
1

KLEESpectre: Detecting Information Leakage through

Speculative Cache Attacks via Symbolic Execution

GUANHUA WANG
∗
, National University of Singapore

SUDIPTA CHATTOPADHYAY
∗
, Singapore University of Technology and Design

ARNAB KUMAR BISWAS, National University of Singapore
TULIKA MITRA, National University of Singapore
ABHIK ROYCHOUDHURY

†
, National University of Singapore

Spectre-style attacks disclosed in the early 2018 expose data leakage scenarios via cache side channels.
Specifically, speculatively executed paths due to branch mis-prediction may bring secret data into the cache
which are then exposed via cache side channels even after the speculative execution is squashed. Symbolic
execution is a well known test generation method to cover program paths at the level of the application
software. In this paper, we extend symbolic execution with modelling of cache and speculative execution. Our
tool KLEESpectre, built on top of the KLEE symbolic execution engine, can thus provide a testing engine to
check for the data leakage through cache side channel as shown via Spectre attacks. Our symbolic cache model
can verify whether the sensitive data leakage due to speculative execution can be observed by an attacker at
a given program point. Our experiments show that KLEESpectre can effectively detect data leakage along
speculatively executed paths and our cache model can make the leakage detection more precise.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Security and

privacy→ Software and application security; • Computer systems organization→ Architectures.

Additional Key Words and Phrases: Spectre attacks; Symbolic execution; Cache side-channel; Software security

ACM Reference Format:

Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury. 2020.
KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution.
ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (February 2020), 29 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Speculative execution in modern superscalar microprocessors improves the program performance
(by reducing execution time and by increasing throughput) compared to a non-speculative processor
by predicting both the outcome and the target of branching instructions. The processor continues
executing instructions after the branch where the number of speculatively executed instructions
depends on how soon the actual branch condition is evaluated and also on the size of the buffer
that holds the resulting states during speculative execution.
∗Joint first author.
†Corresponding Author

Authors’ addresses: Guanhua Wang, National University of Singapore; Sudipta Chattopadhyay, Singapore University of
Technology and Design; Arnab Kumar Biswas, National University of Singapore; Tulika Mitra, National University of
Singapore; Abhik Roychoudhury, National University of Singapore, abhik@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1049-331X/2020/2-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

If the prediction of a branching instruction is incorrect, all effects due to the speculatively executed
instructions after the branch instruction are rolled back. To this end, the buffer and pipeline stages
are flushed which hold these instructions or their results. However, if the cache content is also
modified due to speculatively executed load instructions, the cache state is not fully rolled back.
This opens up the possibility of a cache side-channel through which an attacker can obtain sensitive
information from a user who shares the same platform with the attacker. The family of Spectre
attacks [29] shows that this vulnerability is present in all modern general purpose processors. Such
a vulnerability thus poses major concerns from the stand-point of software security.

Symbolic execution [26] is a well-known path exploration method that can be used for program
testing and verification. Given a program with un-instantiated or symbolic inputs, it constructs a
symbolic execution tree by expanding both directions of every branch whose outcome depends on
symbolic variable(s). The leaf nodes of the tree correspond to program paths, and by solving the
constraint accumulated along a program path (also called a path condition), a test input to explore
the path can be generated.

Symbolic execution can be used to cover program paths (modulo a time budget). However, it does
not consider behaviors induced by performance enhancing features of the underlying processor,
specifically cache and branch prediction. Due to branch mis-prediction, certain paths may be
speculatively executed and then squashed. Such speculatively executed paths are not covered in
symbolic execution. As shown via Spectre attacks, such speculative paths may read sensitive data,
which can then be potentially exfiltrated by attackers via cache side-channels. Current generation
symbolic execution engines, as embodied by tools like KLEE [8] do not demonstrate the presence
or absence of such side-channel scenarios. This is because the reasoning in current day symbolic
execution engines is solely at the program level. Although a few recent works aim to enhance
symbolic execution with the support of speculative semantics [23] or cache model [7], none of
these works comprehensively model both the speculative execution and caches to accurately detect
information leakage via Spectre-style attacks.
In this paper, we extend symbolic execution with the modelling of speculative execution as

well as cache accesses. For an unresolved branch involving a symbolic variable, classical symbolic
execution considers two possibilities - the branch is either taken or not taken. In the presence of
speculative execution, note that for every unresolved branch we need to consider four possibilities,
namely: taken and correctly predicted, taken and mis-predicated, not taken and correctly predicted,
not taken and mis-predicted. As explained earlier, since the mis-predicted execution paths are
squashed, they only need to be considered in symbolic execution in the presence of cache modelling.
We model the behavior of the cache by capturing memory accesses to concrete or symbolic memory
addresses; the symbolic memory accesses occur when the accessed memory address depends on a
symbolic input such as accessing array element a[i] when i is a symbolic input variable. Given
such symbolic memory accesses, the possible cache conflicts (two memory accesses to the same
cache set) can be captured as a symbolic formula. By solving such symbolic formula, we can
enunciate whether a secret brought into cache in a speculative path continues to linger in the cache
(this is when it has not been evicted from the cache due to cache conflicts). Hence we can detect
and infer the cache side-channel leakage in Spectre attacks.

The remainder of the paper is organized as follows. After providing a brief background (Section 2)
and overview (Section 3) of KLEESpectre, we make the following contributions:

(1) We present KLEESpectre, our methodology to extend state-of-the-art symbolic execution
engines with micro-architectural features, specifically speculative execution and caches
(Section 4).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:3

(2) We present a symbolic cache model embodied in KLEESpectre to precisely detect and high-
light cache side-channel leakage through speculative execution paths, resulting in potential
Spectre style attacks (Section 4).

(3) We implement ourKLEESpectre approach on top of state-of-the-art andwidely used symbolic
virtual machine KLEE (Section 5). Our implementation and all experimental data are publicly
available: https://github.com/winter2020/kleespectre.

(4) We evaluate KLEESpectre on litmus tests provided by Kocher [28] as well as on real-world
cryptographic programs from libTomCrypt, Linux-tegra, openssl and hpn-ssh. Our eval-
uation reveals that KLEESpectre can effectively and efficiently detect Spectre vulnerable
code. Moreover, the cache modelling embodied in KLEESpectre results in a precise leakage
detection by ruling out false positives.

After discussing the related work (Section 8), we conclude in Section 9.

2 BACKGROUND AND THREAT MODEL

In this section, we introduce the necessary background regarding the speculative execution and
our targeted threat model.

Speculative execution. Speculative execution [22] is an indispensable micro-architectural
optimization for performance enhancement inmodern superscalar processors. Speculative execution
allows the processor pipeline to continue execution even in the presence of some data or control
dependency between the current instruction and the unfinished instructions instead of stalling the
pipeline. The branch predictor is one of the prediction units in a processor that supports speculative
execution. The branch predictor predicts the execution path based on the history of the executed
branch instructions. The processor stores a record of the speculatively executed instructions in a
so-called Reorder Buffer (ROB). This buffer mainly helps the processor to commit all instructions
in-order though they are executed out-of-order. If the outcome of a branch prediction is correct,
then the instructions in ROB are committed to the architectural state, otherwise, the results of
these instructions are squashed. However, the effect of the load execution unit i.e. the bytes that
are read from memory during speculative execution may reside in the cache. The state of the cache
is usually not squashed due to performance reasons. Thus, for a mis-predicted branch, even though
the functional effects of all speculatively executed instructions are rolled back, the cache state may
hold unexpected memory addresses. This phenomenon opens the potential vulnerability of cache
side-channel attack.

Bounds Check Bypass (BCB) attack. Spectre-style attacks have proven that the computer
can leak secret data through the cache side-channel when it performs the speculative execution.
Bound Check Bypass (BCB, also called Spectre variant 1) attack is one such Spectre attack. In this
attack, an attacker can induce the victim program to transfer the sensitive data to side-channel by
training the branch predictor. Then the data can be recovered by the attacker through performing
cache side-channel attack.

Listing 1. Example code of Spectre variant 1.

1if (x < array1_size) { \\ VB
2 y = array1[x]; \\ RS
3 temp |= array2[y * 64]; \\ LS
4}

Listing 1 shows an example code vulnerable to BCB attacks. In this example code, if the condition
x < array1_size holds, then the statement at line 2 loads array1[x] to variable y. Finally, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:4 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

statement at line 3 reads data from array2[] where the accessed address depends on array1[x].
Normally, the boundary check at line 1 guarantees the absence of out-of-bound memory access.
However, in the presence of the speculative execution, such guarantees do not hold. For example,
the mis-prediction of the branch instruction at line 1 allows a memory access array1[x] where x
≥ array1_size. Such a memory access may point to a sensitive value. Thus, ymay hold a sensitive
value when the branch is mis-predicted. Finally, the statement at line 3 changes the cache state
using the potential sensitive value y. By observing this cache state, the attacker can reconstruct
the potentially sensitive value y. For simplicity, we name the branch potentially causing the BCB
attack as Vulnerable Branch (VB), the instruction loading the potential sensitive data as Read
Secret (RS) (e.g statement at line 2) and the instruction leaking the sensitive data to cache state as
Leak Secret (LS) (e.g statement at line 3).

Threat model. Similar to the existing literature on cache side-channel attacks [31], in this work,
we assume the victim and the attacker coexist on a machine, and they share the cache. The attacker
can execute any code in its security domain (e.g., a process or a virtual machine) and it can learn
information from the shared cache side-channel. Besides, in our threat model, we do not consider
the data leakage in the normal execution path. Instead, we focus on data leakage only due to the
speculative execution.

Listing 2. Data leakage in dead code.

1 int a=100, size=16;
2 char array1[16];
3 char array2[256*64];
4 int victim() {
5 int y=0, temp=0;
6 if (a < size) { // VB
7 y = array1[a];
8 temp |= array2[y];
9 }
10 return temp;
11 }

We assume that all conditional branches in a program are potentially vulnerable. If a branch
mis-prediction is intentionally arranged by an attacker, then we call this branch to be mis-trained.
This is in line with the existing works on Spectre-style attacks [9] that show the possibility of a
branch to be mis-trained either by the victim process or outside the victim process (e.g., by an
attacker-controlled process). As a result, any branch in the victim process is potentially vulnerable
to mis-training by the attacker. To consider the implication of our threat model, consider the code
in listing 2. Since the conditional branch at line 6 is unsatisfiable, the code at lines 7–8 will never
be executed without speculation. However, in our considered threat model, the code at lines 7–8
can leak data if the branch at line 6 is mis-trained and the branch is subsequently mis-predicted
(thus pointing outside the array bound of array1). We also note that neither the branch nor the
memory access at line 7 is controlled by any external input.

Finally, we assume that the attacker can either perform the access-based cache side-channel attack
or the trace-based cache side-channel attack [38]. The ability of such attackers depends on the
execution points at which (s)he observes cache states. In particular, the access-based attack assumes
that an attacker can probe the cache only upon the termination of a program. On the contrary, the
trace-based attack assumes that an attacker can snoop the cache after any executed instruction
from the victim process. It is worthwhile to note that in general, the attacker capability might fall

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:5

anywhere between observing the cache state after each and every instruction to observing the state
only when the execution terminates. We explicitly evaluate the case where the attacker observes at
the end of execution. However extending our analysis, to consider attackers who observe cache
states at some intermediate execution point(s), is straightforward. More specifically, as the cache
model of KLEESpectre captures the memory operation addresses along the execution path, the
leakage verification can be performed on the currently stored memory addresses at any customized
program point.

𝑠𝑝𝑇3 𝑠𝑝𝐹3

𝑝𝑇1 𝑝𝐹1

𝑝𝑇2 𝑝𝐹2

uint32_t SIZE = 16;
uint8_t array1[16],
array2[256*64], array3[16];

uint8_t foo(uint32_t x) {
uint8_t temp = 0;
if (x < SIZE) {

temp = array1[x];
temp |= array2[temp];
if (x <= 8) {

temp |= array2[8];
}

}
temp |= array3[8];
return temp;

}

b1

A
b2

B

C

0

(a). Example code (b). Normal execution paths (c). Execution paths with speculation

𝑠𝑝𝑇2

𝑠𝑝𝐹4 𝑠𝑝𝑇4

𝑠𝑝𝐹1 𝑠𝑝𝑇1

𝑠𝑝𝐹2

b1

A

b2

C

B C

C

b1

C C

C C
C C

C CB

BB

A AC C

b2

b2

B

𝑝𝑇1 𝑝𝐹1

𝑝𝐹2𝑝𝑇2

Fig. 1. The example code, and its normal execution paths along with the execution paths with branch specu-

lation. (a) example code where b1 and b2 capture branch instructions. A, B and C indicate the corresponding

basic blocks. (b) Execution paths explored by classic symbolic execution. pT #, pF # represent normal paths

that go along the true or false leg of a branch. (c) Symbolic execution tree explored by KLEESpectre. spT #,
spF # denote speculative paths that go along the true or false leg of a branch. The node in red color indicates

the basic block with potential data leakage.

3 OVERVIEW

Intuitively, KLEESpectre is an effort to consider and expose the micro-architectural execution
semantics at the software layer. Specifically, KLEESpectre enhances the machinery of symbolic
execution with branch speculation and cache modelling. In the following, we will use a running
example to show the motivation behind the design of KLEESpectre and briefly outline the KLEE-
Spectrework-flow. We use the term normal execution to capture the execution semantics embodied
in classic symbolic execution tools.
The example: We consider the example code shown in Figure 1(a). The variable x is a user-
controlled input. The code performs several memory related operations on two arrays array1 and
array2. Although x is user controlled, we note that the access to array1[x] is protected by the
bound check (i.e. x < SIZE). Thus, considering the normal execution, the example does not exhibit
any out-of-bound access. Figure 1(b) captures the execution tree generated by any classic symbolic
execution tool.
Enhancing symbolic execution: Consider the code fragments labelled A in Figure 1(a). Such a
code has the following problems that only appear in the presence of branch speculation. Assume
the value of the user controlled input is such that x ≥ SIZE. If the branch b1 is mis-predicted,
then the memory access array1[x] exhibits an out-of-bound reference. Moreover, if array1[x]
captures a sensitive value (e.g.,a secret), then the subsequent memory access array2[array1[x]]
(cf. Figure 1(a)) refers to a memory address dependent on secret value. Memory addresses that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:6 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

depend on secret values are potentially exposed to cache side-channel attacks. For example, consider
the access-based attacker who probes the state of the cache after the end of execution. For such an
attack, the attacker might be successful to exfiltrate the value of array1[x] (potentially holding a
sensitive value) only if array2[array1[x]] remains in the cache after the execution.
It is evident from the preceding example that detecting the potential leakage of array1[x] is

beyond the capability of classic symbolic execution. Specifically, to detect this side-channel scenario,
it is crucial to capture both the branch speculation and the cache behaviour while exploring symbolic
execution states. In KLEESpectre, we enhance the power of symbolic execution along these two
dimensions.

Speculative symbolic execution inKLEESpectre: InKLEESpectre, the purpose of speculative
symbolic execution is to explore any potential secret that might be accessed due to branch speculation.
To investigate the mechanism, consider again the example in Figure 1(a). To incorporate the branch
speculation within symbolic execution, consider the branch b1 (i.e. x < SIZE). In the presence of
branch speculation, KLEESpectre encounters the following four scenarios:

(1) pT 1: x < SIZE is satisfiable and the branch b1 is correctly predicted. In this case, the symbolic
execution will fork a new state with constraint x < SIZE and proceeds by executing the code
fragment A.

(2) pF 1: x ≥ SIZE is satisfiable and the branch b1 is correctly predicted. In this case, the symbolic
execution will fork a new state with constraint x ≥ SIZE and proceeds by executing the code
fragment C.

(3) spT 1: x ≥ SIZE is satisfiable and the branch b1 is mis-predicted. In this case, KLEESpectre
forks a new state with constraint x ≥ SIZE, but proceeds by executing the code fragment A.

(4) spF 1: x < SIZE is satisfiable and the branch b1 is mis-predicted. KLEESpectre forks a new
state with constraint x < SIZE, but proceeds by executing the code fragment C.

spT 1 and spF 1 are the additional symbolic states explored by KLEESpectre at branch b1. Figure 1(b)
and (c) capture the symbolic execution trees explored by normal symbolic execution and KLEE-
Spectre, respectively, for the code in Figure 1(a).

The symbolic execution along a speculative path spans across only a limited number of instruc-
tions. This is because the maximum number of speculatively executed instructions is bounded
by the size of the re-order buffer (ROB). In KLEESpectre, we use Speculative Execution Window
(SEW) to limit the number of speculatively executed instructions at any branch. It is worthwhile
to note that a speculatively executed path may still span over multiple branch instructions (cf.
Figure 1(c)) despite the limited size of SEW .
KLEESpectre prunes speculative symbolic states if they do not pose any risk of data leakage.

For example, in Figure 1(c), only the execution of code fragment A under the branch spT 1 exhibits
such risk. This is due to the access of array elements array1[x] and array2[array1[x]]. Also
note that, the symbolic states spT 3, spF 3, spT 4 and spF 4 are all discarded once KLEESpectre reaches
the limit of speculation window SEW . In this fashion, KLEESpectre can control the explosion
in the number of symbolic states due to speculation. Specifically, for the example in Figure 1(c),
KLEESpectre only keeps the record of executing code A under the speculative state spT 1.
The next stage of KLEESpectre computes whether the secret accessed in spT 1 can potentially

be exfiltrated by a cache side-channel attacker.

Cachemodelling inKLEESpectre:KLEESpectre computes the set of memory access sequences
that are potentially vulnerable to a cache side-channel attack. Each such memory access sequence
may involve at least one memory access along the speculative path and multiple memory accesses
along the normal execution path. Moreover, along the speculative path, we only record memory

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:7

b1

b2

𝑠𝑝𝑇1
m1m2

m3

𝑝𝐹1

𝑠𝑝𝑇3 𝑠𝑝𝐹3

&array2[array1[x]]&array3[8]

&array2[8]

if (x < SIZE)

if (x <= 8)

Fig. 2. Partial speculative execution paths of example code.m# represents a memory access on a path. The

memory access in red color brings in a sensitive cache state.

accesses that are dependent on secret. This is because KLEESpectre focuses to discover data
leakage due to branch speculation.

For example, in Figure 1(c), KLEESpectre computes the following sequence of memory accesses
for inspecting the leakage of data:

⟨⟨A,x > SIZE,&array2[array1[x]]⟩, ⟨C,x > SIZE,&array3[8]⟩⟩

The triplet ⟨A,x > SIZE,&array2[array1[x]]⟩ captures that the address &array2[array1[x]] was
accessed with the symbolic constraint x > SIZE in code fragment A. The sequence of memory
accesses capture the accesses in the speculative state spT 1 followed by a memory access in the
normal state pF 1 (cf. Figure 1(c)). Even though the functional states in spT 1 do not affect the
computation in pF 1, the cache state influenced in spT 1 remains unchanged when the branch is
resolved and the execution continues through code fragment C (cf. Figure 2).

Through our cache modelling, we check the presence of the address &array2[array1[x]] in the
cache when the code segment C finishes execution. To this end, we check whether memory access
array3[8] can replace array2[array1[x]] from the cache. For the sake of simplicity, let us assume a
1-way associative (i.e. direct-mapped) cache. For direct-mapped caches, a memory address maps to
exactly one cache line. In particular, the following symbolic condition is satisfiable if and only if
the terminating cache state holds the memory address &array2[array1[x]]:

(x > SIZE) ∧ (set (&array2[array1[x]]) , set (&array3[8]))
∨ (taд (&array2[array1[x]]) = taд (&array3[8])) (1)

where set(x) and taд(x) capture the cache line and cache tag, respectively, for a memory address x .
Intuitively, the constraints in Formula 1 can be presented to a satisfiability modulo theory (SMT)
solver. KLEESpectre formulates such constraints for each memory access sequence that may access
secrets along a speculative path. These constraints are then discharged by an SMT solver to check
the presence of data leakage due to speculation.

In the subsequent section, we will elaborate the individual sub-systems within KLEESpectre in
detail.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:8 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

4 CACHE AWARE SPECULATIVE SYMBOLIC EXECUTION

In this section, we describe the design of KLEESpectre. First, we describe the overall speculative
symbolic execution process augmented with a symbolic cache model. Subsequently, we discuss in
detail the features of the cache model to accurately detect the cache side-channel leakage along a
speculative execution path.

4.1 Speculative Symbolic Execution

Algorithm 1 outlines the overall process involved in KLEESpectre. Our methodology takes a
program P and symbolically executes P by taking into account the speculation at branches.
Moreover, KLEESpectre records memory accesses along the speculatively executed paths to check
whether any such memory access may refer to a secret. Finally, the sequence of memory accesses
are used to formulate a symbolic cache model Γspectre . The model Γspectre is satisfiable if a possible
secret s , accessed along a speculative path, remains in the cache after the program execution. This
is because the presence of a speculatively accessed secret s in the cache might result in exfiltrating
s via a cache side-channel attack. The construction of the speculative execution revolves around
the concept of speculative execution window (SEW). Such a bounded window captures the number
of instructions that a processor might speculatively execute beyond a branch before the outcome of
the branch is resolved. We note that SEW may span across multiple unresolved branch instructions.
At a broader perspective, Algorithm 1 intercepts each conditional branch instruction r and

explores all possible speculatively executed instructions from this branch. To this end, we compute
Ωr . After handling a conditional branch r , each element in Ωr is a possible sequence of memory
accesses that might have occurred during a speculative execution from r . Moreover, Ωr only
records memory accesses that may refer to a secret. If memory accesses do not refer to secrets along
speculatively executed paths, then they do not impose any risk related to the leakage of information.
Algorithm 1 terminates when the time budget exceeds or KLEESpectre explores all (speculatively)
executed paths and Ωr is constructed for every conditional branch r . In the following, we will
discuss some critical features of KLEESpectre.

Identifying Secret Access: In this work, we identify secrets via two different strategies. The
first strategy is relevant for applications where secrets may not be clearly identified. In such
cases, for each memory-related instruction r , we consider that r might access a secret if and
only if r points to an out-of-bound memory location along a speculative path. In KLEESpectre,
we leverage the explicit checks embodied within the KLEE symbolic execution tool to identify
an out-of-bound memory access. Although all such memory accesses may not refer to secrets,
these memory accesses capture illegal accesses, a typical target for attacks exploiting speculative
execution. We define the leakage of such secrets as N(LS). The definition of N(LS) were implicitly
adopted by SpecFuzz [34] and oo7 [40]. In our second strategy, we can selectively mark secrets
in the application before invoking KLEESpectre. In our evaluation, we empirically evaluate both
strategies for encryption routines. The leakage of explicitly marked secrets is defined as ∆(LS). More
specifically, in the presence of ∆(LS), attackers can (partially) retrieve the user-customized secrets.
We use the function DEP(sec,m) to capture whether some memory addressm is data-dependent
on secret sec . Concretely, DEP(sec,m) is true if and only ifm is data-dependent on the secret sec .

Procedure KLEESpectre. Algorithm 1 outlines the symbolic execution process embodied in
KLEESpectre. Intuitively, KLEESpectre modifies the handling of branch instructions within a
classic symbolic execution process. For each conditional branch r , KLEESpectre maintains a
structure Ω[r]. Upon encountering a conditional branch instruction r , KLEESpectre explores
all possible execution paths that might occur due to branch speculation. This is accomplished

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:9

via the procedure ExpandSpecTree. Consider the symbolic state before the branch instruction
is µ and the branch condition is ϕr . If π [µ] captures the partial path condition before r , then a
speculative execution may proceed in the following two scenarios. Firstly, the true leg of the branch
might be explored with the constraint π [µ] ∧ ¬ϕr . Secondly, the false leg of the branch might be
explored with the constraint π [µ] ∧ ϕr . These explorations are accomplished via the two calls to
procedure ExpandSpecTree in Algorithm 1. Upon termination of ExpandSpecTree for a branch
instruction r , the structure Ω[r] contains the set of memory access sequences that depend on some
secret. Therefore, these memory accesses are candidates that may leak secret information via cache
side-channel. Each memory access captures a triplet of the form ⟨r ,π ,σ ⟩ where r points to the
instruction in the execution trace, π captures the symbolic constraint with which r was executed
and σ captures the symbolic expression of the accessed memory address. Finally, KLEESpectre
records all memory accesses that influence the cache state for memory blocks in Ω[r]. Thus, after
termination of a symbolically executed path, each list Γ ∈ Ω[r] contains all memory accesses that
may replace a memory block accessed during the speculation at r .

Procedure ExpandSpecTree: Algorithm 2 outlines the overall process of exploring the set of
speculative execution paths. In summary, ExpandSpecTree performs the following operations.
First, it explores all speculative paths until the speculation depth SEW . We note that such an
exploration may involve nested speculation. Secondly, while exploring the speculative paths, we
record memory addresses for checking information leakage through the cache. These are the set of
memory accesses that may depend on some secret sec ∈ SEC. In our framework, we consider that
any out-of-bound memory access along a speculative path points to a secret. Thus, the procedure
ExpandSpecTree also records the potential secrets during exploration.

Termination of a speculative state. The execution of speculative state can be terminated in
the following ways:

(1) The speculation window SEW expires. Since SEW captures the maximum number of in-
structions that can be executed speculatively, we terminate the exploration of a speculative
execution state after exploring SEW instructions.

(2) Amemory fence instruction is executed. Thememory fence can stop the speculative execution
triggered due to branch mis-prediction.

(3) An exception is raised. When an exception (e.g, division by zero) is raised, the speculative
execution terminates. This is analogous to the termination of normal execution.

Algorithm 1 satisfies the following crucial properties:

Property 1. Consider an instance of the procedure call ExpandSpecTree(π , µ, r , rs , Γ). Upon
termination of this call, let us assume Ω[r] = {Γ1, Γ2, . . . , Γn}. During an arbitrary execution, further

assume that the conditional branch r was mispredicted and memory addressms was accessed spec-

ulatively. Ifms is data-dependent on some secret, then ⟨∗, ∗,ms ⟩ ∈ Γi for some Γi ∈ Ω[r]. In short,

Ω[r] is guaranteed to be an over-approximation of speculatively accessed memory addresses that are

dependent on secret.

Property 2. Consider Γ ∈ Ω[r] after the termination of a symbolically executed path with the sym-

bolic state µ. Let ⟨∗, ∗,ms ⟩ ∈ Γ wherems is data-dependent on some secret. Assume tail (Γ, ⟨∗, ∗,ms ⟩)

captures the set of elements in the sequence Γ post the element ⟨∗, ∗,ms ⟩. If ⟨∗, ∗,m⟩ ∈ tail (Γ, ⟨∗, ∗,ms ⟩)

andm is not accessed during speculation, then the memory blockm must be accessed following the

access toms for any concrete execution realizing the symbolic state µ.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:10 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

Algorithm 1 Symbolic execution process embodied in KLEESpectre
procedure KLEESpectre(P, SEW)

Let r be the first instruction in P

/* µ0 is the initial state before running P */

/* π [µ0] is the constraint associated with the state µ0 */
χ := {µ0}; π [µ0] := true; Spec := ∅

while χ , ∅ do

Choose a symbolic state µ ∈ χ
/* get the next instruction to symbolically execute */

r := GetNextInstruction(P, µ)
µ := ExecuteSymbolic(µ, r)
if r is a conditional branch then

Let ϕr be the branch condition
remove µ from χ
Γt := Γf := empty; Ω[r] := ∅

µt := µf := µ
π [µt] := π [µ] ∧ ϕr ; π [µf] := π [µ] ∧ ¬ϕr
if π [µt] is satisfiable then

r tn := GetNextInstruction(P, µt)
/* r

f
n is executed when r is mis-predicted */

ExpandSpecTree(π [µt], µt , r , r
f
n , Γf)

χ := χ ∪ {µt }
end if

if π [µf] is satisfiable then

r
f
n := GetNextInstruction(P, µf)
/* r tn is executed when r is mis-predicted */

ExpandSpecTree(π [µf], µf , r , r tn , Γt)
χ := χ ∪ {µf }

end if

if Ω[r] , ∅ then

Spec := Spec ∪ {r }
end if

end if

/* record memory accesses along the normal path */

if r is a memory-related instruction then

Let σ be the accessed memory address
for each i ∈ Spec s .t . π [µ] =⇒ ϕi ∧ Γ ∈ Ω[i] do

Append (Γ, ⟨r ,π [µ],σ ⟩)
end for

end if

end while

end procedure

4.2 Symbolic Model of Cache

In this section, we model the cache behaviour of an execution path to check whether a secret
remains in the cache after program execution. Note that our modified symbolic execution already
takes into account the speculative execution semantics. Thus, the obtained execution path already
accounts for memory references encountered speculatively. Concretely, the input to our cache
model is any memory access sequence Γ ∈ Ω[r] (see Algorithm 1) where Ω[r] is constructed for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:11

Algorithm 2 Exploring speculative execution paths for branch r
procedure ExpandSpecTree(π , µ, r , rs , Γ)

µ ′ := ExecuteSymbolic (µ, rs)
while ∆(r , rs) ≤ SEW ∧ rs , exit do

if rs is a conditional branch then

Let ϕr s be the branch condition for rs
Let r ts immediately follows if rs is taken
Let r fs immediately follows if rs is not taken
if π ∧ ϕr s is satisfiable then

Γtt := Γ
f
t := Γ

/* explore the true leg when r is correctly predicted */

ExpandSpecTree(π ∧ ϕr s , µ ′, rs , r ts , Γtt)
/* explore the false leg when r is mis-predicted */

ExpandSpecTree(π ∧ ϕr s , µ ′, rs , r
f
s , Γ

f
t)

end if

if π ∧ ¬ϕr s is satisfiable then
Γtf := Γ

f
f := Γ

/* explore the false leg when r is correctly predicted */

ExpandSpecTree(π ∧ ¬ϕr s , µ ′, rs , r
f
s , Γ

f
f)

/* explore the true leg when r is mis-predicted */

ExpandSpecTree(π ∧ ¬ϕr s , µ ′, rs , r ts , Γtf)
end if

end if

if rs is a memory-related instruction then

Let σs be the accessed memory address
/* record memory access only if dependent on secret */

if ∃sec ∈ SEC such that DEP(sec,σs) then
Append (Γ, ⟨rs ,π ,σs ⟩)

end if

if σs refers to a potential secret then
/* val(σs) captures value at location σs */
SEC := SEC ∪ {val(σs)}

end if

end if

rs := GetNextInstruction(P, rs)
end while

Ω[r] := Ω[r] ∪ {Γ}
end procedure

every conditional branch instruction r . In the following, we show the cache modelling for a memory
access sequence Γ. Since Γ is arbitrary, the same modelling principle is employed for all the memory
access sequences. Concretely, any memory access sequence Γ is captured by a sequence of triplets
as follows:

Γ ≡ ⟨(r1,π1,σ1), (r2,π2,σ2), . . . , (rN ,πN ,σN)⟩ (2)
where ri is a memory-related instruction, πi is the symbolic constraint with which ri was executed
and σi is the memory address accessed by ri . We note that ri can be accessed along a speculative
path or a normal path (cf. Algorithm 1). Before discussing the cache model, we first explain the
basic design principle behind caches.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:12 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

Basics of Cache Design: Caches are fast memory employed between the CPU and the main
memory. While accessing a memory location, the CPU first checks whether the memory location is
cached. If the location is cached, then the CPU fetches the respective value in the location from
the cache. Otherwise, it accesses main memory and updates the cache with the accessed memory
location and its value. The design parameters of a cache can be captured via a triplet: ⟨2S , 2B ,A⟩.
2S captures the number of cache sets and 2B captures the size of a cache line (in bytes). Each cache
set can hold A cache lines while A is called the associativity of the cache. For any memory-related
instruction r , let us assume it accesses the memory addressm. The addressm is mapped to the
cache set

(⌊ m
2B

⌋
mod 2S

)
. Since multiple memory addresses can be mapped to the same cache

set, each cache line in a cache set stores a tag. This tag is identified via the most-significant B bits
of the memory addressm. Once a cache set is full (i.e. holds A cache lines) and a new memory
location is mapped to the same cache set, then a replacement policy is employed to evict a cache
line and make room for fresh memory locations. In this work, we instantiate KLEESpectre for the
least recently used (LRU) replacement policy. In LRU, the least recently accessed memory location
in a cache set is chosen for eviction to accommodate fresh memory blocks. We define a cache set
state as an ordered A-tuple where the rightmost element captures the least recently used cache
line. For example, in a two-way associative cache, the state ⟨L1,L2⟩ captures that L2 (respectively,
L1) is the least (respectively, most) recently used cache line.
In line with the preceding description of cache design, we assume the following notations

throughout the section:
• 2S : The number of cache sets in the cache.
• 2B : Size of the cache line.
• Ns : The set of memory-related instructions accessing symbolic memory addresses (i.e. poten-
tial secrets accessed along speculative paths) in memory access sequence Γ (cf. Equation 2).

• Nt : The set of memory-related instructions exhibited along normal path in memory access
sequence Γ (cf. Equation 2). We note that |Ns ∪ Nt | = N holds.

• A : Associativity of the cache.
• σi : Memory address accessed by instruction ri .
• set(ri) : Cache set accessed by memory-related instruction ri .
• taд(ri) : Cache tag related to the memory-related instruction ri .

It is worthwhile to note that the symbolic address is defined to be a memory address that is
dependent on a secret value. Moreover, as mentioned in the preceding section, we only consider
secrets that might be accessed along speculative paths. Thus, if any address dependent on secrets
remains in the cache after program execution, the respective program is vulnerable to Spectre
attacks. The set of instructions accessing such symbolic addresses, i.e., Ns were identified during
our novel symbolic execution stage.

Cache Conflict: The symbolic model of the cache revolves around the notion of cache conflict.
Intuitively, the phenomenon of cache conflict influences the states of each cache set. This, in turn,
decides whether a value is cached during or after the execution. In the following, we first formally
define the notion of cache conflict.
Definition 3. (Cache Conflict): Consider memory-related instructions ri and r j . Let ζi (respec-

tively, ζj) be the cache state immediately after ri (respectively, r j) is executed. r j generates a cache

conflict to ri only if r j is executed after ri and executing r j can influence the relative position of memory

block

⌊ σi
2B

⌋
within the cache state ζj .

Figure 3 captures different scenarios in accounting cache conflict within our cache model. In
Figure 3, the notation rx :mx captures that the memory-related instruction rx accesses the memory

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:13

m1

r1:m1 r2:m1

m1

r3:m2

m2 m1

least recently used

Cache conflict

m1

r1:m1 r2:m2

m2 m1

r3:m2

m2 m1

least recently used

Cache conflict

(a) (b)

m1

r1:m1 r2:m2

m2 m1

r3:m1

m1 m2

least recently used

Cache conflict

Conflict nullified

m1

r1:m1 r2:m2

m2 m1

r3:m3

m3 m2

least recently used

Cache conflict

Attack nullified

(c) (d)

Fig. 3. An Illustration of cache conflict scenarios: (a) Cache conflict from r3 to r1, (b) Cache conflicts from r2
and r3 to r1 are due to the same memory blockm2, (c) Cache conflict from r2 to r1 is nullified at r3, (d) Ifm1
holds a secret, the potential Spectre attack is nullified after r3.

blockmx . As an example of cache conflict, consider Figure 3(a). In this case, r3 generates a cache
conflict to r1, as r3 changes the relative position ofm1 in ζ3. In Figure 3(b), both r2 and r3 generates
cache conflict to r1, as both can change the relative position ofm1 in the cache state after execution.
However, special handling is required for the scenario depicted in Figure 3(b). This is because r2
and r3 access the same memory blockm2 and a cache conflict from a given memory block needs to
be accounted at most once. We discuss this shortly in our cache modelling.
The preceding definition of cache conflict works for arbitrary memory-related instructions ri

and r j . In KLEESpectre, however, our objective is to check whether any symbolic address remains
in the cache. To this end, we only need to capture the cache conflict when r j ∈ Nt and ri ∈ Ns .
The cache conflicts within normal paths and within the speculative paths are ignored. Similarly,
we do not need to check whether a memory block accessed in normal path can be replaced by
a memory block accessed along speculative paths. Thus, we can ignore the cache conflict when
r j ∈ Ns and ri ∈ Nt . We formalize the aforementioned notion of cache conflict in KLEESpectre via
the following definition:

Definition 4. (Cache Conflict in KLEESpectre): Consider memory-related instructions ri and
r j . For KLEESpectre, we consider a cache conflict from r j to ri if and only if r j generates a cache

conflict to ri according to Definition 3 and r j ∈ Nt and ri ∈ Ns .

By considering the notion of cache conflict, as defined in Definition 4, we greatly simplify the
size of the symbolic cache model and keep the overall complexity of KLEESpectre under check.
In the next sections, we shall elaborate on the crucial conditions required for the generation of
cache conflicts and usage of such conditions to check the residency of a memory block in the cache.
Subsequently, we build upon such conditions to formulate the symbolic model for identifying
Spectre vulnerabilities.

Cache Set and Cache Tag. : We note that due to the symbolic memory addresses, set(ri) and
taд(ri) can be symbolic expressions. Specifically, set(ri) and taд(ri) are computed as follows:

set(ri) = (σi ≫ B) & (2S − 1) subject to πi (3)

taд(ri) = σi ≫ (B + S) subject to πi (4)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:14 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

CacheConflict andConflict Propagation. : Our objective is to discoverwhether any symbolic
memory address can be evicted from the cache after being accessed. As stated in Definition 4,
KLEESpectre only considers cache conflict from memory accesses along normal path (i.e. set Nt)
to the memory accesses along speculative paths (i.e. set Ns). However, it is not sufficient to check
the cache conflict from r j (∈ Nt) to ri (∈ Ns) to precisely identify Spectre vulnerabilities. To check
whether the conflict actually influences the relative position of the memory block till the end of the
execution, we need to check whether the memory block accessed by ri can be reloaded after r j and
before the end of the execution. If ri is reloaded after r j , then the cache conflict generated by r j is
not propagated until the end of the execution. Finally, we need to check whether the memory block
accessed by ri is replaced from the cache before the execution terminates. This is accomplished
by checking whether the number of unique cache conflicts to ri that propagate till the end of
execution exceeds the cache associativity (A). In the following, we will model these phenomenona
symbolically.

If r j generates a cache conflict to ri , then the following condition must hold: r j and ri access the
same cache set, but have different memory-block tags. This is formalized as follows:

ψcnf
(
ri , r j

)
≡

(
set(ri) = set(r j)

)
∧

(
taд(ri) , taд(r j)

)
(5)

In Figure 3(a), for instance,ψcnf (r1, r3) holds, asm2 is mapped to the same cache set asm1.
Additionally, we need to check whether r j is a unique cache conflict. To this end, we check that

none of the memory accesses after r j accesses the same memory block as r j . Thus, we only account
for the last memory-related instruction accessing the memory block

⌊ σj
2B

⌋
. This is formalized as

follows:
ψunq

(
r j

)
≡

∧
k ∈(j,N]∧rk ∈Nt

(
set(r j) , set(rk)

)
∨

(
taд(r j) , taд(rk)

)
(6)

As an example, consider the scenario in Figure 3(b). In this scenario, we only account for the cache
conflict from r3 to r1. In other words, we observe thatψunq (r2) is evaluated false, as r3 also accesses
the memory blockm2. In contrast,ψunq (r3) trivially holds and takes into account the cache conflict
from r3 to r1.

Finally, we need to check that ri is not reloaded after r j . Otherwise, the memory block accessed
by ri will be reloaded to the cache and the conflict due to r j would be nullified. This is formalized
as follows:

ψr el
(
ri , r j

)
≡

∧
k ∈(j,N]

(set(ri) , set(rk)) ∨ (taд(ri) , taд(rk)) (7)

As an example, consider the scenario in Figure 3(c). Even though r2 generates a cache conflict to r1,
we observe thatm1 is reloaded after r2. Therefore, the cache conflict generated by r2 is nullified via
the reloading ofm1 at r3. In other words, r2 does not influence the residency of memory blockm1
in the cache after execution (i.e. after r3 in the example).

Combining Equations 5-7, we obtain the symbolic conditionwhere r j changes the relative position
of the memory block accessed by ri and such a change in the relative position of the memory
block is also propagated until the end of the execution. Thus, when all the conditionsψcnf

(
ri , r j

)
,

ψunq
(
r j

)
andψr el

(
ri , r j

)
hold, we can say that the conflict generated by r j to ri is propagated until

the end of the execution. This is symbolically captured as follows:

Θ+j,i ≡ ψcnf
(
ri , r j

)
∧ψunq

(
r j

)
∧ψr el

(
ri , r j

)
⇒

(
cnfi, j = 1

)
(8)

Θ−
j,i ≡ ¬ψcnf

(
ri , r j

)
∨ ¬ψunq

(
r j

)
∨ ¬ψr el

(
ri , r j

)
⇒

(
cnfi, j = 0

)
(9)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:15

Attack Identification. : We note that r j is arbitrary in the preceding discussion. To check
whether the memory block accessed by ri can be replaced, we need to repeat the computation of
Θ+j,i and Θ−

j,i for any j ∈ [i + 1,N] where N is the total number of memory accesses in the trace.
Finally, we need to check whether the collective sum of cnfi, j for j ∈ [i + 1,N] exceeds the cache
associativity. Let us assume that speci is true if and only if the memory block accessed by ri may
remain in the cache after program execution, thus exhibiting a potential Spectre attack. The truth
value of speci can be symbolically computed as follows:

λi ≡
©«

∑
j ∈[i+1,N]∧r j ∈Nt

cnfi, j < A
ª®¬ ⇒ speci (10)

In Figure 3, consider thatm1 holds a secret. For scenarios captured in Figures 3(a)-(c), r3 generates
a cache conflict to r1. However, it is not sufficient, in any of the scenarios, to replacem1 from the
cache. Thus, all scenarios in Figures 3(a)-(c) are identified as attacks via our cache modelling. In
Figure 3(d), the attack is nullified after memory reference r3. This is because r1 faces two unique
cache conflicts from r2 and r3. Such conflicts, in turn, are sufficient to replacem1 from a 2-way
set-associative cache.

Putting it altogether. : Finally, Spectre attacks can be targeted for any memory-related instruc-
tion accessing a symbolic address. Therefore, Equations 5-10 need to account for all such symbolic
memory accesses. Recall that Ns captures the set of all memory-related instructions in the trace that
access symbolic memory address. Thus, to check the possibility of Spectre attacks for an arbitrary
(combination) of memory addresses, the following symbolic model is used:

Γspectre ≡
∧
ri ∈Ns

©«λi ∧ ©«
∧

j ∈[i+1,N]∧r j ∈Nt

Θ+j,i ∧ Θ−
j,i

ª®¬ª®¬ ∧
(∨
ri ∈Ns

speci

)
(11)

We note that Γspectre is true if and only if any of the symbolic memory address remains in the
cache after program execution, thus leading to a potential Spectre attack.

5 IMPLEMENTATION

KLEESpectre is primarily implemented on top of the state-of-the-art symbolic execution engine
KLEE v2.0 [8]. KLEESpectre is built from CLang v6.0 and it takes the LLVM bitcode generated
with LLVM 6.0 as input. If a subject program contains external function calls, then the program
is linked with KLEE- uClibc [3] first, before being passed to KLEESpectre. We used the SMT
solver STP [20] to check the satisfiability of the path constrains and the symbolic cache model.
Broadly KLEESpectre makes three major changes in KLEE: generating speculative symbolic states,
propagating potentially sensitive data and symbolically modelling the cache behaviour.

Generating speculative symbolic states. A symbolic execution engine interprets a single
instruction symbolically subject to the constraints imposed on the respective symbolic state. The
initial symbolic state is constrained via the logical formula true. If the constraint imposed on
the current symbolic state is C and the engine encounters a branch instruction with condition
ϕb , then traditional symbolic execution engines check the satisfiability of constraints C ∧ ϕb and
C ∧ ¬ϕb . If such a constraint is satisfiable, then the engine creates a new symbolic state with
the constraint. The new state inherits the state before encountering the branch instruction, but
proceeds interpreting the subsequent instructions independently. Our KLEESpectre approach
generates two extra symbolic states to model the speculative execution. These states are generated
to model the speculative paths and they also model nested speculative execution. We also modify

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:16 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

the path selection heuristic in KLEE to take into account the newly generated speculative symbolic
states. Specifically, when the scheduler selects a normal state Sm to execute, we check whether the
state may be immediately preceded by any speculative state. If such is the case, then KLEESpectre
selects a speculative state SSi to process. The normal state Sm is not processed until all preceding
speculative states of Sm are handled. KLEESpectre can use all existing state selection strategies
in KLEE, such as Depth-First Search (DFS), Breadth-First Search (BFS), random path selection
(random-path) for both the normal state selection and speculative state selection.

Propagating potentially sensitive data. KLEESpectre propagates the sensitive data along
the execution path to identify the addresses that may leak the sensitive data to the cache state.
When a memory load instruction reads a variable vs from an out-of-bound memory location, we
mark vs as sensitive. All new expressions dependent on vs are subsequently marked sensitive
as well. By tracking these sensitive expressions, we can detect if a memory access leads to the
leakage of sensitive data. This is accomplished by checking whether the accessed memory address
is constructed from any sensitive expressions.

Symbolically modelling the cache behaviour. KLEESpectre models the cache to further
check whether a cache state impacted by a sensitive address can be observed in an execution
point, in particular, at the termination of a program for the access-based cache side-channel attack.
Each execution state contains a cache state that symbolically records the cache content along the
execution path. The cache modelling of KLEESpectre collects all memory load and store addresses
except the memory store addresses in a speculative execution. There exists multiple reasons for
such a design choice. Firstly, the memory store is not visible to the cache until the speculatively
executed instructions are committed in the real execution of a processor. Secondly, our assumption
is that all speculative executions in KLEESpectre are caused by the branch mis-prediction and
all speculatively executed instructions are rolled back. Upon the termination of an execution, the
symbolic cache model is constructed in line with the explanation in Section 4.2 and we call the STP
solver to check whether the sensitive address may still stay in the cache.

6 EVALUATION

In this section, we perform the effectiveness evaluation of KLEESpectre in detecting the Bounds
Check Bypass (BCB or Spectre variant 1) vulnerabilities. We aim to answer the following research
questions:
(1) RQ1: Can KLEESpectre effectively detect various kinds of BCB vulnerabilities?
(2) RQ2: How efficient is KLEESpectre in detecting the BCB vulnerabilities?
(3) RQ3: How effective is our cache model in detecting cache side-channel leakage through

speculative paths?
Note that BCB vulnerability has not been reported in the wild yet. Therefore, we first run KLEE-
Spectre on the litmus tests created by Kocher [28]. These litmus tests are different types of Spectre
vulnerable code patterns. Secondly, we run KLEESpectre on a set of security-critical benchmarks
to check whether KLEESpectre can find the potential BCB vulnerabilities. Finally, we evaluate
the effectiveness of our cache model in KLEESpectre by modifying the litmus tests and the
security-critical benchmarks appropriately.

6.1 Evaluation of KLEESpectre on litmus tests

No real BCB vulnerability has been reported in the wild. So we first rely on fifteen litmus test
programs with Spectre vulnerability created by Kocher [28].We aim to check whetherKLEESpectre
can successfully detect these different variations of BCB vulnerabilities. These litmus tests were

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:17

Listing 3. The code for testing KLEESpectre with cache modelling.

1 int array1_size = 16;
2 char array1 [16];
3 char array2 [256∗64];
4 char array3[512 ∗ 64];
5 char temp = 0;
6 char victim_fun(int idx) {
7 register int i ;
8 if (idx < array1_size) {
9 temp &= array2[array1[idx]];
10 }
11 #define ITER N // N = {1, ... , 512}
12 for (i = 0; i < ITER; i++) {
13 temp &= array3[i ∗ 64];
14 }
15 return temp;
16 }
17 void main() {
18 int x;
19 klee_make_symbolic(&x, sizeof(x), "x");
20 victim_fun(x);
21 }

originally developed to evaluate the effectiveness of the Spectre mitigation in Microsoft C/C++
compiler. The Microsoft compiler uses static analysis to identify the vulnerable code fragments
and inserts lfence to repair the vulnerable code. Kocher reports [28] that the Microsoft compiler
can only identify two out of 15 vulnerable programs. This is because instead of using precise static
analysis, Microsoft C/C++ compiler only performs a simple code pattern matching to identify code
fragments related to the BCB vulnerabilities. In contrast, KLEESpectre can correctly detect all the
BCB variants in 15 litmus tests produced by Kocher.
The programs used in litmus tests contain no memory access after the sensitive data is leaked

and brought into the cache along the speculative path. As a result, our cache modelling has no
impact on the detection results and all the litmus tests are correctly confirmed to contain Spectre
vulnerability by KLEESpectre. Thus, we design additional experiments to showcase the power of
cache modelling in KLEESpectre by introducing memory access code in the litmus test programs
after the spectre vulnerability.

For evaluating our cache model, we use a 32 KB set-associative cache with the LRU replacement
policy and each cache line has 64 bytes data. We configure the cache to be 2-way, 4-way or 8-way
in our experiments. We mainly consider the PRIME + PROBE attack on L1 cache. This attack is used
to target both data [35, 36] and instruction cache [4].
A modified litmus test code is outlined in Listing 3. The code contains a vulnerable function

victim_fun() that receives an integer idx as an argument. The if statement at line 8 checks
whether idx is less than the array1[] size array1_size. If the condition holds, then idx is used to
access array1[]. The code between line 8 and 10 exposes a typical BCB vulnerability. Specifically,
if the branch at line 8 is mis-predicted, then the access of array1[] with idx value greater than
array1_size can bring in potentially sensitive data. This is because array1[idx] can point outside
of array1[] when the branch at line 8 is mis-predicted. The sensitive data can subsequently be

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:18 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

leaked to the cache state by accessing array2[] at line 9. The question remains whether the leaked
data will still remain in the cache after completion of the program execution. This question can be
answered by our cache modelling in KLEESpectre.

Thus, to test the effectiveness of the cache model in KLEESpectre, we add a loop at lines 11-15.
The loop continuously brings in data to the different cache sets after the leakage of sensitive data
at line 9. The memory accesses in the loop may evict the sensitive data introduced into the cache
by BCB vulnerability (line 9) after N iterations. Each iteration brings a memory block to a different
cache line, for example, the loop introduces a memory block for each cache set by the first 256
iterations and the entire cache is filled up after performing total 512 iterations for a 2-way (256
sets) cache. We run this litmus test program with different values of N from 1 to 512 to evaluate the
effectiveness of KLEESpectre. Specifically, we aim to detect the eviction of the sensitive data from
the cache for different values of N and different cache associativities (i.e. 2, 4 and 8).

640 128 192 256 320 384 448 512

2-way

4-way

8-way

N iterations

Leakage detected

Leakage free

Fig. 4. The detection result of KLEESpectre with cache model enabled. #-way represents a cache setting with

#-way set associative cache.

The outcome of our findings is shown in Figure 4. The red solid line denotes that KLEESpectre
can detect the sensitive cache state, which means the sensitive data is still in the cache after N
memory accesses in the test code. In contrast, the green dash line indicates that the sensitive data
has been evicted from the cache by the additional code (Leakage-free). We can see from Figure 4
that the sensitive data is no longer present in the cache after 260, 388 and 452 memory accesses for
cache associativity 2, 4 and 8, respectively.

The result in Figure 4 proves the effectiveness of KLEESpectre cache modelling . As an example,
consider the code at line 9 in Listing 3. The data read by array1[idx] is one byte represented
as Bi . Thus, Bi has a value between 0 and 255. The address of the memory access performed by
array2[Bi] is captured via array2 + Bi . As the least significant six bits of Bi are used for the
byte offset in the cache block (64-byte cache block), only two bits of Bi are used for the two
least significant bits of the cache set index. Thus, the address array2 + Bi can map to one of four
selected contiguous cache sets depending on the value of Bi for any cache associativity. Thus to
completely evict array2 + Bi from the cache for arbitrary values of Bi , we need access to 8, 16 and
32 corresponding caches lines for 2, 4 and 8-way associate caches, respectively.
As shown in Figure 4, for 2-way set associative caches, the leakage is undetectable after 260

memory accesses from the loop at lines 11-13. In a 2-way set-associative cache, array2 + Bi can

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:19

Table 1. Subject benchmarks.

Program Source Description LoC #Branch

chacha20 LibTomCrypt chach20poly1305 cipher 776 71
aes LibTomCrypt AES implementation 1,838 27
encoder LibTomCrypt encode binary data to ASCII string 134 14
ocb3 LibTomCrypt OCB implementation 377 40
salsa Linux-tegra Salsa20 stream cipher 279 20
camellia Linux-tegra camellia cipher 1,324 12
seed Linux-tegra Seed cipher 487 9
str2key openssl Key preparation for DES 385 12
des openssl DES implementation 1,051 11
hash hpn-ssh hash function 304 24

potentially map to four contiguous cache sets depending on the value of Bi . Thus, if we want to
guarantee the eviction of array2 + Bi from the cache, then we need to fill up these contiguous
four cache sets that array2 + Bi may map to. In our experiment, array2 was mapped to the first
cache set. As a result, 260 memory accesses can completely fill up the first four sets of a 2-way
cache. Specifically, the first 256 iterations of the loop (lines 11-13) access memory blocks mapping
to all cache sets (256 cache sets for 2-ways cache) and the rest four iterations introduce the second
memory blocks for first four cache sets. This guarantees the removal of array2 + Bi from the cache
for any value of Bi . To the best of our knowledge, none of the existing tools such as oo7 [40] and
SPECTECTOR[23] can accurately verify the cache side-channel freedom against BCB attack like
KLEESpectre.

6.2 Effectiveness and Efficiency: Detection of BCB Gadgets in Real Programs.

Benchmark selection. To evaluate KLEESpectre on real programs, we select ten cryptography
related programs from well known projects: libTomCrypt, Linux-tegra, openssl and hpn-ssh.
Table 1 outlines some salient features of the subject benchmarks. All the benchmarks potentially
process or contain sensitive data. All of these benchmarks were also used in a recent work [43] to
perform the analysis of speculative execution via abstract interpretation. In Table 1, column LoC

denotes the lines of code; the collected programs have 134 (encoder) to 1,838 (AES) lines of code.
The column #Branch denotes the number of branches in each program ranging from 9 (seed) to
71 (chacha20). For all the benchmarks, we use the internal function klee_make_symbolic() of
KLEE to set the input of the programs (e.g., the plaintext and the key in cryptography programs) as
symbolic variables. All benchmarks are compiled by Clang-6.0 with "-O1" optimization.

Experimental results. In this experiment, we do not assume the target platform, thus We
run KLEE, KLEESpectre with SEW=50, and KLEESpectre with SEW=100 (SEW is the size of the
speculative window in terms of the number of instructions) on the benchmarks listed in Table 1 to
compare the performance and the effectiveness of KLEESpectre to detect BCB gadgets. The results
are shown in Table 2. The column Explored paths denotes the number of explored normal execution
paths and the column Explored speculative path indicates the explored speculative execution paths
by KLEESpectre.

In each category of KLEE, KLEESpectre 50 and KLEESpectre 100, column Analysis time provides
the analysis time of the tool. We conduct our experimental evaluation on Intel Xeon Gold 6126 [2]
running at 2.6GHz with 192GB memory. Intel Xeon Gold 6126 is equipped with 12 cores (24 threads)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:20 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

Table 2. The analysis performance comparison of KLEE, KLEESpectre 50 and KLEESpectre 100 along with the

detection results of BCB gadgets. Avg. #inst= The average number of instructions executed on the speculative

path. VB= vulnerable branch. UC_VB= user controlled vulnerable branch. RS=Read Secret.N(LS)=Leak Secret
and treat all illegal memory accesses as secret.

Program KLEE KLEESpectre 50 KLEESpectre 100

Analysis

time

Explored

paths

Analysis

time

Explored

paths

Explored

speculative

paths

Avg.

#inst

VB UC_VB RS N(LS)
Analysis

time

Explored

paths

Explored

speculative

paths

Avg.

#inst

VB UC_VB RS N(LS)

chacha20 0.50s 3 2s 3 12392 47.49 8 0 6 0 12s 3 124364 95.25 14 0 7 0
aes 0.06s 1 0.06s 1 524 47.75 2 0 2 0 0.16s 1 547 92.67 2 0 2 0
encoder 0.45s 22 4s 22 2090 42.64 2 1 3 0 11s 22 10502 81.55 2 1 3 0
ocb3 0.11s 2 0.22s 2 6286 49.61 2 0 2 0 1s 2 58859 99.52 5 0 5 0
salsa20 0.08s 2 0.26s 2 308 45.8 2 0 2 0 0.44s 2 556 82.07 2 0 2 0
camellia 22s 4 22s 4 3141 44.98 1 0 1 0 23s 4 10440 82.07 1 0 1 0
seed 19s 1 20s 1 242 49.45 1 0 1 0 20s 1 370 99.1 1 0 1 0
str2key 41s 114 48s 114 2101 49.81 2 0 1 1 69s 114 8500 99.51 2 0 1 1
des 0.01s 1 0.01s 1 8 6.88 1 0 1 0 0.01s 1 8 6.88 1 0 1 0
hash 0.12s 1 0.16s 1 1513 49.41 1 0 1 0 0.23s 1 3278 99.44 1 0 1 0

and 19.25MB shared last-level cache (LLC). The machine is running a Ubuntu 16.04 server with
Linux kernel 4.4.

Both KLEE, KLEESpectre 50, KLEESpectre 100 complete the analysis within 69 seconds. More
specifically, for most benchmarks, KLEESpectre 50 and KLEESpectre 100 have longer analysis
time than KLEE; but the analysis time of KLEESpectre is still acceptable. For example, KLEE
explores three paths of chacha20 in 0.50s, KLEESpectre 50 explores all three normal paths along
with 12,392 speculative paths in 2s. Besides, KLEESpectre 100 always explores more speculative
paths than KLEESpectre 50 because KLEESpectre 100 executes more instructions along any
speculative path. Moreover, if KLEESpectre encounters branch instructions along the speculative
path, then it generates new speculative states (nested speculative execution), resulting in managing
a larger number of symbolic states as compared to KLEE. Finally, the speculative execution might be
terminated upon receiving an exception or the program exit event. The column Avg. #inst in Table 2
shows the average number of the instructions executed along the speculative path, which is close
to the SEW value in most benchmarks (e.g., 47.49 and 95.25 for KLEESpectre 50 and KLEESpectre
100, respectively, while analyzing chacha20).

As for the detection result of BCB Gadgets, the detected number of vulnerable instructions are
listed in columns VB, UC_VB, RS andN (LS). VB represents the number of vulnerable branches. The
mis-prediction of such branches may result in the secret data to be loaded in the cache. The term
UC_VB means that the vulnerable branch can directly be trained via the user controlled input. RS is
the abbreviation of Read Secret. Specifically, RS means that the secret can be loaded after executing
the respective instruction. LS is an abbreviation of Leak secret wherein an instruction can leak the
secret loaded by RS instruction to the cache state. The columns VB, UC_VB, RS andN (LS) in Table 2
are reported as the unique code locations and if one vulnerable code location appears in several
speculative execution paths, the code location is only reported once.

We detect VB and RS in all the benchmarks. For example, KLEESpectre 50 found eight vulnerable
branches in chacha20 but none of of them is user-controlled. Only the benchmark str2key contains
a Leak secret (LS), which means that the secret can potentially be loaded to the cache and observed
by the attacker.

Listing 4. Potential Spectre variant 1 vulnerability in str2key; ⟨VB, RS, LS⟩ are highlighted.

1void DES_set_odd_parity(DES_cblock∗key) {
2 int i ;
3 for (i =0; i<DES_KEY_SZ; i++) /∗ VB ∗/
4 (∗key)[i]=odd_parity [(∗ key)[i]]; /∗ RS, LS ∗/
5}

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:21

Table 3. The detection result with cache modelling enabled for different cache configurations.

Program

KLEESpectre_100 without cache modelling

KLEESpectre_100 with cache modelling

2-ways 4-ways 8-ways

Symbolic

address (%)

Analysis

time

Detected

leakage

(N(LS)/∆(LS))

Solver

time(%)

Analysis

time

Detected

leakage

(N(LS)/∆(LS))

Solver

time(%)

Analysis

time

Detected

leakage

(N(LS)/∆(LS))

Solver

time(%)

Analysis

time

Detected

leakage

(N(LS)/∆(LS))

Solver

time(%)

aes 0.57% 0.28s 3/1 42.01% 12s 1/1 10.20% 11s 1/1 15.50% 12s 1/1 13.66%
encoder 24.83% 1s 3/0 78.56% 185s 1/0 65.02% 204s 2/0 69.01% 150s 2/0 58.18%
ocb3 2.13% 12s 3/2 8.20% 18s 2/1 9.63% 16s 2/1 10.22% 17s 2/1 9.82%
salsa20 6.73% 1s 3/0 12.49% 1s 1/0 13.55% 1s 1/0 13.25% 1s 1/0 13.30%
camellia 7.23% 15s 3/3 89.47% 28s 1/1 45.59% 44s 1/1 64.82% 27s 1/1 44.75%
seed 42.39% 0.58s 3/0 88.65% 1s 1/0 81.38% 1s 1/0 87.90% 2s 1/0 85.22%
str2key 7.83% 30s 4/2 95.10% 35s 2/1 94.68% 35s 2/1 94.70% 35s 2/1 95.00%
des 26.39% 1s 3/2 98.48% 178s 1/1 98.67% 117s 2/1 97.96% 93s 2/1 97.44%
hash 5.41% 7s 3/2 82.86% 8s 2/1 82.08% 7s 2/1 80.32% 7s 2/1 81.06%

Listing 4 shows a potential Spectre variant 1 vulnerability in the str2key benchmark function
DES_set_odd_parity(). The loop iteratively reads the data pointed by *key and uses the data
to index array odd_parity. A mis-prediction of the for loop condition may cause a speculative
execution of a few more loop iterations than normal execution. This may lead sensitive data beyond
the end of *key (i.e. beyond the size DES_KEY_SZ) to be loaded into the cache. The sensitive data
can impact the cache state when it is used to access array odd_parity. Thus, the cache state can
potentially be observed by the attacker through probing array odd_parity. The exact amount of
the leakage depends on the number of iterations that can be speculatively executed. However, in
its current state, KLEESpectre does not compute an exact quantification of the leakage.

We also compare the KLEESpectre result with oo7 [40] and show that oo7 can only detect data
leakage in encoder and ocb3. This is because oo7 only identifies the user-controlled branches
as vulnerable branches. However, KLEESpectre assumes all branches can be mis-trained by the
attacker; for example, the victim process and the attacker process may be scheduled to the same
core and the attacker can directly mis-train the branch prediction [9, 19].

6.3 Leakage detection with cache modelling .

The cache modelling of KLEESpectre accurately checks whether the leaked sensitive data can be
observed by the attacker through the cache side-channel. Our cache model is not invoked until
some sensitive data is identified along the speculative path. As we do not find any data leakage
in our benchmarks, in this experiment, we insert several vulnerable functions to the benchmarks
and check whether KLEESpectre can detect them. More specifically, we randomly choose three
Spectre v1 variant functions suggested by Kocher [28], then insert them to the start, middle and
the end of each benchmark listed in Table 1. Finally, we run KLEESpectre with cache modelling
enabled. Each experiment is conducted over three runs for three different cache associativities: 2, 4
and 8. Moreover, we marked the cipher key (e.g., for aes) or program input (if the program does
not contain a secret key, e.g., hash) as the user marked secrets.

Table 3 shows the test results of comparing KLEESpectre 100 and KLEESpectre 100 with cache
model enabled. KLEESpectre 100 detects all vulnerable code that leaks the sensitive data in the
speculative execution path (str2key contains one original leakage). The column N(LS)/∆(LS)
denotes the sensitive data leakage for two strategies used in identifying secrets. N(LS) captures
the leakage where all illegal memory accesses are treated as secrets. In contrast, ∆(LS) captures the
leakage only for user-marked secrets (i.e. a secret key or program input). The results show that
KLEESpectre can successfully identify the leakage of user marked secrets. All tested programs
except encoder, salsa20 and seed show that the program can access and leak the user-defined
secrets in their speculative execution path.

More importantly, we observe that the number of vulnerable code fragments reduces when we
enable the cache modelling . For example, three data leakage scenarios were identified in ocb3

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:22 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

without cache modelling . However, only two of these leakage scenarios appear in the presence of
cache modelling . The remaining one data leakage was identified as a false positive. This means
that the sensitive data loaded into the cache was subsequently evicted by other memory accesses.
Moreover, program encoder and des have different results when the cache configuration is changed.
Specifically, the analysis with 2-ways cache only found oneN(LS) style leakage, whereas two such
leakage scenarios were discovered in 4-ways and 8-ways cache configurations. This happens as
higher cache associativity may prevent some secrets to be evicted, leading to increased leakage.
The observations in the preceding two paragraphs highlight the need for cache modelling

alongside symbolic execution. In particular, such a cache modelling facilitates the accurate detection
of sensitive data leakage through cache side channel. Specifically, the modelling helps us to eliminate
cases where a secret can be loaded along the speculative path. However, it cannot be leaked via the
cache side channel (as the secret might be evicted before the attacker observes the cache state).
Moreover, with a tunable cache configuration, the designer can gauge the potential spectre attacks
on a variety of platforms employing caches.

The precision of KLEESpectre comes with the cost of solving the symbolic cache model. Thus
both the analysis time and the solver time increase (as compared to the cache modelling being
disabled). The time to solve the symbolic cache model depends on the number of memory accesses
and the percentage of symbolic addresses. As observed from Table 3, the percentage of symbolic
addresses is relatively low (the maximum is 42.39% for seed). Thus, the solver can finish within
an acceptable time. Finally, except for hash and des, we did not observe a noticeable difference in
analysis time with increased cache associativity. This means that our symbolic cache model scales
well with respect to varying cache configurations.

6.4 Case study

Fig. 5. Potential Spectre vulnerability in trie.c within project freeradius reported by oo7 [40]. The triplet

⟨VB, RS, LS⟩ is highlighted.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:23

Table 4. Analysis result of program trie.

Cache

configuration

Analysis

time

Explored

paths

Explored

Speculative

Paths

VB RS

N(LS)
w/o

cache

N(LS)
with

cache

Leakage

paths

2-ways 1.1h
13,751 412,406 14 3 1 1

6,438
4-ways 1.2h 6,440
8-ways 1.23h 6,440

Table 5. Analysis result of program touch.

Cache

configuration

Analysis

time

Explored

paths

Explored

Speculative

Paths

VB RS

N(LS)
w/o

cache

N(LS)
with

cache

Leakage

paths

2-ways >12h
14,654 1,331,152 388 40 8 4

9,725
4-ways >12h 9,830
8-ways >12h 9,843

In this section, we evaluate the effectiveness of KLEESpectre in detecting Spectre vulnerabilities
on real-world programs. For this purpose, we have chosen two case studies. The programs used in
these case studies were reported to be vulnerable to Spectre attacks by oo7 [40]. The first program
is trie from freeadius project and the other one is touch from Coreutils.
freeradius is an open-source Remote Authentication Dial-In User Service (RADIUS) that usu-

ally processes sensitive data in its service. The reported leakage was discovered in function
fr_trie_path_lcp() within file trie.c as shown in Figure 5. The file trie.c is in a library
provided by freeradius and implements a path-compressed, level-compressed patricia tries [1].
We run KLEESpectre on tries.c while making all inputs as symbolic. This is to test whether
KLEESpectre can detect the previously reported leakage and verify whether the leakage can be
observed through an access-driven cache attack. Since there is no typical sensitive data in this
program, we aim to detect all potential leakage (i.e. N(LS)). This choice is justifiable, as trie
belongs to library code and it might be invoked from a program that contains various secrets.
The analysis results are shown in Table 4. KLEESpectre analysis terminates in 1.1 hours, 1.2

hours and 1.23 hours for 2-ways, 4-ways and 8-ways cache configurations, respectively. KLEE-
Spectre explored 13,751 normal paths and 412,406 speculative paths. Our evaluation reveals that
KLEESpectre detects exactly one sensitive data leakage through the cache side-channel. This
leakage is observed over several execution paths (6438, 6440 and 6440 execution paths for 2-ways,
4-ways and 8-ways caches, respectively) for all cache configurations.

Our second case study is chosen from Coreutils project. Coreutils includes basic file, shell com-
mands and text manipulation utilities and is widely adopted by the GNU operating system. We run
touch on KLEESpectre for 12 hours with 2-ways, 4-ways and 8-ways cache configurations. We aim
to test whether KLEESpectre can detect the Spectre vulnerability reported in touch. Similar to trie,
the program touch does not contain a typical secret. Therefore, our goal is to detect leakage N(LS).

Our results are shown in Table 5.KLEESpectre explored 14,654 normal paths along with 1,331,152
speculative paths. Moreover,KLEESpectre detected 388 vulnerable branches, 40 RS and eightN(LS)
style leakage without cache modelling . In the presence of cache modelling , KLEESpectre verified
only four out of these eight leakage scenarios. Finally, these leakage scenarios were discovered
over 9,725, 9,830 and 9,843 different paths for 2-ways, 4-ways and 8-ways caches, respectively.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:24 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

Fig. 6. Potential Spectre vulnerability detected in program touch (getdate.c) within project Coreutils. The
triplet ⟨VB, RS, LS⟩ is highlighted.

One vulnerable code fragment in program touch, as identified by KLEESpectre, is shown in
Figure 6. In this code fragment, variable yyn is used to access array yytable[] only if yyn is between
0 and YYLAST. However, if the branch that marked as VB is mis-predicted, then the code marked
as RS can load the data outside of array yytable[] to the memory. This, then leaks the data to the
cache side-channel through code yylen = yyr2[yyn]; as marked LS in the figure.

7 THREATS TO VALIDITY

Path explosion. Path explosion is a major challenge in the symbolic execution. KLEESpectre is
based on symbolic execution, which does not scale to large programs while exploring all feasible
program paths. In particular, KLEESpectre forks more paths than the classical symbolic execution
for performing the speculative execution. However, only limited number of instructions are executed
on the speculative paths in KLEESpectre, which is bounded by the Speculative Execution Windows
(SEW). Thus, as observed in our evaluation, KLEESpectre has similar complexity with the classical
symbolic execution. Moreover, the existing methods to alleviate the path explosion can also be
used by KLEESpectre, for example, state merging [25, 30]. Specifically, the speculative states can
be merged similarly as the classical states when the control flows of a program merges. Besides,
the symbolic execution can be guided by the low-cost static analysis in such a fashion that a static
analysis can be performed to roughly locate the vulnerable code and prune the redundant paths
during the construction of symbolic execution tree.

Precise modeling of program behavior. The program behavior running on the hardware
may not be the same as it is in the symbolic execution. This is because KLEESpectre uses bitcode
that may not replicate exactly the same behavior as the final binary code due to the compiler
optimization. For example, the program may have more memory accesses when running on the
hardware than it is during the symbolic execution due to the register spilling. However, KLEE-
Spectre is designed as an over-approximation method that it captures all necessary memory
accesses and detects all potentially secret leakage. This results in the absence of false negatives.
In other words, KLEESpectre guarantees that all leakage in the real execution can be detected.
However, KLEESpectre can generate false positives. For instance, the leakage detected by KLEE-
Spectre may not be exploitable in the real hardware.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:25

Explicit modeling of cache. Our KLEESpectre approach is applicable to execution platforms
employing caches. Given the prevalent presence of caches in both mainstream and embedded
platforms, KLEESpectre takes an approach to explicitly model the cache within symbolic execution.
Such a cache model may facilitate further development of analysis tools (e.g. timing analysis) that
requires precise cache modeling. Nevertheless, some cache architectural parameters need to be
known (e.g. cache sets, associativity) for such analysis and improperly setting such parameters may
lead to both false positives and false negatives.

The setting of Speculative Execution Window (SEW). An LLVM IR instruction may corre-
spond to many micro-instructions in the binary. Thus, improperly chosen SEW affects the analysis
result and precision. For example, if the SEW is too small, then KLEESpectre may introduce false
negatives. In contrast, when the SEW is set too large, it makes the analysis much slower. Moreover,
this may also introduce false positives, as some secrets may never be accessed speculatively, yet
such secret accesses might be accounted in KLEESpectre when SEW is configured an unlikely
large value. Nonetheless, one LLVM IR instruction is at least transformed to one micro-instruction.
As a result, when using the LLVM IR code, the set of memory instructions that conflict in the cache
has at least as many corresponding memory instructions in the compiled binary. This means, if a
secret remains in the cache while executing the binary code, then the secret will also remain in
the cache while executing the corresponding LLVM IR, using the same execution environment.
Therefore, if we set the SEW to the size of the Re-order Buffer (RoB) for a given platform, then
KLEESpectre should catch all potential data leakage through the cache side-channel.

8 RELATEDWORK

Spectre-style attack mitigation in hardware. New hardware-related solutions have been pro-
posed [21, 27, 37, 39, 42, 44] to verify or defend against cache side-channel attacks. IODINE [21]
presented a clock-precise, constant-time approach to eliminate the timing side channels in the hard-
ware. InvisiSpec [44] uses a Speculative Buffer(SB) to temporarily hold the data during speculative
execution instead of directly loading the data to Cache. CleanupSpec [39] improves InvisiSpec that
it performs an "Undo" operation in the cache while encountering a pipeline squash on speculative
execution. DAWG [27] partitions the cache ways to limit the data leakage across different security
domains. CEASER [37] obfuscates the cache set mapping to prevent the sensitive cache state being
leaked to an attacker, and an improved version of CEASER for defending against stronger attacker
model is presented in work ScatterCache [42]. However, all proposed hardware solutions are un-
likely to be adopted by the legacy systems. Moreover, our approach is orthogonal to hardware-level
mitigation to defend against Spectre attacks. In particular, we detect potential information leakage
through Spectre-style attacks in arbitrary applications running on any processor employing branch
speculation and caches.

Spectre-style attack mitigation in software. As for the software-based approach, Speculative
Load Hardening [10] (SLH) is a mitigation technique for Spectre variant 1, adopted by the LLVM
compiler. SLH identifies the potentially vulnerable code fragments where memory accesses depend
on the conditional branches and then inserts hardening instruction sequence to nullify the pointers
that may leak the data. SLH hardens the RS stage of the vulnerable code. Thus, the secret data
cannot be loaded into the cache during speculative execution after nullifying the crucial pointers.
As SLH repairs the program at every conditional branch and inserts the hardening instructions,
SLH significantly increases execution time. Specifically, it introduces 36% performance overhead.
Oleksenko et al. [33] present mitigation of Spectre variant 1 attack by delaying the execution of
the vulnerable instructions via introducing artificial data dependencies instead of serialization
instructions to stop speculative execution altogether. These methods lack accurate analysis and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

1:26 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

overestimate vulnerable code fragments leading to a significant performance overhead in the
repaired programs. In contrast, KLEESpectre detects the vulnerable code fragments, which, in turn
can aid software-level mitigation. In particular, by focusing on these vulnerable code fragments,
existing software-level mitigation can be applied with a reduced performance overhead.

Microsoft Visual C/C++ compiler [15] enables mitigation of Spectre Variant 1 through a compiler
option that inserts "lfence" serializing instruction at potentially vulnerable code. However, this
technique successfully mitigates only two out of 15 Spectre litmus tests [29]. oo7 [40] is the first
work proposed to mitigate Spectre-style attacks via modelling speculative execution in static
analysis. oo7 works on binary and leverages taint analysis to track the vulnerable branches and
memory operations that lead to Spectre-style vulnerabilities. oo7 can effectively detect and fix
Spectre-style attacks, but may still produce false positives due to conservative static analysis. We
also empirically show the effectiveness of KLEESpectre over oo7 in our evaluation.
Speculative semantics and formal models. Cheang et. al[13] proposed a formal approach
to identify the speculative leakage based on the formulation of a new security property called
trace property-dependent observational determinism (TPOD). A program containing transient
execution vulnerabilities would violate the TPOD. However, this work is a concept formulation
and its implementation aspects are unclear. Disselkoen et al. [16] is another micro-architectural
model based on pomsets to model speculative evaluation. This work focuses on the modelling of
speculation while considering the relaxed consistency model. Cauligi et al. [11] proposed a model
for constant-time programming in the presence of micro-architectural features such as out-of-
order and speculative execution. InSpectre [6] presents an infrastructure to model the our-of-order
execution by providing the semantics of modern micro-architectural features. InSpectre can model
existing and new hardware vulnerabilities. SpecFuzz [34] introduced the speculative execution
to fuzz testing for detecting the Spectre vulnerability. However, SpecFuzz does not model cache.
SPECTECTOR [23] presents a principled approach using speculative non-interference in symbolic
execution to discover data leakage. However, all the aforementioned works focus on modelling the
speculative semantics to define the vulnerability in program analysis. These works do not model
and check the possibility of cache side-channel attacks. In KLEESpectre, this is achieved via our
cache modelling .
Side-channel analysis without cache modelling . Chen et al. [14] presented Quantitative Care-
sian Hoare Logic-based tool THEMIS to detect side-channel vulnerabilities in Java application.
They perform a lightweight static analysis and develop a precise relational verification technique
for reasoning about k-safety. This results in checking the non-interference property of a program.
Antonopoulos et al. [5] achieve a similar goal by using a novel self-decomposition technique to
split a program into partitions. DifFuzz [32] introduced the fuzzing technique to side-channel
analysis. DifFuzz automatically detects side-channel vulnerabilities by analyzing two versions of
the program and using resource-guided heuristics to find inputs that maximize the difference in
resource consumption between secret dependent paths. Doychev et al. [17] implemented abstract
interpretation based side-channel analysis on binary.

All the techniques, as mentioned in the preceding paragraph, focus on timing-driven attacks and
they only consider the timing for each instruction without explicitly modelling the cache behaviour.
The lack of an accurate timing model results in less precision and overly conservative analysis
in terms of detecting cache-side channel attacks. Moreover, the absence of modelling speculative
execution makes these works unable to detect the Spectre-style attacks.
Side-channel attack identification via cache modelling . Casym [7] presents a cache-aware
symbolic execution to identify and fix cache side-channel vulnerabilities. Casym provides two cache
models: the infinite cache model of caches with infinite size and associativity, and the age model

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:27

that tracks the distance of a memory access from its most recent access. However, the description
of the cache models in Casym are sketchy and hence prevents reproducibility. Besides, Casym
does not consider speculative execution within its cache models. CACHEFIX [12] is another cache
side-channel verification tool that can detect and fix timing-driven and trace-driven cache attacks
via symbolic model checking. However, CACHEFIX does not consider speculative execution paths
during model checking.

Abstract interpretation is a static analysis approach that has been effectively adapted for cache
hit/miss modelling in Worst-Case Execution Time (WCET) estimation. Wu et al. [43] introduce
abstract interpretation to cache side-channel attack detection by extending it to cover speculative
execution. This approach targets timing-based side-channel attacks, but it does not handle Spectre
attacks. A similar approach is embodied by CacheAudit [18], however, the CacheAudit approach
does not consider speculative execution semantics. Wang et.al [41] proposed a secret-augmented
side-channel identification tool CacheS to detect timing-based cache side-channel attacks based on
abstract interpretation. CacheS maintains a balance between static analysis and symbolic execution
for precision and scalability since it only tracks secrets and dependencies on them to achieve
precision, and it collects only coarse-grained information to achieve scalability. Compared with
KLEESpectre, CacheS does not model speculative execution. Specusym [24] captures speculative
symbolic execution for timing attacks and cannot be used for detecting Spectre attacks.
In summary, existing works cannot be used for detecting and confirming Spectre attacks.

KLEESpectre can efficiently detect the leakage scenario in the speculative path, and the cache
model can further confirm whether the leakage can be observed.

9 CONCLUSION

We have presented a new software testing tool named as KLEESpectre to expose the micro-
architectural features to the software testing. Micro-architectural features such as speculative
execution and caches are generally ignored by traditional software testing. This hides the vulnera-
bilities caused by invisible micro-architectural behaviours when a program runs on the hardware.
KLEESpectre makes these behaviours visible in the software testing via modeling the specula-
tive execution and caches within the traditional symbolic execution. Our experiments show that
KLEESpectre can effectively detect the BCB vulnerabilities and the cache model can make such
detection more accurate.
KLEESpectre takes a step forward to extend software testing methodologies to systematically

discover vulnerabilities dependent on micro-architectural features. Our tool also provides an open
platform to extend our methodologies as more Spectre style attacks are being discovered. To enable
further research in the area, we have made our tool and subjects publicly available at

https://github.com/winter2020/kleespectre

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation, Prime Minister’s Office, Singa-
pore under its National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-21) and
administered by the National Cybersecurity R&D Directorate.

REFERENCES

[1] 2010. level-compressed patricia tries. https://www.nada.kth.se/~snilsson/publications/Dynamic-trie-compression-
implementation/. (2010).

[2] 2017. Intel Xeon Gold 6126 Processor. https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-
25M-Cache-2-60-GHz-. (2017).

[3] 2018. www.uclibc.org. (2018).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

 https://github.com/winter2020/kleespectre
https://www.nada.kth.se/~snilsson/publications/Dynamic-trie-compression-implementation/
https://www.nada.kth.se/~snilsson/publications/Dynamic-trie-compression-implementation/
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
www.uclibc.org

1:28 Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

[4] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on Instruction Cache Attacks. In Crypto-

graphic Hardware and Embedded Systems, CHES 2010, Stefan Mangard and François-Xavier Standaert (Eds.). Springer
Berlin Heidelberg, 110–124.

[5] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and ShiyiWei. 2017. Decomposition
instead of self-composition for proving the absence of timing channels. ACM SIGPLAN Notices 52, 6 (2017), 362–375.

[6] Musard Balliu, Mads Dam, and Roberto Guanciale. 2019. InSpectre: Breaking and Fixing Microarchitectural Vulnerabil-
ities by Formal Analysis. arXiv preprint arXiv:1911.00868 (2019).

[7] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir. 2019. CaSym: Cache aware symbolic
execution for side channel detection and mitigation. In CaSym: Cache Aware Symbolic Execution for Side Channel

Detection and Mitigation. IEEE, 0.
[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs.. In OSDI, Vol. 8. 209–224.
[9] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,

Dmitry Evtyushkin, and Daniel Gruss. 2018. A Systematic Evaluation of Transient Execution Attacks and Defenses.
arXiv. org e-Print archive (2018).

[10] Chandler Carruth. 2018. Speculative Load Hardening. https://docs.google.com/document/d/
1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0. (2018).

[11] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Deian Stefan, Tamara Rezk, and Gilles Barthe. 2019. Towards
constant-time foundations for the new spectre era. arXiv preprint arXiv:1910.01755 (2019).

[12] Sudipta Chattopadhyay and Abhik Roychoudhury. 2018. Symbolic verification of cache side-channel freedom. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2812–2823.

[13] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. 2019. A Formal Approach to Secure Speculation. In 2019

IEEE 32nd Computer Security Foundations Symposium (CSF). 288–28815. https://doi.org/10.1109/CSF.2019.00027
[14] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise detection of side-channel vulnerabilities using quantitative cartesian

hoare logic. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
875–890.

[15] Microsoft community. 2018. C++ Developer Guidance for Speculative Execution Side Channels. https://docs.microsoft.
com/en-us/cpp/security/developer-guidance-speculative-execution. (2018).

[16] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The code that never ran: Modeling attacks on
speculative evaluation. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1238–1255.

[17] Goran Doychev and Boris Köpf. 2017. Rigorous analysis of software countermeasures against cache attacks. ACM
SIGPLAN Notices 52, 6 (2017), 406–421.

[18] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2015. Cacheaudit: A tool for the static analysis of
cache side channels. ACM Transactions on Information and System Security (TISSEC) 18, 1 (2015), 4.

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev. 2018. BranchScope: A
New Side-Channel Attack on Directional Branch Predictor. SIGPLAN Not. 53, 2 (March 2018), 693–707. https:
//doi.org/10.1145/3296957.3173204

[20] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and arrays. In International Conference on

Computer Aided Verification. Springer, 519–531.
[21] Klaus v Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. 2019. {IODINE}: Verifying Constant-Time

Execution of Hardware. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1411–1428.
[22] José González and Antonio González. 1997. Speculative execution via address prediction and data prefetching. In

International conference on supercomputing. Citeseer, 196–203.
[23] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez. 2018. SPECTECTOR: Principled

Detection of Speculative Information Flows. arXiv preprint arXiv:1812.08639 (2018).
[24] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, and Zhiqiang Zuo. 2019. SpecuSym:

Speculative Symbolic Execution for Cache Timing Leak Detection. arXiv preprint arXiv:1911.00507 (2019).
[25] Trevor Hansen, Peter Schachte, and Harald Søndergaard. 2009. State joining and splitting for the symbolic execution

of binaries. In International Workshop on Runtime Verification. Springer, 76–92.
[26] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19 (1976). Issue 7.
[27] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel Emer. 2018. DAWG: A defense against

cache timing attacks in speculative execution processors. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 974–987.
[28] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s C/C++ Compiler. https://www.paulkocher.com/doc/

MicrosoftCompilerSpectreMitigation.html. (2018).
[29] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://doi.org/10.1109/CSF.2019.00027
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://doi.org/10.1145/3296957.3173204
https://doi.org/10.1145/3296957.3173204
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

KLEESpectre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution 1:29

(Jan. 2018). arXiv:1801.01203
[30] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012. Efficient state merging in symbolic

execution. In Acm Sigplan Notices, Vol. 47. ACM, 193–204.
[31] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-level cache side-channel attacks are

practical. In 2015 IEEE Symposium on Security and Privacy. IEEE, 605–622.
[32] Shirin Nilizadeh, Yannic Noller, and Corina S Păsăreanu. 2019. DifFuzz: differential fuzzing for side-channel analysis.

In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 176–187.
[33] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof Fetzer. 2018. You Shall Not Bypass:

Employing data dependencies to prevent Bounds Check Bypass. Technical Report arXiv:1805.08506, https://arxiv.org/abs/
1805.08506. arxiv.

[34] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020. SpecFuzz: Bringing Spectre-type
vulnerabilities to the surface. In {USENIX} Security Symposium ({USENIX} Security 20.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Countermeasures: The Case of AES. In Topics

in Cryptology – CT-RSA 2006, David Pointcheval (Ed.). Springer Berlin Heidelberg, 1–20.
[36] Colin Percival. 2005. Cache missing for fun and profit. In Proc. of BSDCan 2005.
[37] Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks via encrypted-address and remapping.

In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 775–787.
[38] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. 2007. Timing predictability of cache replacement

policies. Real-Time Systems 37, 2 (2007), 99–122.
[39] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An" Undo" Approach to Safe Speculation. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 73–86.
[40] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik Roychoudhury. 2020. oo7: Low-

overhead Defense against Spectre Attacks via Program Analysis. IEEE Transactions on Software Engineering (2020).
[41] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. 2019. Identifying cache-based side

channels through secret-augmented abstract interpretation. In 28th {USENIX} Security Symposium ({USENIX} Security

19). 657–674.
[42] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss, and Stefan Mangard. 2019.

Scattercache: Thwarting cache attacks via cache set randomization. In 28th {USENIX} Security Symposium ({USENIX}

Security 19). 675–692.
[43] Meng Wu and Chao Wang. 2019. Abstract interpretation under speculative execution. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation. ACM, 802–815.
[44] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, AdamMorrison, Christopher Fletcher, and Josep Torrellas. 2018. Invisispec:

Making speculative execution invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 428–441.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2020.

http://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1805.08506
https://arxiv.org/abs/1805.08506

	Abstract
	1 Introduction
	2 Background and threat model
	3 Overview
	4 Cache Aware Speculative Symbolic Execution
	4.1 Speculative Symbolic Execution
	4.2 Symbolic Model of Cache

	5 Implementation
	6 Evaluation
	6.1 Evaluation of KLEESpectre on litmus tests
	6.2 Effectiveness and Efficiency: Detection of BCB Gadgets in Real Programs.
	6.3 Leakage detection with cache modelling .
	6.4 Case study

	7 Threats to validity
	8 Related work
	9 Conclusion
	References

