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ABSTRACT

Program vulnerabilities, even when detected and reported, are not
fixed immediately. The time lag between the reporting and fixing
of a vulnerability causes open-source software systems to suffer
from significant exposure to possible attacks. In this paper, we pro-
pose a counter-example guided inductive inference procedure over
program states to define likely invariants at possible fix locations.
The likely invariants are constructed via mutation over states at
the fix location, which turns out to be more effective for inductive
property inference, as compared to the usual greybox fuzzing over
program inputs. Once such likely invariants, which we call patch
invariants, are identified, we can use them to construct patches
via simple patch templates. Our work assumes that only one fail-
ing input (representing the exploit) is available to start the repair
process. Experiments on the VulnLoc data-set of 30 vulnerabilities,
which has been curated in previous works on vulnerability repair,
show the effectiveness of our repair procedure. As compared to
proposed approaches for vulnerability repair such as CPR or SenX
which are based on concolic and symbolic execution respectively,
we can repair significantly more vulnerabilities. Our results show
the potential for program repair via inductive constraint inference,
as opposed to generating repair constraints via deductive/symbolic
analysis of a given test-suite.
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1 INTRODUCTION

In recent years, we have seen the rise of automated program repair
(APR) techniques [16] and tools that automatically fix software bugs
and vulnerabilities. These techniques fix program bugs by making
patched programs satisfy a given correctness criterion. In the most
commonly studied problem formulation, the correctness criterion
is given as a test-suite. Such APR techniques are called test-driven
automated program repair. Specifically, when fixing vulnerabilities,
given (1) a vulnerable program Prog, (2) a set of failing tests T
that can trigger the vulnerability, and (3) a set of passing tests T,
representing the functionality that should be preserved, test-driven
APR fixes Prog at a fix location L to pass both T and Tj.

A prominent group of APR techniques fix vulnerabilities by (1)
inferring a repair constraint at the fix location L under which the
vulnerability cannot be triggered, and (2) generating a patch to
ensure the repair constraint is always satisfied at L [12, 21, 26, 31].
In this work, we examine the possibility of finding probable or likely
repair constraints via inductive (as opposed to deductive) inference.
These likely repair constraints are called patch invariants.

Formally, suppose S is the program states seen at location L in
program executions, S benign represents benign program states of
the passing tests, and S,,,;; are the vulnerable states of the failing
tests. The inferred patch invariant I holds on observed benign
state s € Spepjgn, but does not hold on observed vulnerable state
s’ € S,u- A patch disables vulnerable executions by ensuring [
always holds at L. Such patch invariant can be inferred by either
static or dynamic program analyses. The static approaches reason
about all the feasible program paths soundly by inspecting program
code directly. However, doing so usually relies on symbolic program
analysis, leading to expensive computations [10, 23, 26]. In contrast,
dynamic approaches infer the patch invariant according to a set
of program execution traces over a sample of test cases. These
approaches limit their attention to the given test cases, and thus
can scale to large programs. However, the inferred invariant and
the generated patches may work on the given test suite, but cannot
be generalized to the other tests. In other words, the inferred patch
invariant I only holds on given Spengn, but not on other benign
states. In program repair literature, this is called overfitting problem.

To alleviate the overfitting problem, one idea is to generate more
test cases, so that, we can infer more precise patch invariants and
generate higher-quality patches. Grey-box fuzzing, e.g., AFL [32]
and LibFuzzer [1], is an efficient test generation approach in detect-
ing software bugs/vulnerabilities. These techniques rely on light-
weight instrumentation to collect coverage information to guide
the test generation. The test generation goal is to maximize code
coverage and hence the possibility to detect bugs. Coverage-based
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greybox fuzzing can be applied to repair vulnerabilities via (1) gen-
erating a test suite by fuzzing the program, (2) classifying the test
suites into vulnerable and benign inputs depending on whether a
test triggers the vulnerability, (3) inferring patch invariant using
the augmented vulnerable and benign test suite, and (4) using the
invariant to generate a patch. However, we argue this approach is
ineffective for the following two reasons. First, to infer a precise
patch invariant to discriminate vulnerable and benign executions,
we need the fuzzer to explore the program states at the fix location
- generating representative benign and vulnerable states. However,
traditional grey-box fuzzing is mainly designed to maximize code
coverage, instead of exploring the program states at certain points.
Second, to infer a patch invariant at a certain point (the fix loca-
tion), the fuzzer is required to generate a large number of tests that
can reach this location (reachability problem). However, solving the
reachability problem is considered challenging even for directed
grey-box fuzzing tool [5]. According to [5], generating a test to
reach a certain point in large programs takes around two hours,
which is not efficient enough for our purposes, since we have to
generate many such tests.

To address the above challenges, we propose snapshot fuzzing to
efficiently explore program states with the goal of inferring precise
patch invariant. Specifically, instead of mutating the test inputs
at the entry point of a program, snapshot fuzzing heuristically
mutates the program state (i.e., snapshot) at some certain program
points. We remark that these mutated program states (donated as S)
may not be reachable from the beginning of the program, meaning
that S is the super-set of all the reachable program states Sgqgiple
(Sfeasivle € S). If an inferred invariant is valid on S, it must be
valid on Sfggiple- Our main intuition is that by inferring invariants
using both feasible and infeasible program states, the less restrictive
artificial program states lead to stronger invariants, meaning the
inferred patch invariants is not only satisfied on all reachable states
but also on some non-reachable artificial states. Although stronger
invariants are not precise, they can be useful in many scenarios,
such as debugging, program repair, program hardening, etc. The
impact of infeasible states will be examined in details in Section 3.

The workflow of inferring patch invariant is as follows: with
some initial candidate invariant generated from a limited test suite
(the given tests plus the tests obtained from traditional fuzzing),
snapshot fuzzing attempts to invalidate the current invariant by
mutating program states to find counterexamples. Given a candidate
invariant, the mutation step invokes an SMT solver to obtain new
values for variables that appeared in the invariant. Such mutation
finds a counterexample if the program execution result is different
from what the candidate invariant suggests - if a program state
satisfying candidate invariant leads to a failure in execution, this
state is considered to be a counterexample to the candidate invariant.
These new counterexample program states are then used to refine
the candidate invariant, which in turn guides the next round of
mutation. We realized our idea in a tool called VULNFIx for fixing
vulnerabilities using Daikon [8] and cvc5 [3] as backend invariant
inference engine. Note that, we did not change the inference engine
itself, instead, we just focus on producing more valuable tests/states
for inferring high-quality invariants. We evaluated VULNFIX on a
dataset including 39 real-world vulnerabilities. We assume there is
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sect = find_section_by_type (filedata,

+ if (sect->sh_size < sizeof (* eopt))

+ return FALSE; // developer patch

eopt = get_data (NULL, filedata, options_offset, 1,
sect->sh_size, ("options"));

if (eopt) {

SHT_OPTIONS);

while (offset <= sect->sh_size - sizeof (* eopt)) {
E1f_External_Options % eoption;
eoption = (ELf_External_Options *) ((char x) eopt
+ offset);
option->kind = BYTE_GET (eoption->kind);
option->size = BYTE_GET (eoption->size);

offset += option->size;
++option;

Figure 1: Simplified code snippet for CVE-2019-9077.

only one failing input representing the exploit available to our tool.
With Daikon and cvc5 as backend, VULNFIx correctly fixes 19 and
20 vulnerabilities out of 39 subjects, outperforming state-of-the-art
vulnerability repair tools. When comparing with program input
fuzzers AFL [32] and ConcFuzz [27], our approach is more efficient
in generating counterexamples for refining the inferred invariants.
Contributions The contributions of this paper include:

e We propose an approach for fixing vulnerabilities based on
counterexample-guided inductive inference. This helps reduce
the over-fitting problem in automated program repair, without
any significant deductive machinery.

e We implemented our technique in a tool called VULNFIX to gen-
erate patches in the form of conditions and evaluated it on 39
real-world vulnerabilities. Evaluation results show that our snap-
shot fuzzing outperformed traditional grey-box fuzzing in gener-
ating useful test cases, and VULNFIX outperforms state-of-the-art
vulnerability repair tools.

2 MOTIVATING EXAMPLE

In this section, we illustrate the workflow of VuLNFix for inferring
patch invariants to repair a security vulnerability in a real-world
application. The vulnerability used in this section is CVE-2019-
9077 !, which is a heap-based buffer overflow vulnerability in the
GNU Binutils. Figure 1 shows the code snippet of this bug.

At line 4, the function call get_data allocates a buffer of size
sect->sh_size, which is pointed to by eopt. As the two variables
used in the right-hand-side of the while condition at line 7 are of
type unsigned long, if sect->sh_sizeisless than sizeof (xeopt),
the subtraction operation can underflow to a very large number.
This causes the while condition to unexpectedly pass, resulting
in buffer overflow read at line 11 with the call to BYTE_GET. The
developer fixed this bug by adding a check at line 3 to prevent the
integer underflow from happening in the while condition, thereby
preventing the buffer overflow. In the rest of this section, we de-
scribe how VULNFIx generates a patch invariant for this example
and how it can help fix this bug.

Input-level Fuzzing. Given one exploit input that triggers the bug
and the target location Ly, for inferring invariants, input-level

Uhttps://sourceware.org/bugzilla/show_bug.cgi?id=24243
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Phase [ #Inv [ Examples of New Program States [ Benign? [ Invariant Example
Given exploit - | { e_shnum=4, do_segments=1, sect->sh_size=1, symtabno=0, ... } vulnerable | -
Input-level { e_shnum=4, do_segments=1, sect->sh_size=9, symtabno=0, ... } benign
Fuzzing 23 | { e_shnum=4, do_segments=1, sect->sh_size=255, symtabno=0, ... } | benign e_shnum < sect->sh_size
{ e_shnum=2, do_segments=1, sect->sh_size=1, symtabno=0, ... } vulnerable
SF Round_1 4 | { e_shnum=32, do_segments=1, sect->sh_size=32, symtabno=0, ... } | benign do_segments < sect->sh_size
SF Round_2 3 | { e_shnum=4, do_segments=-1, sect->sh_size=1, symtabno=0, ... } vulnerable | sect->sh_size-symtabno >= 9
SF Round_3 1 | { e_shnum=4, do_segments=1, sect->sh_size=8, symtabno=0, ... } benign sect->sh_size >= 8
SF Round_4 1 | { e_shnum=4, do_segments=1, sect->sh_size=7, symtabno=0, ... } vulnerable | sect->sh_size >= 8
SF Round_5 1 | { e_shnum=4, do_segments=1, sect->sh_size=10, symtabno=0, ... } benign sect->sh_size >= 8

Table 1: Patch invariants and new values generated for Binutils CVE-2019-9077, where e_shnum denotes filedata->file

_header.e_shum in the program.

fuzzing generates inputs to observe more vulnerable or benign pro-
gram states at Lpqc. In this example, we set L4 as the code at
line 3, which is the same place as the developer patch. Input-level
fuzzing generates a few more test inputs that can trigger the same
buffer overflow with different program states. For instance, row
Input-level Fuzzing of Table 1 shows a program state that can
trigger this bug with a different value of e_shnum. With the aug-
mented program states that demonstrate various scenarios where
the bug can be triggered (or not triggered), it is expected that a
high-quality invariant can be inferred to classify the vulnerable and
benign executions. Based on the observed benign and vulnerable
snapshots (given exploit plus the tests generated by AFL), the in-
variant inference engine infers 23 candidate patch invariants. The
last column of Table 1 shows one example invariant. Unfortunately,
none of them is correct. Actually, input-level fuzzing only generates
limited program states, because they cannot generate enough test
inputs that drive program execution to line 3. Even reaching line 3,
input-level fuzzing does not generate various program states that
are sufficient to infer the correct invariant.

Snapshot fuzzing. To further refine the generated invariant, we
use snapshot fuzzing to generate counterexamples by directly mu-
tating the program states. A program state, denoted as snapshot,
is a mapping from all visible program variables at L4, to their
corresponding values. Compared with input-level fuzzing, the main
advantage of snapshot fuzzing is that it could bypass the reachabil-
ity problem and mutate the program states directly in a controlled
way. So that a large number of representative program states could
be generated at L, efficiently, which can drive the inference en-
gine to infer a high-quality invariant. Specifically, given an existing
snapshot, we mutate it with the goal of generating counterexample
states that can refine the current patch invariants. For instance,
given the current patch invariant (e_shnum < sect->sh_size),
in the first round (SF Round_1), snapshot fuzzing generates a new
state {e_shnum=32, sect->sh_size=32, ...J}.This new state is
a counterexample since it violates the above patch invariant but
does not trigger the buffer overflow. The refined candidate invari-
ants then guide the next round of snapshot fuzzing. This process
continues until a stable solution is reached or time out. In this exam-
ple, after SF Round_3, no candidate invariant is removed (number
of candidate invariants (#Inv) is not reduced), and the remaining
invariant (sect->sh_size >= 8)is no longer changed even with
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Figure 2: Workflow of VulnFix.

more rounds. Actually, the remaining patch invariant is the cor-
rect one which can help to generate the following patch that is
semantically equivalent to the developer patch (sizeof (*eopt) is
a constant which is equal to 8).

+ if (sect->sh_size < 8) return FALSE;

Infeasible States. As we mentioned above, snapshot fuzzing could
generate infeasible states. In this example, the variable do_segments
is of type int, but the program uses it as an implicit boolean type
and only assigns 0 or 1 to it, so all feasible states can only have
the value of do_segments to be 0 or 1. Since VULNFIix does not
perform any static analysis on the code, it has no information about
this restriction of state feasibility, and it can potentially change the
value of do_segments to other values, resulting in an infeasible
state. Such an infeasible state is shown in SF Round_2 in Table 1.
However, the infeasible states would not affect the correctness of
the inferred invariant. Instead, the patch invariants generated based
on both feasible and infeasible states are stronger. Meaning that
the inferred invariant is not only satisfied when do_segments are
0 or 1, but also on other values of do_segments.

3 METHODOLOGY

The workflow of VULNFIX is shown in Figure 2. VULNFIX takes as
input a vulnerable program Prog, an “exploit” input 7, exploit that
triggers a known target vulnerability, and a patch location Lpgch
that indicates where a patch should be applied. We assume that the
target vulnerability can be observed via abnormal program termi-
nation or crash, including hardware exceptions (SIGSEGV, SIGFPE,
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Input-level fuzzing Snépshot fuzzing
Figure 3: Input-level fuzzing is to explore the paths from the
entry point to patch location (the green solid lines), while
snapshot fuzzing directly explores the states over the iden-
tified paths (the red dot lines).

etc.), assertion failure, or failed sanitizer check (e.g. AddressSani-
tizer [25]). We also assume a patch location that indicates where
the vulnerability should be fixed. In practice, the patch location can
decided using fix localization [29] or provided manually.

VULNFIX tries to infer a patch invariant at the given patch lo-
cation Lycp according to the set of observed program states S
(donated as snapshot) at Lgsc,. Snapshots S can be partitioned
into the set of benign program states Spenjgn (that do not trigger
the target vulnerability) and the set of vulnerable program states
Syul (that do trigger the target vulnerability). The output of our
workflow is a patch invariant that holds for all observed benign pro-
gram states s € Spenjgn, but do not hold for all observed vulnerable
program states s’ € S,,;. The patch invariants capture the under-
lying conditions that are observed necessary to avoid triggering
the vulnerability. Enforcement of the patch invariants can be used
to guide program repair. Note that, in this paper, we focus on the
patch invariant inference, and the way of using patch invariants to
generate patches follows existing techniques [10, 12].

VULNFIX consists of two main phases input-level fuzzing and
snapshot fuzzing. Input-level fuzzing is used to collect an initial set of
state observations at the patch location L gscp. To avoid overfitting,
the second phase snapshot fuzzing increases the diversity of states
with the aim of generalizing the initial set of patch invariants.

3.1 Input-Level Fuzzing

Our workflow begins with an initial exploit (Zexploi) Which triggers
the vulnerability. In the initial phase, the goal of input-level fuzzing
is to expand the initial exploit into a test suite that exhibits a diversity
of both vulnerable and benign program states. The purpose of the
initial test-suite is twofold: (1) help to infer an initial set of patch
invariants based on observed states at the patch location Lpcp,
which acts as a starting point for the alternating loop of invariant
refinement and inference, and (2) generate an initial sets of snapshots
that will be mutated in the second phase for invariant refinement.

Specifically, input-level fuzzing plays the role of exploring dif-
ferent paths from the entry point to Ly, as shown in Figure 3
(the green solid lines). As we mentioned in Section 2, snapshot
fuzzing directly mutates the program states at Lyq;c, while not
changing the execution paths between the entry and Lpgch. Be-
cause of the fact that snapshot fuzzing just mutates a small part of
program states (e.g., integer values, boolean values) while keeping
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most of states unchanged (e.g., the overall memory layout), it may
miss some valid program states. Fortunately, traditional coverage-
guided input-level fuzzing can fill this gap by exploring different
paths from the entry to L,gcp. As illustrated in Figure 3, input-
level fuzzing explores different paths to the patch location, while
snapshot fuzzing further explores the program states along with
each path by directly mutating the states.

Initial Test Suite. Our current design builds the first phase on top of
standard coverage-based greybox fuzzing tools, namely AFL [32],
with a few modifications. Standard fuzzing generates new inputs
by mutating the existing inputs, with a higher priority assigned
to inputs that increase code coverage. The prioritised inputs are
further mutated in the next rounds. This process continues with
the goal of increasing code coverage. However, our goal is to find a
diversity of inputs that reach the patch location .L4ch. In addition
to code coverage, we thus modify AFL to prioritize inputs that reach
Lparch- The tests that drive execution to Lygp, are saved as the
initial test suite.

Snapshot Logging. Once the initial test suite 7 is generated, the
next step is to generate a set of program states (a.k.a., snapshots) s at
the patch location .L,4cp, for each test t € 7. From each snapshot
s, we log information useful for invariant inference, including:

(1) a name-value mapping of live variables at the patch location
(Lpatch) including global variables, function parameters, and
local variables within the current scope;

(2) a name-value mapping of pre-defined ghost variables that con-
tain useful values not explicitly represented by the set of live
variables; and

(3) a classification of whether the snapshot s triggers the vulnera-
bility (s € Syy1) or not (s € Spenign)-

The name-value pairs including basic type variables (e.g., int, bool,
char, etc.), pointer variables (e.g., ptr), pointer dereference (e.g.,
*ptr), and struct/class/union member variables. Since structs,
unions and pointers can be nested (e.g., x->y . z, etc.), the snapshot
logger recursively retrieves the nested member variables up to a
configurable depth. Pointer values also have a special representation
as discussed below.

In addition to the live variables, we also log implicit (a.k.a. ghost)
variables that may contain useful information at the patch location
Lpatch- Such ghost variables may be necessary for inferring a use-
ful invariant that separates the benign and vulnerable cases. For
instance, the size of arrays or buffers is usually important when
classifying out-of-bound access, however, the size of arrays may not
be saved in a live variable. Currently, the snapshot logger supports
the following ghost variables:

o The size of a global, stack, or heap-allocated buffer. If a buffer is
pointed by a visible pointer variable ptr, this ghost variable is
denoted by size(ptr).

o The base address of the buffer pointed to by a visible pointer
variable ptr. This ghost variable is denoted by base (ptr). In this
case, ptr can point to any address within a buffer, and base (ptr)
is the base address of the buffer.

To obtain the values for size(ptr) and base(ptr) from the value
of a pointer ptr, we retrieve the meta information associated with
the corresponding memory defined by sanitizers at runtime. In the
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current design, we utilise the allocation meta-data from Address-
Sanitizer [25] to derive the values of the ghost variables.

Our snapshot logger also specially represents pointer values (e.g.,
ptr) in terms of ghost variables. Specifically, a ptr is represented
as the offset between ptr and base (ptr) values, which means ptr
is transformed into of fset(ptr)=ptr—base(ptr) in the snapshot.
For example, if ptr=base(ptr)+8, then ptr is represented by the
offset +8, regardless of the actual value of ptr interpreted as an
integer. This is because, for most programs, the vulnerability de-
pends on the pointer offset rather than the absolute pointer value
at runtime.

The final logged information is the classification. For a single
input test t, it is possible that multiple snapshots will be recorded,
since the execution of ¢ may reach L, more than one time (e.g.,
loops, repeated function calls, etc.). For a given t with snapshots
[s1,5s2, ...5], we classify as follows:

(1) If executing t does not trigger the vulnerability, then all
snapshots s, s2, ..., s are classified as benign.

(2) If executing t does trigger the vulnerability, we classify
$1,52, ..., Sk—1 as benign, and s is vulnerable.

The rationale for (2) is that, if ¢ triggers the vulnerability, the vul-
nerability could, in principle, be fixed in the last state. Finally, there
is a third case where t triggers an unrelated vulnerability. Currently
our tool is designed to fix one vulnerability at a time, so this case is
discarded.

Patch invariant Inference. Given sets of benign and vulnerable snap-
shots in the snapshot pool, the next step is to infer a set of invariants.
Here, an invariant is a formula over program variables appearing in
the snapshots, which evaluates to true for variable values in benign
snapshots and false for variable values in vulnerable snapshots.
Essentially, this step attempts to infer a formula that separates two
sets of concrete values. For this we use dynamic likely invariant
inference [8]. Dynamic invariant inference systems, such as Daikon
[8] and cvc5 [3], infer likely program invariants that hold at certain
program point for all observed program executions. It works by
instantiating invariants according to a list of pre-defined templates.
It then uses variable-values derived from the observed executions
to test the validity of the instantiated invariants. This process elim-
inates potential invariants that are violated by one or more of the
observed executions. The remaining (not eliminated) invariants are
deemed “likely invariants” [8], i.e., properties that are invariant
over all observed states. With sufficient samples, the remaining
invariants can be reasonably accurate, but may “overfit” the invari-
ants to the observations. We slightly generalize the idea of dynamic
invariant inference by considering two sets of observations (i.e.,
Sbenign and S,y) instead of one. A template is filtered if it either vio-
lates a state from Spenjgp, O passes a state from S, The remaining
instantiated templates are deemed likely patch invariants.

3.2 Snapshot Fuzzing

According to given exploit Zypjo;; and tests produced by input-level
fuzzing, the patch invariant inference produces an initial set of can-
didate patch invariants that distinguishes between the benign and
vulnerable states that were observed via input-level fuzzing. How-
ever, since the initial invariants were derived only from observed
states, these invariants may be overfitting and not generalize to
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Algorithm 1: Basic snapshot fuzzing Loop

Input: initial snapshot corpus S, candidate invariants ®
Output: Refined invariants ®

while ! Timeout () do

2 s « Select(S)

[

3 s’ « Mutate(s)

4 r « Execute(P,s”)

5 if isCounterExample(r, ®) then
6 S Su{s'}

7 ® « GeneratelInv(S)

s end

other possible potential benign/vulnerable states that could arise
during the execution of the program. One idea would be to run
input-level fuzzing for longer, generating yet more states that can
be used to generate more accurate invariants. However, this tends
to suffer from the problem of diminishing returns, a well-known
problem with fuzz testing [4], meaning that ever larger resources
are required for ever smaller progress. To circumvent this problem,
we propose snapshot fuzzing to directly mutate states in order to
refine the invariants. Unlike input-level fuzzing, snapshot fuzzing
can generate large numbers of states quickly, and bypasses the
reachability problem, meaning that it is not necessary to find inputs
corresponding to each mutant state.

Basic Algorithm. The basic snapshot fuzzing algorithm is initialized
with: (1) an initial set of patch invariants ®, and (2) an initial snapshot
corpus S consisting of an initial collection of benign/vulnerable
states (Spenign/Svui)- Both (1) and (2) are generated by (and fed from)
input-level fuzzing in the first phase. The goal of the snapshot
fuzzing algorithm is to derive counterexamples to the current patch
invariants set ®. Here, a counterexample is a state s’ satisfying the
following property for any ¢ € ®:

¢(s’) but s’ is vulnerable OR

Where ¢(s”) means that ¢ is satisfied on state s’. The counterexam-
ple s is a witness demonstrating that the current patch invariants
® are inaccurate and need refinement. The snapshot fuzzing al-
gorithm is shown in Algorithm 1. The loop (line 1) repeats the
following steps: (1) selects an element s € S from the current snap-
shot corpus (line 2), (2) mutates s into a new snapshot s’ (line 3), and
(3) tests the s’ against both the current patch invariants @ and the
program P (lines 4,5). Here, Execute (P, s”) resumes the execution of
the program from state s” and observes the result, analogous to run-
ning a program from a core dump using a debugger (e.g., gdb). The
result r € {benign, vulnerable} indicates whether the target bug (at
location L,y nerability) Was observed or not. If a counterexample s”
is discovered, then s’ is added to the snapshot corpus S, which is
then used to derive a new (and refined) set of patch invariants. The
process continues until a timeout is reached.

—-¢(s’) but s’ is benign

Infeasible States. We note that the Mutate operator (line 3) is not
guaranteed to preserve feasibility, i.e., the mutant state s” need not
be reachable from any program input. To clarify the effects of the
generated infeasible states on the inferred patch invariant, we show
the relationship among various types of states in Figure 4. Although
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Figure 4: Relationship among different program states.

the inferred classifier (i.e. patch invariant) is based on both feasible
and infeasible states, it still correctly separates all the observed be-
nign states and observed vulnerable states, which means the patch
invariant will still be correct with respect to all the observed states.
However, it is indeed possible that the inferred patch invariant is
unsatisfied not only by the vulnerable states (both observed and
generated), but also by some unobserved feasible benign states at
the patch location. These unobserved feasible benign states are illus-
trated in Figure 4 by the two light grey regions inside the inferred
classifier oval. Although the inferred classifier can be unsatisfied
by some unobserved feasible benign states, we emphasize that this
is bound to happen due to inductive inference - where we infer
the patch invariant based on the observed states; it is not due to
the generation of infeasible states by snapshot fuzzing. Input-level
fuzzing techniques, which only generate feasible observed states
and generalize the patch invariant from those states, could also
result in a patch invariant that is unsatisfied by certain feasible
benign states, if they have not been observed.

Mutation Strategy. Algorithm 1 generates new states s’ by directly
mutating an existing state selected from the current snapshot corpus
S. Since the goal is to refine the current patch invariants @, we just
mutate the visible variables observed by snapshot logging from
Section 3.1 (e.g., local variables, members, etc.) at location L, gch-
Other program states (e.g., arbitrary memory addresses, etc.) are
not considered by @, and will not be mutated.

In principle, the snapshot variables can be mutated arbitrarily
within specific constraints (see below). However, we can optimize
the mutation strategy with the reference to the current patch in-
variants ® which is assumed to be “mostly” correct. Therefore, in
addition to random perturbation, we bias mutation towards points
that are closer to the boundary defined by ® (the boundary between
benign and vulnerable executions). Here, given a patch invariant
¢ € O over variables % = (x1, .., Xp), then p = (v1, ..,vy,) is a bound-
ary point if there exists another point p” # p such that ¢(p), ~¢(p’)
hold (or vice versa) and there exists no intermediate point between
p and p’ w.rt. Euclidean distance. The intuition behind this strategy
is that any inaccuracies within ¢ are more likely to be exposed by
points close to the boundary, as opposed to arbitrary points that
comfortably satisfy either ¢ or its negation. We use an SMT solver
to generate boundary points in order to guide mutation.

Mutation constraints. Mutations are constrained by variable types
and other assumptions. For example, a variable ¢ of type char can
only be mutated to values within the range CHAR_MIN..CHAR_MAX.
Mutations to ghost variables are similarly constrained to make sure
their semantics are preserved. For example, given a pointer ptr,
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the corresponding ghost variable of fset(ptr) is only mutated
to values within the range 0..size(ptr), so that ptr still points
to the original underlying object after mutation. Note that when
of fset(ptr) is mutated, ptr is also mutated to reflect the changes
in of fset(ptr).

Object mutation. Since the ghost variable size(ptr) represents
the size of the underlying object pointed by ptr, to preserve its
semantics, mutation of size(ptr) should be accompanied with
the mutation of the actual underlying object obj stored in memory.
Mutation of the actual object can be achieved by either extending
or contracting the length of obj. When mutating object length, it
is desirable to extend/contract objects in-place instead of moving
them to other locations in memory, so that pointer values can
be preserved even at program locations not captured by snapshot
logging. In-place contraction can be performed by forbidding access
to some bytes at end of the object, while in-place extension requires
more design considerations to avoid corrupting other adjacent
objects. Our implementation makes use of the AddressSanitizer [25]
allocator for in-place extension/contraction, which automatically
pads all allocations with a configurable redzone to detect out-of-
bounds errors using memory poisoning. We exploit this technique
to implement object extensions, by an in-place reallocation of (some
part of) the redzone memory to extend the associated object. During
this reallocation, the AddressSanitizer shadow map is updated and
the extended region of memory is zero-initialized. Similarly, in-
place contraction can be implemented by growing the associated
redzone, also by updating the shadow map.

| ovjeet | Reasone | | ovject | Redzone |

In-place extension In-place contraction

Y.
| object |

I Object | Redzone | Redzone |

In-place extension and contraction.

4 IMPLEMENTATION

The current implementation of VULNFIX consists of three com-
ponents: (1) an instrumentation module for snapshot logging and
mutation, (2) a driver module for counterexample generation, and (3)
a backend for invariant inference. The instrumentation and driver
modules form a frontend that generates snapshots for the backend.

Instrumentation. The instrumentation module (written in C) is
built on the static binary rewritter e9patch [7]. At the patch loca-
tion Lqrcp of the vulnerable program, the instrumentation module
inserts a function to record current values of the variables in scope,
and optionally mutate some of the variable values based on a given
argument. To read and write program variable values at runtime,
the instrumented code parses the DWARF debugging information
to establish a mapping between variable names and their corre-
sponding runtime locations.

Driver. The driver module (written in Python) invokes various
components and communicates data (snapshots, patch invariants)
between them. It processes the snapshots produced by the instru-
mentation code and classifies them based on the program execution
status. It also implements the core of snapshot fuzzing for generat-
ing counterexample snapshots based on the given patch invariants
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and test inputs. We use z3 [6] SMT solver for finding boundary
values to guide mutation.

Backend. The backend component takes in sets of benign and
vulnerable snapshots and perform invariant inference based on
them. The current implementation of VULNFIX supports two back-
ends: Daikon-based and cvc5-based. For the Daikon backend, we
first use Daikon to infer a set of invariants ®g from Sp;gn, and then
perform a filtering step which only returns ¢ € ®g if @ is violated by
all s € Sy,;. The filtering step is implemented on top of the Daikon
InvariantChecker utility. Since Daikon initiates invariants based
on templates, we add a few extra templates applicable for patching
security vulnerabilities:

e x —y >= a, where x, y are variables and a is a constant;
e x < 2", where x is a variable, and 2" is power-of-two con-
stant representing boundary values for integers.

Cvc5 is a program synthesizer, which takes as input a set of input-
output pairs {i; — o01,...,in > 0on} and synthesizes a function
f such that f(ir) = og for k € {1,...,n}. In our context, we use
cve5 backend to synthesize a function f, such that f(s) = True for
$ € Spenign and f(s’) = False for s’ € S,,,;. The grammar used for
synthesis includes all variables in snapshot, arithmetic operators
(+, —, X), relational operators (>, <, =), logical operators (and, or,
not), and constants (1 to 100, power-of-two values).

Use of sanitizers. Since the snapshots need to be classified into be-
nign and vulnerable based on observing program execution status,
we use AddressSanitizer (ASan) [25] and UndefinedBehaviorSani-
tizer (UBSan) [2] to transform the vulnerabilities into crashes. We
also read and write to the ASan redzone metadata for logging and
mutating ghost variable values.

5 EVALUATION

In this section, we aim to answer the following research questions:

e RQ1: How effective is VULNFIx (with different backends) in syn-
thesizing conditions for fixing real-world CVEs?

o RQ2: What are the strength and weakness of VULNFIx compared
with other APR tools?

o RQ3: How effective is snapshot fuzzing in refining patch invari-
ants compared to input-level fuzzing?

Benchmark subjects. We evaluate VULNFIX on a subset of the
VulnLoc [27] benchmark. The VulnLoc benchmark is extended
from the ExtractFix [10] and SenX [12] benchmark, and contains 43
real-world CVEs. Out of the 43 vulnerabilities in the VulnLoc bench-
mark, 4 vulnerabilities cannot be reproduced in our environment
(ubuntu-18.04 and gcc-7.5/clang-10) because they are incompat-
ible with the experimental system or libraries. The remaining 39
vulnerabilities are used in our evaluation.

Experiment setup. All of our experiments are performed on a
40-core 2.60GHz 64GB RAM Intel Xeon machine, Ubuntu 18.04. We
note that the current implementation of VULNFIx does not support
parallelism and the experiments are performed with sequential
algorithms. For most vulnerabilities in the evaluation, we use the
following configuration: (1) the developer patch location is used
as the target location to infer invariants; (2) the initial input set
supplied to VuLNFix only includes one exploit input obtained from
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online bug reports. VULNFIX infers a patch invariant classifying
the benign and vulnerable execution. We using the patch invariant
to disable the vulnerable execution by either (1) integrating the
invariant to the original condition if the target location is an if,
for or while statement; or (2) generating an if-guard in the form
of

if(!constraint) exit(ERROR_NUM);

5.1 RQ1: Efficacy with different backends

We evaluated the efficacy of VuLNFix with two different backends
Daikon and cvc5. Daikon uses pre-defined templates for instantiat-
ing invariant candidates and enumerates the candidates to find the
ones that are satisfied on the given traces. While cvc5 synthesizes
an expression based on a given grammar via Satisfiability Modulo
Theories (SMT) solving. Given cvc5 is built on top of SMT, it is less
scalable than Daikon and takes more time to run especially when
the number and size of snapshots grow. In order to obtain mean-
ingful results, for each vulnerability in the benchmark, we set the
total timeout to be 30 minutes for Daikon-backend and 3 hours for
cve5-backend. The first 10 minutes are allocated for the input-level
fuzzing phase, and the remaining is allocated to snapshot fuzzing
and invariant inference.

Since VULNFIX infers a patch invariant over existing program
variables (as well as ghost variables), which is then used to disable
vulnerable executions, VULNFIX is not applicable to some vulnera-
bilities in the benchmark. These vulnerabilities include those that
(1) cannot be fixed by modifying or inserting conditions, or (2)
require addition of new program variables that are not included
in our ghost variable scheme. We identified 9 such vulnerabilities
according to their developer patches and marked them as “NA” (not
applicable). These 9 vulnerabilities are included in the results for
completeness.

For the remaining vulnerabilities, we evaluate the correctness of
the generated patches by manually comparing them with developer
patches. “Correct (equiv)” means that the result of VULNFIX is se-
mantically equivalent to the developer patch; “Correct (not equiv)”
means that the produced patch is not semantically equivalent to
developer patch, but still correctly fixes the vulnerability (see exam-
ples in the following). “Wrong” means that VULNFIX fails to produce
a correct patch before timeout. We only regard a result as correct if
it is the only patch produced by VuLNFix and the produced patch
correctly fixes the vulnerability.

Results. Table 2 shows the evaluation results, where columns
“Daikon backend” and “cvc5 backend” list the result of VULNFIX
when the corresponding backend is used. Overall, both backends
show similar results in producing correct patches (both produce 19
correct patches). On CVE-2017-14745, Daikon backend fails because
it produces two patches in the end, while cvc5 backend produces
exactly one correct patch. On Gnubug-25003, cvc5 backend fails
while Daikon backend produces the correct patch.

VuLNFix produces correct but not equivalent patches on 6 vul-
nerabilities. The main reason is that the patch produced by VULN-
Fix is strictly based on whether a vulnerable program behavior is
observed, while the developer patch may also take insights from
program-specific semantic information. For example, Libtiff con-
sists of an integer overflow vulnerability (CVE-2017-7601), and
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Subject Bug ID VuLNFIx CPR SenX
Daikon backend [ Correct? [ cve5 backend [ Correct? Rank Ratio Patch detail [ Correct?

Binutils CVE-2017-6965 Correct (not equiv) v Correct (not equiv) v Timeout | Timeout - X
Binutils CVE-2017-14745 Wrong X Correct (equiv) v 109 0% - X
Binutils CVE-2017-15020 NA X NA X NA NA - X
Binutils CVE-2017-15025 Correct (equiv) v Correct (equiv) v 36 0% NA X
Coreutils Gnubug-19784 Correct (equiv) v Correct (equiv) v 393 0% - X
Coreutils | Gnubug-25003 Correct (not equiv) v Wrong X 29 59% - X
Coreutils Gnubug-25023 Correct (not equiv) v Correct (not equiv) v 56 0% - X
Coreutils | Gnubug-26545 Wrong (not spt) X Wrong X 168 46% - X
Jasper CVE-2016-8691 Correct (equiv) v Correct (equiv) v 1 75% NA X
Jasper CVE-2016-9557 Wrong (not spt) X Wrong X Timeout | Timeout - X
Libarchive | CVE-2016-5844 | Correct (not equiv) v Correct (not equiv) v 31 54% Wrong (comp) X
Libjpeg CVE-2012-2806 Correct (equiv) v Correct (equiv) v 24 50% - X
Libjpeg CVE-2017-15232 Correct (equiv) v Correct (equiv) v 36 0% NA X
Libjpeg CVE-2018-14498 NA X NA X NA NA - X
Libjpeg CVE-2018-19664 Wrong X Wrong X 1 48% - X
Libming CVE-2016-9264 Correct (equiv) v Correct (equiv) v 39 57% Wrong (exec) X
Libming CVE-2018-8806 NA X NA X NA NA NA X
Libming CVE-2018-8964 NA X NA X NA NA NA X
Libtiff Bugzilla-2611 NA X NA X 1 61% NA X
Libtiff Bugzilla-2633 Wrong X Wrong X 46 48% Correct v
Libtiff CVE-2016-5321 Correct (equiv) v Correct (equiv) v 11 47% Wrong (exec) X
Libtiff CVE-2016-9273 NA X NA X 57 48% - X
Libtiff CVE-2016-9532 Wrong (not spt) X Wrong X Timeout | Timeout | Wrong (comp) X
Libtiff CVE-2016-10092 NA X NA X 5 0% Wrong (exec) X
Libtiff CVE-2016-10094 Wrong (not spt) X Wrong (not spt) X 27 57% Correct v
Libtiff CVE-2016-10272 NA X NA X 5 0% Wrong (exec) X
Libtiff CVE-2017-5225 NA X NA X NA NA Correct v
Libtiff CVE-2017-7595 Correct (equiv) v Correct (equiv) v 1 48% NA X
Libtiff CVE-2017-7599 Wrong (not spt) X Wrong (not spt) X 8 0% - X
Libtiff CVE-2017-7600 Wrong (not spt) X Wrong (not spt) X 45 0% - X
Libtiff CVE-2017-7601 Correct (not equiv) v Correct (not equiv) v 56 48% - X
Libxml2 CVE-2012-5134 Correct (equiv) v Correct (equiv) v 36 49% - X
Libxml2 CVE-2016-1838 Wrong (not spt) X Wrong X 31 0% - X
Libxml2 CVE-2016-1839 Correct (equiv) v Correct (equiv) v 79 0% - X
Libxml2 CVE-2017-5969 Correct (equiv) v Correct (equiv) v 3 45% NA X
Potrace CVE-2013-7437 Correct (equiv) v Correct (equiv) v Error Error Correct v
Zziplib CVE-2017-5974 | Correct (not equiv) v Correct (not equiv) v 130 0% - X
Zziplib CVE-2017-5975 Correct (equiv) v Correct (equiv) v 36 0% - X
Zziplib CVE-2017-5976 Wrong X Wrong X Timeout | Timeout - X
Total - - 19/39 - 19/39 4/39 - - 4/39

Table 2: Experimental results of VoLNF1x (with different backends), CPR, and SenX on the VulnLoc benchmark.

switch (sp->photometric) {

its relevant code snippet is shown in Figure 5. The bug is trig-
case PHOTOMETRIC_YCBCR:

gered when the value of td->td_bitspersample is greater than

62, causing the left shift on line 10 to overflow. The developer patch + i.f.(. td->td_bitspersample > 16 ) {

[ B S N N

on line 4-6 adds a check on its value and returns if the value is + return (0);
.

too big, with the bound 16 chosen based on file format specifica- }{
tion. On the other hand, VuLNFix produces the patch invariant float =*ref;
td->td_bitspersample <= 62, where 62 is the maximum value ° if (ITIFFGetField(tif, TIFFTAG, &ref)) {

. . i 10 top = 1L « td->td_bitspersample; // !integer overflow!
allowed for the left shift on line 10 to not overflow. In this case, 13 }
VULNFIX produces a patch that correctly separates the benign and 12 33

vulnerable behaviors, while the developer patch additionally con-
siders other program semantics.

As discussed in Section 3.2, it is possible that the patch invariant
generated from inductive inference is unsatisfied by certain feasible
benign states, if they are not observed. Such patch variants can lead

Figure 5: Simplified code snippet of CVE-2017-7601.

to patches that disable more feasible program behavior than desired
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(if the patches are generated in the form of if-guard), thereby re-
stricting the benign functionality of the program for making it more
secure. To understand the effect of such patch invariants experi-
mentally, we examined the 6 correct but not equivalent patches, and
found 1 of them (CVE-2017-6965) restricts more behavior than the
developer patch. Furthermore, these two patches - one produced by
VuLNFix and the other from developers - are applied to the vulner-
able program, which then undergoes a 24-hour differential fuzzing
campaign to check whether the two patches exhibit different be-
haviors. After 24 hours of fuzzing, there was no input executions
that evaluate the VUuLNFIx patch and developer patch differently,
which means no significant restriction of benign functionality was
observed from our experimentation.

Besides, there are 11 vulnerabilities marked as “Wrong” or “Wrong
(not spt)”. “Wrong (not spt)” means that the current VULNFIX im-
plementation does not support generating the correct invariant.
For example, the correct invariant for CVE-2016-9532 involves in-
equality with scalar multiplication (e.g., x * y * z <= constant),
which is not supported by Daikon. Daikon infers invariants based
on a set of templates, and invariants that cannot be represented as
one of the templates cannot be inferred. As cvc5 synthesizes invari-
ants based on grammar instead of fixed templates, it was expected
that cve5 outperforms Daikon. However, the experimental result
shows otherwise: cvc5 backend fails to produce correct patches
on the vulnerabilities that Daikon does not support (marked as
“Wrong”). This is because these patches usually consist of complex
expressions, and cvc5 backend times out before synthesizing such
expressions.

Overall, the Daikon and cvc5 backend each produces 19
correct patches, with a time budget of 30 minutes and 3
hours. From this comparison, Daikon appears to be a more
practical backend.

5.2 RQ2: Comparison with other APR tools

CPR. To understand the strength and weakness of VULNFIx in
repairing security vulnerabilities, we perform a comparison with
CPR [26], a state-of-the-art program repair tool. CPR works by first
synthesizing a pool of patch candidates from a given set of patch
ingredients, then discarding overfitting patches from the pool by
exploring the input space with concolic execution, and finally rank-
ing the remaining patches. This workflow is conceptually similar to
counterexample-guided inductive synthesis (CEGIS), i.e., infer ini-
tial candidates and then generate new test inputs (counterexample)
to rule out incorrect candidates.

In our experiments, we set the timeout for each vulnerability
to be 30 minutes for CPR. Since CPR requires patch ingredients
to be provided for patch synthesis, we supply five variables at the
patch location (including all the variables used in the developer
patch) and necessary arithmetic/comparison operators as patch
ingredients to the synthesizer used in CPR. Besides, since CPR
currently repairs only boolean and integer expressions [26], and
does not automatically introduce new program variables, it is not
applicable to some vulnerabilities in the benchmark. We identified
5 such vulnerabilities and marked them as “NA” (not applicable).
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Results. The evaluation results of CPR are shown in the “CPR”
columns in Table 2. Column “Rank” shows the rank of the correct
patch in the final patch pool. Column “Ratio” shows the patch pool
reduction ratio, which is the percentage of initial patches that are
discarded by co-exploration of the patch space and input space.
“Timeout” indicates that CPR did not generate patches before the
30-minute timeout, and “Error” indicates that an error occurred dur-
ing concolic execution and CPR aborted. Overall, with a 30-minute
timeout, CPR ranks the correct patch at the top-1 position for 4 out
of 39 vulnerabilities. For 16 vulnerabilities, CPR discards more than
40% of the initial patch candidates by performing concolic execu-
tion. However, for 13 other vulnerabilities, CPR has 0% patch space
reduction potentially due to the longer paths from loop unrolling
[26]. In other words, concolic execution cannot find any test input
that can reach patch location or discard plausible patches. Instead
of relying on concolic execution, VuLNFIx performs snapshot mu-
tation to discard overfitting patch invariants, which is shown to be
more efficient based on the experimental results.

SenX. We also performed a comparison with the security vul-
nerability repair tool SenX [12], which generates patches based
on a pre-specified set of safety properties. The same benchmark
consisting of 39 vulnerabilities is used, and the timeout for each
vulnerability is set to be 30 minutes. Since SenX currently only sup-
ports repairing buffer overflows, bad casts, and integer overflows
[12], vulnerabilities that are not of these types are not applica-
ble. There are 8 such vulnerabilities in the benchmark, which are
marked as “NA” (not applicable).

To generate a patch that enforces a safety property, SenX uses
techniques such as expression translation and loop cloning. These
techniques can potentially generate a different patch than the one
from developers, making it non-trivial to manually compare the
generated patch and the developer patch for correctness. There-
fore, to check for correctness, we examine the generated patch by
applying it on the vulnerable program, re-compiling the patched
program, and executing the patched program with the exploit input.
If the original vulnerable behavior is no longer observed on the
patched program, the generated patch is considered as correct.

Results. The evaluation results of SenX are shown in the “SenX”
columns in Table 2. Column “Patch detail” shows the detail of
examining the generated patch. In this column, “-” indicates that
no patch is generated by SenX, “Wrong (comp)” indicates that the
patched program could not be compiled, “Wrong (exec)” indicates
that the vulnerable behavior is still observed when executing the
patched program with exploit input, and “Correct” indicates that
the patch is correct based on the criteria discussed above. Overall,
SenX produces correct patches for 4 out of 39 vulnerabilities.

VULNFIX generated 19 correct patches with 30 minutes,
while CPR and SenX produces 4 correct patches each (by
just checking the top ranked patch for CPR).

5.3 RQ3: Comparison with input-level fuzzing

To understand whether snapshot fuzzing can generate states that
refine the invariants effectively, we also compare it with traditional
input-level fuzzing. Specifically, we replace the snapshot fuzzing
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Bug ID VuLnF1x VuLnFix© VuLnFix4
#Inv [ result | #Inv [ result | #Inv [ result
CVE-2017-6965 1 v 1 X 1 v
CVE-2017-14745 2 X 0 X 5 X
CVE-2017-15025 1 v 0 X 5 X
Gnubug-19784 1 v 1 4 1 v
Gnubug—25003 1 v 34 X 23 X
Gnubug-25023 1 v 8 X 7 X
Gnubug-26545 0 X 1 X X
CVE-2016-8691 1 v 25 X 17 X
CVE-2016-9557 0 X 0 X 0 X
CVE-2016-5844 1 v 0 X 60 X
CVE-2012-2806 1 v 6 X 6 X
CVE-2017-15232 1 v 0 X 15 X
CVE-2018-19664 2 X 0 X 18 X
CVE-2016-9264 1 v 4 X 6 X
Bugzilla-2633 2 X 0 X 50 X
CVE-2016-5321 1 v 3 X 5 X
CVE-2016-9532 36 X 38 X 36 X
CVE-2016-10094 9 X 24 X 23 X
CVE-2017-7595 1 v 14 X 3 X
CVE-2017-7599 0 X 0 X 0 X
CVE-2017-7600 0 X 0 X 0 X
CVE-2017-7601 1 v 2 X 1 X
CVE-2012-5134 1 v 6 X 4 X
CVE-2016-1838 3 X 0 X 3 X
CVE-2016-1839 1 v 0 X 1 v
CVE-2017-5969 1 v 1 v 1 v
CVE-2013-7437 1 v 0 X 1 v
CVE-2017-5974 1 v 8 X 5 X
CVE-2017-5975 1 v 0 X 1 v
CVE-2017-5976 0 X 0 X 0 X
Total - 19/30 - 2/30 - 6/30

Table 3: Comparison with input-level fuzzing, where VULN-
Fix€ represents replacing the snapshot fuzzing module with
ConcFuzz, while VULNFix4 means that snapshot fuzzing is
replaced by AFL.

step in VULNFIx with traditional input-level fuzzing techniques and
compare their effectiveness in generating correct patches. For the
tests generated by input-level fuzzing, we collect the benign/vul-
nerable snapshots by considering the non-redundant tests that can
reach the fix location.

We consider two input-level fuzzing tools: AFL [32] and Conc-
Fuzz [27]. AFL is a widely used grey-box fuzzing tool, which has
been proved to be efficient in detecting software vulnerabilities
and bugs. For AFL, we re-use the modified version described in
Section 3.1 to generate input tests. ConcFuzz “concentrates” on the
neighborhood of the given exploit. Specifically, it builds a “con-
centrated” test suite that drives the program execution to reach
each branch location of the given exploit execution trace. Based
on the “concentrated” test suite, ConcFuzz can then estimate the
probability of each branch being executed by vulnerable inputs and
hence determine the fault locations. For the application of invariant
inference, exploring the neighborhood of patch location instead of
the entire trace is sufficient. Therefore, we implement a modified
version of ConcFuzz that only “concentrates” on the patch location.
In the experiment, we set a 30-minute timeout for both AFL and
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ConcFuzz, which is the same as the total time budget for VuLNFIx.
The 9 vulnerabilities in the benchmark which are not applicable to
VuLNFix are excluded from this experiment, as they are also not
applicable when snapshot fuzzing is replaced by input-level fuzzing
techniques.

Results. The evaluation results of input-level fuzzing are shown
in Table 3. Column VULNFIxC represents the result when replacing
the snapshot fuzzing module in VuLNFix with ConcFuzz, while
VULNFIx4 is the result when snapshot fuzzing is replaced by AFL.
The column “#Inv” shows the number of invariants produced when
time budget is exhausted and column “result” indicates whether a
single correct patch is produced in the end. Overall, VULNFIX pro-
duces 19 correct patches out of 39 vulnerabilities, while VuLnFix€
and VuLNFix# only produce 2 and 6 correct patches, respectively.
VuLNFIxC and VULNFix# just produce very few correct patches be-
cause 1) they generate multiple candidate invariants (#Inv is greater
than 1), and some of them are incorrect; 2) Although they produce
only one candidate invariant on some vulnerabilities, the produced
invariant is incorrect and overfit to the generated test cases. In con-
trast, directly mutating the snapshot enables VULNFIxX to generate
fewer but more precise invariants and hence more correct patches.

Compared to input-level fuzzing AFL and ConcFuzz, snap-
shot fuzzing enables VULNFIX to generate fewer but more
precise invariants and hence more correct patches.

5.4 Threats to Validity

A few threats may affect the validity of our evaluation. The main
threat to validity is that the correctness of generated invariants/-
patches cannot be guaranteed. Although snapshot fuzzing can ex-
plore the program states in a more controlled way, it still cannot
ensure that all reachable program states at a fix location are ex-
haustively explored. Fortunately, the incompleteness does not seem
to have a big impact on the effectiveness of VuLNFix. The second
threat is that we manually inspect whether the generated patches
are semantically equivalent to developer patches, which might be
error-prone. To mitigate this, two authors of the paper double-
checked the generated patches.

Another threat to validity is that our selection of subject pro-
grams may not generalize to all programs. To mitigate this threat
we used a data-set of subjects developed in a previous work [27].
We evaluated our technique on this existing dataset (filter out some
vulnerabilities that cannot be reproduced). In the future, it may be
worthwhile to evaluate VULNFIx on more CVEs and vulnerabilities.

6 RELATED WORK

The contributions of this paper are related to several areas of re-
search: automated program repair, vulnerability repair and coun-
terexample guided invariant inference. In this section, we present
the related work as follows.

Automated program repair. Automated program repair techniques
take in a buggy program, and a set of specifications, and aim to
generate a patched program satisfying the given specifications [16].
Test-driven automated program repair treats the provided test suite
as the specification of intended behavior and generates patches to
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make the patched program pass all the given tests [15, 18, 19, 21].
Since test cases are incomplete program specifications, the gener-
ated patches may overfit the given tests, i.e., the patched program
works on the given tests but cannot be generalized to other tests.
VurNFix is designed to alleviate the overfitting problem.

Existing work alleviates the overfitting issue by ranking the
patches according to their probability of being correct [14, 18], re-
ferring to reference implementation [20] or designing customized
repair strategies [28]. Typically, those approaches try to generate
correct patches by referring to additional program artifacts. Com-
pared with those approaches, VULNF1x does not rely on additional
inputs (such as reference programs), which gives VuLNFIx more
flexibility. Besides, some approaches alleviate overfitting problem
by generating more test cases [9, 30]. Compared to those approaches
that generate test inputs, snapshot fuzzing directly mutates program
states, which enable VULNFIX to bypass the reachability problem
in test case generation.

Vulnerability repair. In recent years, we have seen a rising trend
of research on automatically fixing vulnerabilities. SenX [12] aims to
repair vulnerabilities relying on vulnerability-specific and human-
specified safety properties. Some other repair approaches are de-
signed to repair a specific type of vulnerabilities, such as fixing
memory errors [17] or concurrency bugs [13]. Compared to SenX
and these approaches which are limited to specific classes of bugs,
VUuLNFIxX does not rely on pre-defined safety properties and is not
limited to certain vulnerabilities. ExtractFix [10] fixes vulnerabilities
by first inferring crash-free constraints, propagating the constraints
to fix location, and synthesizing patches to satisfy the constraints.
CPR [26] fixes vulnerabilities by (1) generating a candidate patch
space, and (2) detecting and discarding overfitting patches via a
systematic co-exploration of the patch space and input space. It
leverages concolic execution to systematically traverse the input
space (and generate inputs), and uses the produced test inputs to
rule out the overfitting patches from the patch space. Compared to
ExtractFix and CPR, VULNF1x does not rely on heavy symbolic and
concolic executions, enabling it to scale to large programs.

Counter-example guided invariant inference. Recent works (e.g.,
PIE [24], ICE [11], CEGIR [22]) present CounterExample Guided
Invariant geneRation (CEGIR), i.e., infer a initial set of candidate
invariants and then improve them using counterexamples. Specif-
ically, if an initial invariant is invalid for some input, these ap-
proaches search for counterexamples which can help to refine the
invariant. Such approaches are more efficient than traditional dy-
namic or static invariant inference, However, they still cannot get
rid of the dependence on heavy program analysis. For instance,
they still rely on symbolic execution or concolic execution [22, 33]
to discover counterexamples. Instead of relying on heavy symbolic
analysis, VULNFIX investigates using light-weight test generation
to verify the candidate invariants. Therefore, VULNFIx is largely
independent of the complexity or size of the programs and thus
can scale to large programs.

7 DISCUSSION

In this work, we have presented an approach for automatically
repairing program vulnerabilities from a single exploiting test in-
put. Our approach is based on obtaining more states at the fix
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location via state mutations, and inductively inferring a likely in-
variant, which is then used to construct patches. Evaluation on a
previously proposed data-set of vulnerabilities show higher effec-
tiveness compared to state-of-the-art vulnerability repair engines
like SenX and CPR. While our approach is currently focused on
fixing vulnerabilities, it shows that inductive inference approaches
can be promising for general-purpose program repair. This would
contrast with deductive or symbolic approaches for program repair
[21] which deduce a repair constraint by symbolically analyzing a
given test-suite.
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