineering of fuzz-
ing tools. But why do some fuzzers 
work so much better than others? 
What are their limitations? We want 
to be able to explain interesting 
phenomena that we have observed 
empirically, make predictions, and 
extrapolate from these observations. 
To do this, we need a sound theoret-
ical model of the fuzzing process.

Residual Risk 

How can we assess residual security risk 
if the fuzzing campaign was unsuccess-
ful? Black- and white-box fuzzing sit 
on two ends of a spectrum. A white-
box fuzzer might provide a formal 

guarantee about the absence of de-
tectable vulnerabilities. If we assume 
that a symbolic execution engine 
can enumerate all paths in a piece 
of code and the oracle is encoded 
as assertions, then white-box fuzz-
ing can formally verify the absence 
of bugs. If it can enumerate only 
some paths in a reasonable time, 
we can still provide partial guaran-
tees.17 To make symbolic execution 
applicable in practice, correctness 
or completeness are traded for scal-
ability. How does this tradeoff affect 
the guarantees?

In contrast, a black-box fuzzer 
can never guarantee the absence of 
vulnerabilities for all inputs. What is 
the residual risk that, at the end of 
a fuzzing campaign, a bug still ex-
ists in the program that has not been 
found? If we model black-box fuzz-
ing as a random sampling from the 
program’s input space, we can lever-
age methods from applied statistics 
to estimate the residual risk.

A gray-box fuzzer uses program 
feedback to boost the efficiency of 
finding errors. However, this pro-
gram feedback introduces an adap-
tive bias. How do we account for 
this adaptive bias when assessing 
residual risk? To answer such ques-
tions, we should develop statistical 
and probabilistic frameworks and 
methodologies for sound estimation 
with quantifiable accuracy.

Theoretical Limitations 

What are the theoretical limitations of 
black-, gray-, white-box fuzzing? Black- 
and gray box-fuzzers are highly 
efficient—but at the cost of effective-
ness. Unlike white-box fuzzers, they 
struggle to generate inputs that exer-
cise paths frequented by few inputs. 
This tension raises several research 
questions. Given a program and a 

How can the fuzzer explain what 
prevents it from progressing, and 
how can the auditor instruct the 

fuzzer to overcome the roadblock?



 MAY/JUNE 2021  |  IEEE SOFTWARE  83

time budget, how can we select the 
fuzzing technique, or combination of 
techniques, that finds the most vul-
nerabilities within the time budget? 
How do program size and complex-
ity affect the scalability and per-
formance of each technique? How 
much more efficient is an attacker 
that has an order of magnitude more 
computational resources? With an 
understanding of the limitations of 
existing approaches, we can develop 
more advanced techniques.

Evaluation and 
Benchmarks
To validate a claim of superiority for 
novel fuzzing tools and techniques, 
we need sound methods for evalu-
ation. Generally speaking, the bet-
ter fuzzer finds a larger number of 
important bugs in software that we 
care about within a reasonable time. 
But what is a “reasonable time,” 
“software that we care about,” or 
“important bugs?” If no important 
bugs are found, how do we measure 
effectiveness? How do we prevent 
overfitting? What is a fair baseline 
for comparison?

To measure progress, we need 
to develop reasonable standards for 
comparison against previous work. 
We encourage the community to be 
open about releasing tools, bench-
marks, and experimental setups 
publicly for anyone to reproduce the 
results and to build upon.

Benchmarks

Specialized Fuzzers 

How can we evaluate specialized fuzz-
ers? There are programs that take 
structured and those that take un-
structured inputs. There are stateful 
and stateless programs. There are 
programs where the source code is 

available and programs where only 
the compiled binary is available. 
There are programs that take inputs 
via a file, a GUI, or an API. Extending 
fuzzing to different types of software 
systems is a key technical challenge 
(see the “More Software” section). 

Similarly, some fuzzers are spe-
cialized for a specific purpose. For 
instance, there are fuzzers that seek 
to reach a program location11,12 or 
that focus on exposing specific types 
of bugs, such as performance bugs.18

However, existing benchmarks 
are often not designed for these spe-
cialized tasks. If there is no previous 
work, we need standards for research-
ers to choose suitable subject pro-
grams and baselines for comparison.

Preventing Overfitting 

How can we prevent overfitting to a spe-
cific benchmark? For any benchmark 
suite, there is always the danger of 
overfitting. Despite a demonstration 
of superiority on the benchmark sub-
jects, a fuzzer might still be inferior 
in general. What are reasonable strat-
egies to mitigate overfitting? Can 
we propose a fair and sound policy 
to collect benchmarks? How can 
we avoid “single-source” types of 
benchmarks that are contributed by 
just one group and might give un-
due control to a single set of people?

Fuzzing tool competitions could 
be part of the solution for the chal-
lenges in the “Evaluation” and 
“Preventing Overfitting” sections. 
One model, inspired by constraint 
solving and verification competi-
tions, is to have different competition 
categories, such as coverage-based 
fuzzing, directed fuzzing, and so on. 
Within each category, there can be a 
further division based on the type of 
bugs and applications the fuzzer is 
suited for. Tool builders can submit 

their own benchmarks and fuzz-
ers, which would allow independent 
scrutiny of the entire process. Test-
Comp (https://test-comp.sosy-lab 
.org/) is an existing competition that 
illustrates this model.

A second model is to come up 
with challenge problems in the form 
of buggy programs and have tool de-
velopers directly apply the fuzzers to 
find the hidden bugs. This has the 
advantage of tool developers config-
uring their tools in the best possible 
way for each task but makes indepen-
dent reproduction of the results more 
challenging. Rode0Day (https: // 
rode0day.mit.edu/) is an existing com-
petition that illustrates this model.

Another approach is a continu-
ous evaluation, where fuzzers are re-
peatedly used to fuzz real programs. 
For instance, as a concrete outcome 
of our Shonan meeting, Google has 
developed FuzzBench (https://github 
.com/google/fuzzbench) and commit-
ted computational resources to eval-
uate submitted fuzzers on submitted 
benchmarks. In addition to scientific 
evaluation of technical advances, this 
approach allows direct application of 
these technical advances to a large 
set of actual open source software to 
make critical software systems safer 
and more secure.

Measures of Fuzzer 
Performance
During the evaluation of two fuzzing 
techniques, which quantities should 
we compare? What do we measure? 
Today, fuzzers are typically evaluated 
in terms of their effectiveness and ef-
ficiency. When we are interested in 
security vulnerabilities, a fuzzer’s ef-
fectiveness for a software system is 
determined by the total number of 
vulnerabilities a fuzzer has the capa-
bility of finding. In contrast, a fuzz-
er’s efficiency for a software system is 
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determined by the rate at which vul-
nerabilities are discovered.

Synthetic Bugs 

Are synthetic bugs representative? For 
evaluation, buggy software systems 
can be generated efficiently simply by 
injecting artificial faults into an exist-
ing system.19 We need to study empir-
ically whether such synthetic bugs are 
indeed representative of real and im-
portant security vulnerabilities. If they 
are not representative, how are they 
different from actual vulnerabilities? 
What can we do to make synthetic 
bugs more like real bugs? Which 
types of vulnerabilities are not repre-
sented in synthetic bug benchmarks?

Real Bugs 

Are real bugs, which have previously been 
discovered with other fuzzers, representa-
tive? Another approach is to collect 
actual vulnerabilities that have been 
found through other means into a 
benchmark. However, this process 
is tedious, such that the sample size 
may be relatively small, which would 
affect the generality of the results. 
Second, the evaluation only estab-
lishes that the newly proposed fuzzer 
finds at least the same vulnerabili-
ties that have been found before. It 
does not evaluate how well the newly 
proposed fuzzer finds new vulner-
abilities. How representative are the 
discovered vulnerabilities of all (un-
discovered) vulnerabilities? We could 
build a large, shared database of vul-
nerabilities in many software systems 
that have been found by several fuzz-
ers or auditors over a period of time.

Coverage 

Is coverage a good measure of fuzzer ef-
fectiveness? When no suitable bug 

benchmark is available, we need 
other means of evaluating the effec-
tiveness of a fuzzer. Code coverage 
is the classic substitute measure. The 
intuition is that vulnerabilities can-
not be exposed if the code containing 
the vulnerability is never executed. 
How effective is coverage really at 
measuring the capability of a fuzzer 
to expose vulnerabilities? We need 
empirical studies that assess how 
strongly the increase in different cov-
erage metrics correlates with an in-
crease in the probability of finding a 
vulnerability. In addition to code cov-
erage, there are many other measures 
of coverage, such as GUI, constraint, 
model, grammar, or state coverage. 
We should conduct empirical studies 
to determine correlation and agree-
ment of various proxy measures of 
effectiveness.

Time Budget 

What is a fair choice of time budget? It is 
not possible to measure fuzzer effec-
tiveness directly. If our measure is 
the number of bugs found, then ef-
fectiveness is the total number of bugs 
the fuzzer finds in the limit, i.e., when 
given infinite time. Instead, research-
ers can derive a trivial lower bound 
on the effectiveness, i.e., the total 
number of bugs a fuzzer finds, by fix-
ing a time budget. Currently, this time 
budget is typically anywhere between 
one hour and one day. However, an 
extremely effective fuzzer may take 
some time to generate test cases, dur-
ing which time another fuzzer can 
generate several orders of magnitudes 
more test cases.20 If the chosen time 
budget is too small, the faster, yet less 
effective, fuzzer might appear more 
effective. Thus, we should develop 
standards that facilitate a fair choice 
of time budget when evaluating the 
effectiveness of a fuzzer.

Techniques Versus 
Implementations

Technique Evaluation 

How do we evaluate techniques instead 
of implementations? To demonstrate 
claims of the superiority of a proposed 
technique, researchers compare an 
implementation of the proposed tech-
nique to that of an existing technique. 
In the implementation, the researcher 
can make engineering decisions that 
can substantially affect the effective-
ness of the fuzzer.21 For instance, a 
comparison between the AFL gray-
box fuzzer against the KLEE white-
box fuzzer to determine whether a 
white-box fuzzing technique outper-
forms a gray-box fuzzing technique 
should always be taken with a grain 
of salt. If possible, the proposed tech-
nique (e.g., an improvement to gray 
box fuzzing) is implemented directly 
into the baseline (e.g., AFL).

Survey
To request feedback from the larger 
community on the identified challenges, 
we surveyed further experts from indus-
try and academia. Our objective was to 
identify points of contention, to add 
challenges or reflections that we might 
have overlooked, and to solicit concrete 
pathways or initiatives for some of the 
identified challenges. We sent an email 
invitation to software security experts 
who have previously published in fuzz-
ing or have professional work on auto-
matic vulnerability discovery. Out of 24 
respondents, 14 work in academia and 
10 work in industry; three attended the 
Shonan meeting.

The survey participants marked 
improving automation (71%), build-
ing a theory of fuzzing (63%), and 
finding valid measures of fuzzer per-
formance (63%) as their top three 
most important challenges. While 
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practitioners and researchers were 
mostly in agreement, practitioners 
demonstrated a particularly greater 
interest in the development of 
human-in-the-loop approaches (+0.8 
Likert points). On average, a respon-
dent marked all identified challenges 
as important or very important on a 
5-point Likert scale. No major ad-
ditional challenges were identified. 
Other survey results were directly 
added to the corresponding sections.

F uzzing is used today in corpo-
rations in a significant man-
ner, often on a daily basis, 

for detecting bugs and security flaws. 
Despite advances in static analysis 
and formal verification, fuzzing re-
mains the primary automatic mecha-
nism for vulnerability discovery in 
most software products. However, 
the security of our software systems is 
in the hands of each and every soft-
ware engineer, including future volun-
teers who contribute to critical open 
source software. We believe awareness 
and education, in the small and in the 
large, are of paramount importance.

One mechanism is the organiza-
tion of security-oriented hackathons 
and Capture-the-Flag competitions. 
For instance, the Build it Break it Fix 
it contest from Maryland (https://
builditbreakit.org/) represents an 
early successful attempt in this di-
rection. The community could also 
move toward competitions between 
fuzzing tools (such as FuzzBench, 
Test-Comp, and Rode0Day) or orga-
nize regular fuzzing camps.

Another mechanism is to teach 
about fuzzing in software engineer-
ing and cybersecurity courses. The 
second and third authors were ac-
tively involved in designing and de-
livering such courses at the university 
level. A key challenge in developing 

such educational content is that the 
students need to be exposed to sev-
eral tools, which takes a significant 
amount of the students’ time. The re-
cent development of online books22 
can alleviate some of these issues by 
presenting an integrated resource and 
repository for getting familiarized 
with various variants of fuzzing. 
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