
Binary Rewriting without Control Flow Recovery∗

Gregory J. Duck
Department of Computer Science
National University of Singapore

Singapore
gregory@comp.nus.edu.sg

Xiang Gao
Department of Computer Science
National University of Singapore

Singapore
gaoxiang@comp.nus.edu.sg

Abhik Roychoudhury
Department of Computer Science
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

Abstract
Static binary rewriting has many important applications in
software security and systems, such as hardening, repair,
patching, instrumentation, and debugging. While many dif-
ferent static binary rewriting tools have been proposed, most
rely on recovering control flow information from the input
binary. The recovery step is necessary since the rewriting
process may move instructions, meaning that the set of jump
targets in the rewritten binary needs to be adjusted accord-
ingly. Since the static recovery of control flow information is
a hard problem in general, most tools rely on a set of simpli-
fying heuristics or assumptions, such as specific compilers,
specific source languages, or binary file meta information.
However, the reliance on assumptions or heuristics tends
to scale poorly in practice, and most state-of-the-art static
binary rewriting tools cannot handle very large/complex
programs such as web browsers.

In this paper we present E9Patch, a tool that can statically
rewrite x86_64 binaries without any knowledge of control
flow information. To do so, E9Patch develops a suite of bi-
nary rewriting methodologies—such as instruction punning,
padding, and eviction—that can insert jumps to trampolines
without the need to move other instructions. Since our ap-
proach preserves the set of jump targets, the need for control
flow recovery and related heuristics is eliminated. As such,
E9Patch is robust by design, and can scale to very large
(>100MB) stripped binaries including the Google Chrome
and FireFox web browsers. We also evaluate the effective-
ness of E9Patch against realistic applications such as binary
instrumentation, hardening and repair.
∗This work was partially supported by the National Satellite of Excellence
in Trustworthy Software Systems, funded by National Research Foundation
(NRF) Singapore under National Cybersecurity R&D (NCR) programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3385972

CCS Concepts: • Software and its engineering;

Keywords: Static binary rewriting, binary instrumentation,
binary patching, binary repair, instruction punning, instruc-
tion eviction, memory management
ACM Reference Format:
Gregory J. Duck, XiangGao, andAbhik Roychoudhury. 2020. Binary
Rewriting without Control Flow Recovery. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’20), June 15–20, 2020, London,
UK. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3385412.3385972

1 Introduction
Static binary rewriting has many important applications
in software security and systems, such as program harden-
ing [8, 19, 41, 43], automated repair [20, 33], instrumenta-
tion [10, 29], optimization [14, 36], and debugging [5, 31]. The
advantage of binary rewriting is that it can be applied even
when the source code of the software is unavailable, as is of-
ten the case with Commercial Off-The-Self (COTS) software.
The importance and usefulness of static binary rewriting
has led to the development of multiple tools spanning many
years [2, 6, 9, 10, 21, 25, 27, 28, 30, 32, 34, 35, 37–39, 41, 42].
Most existing tools use a pipeline consisting of (1) a disassem-
bler frontend that parses machine code instructions from the
input binary, (2) the recovery of (some form of) control flow
information such as jump targets, etc., (3) a transformation
that inserts, deletes, replaces, or relocates binary code, and
(4) a backend that emits the modified binary file. Since the
binary rewriting process may move instructions, some form
of control flow recovery is necessary in order to adjust the
set of jump targets in the rewritten binary.

However, recovering control flow information from binary
code is notoriously difficult [26]. One approach is to exploit
binary file meta information such as debug symbols or relo-
cations. However, such information is not always available
(e.g., stripped binaries or non-PIC). Another approach is to
use static binary analysis for control flow recovery. However,
this is undecidable in the general case [15]. To compensate,
most analysis-based rewriting tools make simplifying as-
sumptions about the input binary code, such as assuming
that indirect jumps follow a specific pattern (e.g., jump ta-
bles for C-style switch statements), etc. However, this tends
to scale poorly, as the underlying heuristics/assumptions
will break for large enough binaries. For example, a “99%

151

https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

accurate” static analysis will have an effective accuracy of
∼37% for binaries 100× larger, and a near zero accuracy for
binaries 1000× larger. Such scales do exist in practice. For
example, the Google Chrome [17] binary is approximately
1200× larger than ls binary from coreutils. The reliance
on assumptions/heuristics is recognised as a major problem
for binary rewriting systems [2].
In this paper we introduce E9Patch, a tool for static bi-

nary rewriting without the need for control flow recovery
and associated assumptions/heuristics. The key idea behind
E9Patch is to exclusively use binary rewriting methodolo-
gies that are control flow agnostic, meaning that the set of
jump targets from the input binary need not be known and
will be preserved. For example, one such promising method-
ology is baseline instruction punning—an idea previously
used to implement dynamic instrumentation [7]. Here, given
a set of patch location instructions P , instruction punning
attempts to substitute each I∈P with a jump instruction J
that redirects control flow to a trampoline that implements
some intended binary patch/instrumentation before return-
ing control flow back to themain program. However, some in-
structions are smaller than jumps (five bytes for the x86_64)
and cannot be substituted directly. To handle this case, base-
line instruction punning will specially engineer a “punned”
jump whose byte representation is the same as that of any
overlapping instruction. This “punned” jump can therefore
safely substitute I without modifying or moving any other in-
struction. Crucially, the set of jump targets is also preserved,
meaning that instruction punning is control flow agnostic.

Although promising, the applicability of baseline instruc-
tion punning is highly dependent on the byte values of over-
lapping instructions. The resulting punned jump will some-
times target an invalid memory location that cannot be used.
This may result in poor coverage where only a subset of P
can be patched. As such, boosting patching coverage is one
of the key technical challenges for E9Patch. To do so, we de-
velop a suite of patching “tactics” that can be applied to cases
where instruction punning fails. For example, one key idea
is instruction eviction, which changes the byte representation
of overlapping instructions without changing the execution
semantics. This may allow instruction punning to find new
valid punned jumps where previously none were available.
We show that our tactics can boost patching coverage to at
or near 100% for realistic applications.

Another problem with instruction punning is that suitable
trampoline locations are typically constrained. This means
that trampoline memory cannot necessarily be packed con-
tiguously, possibly leading to high fragmentation and output
file size bloat. To address the issue, we introduce a new space
optimization—physical page grouping— that can significantly
reduce physical memory usage (RAM, file size), sometimes by
orders of magnitude. Furthermore, physical page grouping
uses file-backed mappings for executable code, allowing for

physical memory resources to be shared by several instances
of the same program.

In summary, the main contributions of this paper are:

• We adapt baseline instruction punning to a static binary
rewriting setting. However, instruction punning by itself
does not provide sufficient coverage for most applications.
For this, we develop several new instruction patching tac-
tics, such as instruction padding and eviction, that are
designed to boost coverage to at or near 100%.

• We present an optimization in the form of physical page
grouping—a method for reducing physical memory usage
while preserving file-backed executable code.

• We present E9Patch, a powerful static binary rewriting
tool designed to scale to very large binaries. To do so,
E9Patch only uses binary rewriting methodologies that
preserve the set of jump targets, thereby eliminating the
need for control flow recovery and associated heuristics.

• We evaluate E9Patch against the SPEC2006 benchmark
suite [18] and several large binaries. To demonstrate scal-
ability, we also evaluate E9Patch against web browsers
such as Google Chrome [17] and FireFox [16], each with a
binary size exceeding 100MB. We also consider two real-
istic applications in the form of binary repair and binary
heap write hardening.

Open Source Release
https://github.com/GJDuck/e9patch

2 Overview and Background
Our aim is to statically rewrite (or “patch”) large binaries (ex-
ecutables and libraries) while preserving correctness and rea-
sonable performance. Although many static binary rewriting
tools exist [40], many work by relocating code and updating
the control flow (e.g., jump targets) in the modified binary—
an approach that scales poorly [2]. Instead, our approach
is to design static binary rewriting methodologies that are
control flow agnostic, meaning that the set of jump targets
need not be known in order to correctly rewrite the binary.
The key idea is to treat all instructions (I) as potential jump
targets (whether they really are or not), and to preserve the
program semantics should control flow happen to jump to
I at runtime. To achieve this, we use a minimally-invasive
design that ensures all instructions are either:

1. preserved;
2. replaced by an operationally equivalent instruction; or
3. replaced by an instruction that implements some desired

modification (e.g., repair, instrumentation, etc.).

We modify binaries strictly at the instruction level—i.e., a
patch operation may replace/substitute individual instruc-
tions, but must not move nor change the semantics of other
(non-patched) instructions. Our approach must also reason-
ably balance performance, coverage and scalability.

152

https://github.com/GJDuck/e9patch

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

2.1 Background
We briefly review existing x86_64 instruction patchingmeth-
ods (B0/B1/B2) that are also control flow agnostic.

2.1.1 Baseline B0: Signal Handlers. One old idea is to
replace each patch location instruction with a single-byte
x86_64 int3 instruction. When executed, the int3 instruc-
tion raises an interrupt which manifests as a SIGTRAP signal
that is sent to the program. Next, a signal handler implements
the patch. This approach is traditionally used by debuggers
to implement break points. Although jump targets are pre-
served, the use of interrupts and signal handlers requires
kernel/user mode context switching, and suffers from poor
performance (sometimes by orders of magnitude).

2.1.2 Baseline B1: Jumps. Another old idea is to replace
each patch location instruction with a jump instruction that
redirects control flow to a trampoline that implements the
patch. The patch trampoline can also execute (or emulate) the
displaced instruction (if necessary) before returning control
back to the main program. This approach is much faster
than signal handlers, and is used by many different binary
rewriting tools.

For the x86_64, this approach can be implemented using
the relative near jump (jmpq rel32) instruction. Here rel32 is
a 32bit signed integer that is added to the program counter
(%rip) in order to implement the jump. The relative near
jump instruction is five bytes long, including one byte for the
opcode (0xe9) and four bytes for the rel32 value. A patch lo-
cation instruction that is greater-than-or-equal-to five bytes
can be directly replaced, but complications arise when the
patch location instruction is smaller than five bytes. One
idea is to replace more than one instruction with a jump.
However, this assumes that the successor instructions are
themselves not jump targets, meaning that some control flow
information must be known. Since this violates our design
requirement of control flow agnosticism, the generalized
approach cannot be used.

2.1.3 Baseline B2: Instruction Punning. Another idea
is to specially engineer jumps that can safely overlap with
other instructions. This is known as instruction punning—an
approach previously used by LiteInst [7] for dynamic instru-
mentation. The basic idea is to find a relative offset value
(rel32) that shares the same byte representation as any over-
lapping instruction. The patch instruction can then be safely
replaced with a relative near jump using this special rel32
value. For example, consider the consecutive instructions:

mov %rax,(%rbx) add $32,%rax

Suppose that we wish to patch the mov instruction which
has a three-byte x86_64 machine-code representation. Us-
ing instruction punning, we can insert a five-byte relative
jump provided the last two bytes of the rel32 value agrees

with the first two bytes (0x48 0x83) of the overlapping add
instruction:

48 03 4889 c0 2083

e9 XX 48XX c0 2083

Original:

Patched:

mov %rax,(%rbx)

jmpq 0x8348XXXX (punned)

Instruction punning allows jumps to replace instructions
smaller than five bytes. However, the location of the trampo-
line is now constrained and cannot be placed at an arbitrary
address. In the example above, the trampoline must be placed
at the relative offset rel32=0x83480000..0x8348ffff (under
the little endian byte ordering of the x84_64). This is not
always possible, since the relative offset may correspond to a
virtual address that is either occupied by another object (e.g.,
.text, .data, or an existing trampoline), or may point to
an invalid address (e.g., NULL or underflows into the negative
addresses range). In the example above, the rel32 value will be
interpreted as a negative offset since the most significant bit
(MSB) is set. If the resulting address is negative it cannot be
used as a trampoline location. As such, baseline instruction
punning can only cover a subset of all patch locations for
most applications.

2.2 Our Approach
Although B0 is control flow agnostic, it is far too slow for
most applications. The combination of B1 and B2 improves
performance, but only provides partial coverage of all patch
locations (between 42–94% by our Section 6 experiments).
Our approach is to design a new set of patching tactics that
can similarly patch instructions without knowledge of con-
trol flow information. Thus, if B1/B2 fail, we try new tactics
T1/T2/T3 based on combinations of instruction padding, pun-
ning and eviction. Each new tactic increases the probability
that the patching operation succeeds. The final tactic (T3) is
also designed to trade performance for coverage, and will
likely succeed in cases where previous tactics have failed.
We show that the combination of the baseline and proposed
patching tactics leads to very high coverage for many real-
world applications. We also implement our approach in the
form of the E9Patch static binary rewriting tool. Here, “E9”
refers to the opcode of the x86_64 jmpq instruction that is
fundamental to our approach.
Assumptions. No static binary rewriting tool is perfectly
assumption-free. E9Patch aims to minimize as many as-
sumptions as is reasonably possible, including:
• E9Patch does not assume that the input binary was com-
piled with a specific compiler or programming language;

• E9Patch does not assume that symbol/debug information
is available and works with stripped binaries;

• E9Patch does not assume that control flow information is
available or can be recovered.

• E9Patch does not attempt to symbolize the binary.

153

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

That said, E9Patch does make some minimal assumptions.
For example, since E9Patch modifies executable code (e.g.,
the .text section), there is an assumption that the patched
instructions are not read from (as distinct from executed)
or written to (self-modifying code). Like all binary rewrit-
ing systems, E9Patch assumes the instrumentation/patch
is transparent, meaning that the program behaviour is not
changed unintentionally through some side channel (e.g.,
timings, file mappings, etc.). Finally, the current E9Patch
implementation assumes that the input binary itself does not
already use overlapping/punned instructions. However, it
may be possible to relax this assumption in future versions.
The E9Patch tool does not use a built-in disassembler,

and instead relys on instruction information (e.g., locations
and sizes) to be passed in as input from a suitable frontend.
The E9Patch tool will then rewrite the binary assuming
this information is correct. The motivation for this design
is twofold. Firstly, our patching methodology is local mean-
ing that it is possible to patch specific instructions without
complete disassembly information being known. Secondly,
binary disassembly is known to be a hard problem by it-
self [1, 37]. Since E9Patch is low-level, it also retains flexibil-
ity, allowing for the integration with different disassembly
techniques (partial, linear, recursive, superset [2], probabilis-
tic [27], etc.). For the purpose of the evaluation in Section 6,
we implemented a basic wrapper frontend that applies linear
disassembly to the (.text) section of the input binary.

3 Patching Tactics and Strategies
The baseline instruction patching methodologies (B1/B2)
do not provide sufficient coverage for most applications.
In this section, we design a new set of tactics (T1/T2/T3)
that (1) boost the coverage of instruction patching, and (2)
do not require control flow information to work correctly.
Here, we consider a working example based on the following
instruction sequence:

Ins1: mov %rax,(%rbx) Ins3: xor %rax,%rcx
Ins2: add $32,%rax Ins4: cmpl $77,-4(%rbx)

Themachine code and instruction layout is shown in Figure 1
(Orig). We assume that the intended patch instruction is
Ins1 (highlighted). For the sake of example, we will assume
that jumps to negative relative offsets (where the MSB of the
rel32 is set) are invalid. Thus, baseline instruction punning
(Figure 1 line B2) yields an invalid trampoline location and
cannot be used.

3.1 Tactic T1: Padded Jumps
The x86_64 relative near jump is normally encoded in five
bytes: one byte for the opcode and four bytes for the rel32
offset. However, other encodings that use more bytes are
possible. One idea is to pad the jump instruction with addi-
tional bytes in the form of redundant instruction prefixes. The
x86_64 supports multiple instruction prefixes (e.g., the REX

48 03 4889 c0 2083 48 c131 83 fc 4d7b

e9 XX 48XX c0 2083 48 c131 83 fc 4d7b

48 XX 48e9 c0 2083 48 c131 83 fc 4d7b

48 e9 4826 c0 2083 48 c131 83 fc 4d7b

e9 XX e9XX YY YYYY 48 c131 83 fc 4d7b

48 03 e989 YY YYYY 48 c131 83 fc 4d7b

eb 03 4807 c0 2083 48 e931 83 fc 4d7b

eb 03 4807 c0 2083 e9 e9YY 83 fc 4d7b

48 03 4889 c0 2083 48 e931 83 fc 4d7b

Orig.

B2

T1(a)

T1(b)

T2(a)

T2(b)

T3(a)

T3(b)

T3(c)

Ins1 Ins2 Ins3 Ins4

0 3 7 10

Figure 1. Here B2 is baseline instruction punning, tactic T1
is padded jumps, tactic T2 is successor eviction, and tactic T3
is neighbour eviction. The patch location (Ins1) is highlighted
in the (Orig.) instruction sequence. Here (e9 + 4-bytes) is a
32-bit relative near jump, (eb + 1-byte) is an 8-bit relative
short jump, and (XX/YY) represent byte values chosen by the
rewriting tool.

prefix, segment overrides (es, ss, etc.), and operand override
0x66) that do not change the semantics of relative near jump
instructions.
Instruction padding is illustrated in Figure 1 lines T1(a)

and T1(b). Here, T1(a) uses a punned jump with a single byte
of padding (using a redundant REX=0x48 prefix), and T1(b)
uses two bytes of padding (an additional redundant segment
override prefix es=0x26). The more padding that is used the
more constrained the relative offset becomes. For example,
we have rel32=0x83480000..0x8348ffff for zero bytes of
padding (B2), rel32=0xc0834800..0xc08348ff for one byte
of padding (T1(a)), and rel32=0x20c08348 for two bytes of
padding (T1(b)). Assuming that negative offsets are invalid,
only T1(b) yields a valid value.

Like baseline instruction punning (B2), tactic T1 is control
flow agnostic. However, the applicability of T1 depends on
the length of the patch instruction. For example, T1 grants
two additional patch attempts for the three-byte mov instruc-
tion from Figure 1, and this generalizes to one less than the
length of the patch instruction for other cases. This also
means that T1 cannot be used to patch single-byte instruc-
tions since there is no room for additional padding. When
applicable, each subsequent pun attempt is more constrained
than the last. Nevertheless, even weakly constrained jumps
may be invalid, as illustrated by B2 and T1(a).

154

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

3.2 Tactic T2: Successor Eviction
Even padded jumps may fail to find a valid trampoline lo-
cation, meaning that more aggressive patching tactics may
need to be employed. One idea is to relax the preservation
of the successor instruction bytes, provided that an opera-
tionally equivalent replacement instruction can be found. For
this we introduce the notion of instruction eviction. Essen-
tially, instruction eviction replaces a victim instruction IVictim
with a jump instruction that targets an evictee trampoline.
The evictee trampoline does nothing other than to execute
(or emulate) IVictim before jumping back. Since the evicted
instruction is replaced by a jump, the byte representation
also changes, making it possible to find new puns where
previous attempts had failed.

Successor eviction is a two step process and is illustrated
in Figure 1 T2(a) and (b). In the first step T2(a), the successor
instruction (Ins2) is evicted using tactic B2, and is replaced by
a jump instruction to an evictee trampoline (at some offset
between 0x48000000..0x48ffffff). For the sake of exam-
ple, we shall assume a valid evictee trampoline location can
be found. In the second step T2(b), we essentially “reapply”
B2/T1 to Ins1. Since Ins2 has been replaced by a jump, its
byte representation has also changed, allowing for new valid
puns to be discovered where previously none were available.
As with T1, successor eviction is control flow agnostic.

Although the victim instruction is replaced by a jump, its
semantics are otherwise unchanged, and the original set of
jump targets is also preserved. Unlike T1, successor eviction
can be applied to single-byte instructions. That said, instruc-
tion eviction also introduces extra redirections to evictee
trampolines, and this may translate into additional perfor-
mance overheads. As such, successor eviction is only applied
to cases where B1/B2/T1 failed to patch the instruction.

3.3 Tactic T3: Neighbour Eviction
If both T1 and T2 fail, another idea is to evict a “neighbouring”
instruction rather than the successor. The space freed by the
eviction can then be used to implement a “double” jump to
the trampoline. This is the neighbour eviction tactic (T3).

Neighbour eviction requires an elaborate setup. First, a vic-
tim instruction IVictim is chosenwithin the unconditional short
jump distance of the patch instruction, i.e., within −128..127
bytes. Next, IVictim is evicted, and replaced by two (possibly
punned) relative jump instructions, JVictim and JPatch:
1. Jump JVictim redirects control flow from IVictim’s location

to IVictim’s evictee trampoline. As with T2, this serves as a
replacement of the victim instruction; and

2. Jump JPatch redirects control flow to the trampoline im-
plementing the original patch.

Finally, the patch location instruction is replaced by an un-
conditional short jump JShort that redirects control flow to
JPatch’s location. The patch trampoline can now be reached
using a “double jump” (JShort→JPatch→trampoline) all while

preserving the semantics of the victim instruction IVictim. Al-
ternatively, the victim instruction itself may happen to be a
patch location. In this case, JVictim will target IVictim’s patch
trampoline rather than an evictee trampoline.

Neighbour eviction is illustrated in Figure 1 T3(a)(b)(c). In
this example, instruction Ins3 has been chosen for eviction.
In the general case, both Ins2 and Ins4 are also potential can-
didates. Step T3(a) inserts a punned jump instruction (JPatch)
inside victim Ins3 by overwriting the last byte. In the general
case, jumpJPatch may override any victim instruction byte ex-
cept for the first. For the sake of example, we assume that the
resulting offset rel32=0x4dfc7d83 points to a valid trampo-
line location. Next, step T3(b) replaces the patch instruction
with an unconditional short jump (opcode 0xeb + one byte rel-
ative offset rel8=7). This sets up the jump JShort→JPatch. Fi-
nally, step T3(c) replaces the victim instruction Ins3 by a jump
JVictim to the evictee trampoline. Again, for the sake of exam-
ple, we assume that offset rel32=0x7b83e900..0x7b83e9ff
points to at least one valid evictee trampoline location.

Neighbour eviction (T3) is complex yet powerful, and can
often be applied even when the other tactics have failed. The
key is in the number of potential victim instructions. For
example, if we assume an average instruction length of ∼4
bytes, this translates into approximately 64 potential victims,
meaning that at least one suitable victim is likely to be found.
For this reason, neighbour eviction can boost patching cov-
erage to at or near 100% for many applications. T3 is also
control flow agnostic since all potential jump targets are
either preserved, patched, or replaced by an operationally
equivalent instruction. In terms of performance, the “double
jump” of neighbour eviction introduces an extra level of indi-
rection compared to tactics T1 and T2, and this can translate
into additional runtime overheads. Accordingly, tactic T3 is
only applied to cases where B1/B2/T1/T2 failed to patch the
instruction.

Example 3.1 (Binary Repair). One application of E9Patch
is binary repair [33], i.e., fixing bugs at the binary-level rather
than the source-code level. We consider a simple proof-of-
concept case study based on the use-after-free vulnerability
CVE-2019-184081. Figure 2(a) shows the developer source-
level patch that we intend to apply at the binary level. For the
sake of example, we shall assume that the source code is un-
available, and that we choose to patch the first instruction (at
address 422a61) after the call to free. All of B1/B2/T1/T2 fail
to patch the instruction, meaning that T3 must be used. To
apply T3, we must evict a neighbour instruction, and in this
case we choose the testb instruction at address 422ad1 (Fig-
ure 2(c)). The testb instruction is replaced by two punned
jumps: JVictim to the evictee trampoline of the evicted in-
struction (d), and JPatch to the trampoline implementing the
patch (e). Finally, the original instruction at address 422a61
is replaced by a short jump JShort to JPatch.
1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18408

155

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18408

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

49699eda: 89 dd mov %ebx,%ebp
49699edc: 50 push %rax
49699edd: 48 8b 45 d0 mov -0x30(%rbp),%rax
49699ee1: c6 80 98 03 00 00 01 movb $0x1,0x398(%rax)
49699ee8: 58 pop %rax
49699ee9: e9 75 8b d8 b6 jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff,
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+ ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+ rar->start_new_table = 1;
+ }

(b) Binary code

(e) Original trampoline(a) Developer patch in Source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx)
744513da: e9 f6 16 fd 8b jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction(eviction)

𝐽1

𝐽2
𝐽3

49699eda: 89 dd mov %ebx,%ebp
49699edc: c6 83 98 03 00 00 01 movb $0x1,0x398(%rbx)
49699ee3: e9 7b 8b d8 b6 jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff,
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+ ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+ rar->start_new_table = 1;
+ }

(b) Binary code

(e) Patch trampoline(a) Developer patch in source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx)
744513da: e9 f6 16 fd 8b jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction (eviction)

49699eda: 89 dd mov %ebx,%ebp
49699edc: 50 push %rax
49699edd: 48 8b 45 d0 mov -0x30(%rbp),%rax
49699ee1: c6 80 98 03 00 00 01 movb $0x1,0x398(%rax)
49699ee8: 58 pop %rax
49699ee9: e9 75 8b d8 b6 jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff,
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+ ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+ rar->start_new_table = 1;
+ }

(b) Binary code

(e) Original trampoline(a) Developer patch in Source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx)
744513da: e9 f6 16 fd 8b jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction(eviction)

𝑱𝟏

𝑱𝟐
𝑱𝟑

Figure 2. Binary repair example that fixes CVE-2019-18408 using T3. In sub-figure (c), the grey and underlined bytes are
punned and shared by multiple instructions.

The result is essentially spaghetti code with overlapping
instructions. Nevertheless, the correct patch semantics have
been implemented while the set of jump targets have been
preserved. For example, a jump that targets 422ad1 will exe-
cute the evictee trampoline, thereby preserving the original
semantics of the evicted instruction. This example also high-
lights the locality of our patching methodology. Only two
instruction locations are modified, and only partial disas-
sembly of the region around the patch location is required.
□

3.4 Strategy S1: Reserve Order Patching
Tactics B1/B2/T1/T2/T3 can be used to patch individual in-
structions. However, many applications need to patch mul-
tiple instructions. Complications arise when the patching
tactics interfere with each other. For example, suppose that
an application needs to patch both instructions Ins1 and Ins2
from Figure 1. If we patch Ins1 first using tactic T1, the rela-
tive offset (rel32) of the punned jump instruction will overlap
with (and now depends on) Ins2’s specific byte values. Effec-
tively, punning “locks-in” the byte values of any overlapping
instruction. A similar problem exists for tactics T2 and T3.

To manage multiple patch locations we use a reverse order
patching strategy (S1). The basic idea is to patch instructions
in order of “highest to lowest” address, thereby exploiting
the property that instruction punning only ever introduces
dependencies with successor instructions. For example, the
reverse order patching strategy will patch Ins2 first, modify-
ing Ins2’s bytes, and possibly modifying/locking the bytes of
Ins3 or Ins4 (depending on which patching tactic is applied).
Only after Ins2 is patched do we attempt to patch Ins1. This
time, patching Ins1 does not affect Ins2.

The reverse order patching strategy maintains a Boolean
lock state for all relevant instruction bytes. Initially, all bytes
are in the unlocked state. When a patching tactic is applied,
some bytes will be locked to disallow further modification.
An instruction byte will be locked if one of the following
conditions apply:

1. Modified: The byte value was overwritten.
2. Punned: The byte value was not overwritten, but is used

as part of a punned jump instruction (B2/T1/T2/T3).

The highlighted bytes in Figure 1 will be locked after the ap-
plication of the corresponding tactic. For example, in Figure 1
T3, bytes {0, 1, 7..13} will be locked. Note that byte 2 (with
value 0x03) remains unlocked despite being part of the patch
location instruction. This is because the byte was neither
modified nor used by a punned jump instruction. Byte 2 can
be modified by the application of a future T3 patch operation.
Tactics T1-T3 are restricted to (1) only modify unlocked bytes,
and (2) only lock bytes after the current patch location. This
also restricts T3 short jumps to positive offsets, effectively
halving the number of potential eviction locations. However,
we find that this restriction has a minimal impact in practice.

4 Memory and File Size Management
Tactics B1/B2/T1/T2/T3 insert jumps to trampolines thatmust
be loaded into the patched program’s virtual address space.
In the case of instruction punning, the corresponding tram-
poline locations are constrained by the byte values of over-
lapping instructions. This may prevent trampolines from
being packed contiguously, potentially leading to high frag-
mentation and poor memory utilization. Furthermore, in the
context of static binary rewriting, the file size of the patched
binary must also be considered. Normally, executable code is
directly mmap’ed from the binary (i.e., file-backed mapping),
allowing for multiple instances of the same program to share
the same physical memory resources (RAM, disk). Naïvely
applying file-backed mapping to fragmented memory can
significantly bloat the size of the patched binary.

Memory fragmentation may be partly mitigated by pack-
ing trampolines into the same virtual pages whenever poss-
ible—an idea first introduced by LiteInst [7]. For example, in
Figure 1 B2, the trampoline can be placed at any relative off-
set within the range rel32=0x83480000..0x8348ffff. This
trampoline can be grouped together with any other trampo-
line that happens to be placed within this range. That said,
trampoline locations are often sufficiently constrained so as
to prevent meaningful grouping. For example, only one exact
relative offset rel32=0x20c08348 is valid for Figure 1 T1(b).
In the worst case there will be ∼1 trampoline per virtual
page, leading to a very poor virtual memory utilization (e.g.,
∼2.8% from [7]).

156

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

P(a) 2t1t

2t1t

3t

3t

5t4t

5t4tV(a)

5t2t3t1t4t

2t1t 3t 5t4tV(b)

P(b)

page 1 page 2 page 3

Figure 3. Physical page grouping example. Here, approach
(a) implements a naïve one-to-one mapping between phys-
ical P(a) and virtual V(a) pages. Approach (b) implements
physical page grouping by mapping a single “merged” physi-
cal page P(b) into the virtual address space V(b) three times—
effectively reducing physical memory usage by two thirds.

4.1 Physical Page Grouping
Despite the potential for high virtual memory fragmenta-
tion, it may still be possible to optimize the physical memory
usage of the patched program. For this we introduce physical
page grouping—a space optimization designed to merge and
share physical memory resources. As a motivating exam-
ple, we consider a patched program using five trampolines
t1–t5 spread over three virtual pages 1–3, as illustrated in
Figure 3 V(a). The memory between trampolines is not used,
leading to poor virtual memory utilization. Furthermore, a
naïve one-to-one mapping from physical P(a) to virtual V(a)
memory will translate the problem into poor physical mem-
ory utilization. For example, in Figure 3 P(a), a total of three
(mostly empty) physical pages will be used. Assuming that
P(a) is file-backed, this also bloats the size of the patched
binary file.

Physical page grouping aims to optimize physical memory
utilization by merging pages with non-overlapping trampo-
lines. These “merged” physical pages can then be mmap’ed to
the same virtual address locations as the naïve approach, ef-
fectively implementing a one-to-manymapping. For example,
the three physical pages from Figure 3 P(a) can be merged
into the single physical page from P(b). This “merged” phys-
ical page can then be mmap’ed into the patched program’s
virtual address space three times, as shown by V(b). This
places each trampoline t1–t5 at the same virtual address
as the naïve approach V(a), but only uses a single physical
page—reducing physical memory usage by two thirds.
The physical page grouping optimization takes as input

the virtual addresses and sizes of each trampoline after all
relevant instructions have been patched. It outputs a set of
physical pages (to be incorporated into the rewritten binary)
as well as a set of mappings (i.e., mmap calls) from physical
to virtual pages that will be applied during program load-
ing. The main challenge for physical page grouping is to

find sets of pages that can be merged. For this, our E9Patch
implementation divides the virtual address space into a set
of blocks B of M consecutive pages. Here, M is some pre-
determined granularity that controls the aggressiveness of
the optimization, and withM=1 being the most aggressive.
Trampolines that span block boundaries are treated as two
mini-trampolines in two different blocks. Next, a partitioning
algorithm organizes the elements of B into a set of groups
GB ⊆ P(B) such that (1) each b ∈ B appears in exactly one
group, and (2) for all grp ∈GB and for allb1,b2 ∈ grp, then the
trampolines in b1 and b2 are disjoint relative to the respec-
tive block base. Each group can then be merged into a single
physical block that is mapped into the patched program’s
virtual address space multiple times. For the example in Fig-
ure 3, we use M=1 and the partitioning algorithm yields
GB={{page 1, page 2, page 3}}. In general, partitioning is a
combinatorial optimization problem, and many different par-
titioning algorithms are possible. For E9Patch, we found
that a simple greedy algorithm gives reasonable results for
reasonable performance.

Physical page grouping has the side effect of loading tram-
polines into redundant locations. For example, all five tram-
polines t1–t5 are loaded into each virtual page 1–3 from
Figure 3 V(b). However, these redundant locations remain
unused, and do not affect the behaviour of the patched pro-
gram. Another issue is that physical page grouping may gen-
erate large numbers of mappings. Depending on the applica-
tion, this number may exceed the default mapping limit for
Linux (vm.max_map_count=65536). One solution is to raise
the mapping limit, however this requires privileged/root
access and may not always be possible. Another solution is
to use a coarser granularity M>1 to reduce the number of
mappings in exchange for increased physical memory usage.
ForM≥64, the number of mappings will always be below the
default system limit for a single binary. The current E9Patch
implementation supports multiple granularities, allowing
the user to tune the number of mappings (versus physical
memory usage) accordingly.

5 Implementation
The E9Patch tool takes as input an unpatched binary (exe-
cutable or shared object), disassembly information (instruc-
tion locations and sizes), a set of patch instruction locations,
and a set of trampoline templates. E9Patch then outputs
a rewritten binary with one of B1/B2/T1/T2/T3 applied to
each patch location instruction. The rewritten binary also
incorporates the trampoline pages decided by physical page
grouping. E9Patch is low-level by design, and can be used
as the foundation for many different applications, such as bi-
nary repair, hardening and instrumentation. To the user, the
rewritten binary behaves as a “drop-in” replacement of the
original, with no additional dependencies or configuration.
To achieve this, E9Patch directly edits/rewrites ELF files.

157

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

5.1 ELF Rewriting
The ELF file format is primarily designed to simplify link-
ing and minimize loading time, rather than be a file format
amenable to rewriting. Nevertheless, E9Patch avoids many
of the complications of ELF rewriting by strictly patching
existing segments in place. This means that data is never
moved, and avoids the need to recompute ELF file offsets.

Some new data, such as executable trampoline and instru-
mentation code, also needs to be added to the patched binary.
For this, E9Patch appends the new data to the end of the file,
also avoiding the need to move existing data. The new phys-
ical pages must also be mapped into the program’s virtual
address space during program loading. To do so, E9Patch
integrates a small loader into the output binary. The loader
replaces the entry point, and mmaps the trampoline/instru-
mentation pages into their correct positions before returning
control flow to the real entry point. We now summarize some
of the main features of E9Patch.
Position Independent Executables. E9Patch can be applied to
both position independent executable (PIE) and non-PIE bina-
ries. Indeed, PIE binaries are becoming increasingly common
in modern Linux distributions thanks to the security benefits
offered by address space layout randomization (ASLR). Large
security-sensitive programs, such as Google Chrome and
Firefox, are PIE by default.

Interestingly, PIE binaries are easier to patch than non-PIE
binaries. This is because PIE code segments will be loaded
into a high memory addresses by the dynamic linker—a safe
distance from the invalid negative address range. Non-PIE
code is typically loaded at a low fixed addresses chosen by
the (static) linker. For example, ld chooses a low address (e.g.,
0x400000) by default, meaning that most negative offsets
will be invalid. Thus with PIE, the number of valid offsets for
punned jump instructions effectively doubles. That said, it is
important for static binary rewriting tools to support both
PIE and non-PIE binaries. Non-PIE binaries will continue to
be used into the foreseeable future.
Shared Objects/Libraries. E9Patch can be applied to shared
objects/libraries (e.g., libc.so) in addition to executables.
The rewriting process is essentially the same. However, un-
like PIE, we found that negative offsets are generally incom-
patible with the dynamic linker. This is because other shared
objects tend to be loaded into this address range.
Mixing Patched/Non-Patched Code. E9Patch does not move
instructions, making it possible to safely mix patched and
non-patched binary code without additional precautions. For
example, the main executable may be patched but the library
dependencies need not be, or vice versa. In contrast, other
binary rewriting tools work by moving instructions to new
locations. This can create a problem if the non-patched code
calls a pointer to a function that has been relocated, i.e., the

callback problem. To solve the issue, some tools require the
entire dependency tree to be rewritten.

5.2 Limitations
The combination of tactics T1–T3 can significantly boost
patching coverage for many applications. However, perfect
coverage is not guaranteed. This mostly occurs for hard cases,
including:
(L1) virtual address space shortages,
(L2) single-byte instructions,
(L3) attempting to patch many instructions.
A program that has very large code or data segments (L1)
may limit the virtual address space available for trampo-
lines [7]. Single-byte instructions cannot be patched using
T1, and T3 can only target a single (punned) short jump loca-
tion, thereby limiting applicability (L2). For the x86_64, this
mostly affects ret, push and pop, since most other common
instructions are 2 bytes or larger. Finally, since patching tac-
tics can be interdependent, attempting to patch all (or nearly
all) instructions can cause interference and limit applicabil-
ity (L3). Fortunately, (L1) does not apply to most programs,
and (L2) and (L3) are irrelevant for many applications. For
example, a binary hardening tool that instruments all pointer
dereference instructions (≥2 bytes) will not be affected by
(L2) nor (L3). Furthermore, (L3) is irrelevant for binary repair,
one of the main application domains for E9Patch.

Assuming that an instruction cannot be patched, the cor-
rective action largely depends on the application. For ex-
ample, binary hardening can usually tolerate some reduced
coverage. For other applications that prioritize coverage over
performance, using B0 as a fallback may be appropriate.

6 Evaluation
In this section we evaluate the timing, coverage, file size
and scalability of a prototype version of E9Patch. We also
present a practical application in the form of binary memory
error detection using low fat pointers [12, 13].

6.1 Performance
To evaluate the performance of E9Patch we use the full2
SPEC2006 [18] benchmark suite, including programs imple-
mented in C, C++, and Fortran. We compile each benchmark
using the default system compiler (gcc/g++/gfortran). We
also choose to compile in non-PIE mode in order to make
patching more challenging. We also instrument several de-
fault binaries that were installed with Ubuntu 16.04.6 LTS.
For this, we choose binaries that were used in the prepara-
tion of this paper (such as pdflatex, etc.) as well as some
prominent shared library dependencies. We have also tested
E9Patch on many other system binaries not included in
Table 1, and all work as expected. Finally, to demonstrate

2Excluding 481.wrf which failed to compile using modern gfortran.

158

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

Table 1. Patching Statistics. Binaries marked by (†) are position independent executables (PIE).

Binary Size Jmp/Jcc instructions (A1) Heap write instructions (A2)
(MB) #Loc Base% T1% T2% T3% Succ% Time% Size% #Loc Base% T1% T2% T3% Succ% Time% Size%

perlbench 1.25 36821 86.88 7.40 1.45 4.27 100.00 459.59 174.28 7522 71.16 24.42 1.18 3.23 100.00 244.90 116.66
bzip2 0.07 1484 79.85 13.61 2.22 4.31 100.00 280.85 199.45 1044 68.39 26.05 2.49 3.07 100.00 279.67 170.95
gcc 3.77 97901 85.66 8.29 1.62 4.43 100.00 364.41 164.50 14328 70.60 24.95 0.68 3.78 100.00 148.73 109.90
bwaves 0.08 314 71.34 2.87 0.32 25.48 100.00 107.08 137.01 1168 92.55 7.36 0.00 0.09 100.00 139.02 142.43
gamess 12.22 125620 59.91 15.01 5.05 19.76 99.73 226.16 131.14 279592 87.58 9.65 0.50 2.20 99.94 321.89 136.93
mcf 0.02 295 68.47 20.00 4.41 7.12 100.00 194.92 203.75 220 75.91 20.00 1.36 2.73 100.00 141.02 221.51
milc 0.14 1940 80.62 13.40 1.29 4.69 100.00 115.03 157.13 699 84.84 13.16 0.29 1.72 100.00 117.54 119.14
zeusmp 0.52 3191 53.74 11.66 2.98 30.30 98.68 145.34 125.28 6106 82.61 12.15 0.39 4.67 99.82 131.50 128.74
gromacs 1.20 12058 80.19 11.49 1.38 6.94 100.00 116.16 133.01 16940 93.87 5.50 0.11 0.53 100.00 148.07 123.71
cactusADM 0.91 12847 78.94 13.32 2.30 5.44 100.00 101.43 140.70 5420 86.85 11.62 0.41 1.13 100.00 119.48 113.45
leslie3d 0.18 2584 44.43 27.67 12.46 15.44 100.00 151.89 174.56 2761 91.34 8.22 0.04 0.40 100.00 172.08 138.47
namd 0.33 4879 73.42 13.88 2.75 9.96 100.00 146.78 154.81 2498 71.46 28.14 0.20 0.20 100.00 138.01 120.42
gobmk 4.03 17912 75.88 14.72 2.57 6.83 100.00 368.97 113.80 2777 79.33 15.56 0.94 4.18 100.00 179.24 102.30
dealII 4.20 61317 71.31 14.99 4.50 9.19 100.00 386.08 144.34 25590 80.47 17.83 0.17 1.52 99.99 168.86 112.27
soplex 0.49 10125 79.72 11.57 2.58 6.13 100.00 244.23 162.93 4188 83.05 15.28 0.53 1.15 100.00 162.98 121.64
povray 1.19 20520 86.92 7.39 1.49 4.20 100.00 408.33 146.34 9377 84.50 13.46 0.37 1.66 100.00 186.36 116.37
calculix 2.17 30343 70.48 17.75 2.89 8.88 100.00 132.78 141.24 32197 85.62 13.02 0.38 0.98 100.00 126.13 128.26
hmmer 0.33 6748 77.71 13.96 1.99 6.34 100.00 182.94 174.52 3061 75.11 22.64 0.65 1.60 100.00 468.53 129.85
sjeng 0.16 3473 83.01 10.14 1.79 5.07 100.00 444.13 177.02 683 84.77 12.74 0.15 2.34 100.00 134.78 123.32
GemsFDTD 0.58 9120 41.62 17.28 21.44 19.66 100.00 104.78 166.74 10345 93.23 6.54 0.04 0.18 100.00 111.64 132.30
libquantum 0.05 732 75.55 15.85 3.42 5.19 100.00 325.81 190.57 186 76.34 17.74 0.00 5.91 100.00 269.68 139.82
h264ref 0.58 9920 80.30 13.58 1.22 4.90 100.00 206.61 151.60 4981 81.87 15.42 0.80 1.91 100.00 178.89 122.04
tonto 6.21 48247 52.65 22.84 8.63 15.88 100.00 196.21 125.54 164788 90.05 9.09 0.15 0.71 100.00 192.72 141.53
lbm 0.02 106 67.92 17.92 3.77 10.38 100.00 103.80 193.33 111 93.69 6.31 0.00 0.00 100.00 110.13 148.74
omnetpp 0.79 9568 78.08 13.96 2.16 5.79 100.00 203.90 135.45 5020 74.12 18.57 3.01 4.30 100.00 144.81 117.53
astar 0.05 769 78.54 13.78 2.21 5.46 100.00 287.64 180.98 491 72.91 23.01 0.61 3.46 100.00 137.64 152.03
sphinx3 0.21 3500 79.20 12.17 2.03 6.60 100.00 196.27 170.99 1159 73.94 22.95 0.78 2.33 100.00 129.17 123.55
xalancbmk 5.99 81285 75.66 14.10 3.50 6.74 100.00 474.07 137.04 32761 79.51 17.61 0.43 2.45 100.00 130.16 111.38
#Total/Avg% 47.74 613619 72.79 13.95 3.73 9.48 99.94 210.81 157.43 636013 81.63 15.68 0.60 2.09 99.99 164.71 130.90
inkscape† 0.91 15.44 195731 97.83 1.31 0.86 0.00 100.00 – 130.40 105431 99.96 0.03 0.01 0.00 100.00 – 109.58
gimp 2.8.16 5.75 71321 71.75 18.69 2.49 7.08 100.00 – 135.74 15730 84.83 12.59 0.64 1.95 100.00 – 106.00
vim† 7.4 2.44 72221 99.18 0.23 0.60 0.00 100.00 – 173.31 13279 99.92 0.02 0.06 0.00 100.00 – 110.77
git 2.7.4 1.87 44441 80.06 11.91 2.14 5.88 100.00 – 169.16 9072 68.06 27.62 1.16 3.16 100.00 – 113.60
pdflatex 2.6 0.91 22105 82.05 10.46 2.06 5.42 100.00 – 168.72 6060 70.61 24.97 1.25 3.17 100.00 – 118.70
xterm 322 0.54 11593 79.12 12.45 3.04 5.39 100.00 – 166.23 2681 89.11 9.40 0.41 1.08 100.00 – 113.16
evince† 3.18.2 0.42 3636 99.59 0.30 0.11 0.00 100.00 – 131.63 716 99.86 0.00 0.14 0.00 100.00 – 107.86
make 4.1 0.21 4807 79.34 12.96 1.71 5.99 100.00 – 182.78 1383 74.98 20.46 0.94 3.62 100.00 – 125.48
libc.so 2.23 1.87 52393 81.19 11.55 2.23 5.03 100.00 – 247.67 24686 74.32 21.98 1.05 2.64 100.00 – 203.87
libc++.so 6.0.21 1.57 20593 75.14 13.02 4.60 7.24 100.00 – 184.99 15442 67.56 27.76 0.99 3.68 100.00 – 168.80
Chrome† 78.0 152.51 3800565 93.20 4.68 1.87 0.25 100.00 – 226.31 2624800 99.38 0.49 0.11 0.01 100.00 – 197.68
FireFox† 70.0 0.52 13971 98.02 0.54 1.44 0.00 100.00 – 269.22 7355 99.90 0.10 0.00 0.00 100.00 – 208.06
libxul.so 70.0 115.03 1463369 68.55 15.08 5.26 11.10 99.99 – 194.55 666109 75.72 20.61 0.62 3.06 100.00 – 174.22

scalability, we instrument some very large binaries such as
Google Chrome [17] and FireFox (libxul.so) [16].

E9Patch is a general binary rewriting tool that has many
potential applications, such as binary repair, instrumenta-
tion and hardening. Typically, binary repair will focus on a
few locations corresponding to bugs (e.g., see Example 3.1),
whereas instrumentation/hardening will need to modify mul-
tiple locations. For this evaluation we focus on instrumen-
tation as it is the more challenging application. Specifically,
we choose two test applications (A1/A2) that instrument:

1. A1: All jmp/jcc jump instructions; and
2. A2: All instructions that may write to heap pointers.
The former is a rough analogue for basic-block counting
which is a common benchmark for static binary rewriting
tools. However, since E9Patch does not have basic block
information by design, we instrument jump instructions in-
stead. The latter will be used for a hardening application
presented in Section 6.3. For these experiments, we use an
“empty” instrumentation that merely executes/emulates the
displaced instruction before returning control flow back to

159

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

the main program. This will demonstrate the baseline per-
formance of E9Patch’s patching methodology.
The patching statistics are shown in Table 1. Here, we

instrument the (.text) section for each application. Column
(Size) is the binary size in MB, (#Loc) is the number of patch
locations, (Base%) is the percentage of successful patchings
using baseline methods (B1+B2), (T1/T2/T3%) is the percent-
age of successful patchings for each tactic, (Succ%) is the over-
all percentage of successful patchings (B1+B2+T1+T2+T3),
(Time%) is the overall runtime performance overhead, and
(Size%) is the overall output binary size over the original. For
the latter, the physical page grouping optimization (Section 4)
has been applied with a granularity ofM=1 (i.e., maximum
aggression). All experiments are run on a Xeon Silver 4114
Processor (2.20GHz with 32GB of RAM).
Coverage. Each patching tactic is not guaranteed to suc-
ceed, meaning that the coverage (i.e., the ratio of successfully
patched instructions) is a concern. Despite this, the Table 1
results show that E9Patch achieves very high coverage, and
can patch nearly every benchmark with a 100.00% score. In
total, E9Patch patches ∼1.05×107 instructions while only
1098 fail. The exceptions are discussed below.

Table 1 also shows the relative coverage breakdown for
each patching tactic T1-T3. Here, (Base%) represents the base-
line coverage if B1/B2 are used in isolation. In this case, only
72.79% of all jump instructions and 81.63% of all heap write
instructions will be patched. Each subsequent tactic, T1-T3,
improves the coverage, allowing for more instructions to be
successfully patched. Our results also highlight the impor-
tance of the neighbour eviction (T3) tactic. Without T3, the
overall coverage would be merely ∼90.5% (i.e., Base+T1+T2)
for A1 rather than ∼100%. This is because T3 by itself has
a high coverage, and can be used to patch instructions that
could not be handled by other tactics.
The Table 1 results also highlight a clear difference be-

tween PIE and non-PIE binaries. Since PIE binaries allow
trampolines to be placed in the negative address range, the
probability that any given patching tactic succeeds is much
higher. Even the baseline (Base%) for PIE binaries is >93%.
This result is important since PIE binaries are becoming in-
creasingly common in modern Linux distributions thanks
to the enhanced security benefits of address space layout
randomization (ASLR).
Despite the overall success, some benchmarks, such as

gamess and zeusmp, did not achieve 100% coverage. On
closer examination, both of these programs statically allo-
cate very large (.bss) sections, and this limits the usable
virtual address space available for trampolines, making in-
struction patching more difficult (see limitation (L1) from
Section 5.2). Even under these conditions, E9Patch can still
patch >98.5% of all instructions. Most of the other tested
binaries (including web browsers) do not make large static
allocations, and are therefore not affected by (L1). Finally, we

At
tr
ib

At
tr
ib
.P
ro
to

At
tr
ib
.j
Qu
er
y

Mo
di
fy

Mo
di
fy
.P
ro
to

Mo
di
fy
.j
Qu
er
y

Qu
er
y

St
yl
e.
Pr
ot
o

St
yl
e.
jQ
ue
ry

Ev
en
ts
.P
ro
to

Ev
en
ts
.j
Qu
er
y

Tr
av
er
se

Tr
av
er
se
.P
ro
to

Tr
av
er
se
.j
Qu
er
y

Ge
om
. M
ean

100%
150%
200%
250%
300%
350% E9Patch Chrome

E9Patch FireFox

Figure 4. Relative E9Patch runtime overheads of Chrome
and FireFox using the Dromaeo DOM browser benchmarks.

note that E9Patch can patch 100% of all instructions when
gamess and zeusmp are recompiled in PIE mode.
File Size. Each patched instruction makes use of a trampo-
line that must be incorporated into the output binary. Since
trampoline locations cannot be fully controlled, there is the
potential for high address space fragmentation and file size
bloat. With physical page grouping (Section 4) enabled, we
see that the overall file size is more manageable at +57.43%
for jump instructions (A1) and +30.90% for heap write in-
structions (A2). We also reran each benchmark with physical
page grouping disabled, i.e., by using a naïve one-to-onemap-
ping between physical and virtual memory. In this case, the
average file size balloons to +2239.83%/+568.96% for A1/A2
respectively. This highlights the importance of physical mem-
ory optimization when large numbers of instructions need
to be patched.
Runtime Performance. To measure the performance, we run
each of the SPEC2006 benchmarks and compare the overhead
versus the original binary. We only measure the performance
for SPEC since other programs do not have standard bench-
marks. Furthermore, we will measure the performance for
web browsers separately. Overall, we see that E9Patch intro-
duces a +110.81% overhead for jump instructions (A1), and a
+64.71% overhead for heap write instructions (A2).

To maximize scalability, E9Patch avoids relocating binary
code and preserves the set of jump targets. In contrast, other
static binary rewriting tools more aggressively relocate in-
structions, allowing for patch/instrumentation code to be
inlined rather than jumping to/from trampolines. Inlining
generally gives better performance assuming that the binary
can be rewritten correctly. For example, there is a +60.48%
overhead for Mulitverse [2] (empty instrumentation), a
+62% overhead for PEBIL [21] (basic block counting), and a
∼70% overhead for DynInst [3] (basic block counting). Com-
pared to inlined instrumentation, our approach executes (at
least) two additional instructions (2× jmpq) which incurs ex-
tra overheads. The trade-off is a robust design that does not
need control flow information, allowing E9Patch to scale to
very large binaries.

160

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

pe
rl
be
nc
h

bz
ip
2

gc
c

bw
av
es

ga
me
ss mc

f
mi
lc

ze
us
mp

gr
om
ac
s

ca
ct
us
AD
M

le
sl
ie
3d

na
md

go
bm
k

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
me
r

sj
en
g

Ge
ms
FD
TD

li
bq
ua
nt
um

h2
64
re
f

to
nt
o

lb
m

om
ne
tp
p

as
ta
r

sp
hi
nx
3

xa
la
nc
bm
k

SP
EC

Me
an

Ch
rom

e M
ean

Fir
eFo

x M
ean

100%

300%

500%

700%

900%
E9Patch heap writes (A2)
E9Patch LowFat instrumentation

Figure 5. SPEC2006 and web browser timings for heap writes (Table 1/Figure 4) and LowFat instrumentation.

Language Agnosticism. For the evaluation, we tested pro-
grams compiled from (combinations of) C, C++, Fortran and
(inlined) assembly. Because E9Patch is very low-level, it is
also language agnostic by design, meaning that E9Patch is
able to instrument/patch programs compiled from a variety
of programming languages. In contrast, some existing binary
rewriting tools incorporate compiler or language-specific
assumptions in order to implement control flow recovery.
Such assumptions may fail when applied to binaries com-
piled from other languages.

6.2 Scalability: Chrome and FireFox
One of the core aims of E9Patch is to scale to very large bi-
naries. To evaluate scalability, we use E9Patch to instrument
web browsers such as Google Chrome [17] and FireFox [16].
Each browser has a binary size exceeding 100MB—an order of
magnitude larger than the largest SPEC benchmark (gamess).
We found that the Chrome (.text) section contains a mix-
ture of data and code, which proved to be a challenge for
our prototype linear disassembler frontend. To work around
the issue, we only disassemble after the ChromeMain symbol
(which still represents >97.5% of the .text section). Fire-
Fox also arranges its binaries differently, with the bulk of
the code placed into a shared object (libxul.so), which is
patched using E9Patch. To measure the performance, we use
the Dromaeo Document Object Model DOM browser bench-
marks [11]. We choose these benchmarks to minimize the ex-
ecution time spent in Just-in-Time (JIT) compiled Javascript
code. For this experiment we instrument the heap write in-
structions application (A2), and the instrumentation statistics
are shown in Table 1.
The results are shown in Figure 4. Overall, we see that

E9Patch introduces a ∼113% overhead for Chrome and a
∼46% for FireFox. These results are consistent with the per-
formance measurements for the SPEC benchmarks. FireFox
seems to be less sensitive to the E9Patch instrumentation
compared to Chrome, possibly because FireFox spends more
time in JIT’ed code or non-instrumented shared objects. Re-
gardless, our results show that E9Patch is able to scale to
very large binaries such as web browsers.

6.3 Application: Binary Heap Write Hardening
As a proof-of-concept demonstration application, we choose
to harden binaries against heap pointer spatial memory er-
rors (e.g., buffer overflows). We choose to only instrument
writes since out-of-bound reads are not necessarily errors
at the binary level [5]. We also exclude non-heap pointer
instructions using registers %rsp (stack) and %rip (globals).
To detect spatial memory errors, we use a variant of low fat
pointers [12, 13]—a method for encoding bounds informa-
tion (i.e., base+size) into the bit representation of the object
pointer itself. However, the default low fat pointer instru-
mentation schema of [12] is non-local and therefore difficult
to apply at the instruction-level. Instead, we use low fat
pointers to enforce redzones by ensuring that the property
(p − base(p) ≥ 16) holds for all pointer writes. Here, p is
the written-to pointer, base(p) is the low fat pointer opera-
tion that retrieves the object base address [12], and 16 is the
size of the redzone in bytes. Pointer p is calculated by con-
verting the patch location instruction into an x86_64 load
effective address (lea). Next, p is passed to a redzone-check
function that is called by each trampoline. Finally, the stan-
dard libc memory allocation functions (malloc, calloc,
etc.) are replaced by LD_PRELOAD’ing a low fat runtime li-
brary (liblowfat.so) [23]. The library has also been modi-
fied to insert redzones around each allocated object.
The results are shown in Figure 5. Here we compare

against the empty instrumentation of Table 1. For the SPEC
benchmarks, the overall overhead increases from +64.71%
(A2) to +127.27% for heap write bounds checking. For the
browsers Chrome/FireFox, the overall overhead increases
from +113%/+46% to +170%/+60% respectively. Higher over-
heads are to be expected since bounds checking executes
more instructions. The overhead for source-level instrumen-
tation can be lower, sometimes as little as +13% [12]. How-
ever, source-level instrumentation can be inlined and opti-
mized by the compiler, something that is difficult to replicate
at the binary level. Furthermore, the source-level implemen-
tation of LowFat [23] only supports C/C++, whereas E9Patch
works on binaries and does not assume source code avail-
ability. Finally, we note that our implementation is a proof-
of-concept that can likely be optimized as future work.

161

PLDI ’20, June 15–20, 2020, London, UK Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury

7 Related Work
We briefly review the related work and compare it against
E9Patch. See [40] for a recent survey.
Static Rewriting Tools. Many different static binary rewrit-
ing systems and tools have been proposed. Some tools, such
as Vulcan [35], Alto [28], SASI [14], PEBIL [21], and Dia-
blo [9], assume that the input binary was produced by a speci-
fic/specialized compiler or that symbol/debug information
has been preserved (i.e., non-stripped). Unlike E9Patch, these
tools do not work on binaries that break these assumptions.
Other static binary rewriters, such as (static) DynInst [6],
BIRD [30], and PSI [42], attempt to relax these assumptions
in exchange for better compatibility. To do so, these tools
typically implement some combination of (1) signal handlers
(e.g., SIGTRAP), (2) non-punned jumps replacing one or more
instruction, or (3) global binary rewriting that inlines instru-
mentation as necessary. Signal handlers are generally too
slow for most applications, and the alternatives require con-
trol flow information in order to safely rewrite the binary.
Static analysis-based control flow recovery generally relies
on assumptions/heuristics that are known not to scale [2].
Alternatively, control flow information can be recovered
dynamically by the rewritten binary, e.g., by using address
translation [34, 42] to effectively implement a hybrid stat-
ic/dynamic design. However, even this may suffer from the
callback problem, where non-patched code calls a pointer to
a function that has been relocated. One solution is to globally
rewrite all indirect calls/jumps—including the entire shared
library dependency tree. In contrast, E9Patch uses a local
binary rewriting methodology that is applicable to individual
binaries, requires only partial disassembly information, and
preserves the set of jump targets—thereby eliminating the
need for control flow recovery (of any kind).
Other tools such as Egalito [41], SecondWrite [32], and

McSema [25] attempt to lift binary code into an intermediate
representation (e.g., LLVM IR [22]) that can be recompiled
into a new binary. Similarly, tools such as Uroboros [37, 38]
and RetroWrite [10] attempt to disassemble binaries into a
form amenable to reassembly, possibly after modification.
To work correctly, these tools make several assumptions
about the input binary, such as assuming specific languages
(e.g., C for Uroboros/RetroWrite) or position independent
code (Egalito/RetroWrite). In contrast, E9Patch can statically
rewrite binaries without making such assumptions. Simi-
larly, Mulitverse [2] also aims to minimize assumptions by
using a “brute force” disassembly over all possible offsets.
However,Mulitverse also implements a global rewriting ap-
proach that inherits the limitations described above, such as
requiring that all shared library dependencies be rewritten.
Dynamic Rewriting/Instrumentation Tools. An alternative to
static is dynamic rewriting, which patches binary code at
runtime as the program executes. Dynamic rewriting can be

scalable since dynamic analysis tends to be accurate whereas
static analysis tends to be approximate. While static rewrit-
ing can be done offline (rewrite once, execute many times),
dynamic rewriting is done online, and this can add addi-
tional runtime performance overheads. Pin [24] and Dy-
namoRIO [4] dynamically analyze and instrument programs
using a callbackmechanism. These tools use just-in-time (JIT)
recompilation of instrumented functions and basic blocks
“on-the-fly”. This requires a complex infrastructure, and the
program is JIT’ed rather run “natively”. As such, these tools
are generally too heavyweight for some applications such
as binary repair. The DynInst [6] framework also supports
dynamic instrumentation using a similar methodology to
that of the static case.
LiteInst [7] originally proposed instruction punning for

dynamic instrumentation rather than static binary rewrit-
ing. Like E9Patch, LiteInst uses alternative tactics should
baseline instruction punning (B2) fail:
- Instrument a predecessor instruction from the same basic
block; or

- Replace overlapping instructions with illegal opcodes.
The former requires control flow information (i.e., basic
blocks) in order to ensure that the instrumentation will
be called (the previous instruction in memory is not nec-
essarily the last executed), and the latter requires control
flow information in order to avoid expensive signal handlers.
Since E9Patch has no knowledge of control flow informa-
tion, neither are appropriate for our setting. Finally, since
static rewriting is offline, E9Patch can applymore aggressive
optimizations such as physical page grouping.

8 Conclusion
This paper presented E9Patch, a powerful and scalable static
binary rewriting tool. The key idea behind E9Patch is to
exclusively use control flow agnostic binary rewritingmethod-
ologies that can safely patch x86_64 instructions without
the need for (or knowledge of) control flow information. By
doing so, E9Patch can statically rewrite binaries without
the need for a control flow recovery step and any associated
assumptions/heuristics.
However, existing binary rewriting methods are either

not control flow agnostic (e.g., instruction relocation), suf-
fer from poor performance (e.g., int3/SIGTRAP), or suffer
from poor coverage (e.g., instruction punning [7]). To solve
this problem, we develop a new suite of instruction patch-
ing tactics and strategies—such as instruction padding and
eviction—that are both control flow agnostic, have good per-
formance, and have very good (near 100%) coverage for many
common applications. As such, E9Patch is very robust, and
is able to scale to very large binaries (including web browsers
such as FireFox [16] and Chrome [17]), all while maintaining
reasonable performance and memory overheads.

162

Binary Rewriting without Control Flow Recovery PLDI ’20, June 15–20, 2020, London, UK

References
[1] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos.

2016. An In-Depth Analysis of Disassembly on Full-Scale X86/X64
Binaries. In Security Symposium. USENIX.

[2] E. Bauman, Z. Lin, and K. Hamlen. 2018. Superset Disassembly: Stati-
cally Rewriting x86 Binaries Without Heuristics. In Network and Dis-
tributed System Security Symposium. Internet Society.

[3] A. Bernat and B. Miller. 2011. Anywhere, Any-time Binary Instrumen-
tation. InWorkshop on Program Analysis for Software Tools. ACM.

[4] D. Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. Ph.D. Dissertation.

[5] D. Bruening and Q. Zhao. 2011. Practical Memory Checking with Dr.
Memory. In Code Generation and Optimization. IEEE.

[6] B. Buck and J. Hollingsworth. 2000. An API for Runtime Code Patching.
High Performance Computing Applications 14, 4 (2000).

[7] B. Chamith, B. Svensson, L. Dalessandro, and R. Newton. 2017. Instruc-
tion Punning: Lightweight Instrumentation for x86-64. In Program
Design and Implementation. ACM.

[8] L. Davi, A. Sadeghi, and M. Winandy. 2011. ROPdefender: A Detection
Tool to Defend Against Return-oriented Programming Attacks. In
Symposium on Information, Computer and Communications Security.
ACM.

[9] B. De Sutter, B. Bus, and K. De Bosschere. 2005. Link-time Binary
Rewriting Techniques for Program Compaction. (2005).

[10] S. Dinesh, N. Burow, D. Xu, , and M. Payer. 2020. RetroWrite : Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization. In Security
and Privacy. IEEE.

[11] Dromaeo 2020. Dromaeo Benchmarks. http://dromaeo.com/.
[12] G. Duck and R. Yap. 2016. Heap Bounds Protection with Low Fat

Pointers. In Compiler Construction. ACM.
[13] G. Duck, R. Yap, and L. Cavallaro. 2017. Stack Bounds Protection

with Low Fat Pointers. In Network and Distributed System Security
Symposium. Internet Society.

[14] U. Erlingsson and F. Schneider. 2000. SASI Enforcement of Security
Policies: a Retrospective. In DARPA Information Survivability Confer-
ence and Exposition. IEEE.

[15] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and
S. Sidiroglou-Douskos. 2015. Control Jujutsu: On the Weaknesses of
Fine-Grained Control Flow Integrity. InComputer and Communications
Security. ACM.

[16] Firefox 2020. Firefox Web Browser. https://www.mozilla.org/.
[17] Google Chrome 2020. Google Chrome Web Browser. https://www.

google.com/chrome/.
[18] J. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. Computer

Architecture News 34, 4 (2006).
[19] J. Hiser, A. Nguyen-Tuong, W. Hawkins, M. McGill, M. Co, and J.

Davidson. 2017. Zipr++: Exceptional Binary Rewriting. InWorkshop
on Forming an Ecosystem Around Software Transformation (FEAST ’17).
ACM.

[20] Y. Hu, Y. Zhang, and D. Gu. 2019. Automatically Patching Vulnera-
bilities of Binary Programs via Code Transfer From Correct Versions.
IEEE Access 7 (2019).

[21] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. 2010. PEBIL:
Efficient Static Binary Instrumentation for Linux. In Symposium on
Performance Analysis of Systems Software.

[22] LLVM. 2020. https://llvm.org.
[23] LowFat 2020. LowFat. https://github.com/GJDuck/LowFat.

[24] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood. 2005. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Programming
Language Design and Implementation. ACM.

[25] McSema. 2020. https://github.com/lifting-bits/mcsema.
[26] X. Meng and B. Miller. 2016. Binary Code is Not Easy. In International

Symposium on Software Testing and Analysis. ACM.
[27] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin. 2019. Prob-

abilistic Disassembly. In International Conference on Software Engineer-
ing. IEEE.

[28] R. Muth, S. Debray, S. Watterson, and K. De Bosschere. 2001. Alto: A
Link-time Optimizer for the Compaq Alpha. Software: Practice and
Experience 31 (2001).

[29] S. Nagy and M. Hicks. 2019. Full-speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-guided Tracing. In Security and Privacy.
IEEE.

[30] S. Nanda, W. Li, L. Lam, and T. Chiueh. 2006. BIRD: Binary Interpreta-
tion using Runtime Disassembly. In Symposium on Code Generation
and Optimization. IEEE.

[31] N. Nethercote and J. Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Programming Language
Design and Implementation. ACM.

[32] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A.
Keromytis. 2011. Retrofitting Security in COTS Software with Binary
Rewriting. In Future Challenges in Security and Privacy for Academia
and Industry. Springer.

[33] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest. 2013. Automated
Repair of Binary and Assembly Programs for Cooperating Embed-
ded Devices. In Architectural Support for Programming Languages and
Operating Systems. ACM.

[34] M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua. 2013.
Static Binary Rewriting without Supplemental Information: Overcom-
ing the Tradeoff between Coverage and Correctness.

[35] A. Srivastava, A. Edwards, and H. Vo. 2001. Vulcan: Binary Transforma-
tion In A Distributed Environment. Technical Report MSR-TR-2001-50.

[36] L. Van Put, B. De Sutter, M. Madou, B. De Bus, D. Chanet, K. Smits, and
K. De Bosschere. 2005. LANCET: A Nifty Code Editing Tool. Software
Engineering Notes 31, 1 (Sept. 2005).

[37] S. Wang, P. Wang, and D. Wu. 2015. Reassembleable Disassembling.
In Security Symposium. USENIX.

[38] S. Wang, P. Wang, and D. Wu. 2016. UROBOROS: Instrumenting
Stripped Binaries with Static Reassembling. In Software Analysis, Evo-
lution, and Reengineering. IEEE.

[39] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin. 2012. Securing Untrusted
Code via Compiler-agnostic Binary Rewriting. In Annual Computer
Security Applications Conference. ACM.

[40] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl. 2019. From Hack
to Elaborate Technique - A Survey on Binary Rewriting. Computing
Surveys 52, 3 (2019).

[41] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson, F.
Spano, Y. Wu, J. Yang, and V. Kemerlis. 2020. Egalito: Layout-Agnostic
Binary Recompilation. ACM.

[42] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. 2014. A Platform for Se-
cure Static Binary Instrumentation. In Virtual Execution Environments.
ACM.

[43] M. Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.
In Security Symposium. USENIX.

163

http://dromaeo.com/
https://www.mozilla.org/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://llvm.org
https://github.com/GJDuck/LowFat
https://github.com/lifting-bits/mcsema

	Abstract
	1 Introduction
	2 Overview and Background
	2.1 Background
	2.2 Our Approach

	3 Patching Tactics and Strategies
	3.1 Tactic T1: Padded Jumps
	3.2 Tactic T2: Successor Eviction
	3.3 Tactic T3: Neighbour Eviction
	3.4 Strategy S1: Reserve Order Patching

	4 Memory and File Size Management
	4.1 Physical Page Grouping

	5 Implementation
	5.1 ELF Rewriting
	5.2 Limitations

	6 Evaluation
	6.1 Performance
	6.2 Scalability: Chrome and FireFox
	6.3 Application: Binary Heap Write Hardening

	7 Related Work
	8 Conclusion
	References

