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Abstract

Automated program repair reduces the manual effort in fix-
ing program errors. However, existing repair techniques
modify a buggy program such that it passes given tests.
Such repair techniques do not discriminate between correct
patches and patches that overfit the available tests (breaking
untested but desired functionality).We propose an integrated
approach for detecting and discarding overfitting patches via
systematic co-exploration of the patch space and input space.
We leverage concolic path exploration to systematically tra-
verse the input space (and generate inputs), while ruling out
significant parts of the patch space. Given a long enough
time budget, this approach allows a significant reduction in
the pool of patch candidates, as shown by our experiments.
We implemented our technique in the form of a tool called
‘CPR’ and evaluated its efficacy in reducing the patch space
by discarding overfitting patches from a pool of plausible
patches. We evaluated our approach for fixing real-world
software vulnerabilities and defects, for fixing functionality
errors in programs drawn from SV-COMP benchmarks used
in software verification, as well as for test-suite guided repair.
In our experiments, we observed a patch space reduction due
to our concolic exploration of up to 74% for fixing software
vulnerabilities and up to 63% for SV-COMP programs. Our
technique presents the viewpoint of gradual correctness Ð
repair run over longer time leads to less overfitting fixes.

CCS Concepts: · Software and its engineering→ Soft-

ware testing and debugging.
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1 Introduction

Automated Program Repair [14, 24] is an emerging tech-
nology which seeks to rectify errors or vulnerabilities in
software automatically. There are various applications of
automated repair, including improving programmer produc-
tivity, reducing exposure to software security vulnerabilities,
producing self-healing software systems, and even enabling
intelligent tutoring systems for teaching programming.

Since program repair needs to be guided by certain notions
of correctness and formal specifications of the program’s
behavior are usually not available, it is common to use test-
suites to guide repair. The goal of automated repair is then
to produce a (minimal) modification of the program so as to
pass the tests in the given test-suite. While test-suite driven
repair provides a practical formulation of the program repair
problem, it gives rise to the phenomenon of łoverfittingž [26,
30]. The patched program may pass the tests in the given
test-suite while failing tests outside the test-suite, thereby
overfitting the test data. Such overfitting patches are called
plausible patches because they repair the failing test case(s),
but they are not guaranteed to be correct, since they may
fail tests outside the test-suite guiding the repair. Various
solutions to alleviate the patch overfitting issue have been
studied to date, including symbolic specification inference
[23, 25], machine learning-based prioritization of patches
[2, 20, 21] and fuzzing based test-suite augmentation [7].
These works do not guarantee any notion of correctness
of the patches, and cannot guarantee even the most basic
correctness criteria such as crash freedom.

In this work, we reflect on the problem of patch overfitting
[22, 26, 30], in our attempt to produce patches which work
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for a large number of test inputs. Our goal is to devise an any-
time patching algorithm; the algorithm can be stopped at any
time. However, the longer it is run, the greater is the coverage
of the input space, and the greater is our confidence that the
patch produced works for a large class of test inputs. To
ensure coverage of the test input space, we use concolic path
exploration for automated test generation. Use of symbolic
and concolic execution for test generation is well-known
[4, 9]; symbolic execution has also been used in automated
repair for computing repair constraints [25]. At the same
time, our usage of concolic execution is innovative, and is
the key technical contribution of this paper.

We use concolic execution [9] to generate test inputs, and
additionally to generate constraints for the patch refinement,
to make them work for those test inputs. We leverage a user-
provided specification to detect incorrect behavior for the
generated test inputs. Such specification does not need to be
a full specification with regard to the program’s correctness.
Partial specifications like an assertion at a specific location,
or the absence of crashes in a specific location, can be al-
ready sufficient to detect overfitting patches. Our outlook
is to use concolic execution for computing path constraints
and patch constraints at the same time. By making the sym-
bolic execution technology serve such a dual purpose, we
can systematically traverse a large portion of the test input
space, and find out patch patterns which work for those tra-
versed test inputs. Given a longer time budget, we obtain
greater path coverage, and rule out a large number of patch
candidates, thereby reducing overfitting in program repair.
Realizing such a dual-purpose usage of symbolic execu-

tion, requires us to overcomemany technical challenges. First
our symbolic execution engine needs to compute path con-
straints containing both input variables and patch variables.
Though the patch variables are higher order variables, we
avoid developing a second order symbolic execution engine
for scalability reasons. Instead we provide a first order encod-
ing of path constraints and patch constraints which contain
(first order) input variables along with certain additional
parameters to succinctly represent sets of patches. Secondly,
and more importantly, there are additional sources of path
infeasibility as compared to traditional concolic/symbolic
execution, in our setup. In traditional concolic execution, a
path is deemed infeasible if the path constraint is unsatis-
fiable. In our setup, the path contains a hole for the patch
location, and we maintain a pool of patch candidates which
diminishes as more paths are explored. Hence if none of the
remaining patch candidates can be inserted into the patch
location, we also deem the path as infeasible.

The benefits of our concolic approach for patch generation
are shown by the experimental evaluation of its efficacy in
repairing a large set of security vulnerabilities curated in
recent works [8] based on Google’s OSS-Fuzz infrastructure.
The tool embodying our concolic program repair approach

........

250 static int

251 cvtRaster(TIFF* tif , uint32* raster , uint32 width ,

uint32 height)

252 {

253 uint32 y;

254 tstrip_t strip = 0;

255 tsize_t cc , acc;

256 unsigned char* buf;

257 uint32 rwidth = roundup(width , horizSubSampling);

258 uint32 rheight = roundup(height , vertSubSampling);

259 uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);

260 uint32 rnrows = roundup(nrows ,vertSubSampling);

261 if (CONDITION) return 0;

262 /* potential divide-by-zero error */

263 cc = rnrows*rwidth + 2 * (( rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));

........

278 }

Listing 1. CVE-2016-3623: Divide by Zero in LibTIFF v4.0.6

is called CPR, an abbreviation indicating the resuscitation of
programs via appropriate fixes.1

Novelty and Contributions. Overall, we provide two
key novelties in program repair: (1) the concept of simultane-
ous exploration of input and patch space, (2) alleviate patch
overfitting by checking for a user-provided specification dur-
ing concolic exploration. We propose the path exploration
in concolic execution as a mechanism to traverse the pro-
gram input space and patch space simultaneously. The main
contribution is to tackle patch overfitting, which is a key
problem in the area of automated program repair [26, 30].
Our repair tool CPR generates correct patches for a variety
of specifications or oracles including crash-freedom (absence
of observable vulnerabilities), and satisfaction of assertions
Ð as shown by our experiments.

2 Illustrative Example

In this section we show the advantages of concolic program
repair by illustrating its usage for the repair of a security vul-
nerability in a real-world application. We make use of the se-
curity vulnerability reported as CVE-2016-3623 discovered in
the LibTIFF library v4.0.6 (see Listing 1). LibTIFF is a popular
open-source library that provides support for the Tag Image
File Format (TIFF), a widely used format for storing image
data. CVE-2016-3623 represents a divide-by-zero vulnerabil-
ity, which allows a remote attacker to cause a denial of ser-
vice by setting malicious inputs to the program rgb2ycbcr.
Listing 1 depicts the relevant code snippet, which could lead
to a divide-by-zero error at line 263 if the two variables
horizSubSampling and vertSubSampling are not sanitized
for invalid inputs. We have added a fix template in line 261,
where the condition can be generated using most state-of-
the-art repair tool.

Repair process. Concolic program repair works on a high-
level in three phases: (1) patch pool construction, (2) path

1Resuscitating a program, like what Cardio-pulmonary Resuscitation (CPR)

does to a patient.
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Input Space Patch Space

P1
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P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

Initial test input

x=7, y=0 ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10) 

41

Patch Details

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11

2 y < b False 0

3 x == a || y == b a = 0 ∧ b = 0 1

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a False 0

3 x == a || y == b a = 0 ∧ b = 0 1

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

Ⅰ

Ⅱ

Ⅲ

Ⅳ

69

46

12

1

correct patch

plausible 

patches

P1

P2

P3

P4
P4: x > 3 ∧ y > 5 ∧ C

Ⅴ

1

ID Patch Template Parameter Constraint # Conc. Patches

3 x == a || y == b a = 0 ∧ b = 0 1

x = horizSubSampling, y = vertSubSampling, C = CONDITION

Figure 1. Illustrative concolic exploration for example CVE-2016-3623 in Listing 1 as the simultaneous exploration of the
input space and the patch space. The rows I, II, III, IV, and V represent multiple exploration steps. The columns show the
increasingly covered Input Space, the decreasing Patch Space, as well as more details on the identified patches. The patch space
is in general limited by the synthesis language (denoted by the rectangular around the patch space illustration). The number
on the top right of the patch space illustration denotes the total number of concrete patches included in this patch space.

exploration, and (3) patch reduction. The phases (2) and (3)
are performed in an alternating manner: The path explo-
ration provides input partitions (in form of path constraints),
and the patch reduction refines abstract patches and rules
out patches that fail the user-provided specification for the
current input partition.

Illustration. Figure 1 illustrates the simultaneous space
reduction (i.e., the interplay between path exploration and
patch reduction): as we explore the input space, we are able
to narrow down and refine the patch space (steps I, II, III,
and IV), while at the same time we leverage the patch space
to skip parts of the input space, which are not feasible with
the available patches (step V). Therefore, each row I, II, III,
IV, and V in Figure 1 represents an exploration step, which
represents an increase of the input space coverage and a po-
tential reduction of the patch space. The input space for this
example is partitioned into 4 compartments P1, P2, P3, and

P4, which are defined by the corresponding path constraints.
Note that the constraints in Figure 1 show only the relevant
parts for this example and further assume a control location,
which compares the relevant variables horizSubSampling
and vertSubSampling with the given constants. These path
constraints are chosen artificially for this example (since
details of roundup are not shown). As mentioned in Figure
1, we refer to horizSubSampling and vertSubSampling as
𝑥 and 𝑦 respectively as a notational short-hand. Our patch
space is generally limited by the synthesis language (denoted
by the rectangle around the patch space illustration). In or-
der to illustrate the overall reduction in terms of concrete
patches, the box in the top right corner of the patch space
shows the total number of concrete patches included in this
patch space. Please note that Figure 1 does not show the
exploration of all possible input partitions, and hence, shows
only a part of the input exploration for illustration purposes.
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Patch pool construction. In this example, our approach
starts with synthesizing a set of plausible patches based on
an initial test case with x=7, y=0 (see step I in Figure 1). We
assume that the user-defined specification states that there
should be no divide-by-zero error at line 263 in Listing 1, i.e.,
that 𝑥 ∗ 𝑦 ≠ 0. The set of plausible patches is shown as the
oval in the Patch Space column. Note that we assume that the
correct patch is included in this set. The table on the right side
of Figure 1 shows an illustrative list of patch templates (aka
abstract patches) generated by our synthesizer. As abstract
patches we consider boolean and integer expressions, which
include program variables (e.g., 𝑥 and𝑦) and parameters (e.g.,
𝑎 and 𝑏). During the repair process, the parameter values
are captured by a certain constraint (see column Parameter

Constraint), which covers a set of concrete patches and limits
the search space. The column # Concr. Patches shows how
many concrete patches are covered by the corresponding
abstract patch. For this illustrative example, we assume that
the parameter values are initially in the range [-10, 10]. The
constraints shown in the table are already modified by the
synthesizer to pass the initial test case. In the following
paragraphs, we will provide more detailed information on
the interplay between path exploration and patch reduction.

Input partition P1 for patch 1. Starting with the initial
input, concolic execution provides us with the input parti-
tion P1 (defined by the corresponding path constraint). Step
II in Figure 1 represents the first repair iteration. For every
abstract patch, we check whether a violation of the speci-
fication is feasible with the current path constraint. If yes,
we try to refine the constraint on the parameter values. The
light-grey shaded area in the patch space indicates the refine-
ment to the patch space as we explore the respective path of
P1. In order to refine patch 1, we search for models of:

𝑥 > 3 ∧ 𝑦 ≤ 5 ∧ ¬(𝑥 ≥ 𝑎) ∧ 𝑎 ∈ [−10, 7]
︸                                                ︷︷                                                ︸

path constraint P1 complemented with patch 1

∧ (𝑥 ∗ 𝑦 = 0)
︸       ︷︷       ︸

condition for
specification violation

Every satisfying assignment reveals a possibility to violate
the specification with the current path constraint and patch
1. In order to make this formula unsatisfiable, we need to re-
move the values {5, 6, 7} from the constraint on 𝑎. Therefore,
the refined variant of patch 1 is: 𝑥 ≥ 𝑎 with 𝑎 ∈ [−10, 4] (see
table on the right side of row II in Figure 1). This refinement
removes 3 concrete patches from the patch space.

Input partition P1 for patch 2. In order to test patch
2 on the input partition P1, we again first check whether
it is possible to violate the specification with the current
path constraint and patch 2. The formula to test would be:
𝑥 > 3∧𝑦 ≤ 5∧¬(𝑦 < 𝑏) ∧𝑏 ∈ [1, 10] ∧ (𝑥 ∗𝑦 = 0). However,
this formula is unsatisfiable, and hence, patch 2 cannot be
refined in this step.

Input partition P1 for patch 3. For patch 3 we need
to test: 𝑥 > 3 ∧ 𝑦 ≤ 5 ∧ ¬(𝑥 = 𝑎 ∨ 𝑦 = 𝑏) ∧ (𝑎 = 7 ∧ 𝑏 ∈
[−10, 10]∨𝑏 = 0∧𝑎 ∈ [−10, 10])∧(𝑥∗𝑦 = 0). For this formula,
only 𝑦 = 0 is the feasible condition for a violation. Therefore,
all parameter value combinations, for which𝑏 ≠ 0 aremodels
for a specification violation and need to be removed from
the parameter constraint during refinement. The resulting
parameter constraint is: (𝑎 = 7 ∧ 𝑏 ∈ [0] ∨ 𝑏 = 0 ∧ 𝑎 ∈

[−10, 10]), which can be simplified to 𝑏 = 0 ∧ 𝑎 ∈ [−10, 10].

Exploration of P2 and P3. In order to generate a new
input, the current path constraint of P1 can be mutated, e.g.,
by flipping constraints in P1 (as in concolic execution), and
solved with an SMT solver. For example, we could retrieve
the input x=0, y=6 corresponding to the path constraint P2:
𝑥 ≤ 3∧𝑦 > 5∧¬𝐶 (see step III in Figure 1). While exploring
P2, the parameter constraint in patch 1 can be refined to
𝑎 ∈ [−10, 0]. Patch 2 does violate the specification for P2
for all available parameter values. Therefore, patch 2 cannot
be refined and needs to be removed in step III. Finally, the
parameter constraint in patch 3 can be refined to𝑎 = 0∧𝑏 = 0,
i.e., there is only one concrete mapping left for this patch.
In fact, patch 3 now is semantically equivalent to the correct
patch. Step IV in Figure 1 shows one final step, where patch
1 can be removed and patch 3 remains as the correct patch.

Non-Exploration of P4. Step V in Figure 1 shows the
consideration of P4 with the path constraint 𝑥 > 3 ∧ 𝑦 >

5 ∧ 𝐶 . One of our key ingredients is, when generating a
new input, we ensure the feasibility of the corresponding
path constraint by selecting an appropriate patch from our
patch pool. The above mentioned path constraint for P4
is satisfiable; however, our approach would not explore it
because there is no patch in the current patch pool, which
would allow taking this path.

Advantages of concolic program repair. Our approach
has the major advantage to explore both spaces, input and
patch, simultaneously, saving a significant cost in terms of
time and space enumeration: (1) we refine the patch space
based on the exploration in the input space, while (2) we
also can rule out parts of the input space, which contradicts
with the patch space. We are able to reason about a large

portion of concrete patches with every single iteration of
concolic execution by using abstractions in the patch space.
For example, with three repair steps (II, III, and IV) we can
reduce the patch space by 68 concrete patches. In general, the
more paths we explore, the better the refinement would be,
thus finding the most accurate patch. Furthermore, instead of
focusing only on specific inputs but rather on the obtained
path constraint, we are able to test a large portion of the
input space captured by an input partition. Additionally, as
illustrated in our example, our approach performs some path
reduction: during concolic exploration, we make sure that for
every new generated input, there is at least one patch in the
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current patch pool, which can exercise the corresponding
path. Otherwise, the path will not be explored.
In conclusion, these advantages allow us to reduce the

pool of candidate expressions, as compared to existing state-
of-the-art techniques like counterexample-guided inductive
synthesis (CEGIS) [31, 32] and ExtractFix [8].

3 Methodology

In this work we propose a concolic program repair technique,
which incrementally explores the input space, while refining
the patch space.

3.1 Patch Definition

Our technique supports two notions of patches: concrete
and abstract. An abstract patch represents a patch template,
which contains parameters that can have values satisfying a
specified constraint. Concrete patches do not include such
parameters. Our methodology focuses on abstract patches
because, having abstract patches, the repair process needs
to generate and maintain a smaller amount of patch candi-
dates. Furthermore, the patch space reduction can attempt
to refine the parameter constraints before discarding a patch.
Therefore, we define a patch 𝜌 as the 3-tuple

(𝜃𝜌 ,𝑇𝜌 ,𝜓𝜌 )

with the set of program variables 𝑋𝑃 , the corresponding
subset of input variables 𝑋 ⊆ 𝑋𝑃 , and the set of template
parameters 𝐴:

• 𝜃𝜌 (𝑋𝑃 , 𝐴) denotes the repaired (boolean or integer)
expression
• 𝑇𝜌 (𝐴) represents the conjunction of constraints 𝜏𝜌 (𝑎𝑖 )
on the parameters 𝑎𝑖 ∈ 𝐴 included in 𝜃𝜌 :

𝑇𝜌 (𝐴) =
∧

𝑎𝑖 ∈𝐴

𝜏𝜌 (𝑎𝑖 )

• 𝜓𝜌 (𝑋,𝐴) is the patch formula induced by inserting the
expression 𝜃𝜌 into the buggy program

This patch definition covers both notions abstract and con-

crete. For concrete patches the set of parameters 𝐴 is either
empty and 𝑇𝜌 is trivially True, or the constraints on the
parameters 𝑎𝑖 ∈ 𝐴 allow only one concrete value each.

Example. Assuming there is a buggy location in a pro-
gram like if(𝜌)then..else.., where the patch 𝜌 is in-
cluded in the if condition. Then a repaired expression could
be 𝜃𝜌 := 𝑥 > 𝑎 with the parameter value constraint 𝑇𝜌 =

𝜏𝜌 (𝑎) := (𝑎 ≥ −10 ∧ 𝑎 ≤ 10) and the corresponding patch
formula𝜓𝜌 := 𝑥 > 𝑎.

Patch Formula. In our notation 𝜓𝜌 does not represent
the patch expression but rather the constraint induced by the
patch. For our approach a patch is technically represented
as an expression tree, which can be transformed into an
SMT formula, by considering the semantics of the operators

(or components) appearing in the expression 𝜃𝜌 . The infor-
mation about the patch location (i.e., where the repaired
expression will be inserted) and the transformed expres-
sion tree is what we call the patch formula. Therefore, if the
patch represents the right hand-side of an assignment like
y=𝜌 with 𝜃𝜌 := 𝑥 − 𝑎, then the patch formula is derived as
𝜓𝜌 := 𝑦 = 𝑥 − 𝑎, using the patch context information. We
acknowledge that such a patch formula is generally not re-
quired for the definition of a patch. In fact, the patch formula
can be derived from combining the information about the
patch location and the patch expression (see Section 3.5).
However, our approach technically requires such an artifact
in order to reason about the patch.

3.2 Overview: Concolic Repair Algorithm

As input, our approach requires the buggy program, a repair
budget, the fault locations, a user specification, the language
components for the synthesis, and optionally, a set of initial
test cases. The user specification identifies a constraint on
the desired program behavior (in addition to satisfying the
given test cases). It does not need to be a complete formal
specification of the correct program behavior, but represents
a constraint on the expected observation, provided as a logi-
cal formula. For example the user can assert crash-freedom
or some specific logical behavior (e.g., a constraint on the
resulting output). If no error-exposing input is available, we
need to generate at least one failing input (with regard to
the user-provided specification) to start the concolic explo-
ration. Therefore, we can use offline techniques like Directed
Greybox Fuzzing [3]. Note that the generation of the one
failing test is a pre-processing to our technique. Otherwise,
we assume that at least one failing test is available, which
our method seeks to repair, apart from making sure that the
user-provided specification holds for all paths traversed via
concolic exploration.

As output our approach produces a set of patches, which
satisfy the initial test case (repairing the given failing test
case, if one is available) and which do not violate the given
specification for (a subset of, depending on the repair budget)
the other paths of the program. The patches are ranked based
on the evidence we see during input space exploration.

Algorithm 1 shows the general workflow of concolic repair,
which implements three phases: (1) patch pool construction

(see Section 3.3), (2) path exploration (see Section 3.4), and
(3) patch reduction (see Section 3.5). The initial phase of syn-
thesis produces a pool of patches 𝑃 (see line 1 in Algorithm
1) by leveraging a component-based synthesizer. This patch
pool is going to be refined in the following repair loop (see
line 2 to 11). The repair loop itself will be continued as long
as there are remaining patches to refine or the repair budget
is not exceeded. In phase (2) (i.e., inside the repair loop), we
pick a new input 𝑡 to explore more program paths (see line
3). With input 𝑡 we also retrieve a patch candidate 𝜌 from
the patch pool 𝑃 , such that inserting 𝜌 in the patch location
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Algorithm 1: General Concolic Repair

Input: set of initial test cases 𝐼 , buggy locations
𝐿 = (𝑝𝑎𝑡𝑐ℎ𝐿𝑜𝑐, 𝑏𝑢𝑔𝐿𝑜𝑐), budget 𝑏,
specification 𝜎 , language components 𝐶

Output: set of ranked patches 𝑃
1 P← Synthesize(C, I, L)

2 while 𝑃 ≠ ∅ and CheckBudget(b) do

3 𝑡 , 𝜌 ← PickNewInput(𝑃 )

4 if no input 𝑡 available then

5 return P

6 end

7 𝜙𝑡 , ℎ𝑖𝑡𝑝𝑎𝑡𝑐ℎ , ℎ𝑖𝑡𝑏𝑢𝑔 ← ConcolicExec(𝑡 , 𝜌 , 𝐿)

8 if ℎ𝑖𝑡𝑝𝑎𝑡𝑐ℎ then

9 𝑃 ← Reduce(𝑃 , 𝜙𝑡 , 𝜎 , ℎ𝑖𝑡𝑏𝑢𝑔)

10 end

11 end

12 return P

allows 𝑡 to have a feasible path in the patched program. If
there is no such input 𝑡 available, then there is no more input
space to explore and the algorithm will return the identified
patches (see line 4 to 6). Otherwise, we perform a concolic
execution of the program with input 𝑡 , patch candidate 𝜌 ,
and the information about the:

• patch location, where the repair is located and
• bug location, where the buggy behavior is observable.

It results in the path constraint 𝜙𝑡 and whether the patch
location (ℎ𝑖𝑡𝑝𝑎𝑡𝑐ℎ) and the bug location (ℎ𝑖𝑡𝑏𝑢𝑔) have been
exercised by the execution (see line 7). Afterwards, in phase
(3), we aim to reduce the patch pool 𝑃 based on the current
observations and the given specification 𝜎 . Before calling the
Reduce function in line 9, we check whether the current path
actually exercises the patch location (see line 8), otherwise
there is no reduction possible.

3.3 Phase 1: Patch Pool Construction

In order to generate the initial patch pool 𝑃 we leverage
a component-based synthesizer, which focuses on the syn-
thesis of boolean and integer expressions. Our approach
assumes that the necessary patch-ingredients are provided
as input to our technique. This includes the available pro-
gram variables and the arithmetic/comparison operators for
the synthesis. Before starting the actual synthesis we em-
ploy a controlled symbolic execution [23] to retrieve the path
constraints for the initial test cases. Therefore, we mark the
patch variables as symbolic at the patch location. The result
of this symbolic execution is a set of path constraints with
their corresponding expected outputs given by the test cases.
The synthesis starts with generating a set of expression

trees based on the available components and the required

expression type at the patch location. We support the arith-
metic operations {+,−, ∗, /} as well as the remainder opera-
tion, the comparison operators {=,≠, <, ≤, >, ≥}, the boolean
operators {∧,∨,¬}, and usage of parameters like {𝑎, 𝑏, 𝑐, ...}.
More components can be easily added to our synthesizer
by providing them in the SMT-LIB format. For example, for
each program to be repaired, the available variables are pro-
vided as additional components to the synthesizer. The final
set of expression trees contains all feasible combinations of
the given components that fit the required expression type.
Afterwards, the synthesizer enumerates over these trees and
validates that the corresponding expressions repair the pro-
gram for the constraints retrieved by the controlled symbolic
execution. All successfully validated expression trees, will
be put in the resulting patch pool. If the expression tree in-
cludes parameters, the synthesizer will generate a constraint
on these parameters (based on a pre-selected range).

3.4 Phase 2: Path Exploration

The path exploration is concerned with two issues: (a) how
to pick a new input 𝑡 and (2) how to efficiently retrieve the
corresponding path constraint 𝜙𝑡 . In the first loop iteration
the new input is chosen based on the provided test cases
or randomly if there are no test cases available. Afterwards,
based on the previous path constraint, the PickNewInput

function (see line 3 in Algorithm 1) applies generational
search [10] to obtain new inputs: by negating every suffix
term in the constraint, we can retrieve the maximum number
of new path constraint prefixes.

While checking the satisfiability of the obtained path con-
straint prefixes, we also determine whether there exists a
patch candidate 𝜌 in our current patch pool, which allows to
exercise this path. In this way, we prune paths, for which no
patch is feasible. We call this pruning of the input space path
reduction. After checking the satisfiability, we can generate a
set of new inputs, which are ranked based on how often they
trigger the execution of the patch and bug location. In this
way, a set of new inputs is maintained, which can be worked
on and extended in every repair iteration. The complete path
constraint is then retrieved by concolically executing the
new input, and injecting the patch formula𝜓𝜌 (for a patch
expression 𝜌) into the path constraint.

3.5 Phase 3: Patch Reduction

The Reduce function in Algorithm 1 (see line 9) tries to
shrink the patch pool and to possibly refine the available
abstract patches. Its workflow is shown in Algorithm 2.

3.5.1 Criterion for Patch Reduction. For every patch 𝜌

in the patch pool 𝑃 we need to make sure that there is no
violation of the specification 𝜎 for all inputs that are specified
by the given path constraint. Otherwise, the patch needs to
be removed. More specifically, we need to make sure that
there exist parameter values parameters 𝑎𝑖 ∈ 𝐴 within in the
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Algorithm 2: Reduce function

Input: patch pool 𝑃 , path constraint 𝜙 , specification
𝜎 , bug location hit ℎ𝑖𝑡𝑏𝑢𝑔

Output: reduced patch pool 𝑃 ′

1 𝑃 ′← 𝑃

2 for 𝜌 ∈ 𝑃 do

3 𝜋 ← 𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧𝑇𝜌 (𝐴)

4 if IsSat(𝜋 ) then

5 if ℎ𝑖𝑡𝑏𝑢𝑔 then

6 𝑃 ′← 𝑃 ′ \ 𝜌

7 𝑇 ′𝜌 ← RefinePatch(𝜙 , 𝜌 , 𝑇𝜌 , 𝜎)

8 if 𝑇 ′𝜌 . False then

9 𝑃 ′← 𝑃 ′ ∪ {𝜌 with 𝑇 ′𝜌 }

10 end

11 end

12 UpdateRanking(𝜌)

13 end

14 end

15 return 𝑃 ′

constraint 𝑇𝜌 (𝐴) so that for all inputs 𝑥𝑖 ∈ 𝑋 , which satisfy
the path constraint 𝜙 (𝑋 ) and the patch formula 𝜓𝜌 (𝑋,𝐴),
there is no violation of the specification 𝜎 (𝑋 ). Given 𝐴 =

{𝑎1, 𝑎2, .., 𝑎𝑛} and 𝑋 = {𝑥1, 𝑥2, .., 𝑥𝑚}, this means:

∃𝑎1, 𝑎2, .., 𝑎𝑛∀𝑥1, 𝑥2, .., 𝑥𝑚 :

𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧𝑇𝜌 (𝐴) =⇒ 𝜎 (𝑋 ) (1)

In our approach we do not only ensure that there exists
one value for each parameters 𝑎𝑖 , but we iteratively refine
the constraint 𝑇𝜌 (𝐴) to reduce the patch space as much as
possible and to ensure that the specification holds for all
(refined) values for each parameter 𝑎𝑖 :

∀𝑎1, 𝑎2, .., 𝑎𝑛∀𝑥1, 𝑥2, .., 𝑥𝑚 :

𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧𝑇𝜌 (𝐴) =⇒ 𝜎 (𝑋 ) (2)

We want this formula (2) to hold after refinement, and
hence it is used to guide our abstract patch refinement.

3.5.2 Reduction Algorithm. Algorithm 2 describes the
reduction function for abstract patches. The function iterates
over every patch and searches for specification violations.
Before calling the patch refinement in line 7, there are two
additional pre-checks, to make sure that we can reason about
the patch within the current path constraint. First we check
whether the path constraint 𝜙 and the current patch 𝜌 (see
line 3 and 4) are feasible. Secondly, we check whether the
bug location is exercised by the current execution (see line
5) so that the buggy behavior is observable.

If both checks are passed, then we investigate whether the
patch 𝜌 with constraint 𝑇𝜌 needs to be refined by searching
for counterexamples for formula (2). The only option for the

patch refinement, based on our definition of abstract patches
(see Section 3.1), is to refine the constraint 𝑇𝜌 . The imple-
mentation details for the patch refinement are presented in
Section 4. If no refinement is feasible, then the patch will be
eventually removed.

3.5.3 Patch Ranking. In addition to reducing the patch
space, our approach attempts to rank the remaining patches.
The rank of each patch 𝜌 will be increased as long the patch
is feasible with the path constraint 𝜙 (see line 12 in Algo-
rithm 2). Otherwise the ranking will be not modified because
we cannot reason about the patch with regard to the current
path constraint. If the path exercises the bug location, then
the patch will be ranked additionally higher (as compared to
the situation where it does not exercise the bug location). In-
tuitively, this means that (1) patches that are compatible with
the current path constraint will be ranked higher because
we have seen more evidence for their correctness (in terms
of the explored input space). In addition, (2) patches that also
exercise the bug location will be ranked even higher because
they exercised the program location, where potential errors
are observable. Patches that are compatible with the path
constraint and do not exercise the bug location could still be
erroneous, but there has been no possibility to observe the
error. We only rank those patches which do not show any
violation of the specification for the explored input space.

In addition, we deprioritize patches that change the pro-
gram behavior significantly, specifically deletion of function-

ality Ð which can happen if the guard of a conditional state-
ment is changed by a patch to tautologies or their negation.
Based on our formula (2) we cannot remove these patches
because they do not violate the specification. However, func-
tionality deletion is in general not desirable; as stated in a
recent study [26], this kind of functionality deleting patches
are present in the earlier works on search-based program
repair and are overfitting. Although we cannot remove these
patches, our patch ranking mechanism deprioritizes them.
Therefore, for all patch candidates, we check whether the
insertion of the patch affects the control flow of the inputs
flowing through the path (even if the insertion of the patch
does not violate the user-provided specification). We deprior-
itize such patches, and increase the rank of the other patches,
and this ranking fine-tuning is accumulated over all the paths
explored. Further fine-tuning of this heuristic is possible via
model counting [5, 11] to find the proportion of inputs in a
path affected by a patch insertion.

4 Abstract Patch Refinement

During patch space reduction (see Algorithm 2) we try to
refine the available abstract patches whenever we identify a
corresponding violation of specification 𝜎 . This is achieved
by efficiently refining the parameter constraint 𝑇𝜌 of the
abstract patch 𝜌 as shown in Algorithm 3.
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Removal of non-refinable constraints. Before starting
the fine-grained refinement of 𝑇𝜌 , the Algorithm 3 checks
whether there is a refinement of𝑇𝜌 feasible, which will make
the specification pass. It checks whether (a) the conjunction
of the path constraint with the specification (see formula
𝜔𝑝𝑎𝑠𝑠1 in line 1) is satisfiable, followed by the check whether
(b) the conjunction of the path constraint with the current
patch constraint still allows to pass the specification (see
formula 𝜔𝑝𝑎𝑠𝑠2 in line 3). If (a) is satisfiable, but (b) is unsat-
isfiable, the parameter constraint does not contain any value
that repairs the specification violation, and hence, can be
discarded completely.

Counterexample exploration. After these initial checks,
the algorithm searches counterexamples for the general for-
mula (2) from Section 3.5.1 (see formula𝜔 𝑓 𝑎𝑖𝑙 in line 8). They
capture violations of the specification, which need to be ex-
cluded by our refinement of𝑇𝜌 . If there exists no such model
for formula𝜔 𝑓 𝑎𝑖𝑙 , then the parameter constraint needs no fur-
ther refinement and the current constraint can be returned
(see line 31). But if there is a model𝑚𝐴, the Split function
removes the model from the current constraint 𝑇𝜌 and splits
it into multiple regions (see line 11).

Region representation. We assume that the parameter
constraint can be split into 𝑘 regions 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } so
that the constraint represents the disjunction of the separate
regions. This limits the search space during refinement and
can lead to removal of regions, which do not satisfy the
specification. For example, consider a parameter space with
one parameter𝑎 and the constraint𝑇𝜌 (𝑎) := (𝑙 ≤ 𝑎)∧(𝑎 ≤ 𝑢).
Having the counterexample𝑚𝑎 , the Split function replaces
the existing region with two new regions:

𝑟1 := (𝑙 ≤ 𝑎) ∧ (𝑎 ≤ 𝑚𝑎 − 1)

𝑟2 := (𝑚𝑎 + 1 ≤ 𝑎) ∧ (𝑎 ≤ 𝑢)

Even if 𝑇𝜌 already consists of multiple regions, only one
region will be affected by the removal of the counterexample.
In general there will be 3𝑛 − 1 additional regions introduced
(where 𝑛 is the number of parameters), while some of them
might be merged later with surrounding regions.

Recursive refinement. The algorithm further checks for
specification violations (see line 16 to 26) by recursively call-
ing the refinement function on the regions (see line 19). Each
recursive call is guarded by a check whether the current
region 𝑟𝑖 is compatible with the path constraint 𝜙 and the
current patch formula (see line 17 and 18). Otherwise we can-
not reason about the region. After iterating over all regions,
the algorithm attempts to merge contiguous regions (see
line 27), and finally, returns the disjunction of the refined
parameter regions (see line 28).

Algorithm 3: RefinePatch function

Input: path constraint 𝜙 , abstract patch 𝜌 , parameter
constraint 𝑇𝜌 , specification 𝜎

Output: refined constraint 𝑇 ′𝜌
1 𝜔𝑝𝑎𝑠𝑠1 ← 𝜙 (𝑋 ) ∧ 𝜎 (𝑋 )

2 if IsSat(𝜔𝑝𝑎𝑠𝑠1) then

3 𝜔𝑝𝑎𝑠𝑠2 ← 𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧𝑇𝜌 (𝐴) ∧ 𝜎 (𝑋 )

4 if ¬IsSat(𝜔𝑝𝑎𝑠𝑠2) then

5 return False

6 end

7 end

8 𝜔 𝑓 𝑎𝑖𝑙 ← 𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧𝑇𝜌 (𝐴) ∧ ¬𝜎 (𝑋 )

9 𝑚𝐴 ← GetModel(𝜔 𝑓 𝑎𝑖𝑙 )

10 if 𝑚 exists then

11 𝑅 = {𝑟1, 𝑟2, .., 𝑟𝑘 } ← Split(𝑇𝜌 ,𝑚𝐴)

12 if 𝑅 = ∅ then

13 return False

14 else

15 𝑅′← {}

16 for 𝑟𝑖 ∈ 𝑅 do

17 𝜋 ← 𝜙 (𝑋 ) ∧𝜓𝜌 (𝑋,𝐴) ∧ 𝑟𝑖 (𝐴)

18 if IsSat(𝜋 ) then

19 𝑟 ′𝑖 ← RefinePatch(𝜙 , 𝜌 , 𝑟𝑖 , 𝜎)

20 if 𝑟 ′𝑖 . False then

21 𝑅′← 𝑅′ ∪ {𝑟 ′𝑖 }

22 end

23 else

24 𝑅′← 𝑅′ ∪ {𝑟𝑖 }

25 end

26 end

27 𝑅′←Merge(𝑅′)

28 return
∨

𝑟 ′
𝑖
∈𝑅′

𝑟 ′𝑖

29 end

30 else

31 return 𝑇𝜌
32 end

5 Evaluation

The goal of our work is to efficiently navigate the patch
space and find the correct patch that works beyond the pro-
vided test suite. We compare our technique with the related
counterexample-guided inductive synthesis (CEGIS) [31, 32]
because it also can be employed to navigate the patch space
via patch refinement in order to generate the correct patch.
Note that the above proposed technique of concolic program
repair is not tailored to a specific class of errors. However, the
low dependence on existing test cases fits well the context
of repairing security vulnerabilities. Therefore, we present
an empirical comparison with the state-of-the-art program
repair tools Angelix [23], and Prophet [21], and also the
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recently proposed tool ExtractFix [8] for repairing security
vulnerabilities. To highlight CPR’s general repair capabilities,
we also include additional subjects from theManyBugs [13]
benchmark. Furthermore, we show CPR’s ability to fix logi-
cal errors for subjects from the SV-COMP benchmark [33].
All experimental data, as well as the open-source CPR tool,
are available from: https://cpr-tool.github.io/

Benchmark Suite. ExtractFix [8] is a state-of-the-art
vulnerability repair tool, which generates fixes for security
vulnerabilities by computing a crash-free constraint using
a sanitizer. The crash-free constraint is used as the oracle
for patch generation, and in our case, it can serve as the
program specification. We follow a different workflow by
first synthesizing patches at a given fault location and then
gradually improving them based on a concolic exploration.
We use their benchmark, which includes real-world appli-
cations with reported security vulnerabilities, and hence, it
can be used to evaluate the efficacy of our technique in re-
pairing security vulnerabilities. The collected subjects from
theManyBugs [13] benchmark show a partial subset of pro-
grams that can be handled with our underlying concolic
engine KLEE [4]. Most of these subjects represent general er-
rors. SV-COMP [33] is a common benchmark for evaluating
the effectiveness and efficiency of state-of-the-art verifica-
tion techniques. We identified C programs from SV-COMP,
which include reachable assertion errors and for which there
is another program in the benchmark, which represents a
repaired version (i.e., the assertion is present but the error is
not reachable), while the repair is not just a modification of
the assertion’s condition, but a logical change in the program
before the assertion is reached. For our experiments, we have
chosen 10 programs that satisfy the stated conditions.

Experimental Setup. Our implementation of the con-
colic engine is an extension of KLEE [4]. All experiments are
conducted on a Dell Power Edge R530 with Intel(R) Xeon(R)
CPU E5-2660 processor and 64GB RAM. We use Docker con-
tainers to exploit and repair the vulnerable applications. The
experiments have been executed with the timeout of 1 hour
to match the experiments of ExtractFix [8], allowing com-
parison with other repair tools. The language components
for the synthesis are selected as needed for the specific sub-
ject and the parameters for the abstract patches have been
limited to be within the range [-10,10]. For each experiment,
(at least) one failing test case is provided as the initial test
case. For subjects in the ExtractFix benchmark the fail-
ing test case is the exploit. For subjects in the ManyBugs

benchmark there are multiple failing and passing test cases,
while we provide CPR only the failing test cases. For subjects
in SV-COMP we manually generate a failing test to trigger
assertion errors. For ExtractFix andManyBugs, we derive
simple specifications from the programs themselves, e.g., that
a program should not return an erroneous status code. The
specification for the SV-COMP subjects is directly extracted

based on the included assertions. For our experiments, the
fault locations have been provided manually to CPR.

Our CEGIS Implementation. CEGIS comes in various
forms in existing works [1, 31, 32]. We implement our own
custom version of CEGIS with regard to the concepts in [32]
by reusing as much components as possible from our tool
CPR so that we can enable a fair comparison between the con-
cepts with minimized impact of implementation differences.
More specifically, our CEGIS implementation reuses CPR’s
concolic engine to provide a common path exploration for
both techniques and reuses CPR’s synthesizer to explore the
same patch space. This custom CEGIS implementation sup-
ports the patch generation using a counterexample-guided
refinement of the synthesis constraint. It starts with a con-
colic exploration of the input space to construct a set of
path constraints. Afterwards, we synthesize a patch for the
derived constraints (i.e., user-provided specification and wit-
nessed program paths in previous concolic exploration). We
then verify if the synthesized patch can produce a counterex-
ample such that the specification is violated. If a counterex-
ample can be found, the current patch will be thrown away,
and the counterexample model is added to the synthesis con-
straint. The synthesizer will generate a new patch and the
iteration continues until there is no further counterexample,
or the patch space is covered.
It is necessary to limit the concolic exploration of CEGIS

to make the techniques comparable. In our experiments, we
split the overall timeout of 1 hour for CEGIS into 30 minutes
initial path exploration and 30 minutes patch refinement.
The conceptual difference between CEGIS and CPR is that
CEGIS explores the patch space and input space one patch
/ one input at a time, while CPR explores partitions in both
the patch space and the input space.

5.1 Our CEGIS Implementation

Table 1 shows the results of the comparison between the
two techniques. Column 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 indicates the number
of language components passed to our synthesizer. The sub
columns 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 and 𝐶𝑢𝑠𝑡𝑜𝑚 represent the number of com-
ponents from the general synthesis language and number of
custom components created specifically for the respective
test subject. Columns |𝑃𝐼𝑛𝑖𝑡 | and |𝑃𝐹𝑖𝑛𝑎𝑙 | show the number of
patches in the plausible patch space at the start of the refine-
ment and at the end respectively. CEGIS does not maintain
a patch pool like CPR, but only generates one patch that sat-
isfies the collected constraints. However, the current patch
pool size can be calculated by instructing the synthesizer to
produce all currently feasible patches. |𝑃𝐼𝑛𝑖𝑡 | is for CEGIS
the same as for CPR because we share the same inputs and
synthesizer. Column 𝑅𝑎𝑡𝑖𝑜 shows the percentage of the patch
space reduction. Column𝜙𝐸 indicates the number of program
paths explored for the refinement. Column 𝜙𝑆 indicates the
number of program paths skipped during the refinement due
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Table 1. Comparison between our CEGIS implementation and CPR with regard to patch pool reduction ratio and input space
reduction ratio. Benchmark: ExtractFix. The experiments have been executed with timeout of 1 hour.

ID
Buggy Program Components Our CEGIS Implementation CPR

Project Bug ID General Custom |𝑃𝐼𝑛𝑖𝑡 | |𝑃𝐹𝑖𝑛𝑎𝑙 | Ratio 𝜙𝐸 Correct? |𝑃𝐼𝑛𝑖𝑡 | |𝑃𝐹𝑖𝑛𝑎𝑙 | Ratio 𝜙𝐸 𝜙𝑆 Rank

1 Libtiff CVE-2016-5321 2 3 174 174 0 % 17 ✗ 174 104 40% 67 77 2
2 Libtiff CVE-2014-8128 4 3 260 260 0% 0 ✗ 260 260 0% 0 0 1
3 Libtiff CVE-2016-3186 4 3 130 130 0% 13 ✗ 130 130 0% 13 1 11
4 Libtiff CVE-2016-5314 4 4 199 198 1% 10 ✗ 199 197 1% 21 4 2
5 Libtiff CVE-2016-9273 4 3 260 260 0% 5 ✗ 260 141 46% 10 2 8
6 Libtiff bugzilla 2633 4 3 130 130 0% 66 ✗ 130 130 0% 109 21 8
7 Libtiff CVE-2016-10094 4 3 130 130 0% 23 ✗ 130 77 41% 34 114 6
8 Libtiff CVE-2017-7601 4 2 94 94 0% 27 ✗ 94 94 0% 78 107 2
9 Libtiff CVE-2016-3623 4 3 130 130 0% 60 ✗ 130 100 23% 102 21 1
10 Libtiff CVE-2017-7595 4 3 130 130 0% 10 ✗ 130 130 0% 18 31 1
11 Libtiff bugzilla 2611 4 3 130 130 0% 61 ✗ 130 112 14% 87 15 1
12 Binutils CVE-2018-10372 5 3 74 74 0% 9 ✗ 74 39 47% 25 1 33
13 Binutils CVE-2017-15025 4 3 130 130 0% 0 ✗ 130 130 0% 0 0 6
14 Libxml2 CVE-2016-1834 4 3 260 260 0% 6 ✗ 260 260 0% 22 0 12
15 Libxml2 CVE-2016-1838 4 4 199 199 0% 4 ✗ 199 199 0% 4 0 10
16 Libxml2 CVE-2016-1839 5 3 65 65 0% 0 ✗ 65 65 0% 0 0 14
17 Libxml2 CVE-2012-5134 4 3 260 260 0% 44 ✗ 260 134 48% 80 271 7
18 Libxml2 CVE-2017-5969 4 3 260 260 0% 0 ✗ 260 154 41% 21 2 1
19 Libjpeg CVE-2018-14498 4 3 260 260 0% 42 ✗ 260 128 51% 78 108 2
20 Libjpeg CVE-2018-19664 4 3 130 130 0% 43 ✗ 130 130 0% 84 26 1
21 Libjpeg CVE-2017-15232 5 3 955 955 0% 0 ✗ 955 955 0% 0 0 26
22 Libjpeg CVE-2012-2806 4 3 260 259 0% 68 ✗ 260 145 44% 110 3 3
23 FFmpeg CVE-2017-9992 6 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
24 FFmpeg Bugzilla-1404 4 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
25 Jasper CVE-2016-8691 4 3 260 260 0% 72 ✗ 260 96 63% 69 7 1
26 Jasper CVE-2016-9387 5 3 65 65 0% 54 ✗ 65 17 74% 111 1 ✗

27 Coreutils Bugzilla 26545 5 3 1025 1025 0% 74 ✗ 1025 949 7% 119 2 25
28 Coreutils GNUBug 25003 4 4 199 198 1% 114 ✗ 199 172 14% 196 0 6
29 Coreutils GNUBug 25023 4 2 64 64 0% 32 ✗ 64 64 0% 1 2 7
30 Coreutils Bugzilla 19784 4 3 - - - - - 770 770 0% 6 0 38

Table 2. Comparison with repair tools. The experiments have been executed with timeout of 1 hour [8]. For Prophet and
Angelix the results show only the top-ranked patch, while for ExtractFix the results capture the only patch generated.

Benchmark Program #Vul
Generated Patches Correct Patches

Prophet Angelix ExtractFix Prophet Angelix ExtractFix

ExtractFix

Libtiff 11 7 7 9 1 0 6

Binutils 2 - - 2 - - 1

Libxml2 5 3 0 4 0 0 2

Libjpeg 4 3 - 3 1 - 2

FFmpeg 2 - - 2 - - 2

Jasper 2 2 2 2 0 0 1

Coreutils 4 2 - 2 0 - 2

Total 30 17 9 24 2 0 16

to patch in-feasibility. Column 𝐶𝑜𝑟𝑟𝑒𝑐𝑡? indicates whether
CEGIS finishes with a patch that is syntactically or semanti-
cally equivalent with the developer patch and column 𝑅𝑎𝑛𝑘

shows the corresponding highest rank position. The 𝑁 /𝐴
values for ID 23 and 24 in Table 1 indicate that both CEGIS
and CPR have not been able to produce any results because
the execution of the test driver code resulted in an unex-
pected memory fault for our underlying concolic execution

engine. The "-" signs for CEGIS for ID 30 mean that it was
not able to generate any patch within the timeout.

Input and patch space exploration. The comparison of
the 𝑅𝑎𝑡𝑖𝑜 columns in Table 1 shows that in 14 of 30 cases CPR
can produce significantly better patch space reduction than
CEGIS. In the remaining 16 cases, both perform similarly. For
a few subjects, CPR resulted in 0% reduction, partly because
of the loop unrolling (and hence longer paths) in symbolic
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Table 3. Performance of CPR with regard to patch pool reduction ratio and input space reduction ratio for additional subjects
from theManyBugs benchmark. The experiments have been executed with timeout of 1 hour.

ID
Buggy Program Components CPR

Project Subject ID General Custom |𝑃𝐼𝑛𝑖𝑡 | |𝑃𝐹𝑖𝑛𝑎𝑙 | Ratio 𝜙𝐸 𝜙𝑆 Rank

1 Libtiff ee65c74 4 3 6 6 0% 29 90 1

2 Libtiff 865f7b2 4 3 130 130 0% 24 68 5

3 Libtiff 7d6e298 5 4 4 2 50% 7 7 1

4 gzip 884ef6d16c 5 4 4821 4821 0% 11 0 36

5 gzip f17cbd13a1 5 4 2 2 0% 0 1 1

execution. While this is an area we can work on, the 𝜙𝑆
column shows that CPR is already effective in combating
path explosion by skipping additional paths over and above
normal concolic execution. For all subjects, for which CPR

produces some patch space reduction > 1%, it outperforms
CEGIS. Furthermore, the 𝜙𝐸 columns show that CPR is also
more efficient in exploring the input space: in 20 of 30 cases
CPR explores more path constraints than CEGIS, in 2 cases
CEGIS shows better results, and for the remaining 8 cases
both perform similarly. Additionally, CPR can effectively
skip infeasible path constraints (see Column 𝜙𝑆 ).
Furthermore, CEGIS requires initial path exploration to

construct the constraint for later patch verification. There-
fore, in order to verify a patch, CEGIS uses a set of symbolic
paths that capture portion of the program specification. In
contrast, our technique CPR is an anytime algorithm that
uses a single program path at a time for patch refinement.
Processing a single path at a time, compared to a set of paths
is more efficient during constraint solving.

Finding 1: CPR is more effective than CEGIS with regard
to input space and patch space exploration.

Identifying the correct patch. In none of our 30 test sub-
jects CEGIS can identify a patch, which is syntactically or
semantically equivalent with the developer patch (see Col-
umn𝐶𝑜𝑟𝑟𝑒𝑐𝑡?). The reason is that as soon as CEGIS identifies
a patch, which does not violate the specification for the pre-
viously collected path constraints, it terminates and returns
this current patch. In our experiments, such a patch often
is a tautology or contradiction, which can be semantically
equivalent to code deletion, as the patch would enforce early
termination of the program to avoid the bug location. CPR
includes such patches in the patch space (as long as they
do not violate any specification), but our ranking system
de-prioritizes such patches (see Section 3.5.3). Column 𝑅𝑎𝑛𝑘

shows that CPR ranks the developer patch (or a semantic
equivalent) relatively high, in 20 cases in the Top-10.

Finding 2: CEGIS tends to favor a simple patch that rep-
resents the deletion of functionality, which overfits to the
given specification. CPR can leverage its ranking capabili-
ties to identify the correct patch.

5.2 Existing Program Repair Tools

CPR can be leveraged for constraint-driven repair, i.e., hav-
ing just a few or no test cases, but a constraint, which can be
used as a repair oracle. For this purpose, we focus on the com-
parison with the most recently proposed constraint-driven
repair technique ExtractFix [8] and their corresponding
data-set. On the data-set of ExtractFix, CPR generates the
correct patch in top position for 7/30 subjects and in second
position in 4/30 subjects, as shown in Table 1.

As already mentioned, ExtractFix uses a crash-free con-
straint as the guiding oracle to generate a patch. Extract-
Fix computes the weakest precondition for the patch by
back propagating the crash-free constraint. Conceptually,
ExtractFix explores the patch space using the crash-free
constraint to determine the patch and then evaluates the ef-
fectiveness of the patch for the input space. In contrast, CPR
can use the same crash-free constraint but explores the input
space to determine the invalid values that can violate the
crash-free constraint, and use this information to evaluate
the effectiveness of the patch. The tool ExtractFix is also
compared with conventional test-based repair tools Prophet
and Angelix in [8].
Table 2 from [8] shows the results on the same security

vulnerability benchmark. Column #𝑉𝑢𝑙 shows the count of
vulnerabilities for each subject, which is in total 30. The
columns Generated Patches and Correct Patches show the
number of vulnerabilities, for which the techniques gen-
erated plausible and correct patches (i.e., syntactically or
semantically equivalent to the developer patch).

Overall, we note that ExtractFix is a customized tool for
repairing security vulnerabilities which hooks into specific
sanitizers, whereas ours is a general-purpose program repair
machinery. Table 3 shows the results from test-based repair
of Manybugs subjects [13] that require a general-purpose
repair technique; these cannot be handled by ExtractFix.
CPR can generate correct patches for all of them, by lever-
aging the failing tests to drive concolic path exploration. In
future, it is also possible to experimentally evaluate the usage
of passing tests to drive concolic exploration in CPR.

Since Prophet and Angelix are test-driven general repair
techniques, in addition to the failing test case, available devel-
oper test-suite are provided to both Angelix and Prophet
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Table 4. Performance of CPR with regard to patch pool reduction ratio and input space reduction ratio for the repair of logical
errors in SV-COMP. The experiments have been executed with timeout of 1 hour.

ID Subject
Components CPR

General Custom |𝑃𝐼𝑛𝑖𝑡 | |𝑃𝐹𝑖𝑛𝑎𝑙 | Ratio 𝜙𝐸 𝜙𝑆 Rank

1 loops/insertion_sort 4 3 260 132 49% 120 0 1

2 loops/linear_search 4 3 260 127 51% 109 17 1

3 loops/string 2 3 676 676 0% 37 0 2

4 loops/eureka 5 3 29 29 0% 107 27 3

5 loops-crafted-1/nested_delay 4 3 260 117 55% 9 8 4

6 loops/sum 4 3 260 236 9% 116 0 1

7 array-examples/bubble_sort 4 3 260 144 45% 34 19 2

8 array-examples/unique_list 1 2 5 4 20% 134 11 1

9 array-examples/standard_run 4 3 260 126 52% 68 41 1

10 recursive/addition 5 3 38 14 63% 138 1 4

(the programs in Table 2 come with test-suites from devel-
opers). ExtractFix and CPR do not need additional tests.

Angelix and Prophet. In contrast to our approach, Ex-
tractFix is driven only by the initial test case whileAngelix
and Prophet both uses additional developer test cases. De-
spite being provided additional test cases, both Angelix and
Prophet cannot produce many correct patches. Prophet
can only identify correct patches for 2 of the vulnerabilities
and Angelix is not able to correctly fix any of them, as the
top-ranked patch. Most of the correct patches represent up-
dated or inserted conditions, which are in the search space of
both techniques. However, as mentioned in ExtractFix [8],
the developer-provided tests for this benchmark are very
limited, which may lead to overfitting patches. Therefore,
Angelix cannot generate a rich specification for synthesis,
and Prophet suffers from a large search space. Prophet and
Angelix have the potential to repair more vulnerabilities
if more tests are available, and if more of their ranking is
examined, i.e., beyond the top-ranked patch.

Finding 3: Experimental evidence shows CPR can be
used as test-guided general-purpose repair tool, as well as
a tool for repairing security vulnerabilities.

5.3 Fixing Logical Errors

We further evaluate CPR on its capability to repair logical
errors of a program provided as assertions or rich-text com-
ments on the source code. Therefore, we investigate the
possibility of repairing programs beyond simple oracles such
as crash-freedom. We evaluate the efficacy of CPR in fixing
logical errors on subjects from the SV-COMP benchmark,
which is popular for automated program verification and
provides such program specifications. As mentioned earlier,
for our chosen SV-COMP programs the developer provided
patch is available in the form of another program (so we
can check whether CPR produced the correct patch), and

the developer provided patch is not merely a change of the
assertion but involves a change in the functionality.

Table 4 presents the results. The meaning of the columns
is similar to Table 1 in Section 5.1. For all subjects, CPR
can identify correct patches in the patch pool. Furthermore,
due to the efficient space exploration, CPR achieves a patch
space reduction ratio of up to 63 %. Only for one subject
(𝑙𝑜𝑜𝑝𝑠/𝑒𝑢𝑟𝑒𝑘𝑎) CPRwas not able to produce any patch space
reduction. The reason is that the assertion in the program
was not strong enough to identify violations. However, CPR
still has been able to rank the correct patch on position 3.
In fact, for all of the 10 subjects CPR can rank the correct
patches in the Top-10 and for five of them as Top-1.

Finding 4: CPR effectively repairs logical errors in SV-
COMP, and ranks correct patches in Top-10 for all pro-
grams in our experiments.

5.4 Internal Evaluation of CPR Components

Parameter Range. As mentioned in our Experimental

Setup section, the parameter for the abstract patches in our
experiments are limited within the range [-10, 10]. We con-
ducted additional experiments to show the effects of other
ranges. The results in Table 5 show that the number of initial
patch candidates (|𝑃𝐼𝑛𝑖𝑡 |) is growing with a larger parameter
range. The effort for the initial patch pool construction is not
largely affected because the concrete values for the param-
eters are not enumerated but abstracted in the range. The
ranking of the correct patch itself is not necessarily affected
as our experiments show. For Jasper/CVE-2016-8691 the cor-
rect patch is correctly identified after the first iteration. For
Libtiff/CVE-2016-10094 the parameter range needs to include
the constant 4 so that CPR can identify the correct patch.
With a too narrow range like [−1, 1] CPR cannot identify
the correct patch.

Input Generation. The additional generation of inputs
is an essential part of our path exploration phase (see Section
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Table 5. Impact of different parameter ranges on the repair success of CPR. Benchmark: selection of ExtractFix. The
experiments have been executed with timeout of 1 hour.

Buggy Program Parameter CPR

Project Bug ID Range #𝐼𝑡𝑒𝑟 . 𝜙𝐸 |𝑃𝐼𝑛𝑖𝑡 | |𝑃𝐹𝑖𝑛𝑎𝑙 | Ratio Rank

Jasper CVE-2016-8691

[-1, 1] 70 68 44 15 66% 1

[-10, 10] 70 69 260 96 63% 1

[-100, 100] 70 79 2420 907 63% 1

Libtiff CVE-2016-10094

[-1, 1] 35 34 22 10 55% -

[-10, 10] 35 34 130 77 41% 6

[-100, 100] 27 26 1210 887 27% 6

Table 6. Average ratio of the number of generated inputs
that hit the patch and bug location.

Benchmark Avg. PatchLoc Hit Avg. BugLoc Hit

ExtractFix 74.36% 40.23%

ManyBugs 57.14% 65.15%

SV-COMP 76.33% 79.08%

3.4). Our search heuristics drive the input generation to the
bug location. Hitting the bug location is crucial, not only to
rule out patches, but also to improve the patch ranking. Table
6 shows how often our generated inputs hit the patch and bug
location on average. The results show that to a large extent
our generated inputs do exercise the patch and bug location.
However, for the ExtractFix benchmark hit count for the
bug location is comparably low with 40.23%. In contrast to
the SV-COMP subjects, where the inputs represent primitive
data types, the ExtractFix subjects require complex input
structures like images or XML files. Our input generation
does not use an application-specific input grammar, which
could lead to a significant improvement.

Patch Ranking. The changes in our ranking are based
on whether the generated inputs exercise the patch and bug
location under the specific patches. For many subjects the
ranking of the correct patch is already very high after the first
few iterations, and is not changed later. Our path exploration
starts with inputs that exercise paths that are close to the path
of the failing test case: hitting the bug location is more likely
for those inputs. In some subjects, the ranking improved
gradually over the repair time, e.g. Coreutils/Bugzilla 26545
starts with the correct patch ranked at position 104 and it
improves to 25 (after 65𝑡ℎ iteration). Change in ranking can
happen due to patch candidates violating specification in the
new paths.

6 Related Work

Symbolic Execution. Symbolic execution, the execution
of a program with symbolic or unknown inputs, was sug-
gested in 1976 as a mechanism for both program verification
and testing [16]. In the subsequent decades, decision pro-
cedures for quantifier-free first order logic formula with

symbols drawn from various background theories, or Satis-
fiability Modulo Theory (SMT) solvers, have matured. The
maturity of back-end SMT solvers has further enabled the
development of symbolic execution engines such as KLEE
[4] and SAGE [10]. These symbolic execution engines are pri-
marily used for path coverage based software testing. How-
ever, the efficient solving of constraints in general remains
a challenge for symbolic execution. Concolic execution [9]
represents a significant development in this regard. In con-
colic execution, a given concrete test input is executed but
the symbolic formula documenting the path condition is
mutated to generate subsequent test inputs for exploration.
Since a concrete input is available, the path condition can be
simplified as needed. In the recent past, symbolic execution
has also been suggested as a specification inference mecha-
nism for program repair (e.g., [25]), and this suffers from the
path explosion problem of symbolic execution. Furthermore,
the repair is with respect to a given set of tests, leading to
potential overfitting. Our work on concolic program repair
adapts concolic path exploration to generate tests and reduce
candidate patches simultaneously.

Program Repair. Automated program repair [24] is an
emerging technology, which seeks to automatically rectify
program errors, typically as observed via failure of tests or
assertions. Common techniques for automated repair include
program mutations via genetic search [18], specification in-
ference via symbolic execution or SAT solving [12, 23, 25],
repair via abstract interpretation [19], code transplantation
[28], and learning and prioritization of patch candidates and
fix patterns [2, 20, 21, 27]. Our work is more related to speci-
fication inference based program repair. These approaches
employ symbolic execution to generate a repair constraint,
which the buggy program needs to satisfy to pass a given
test-suite. Solutions to the repair constraint, in the form of
patch expressions, are then obtained using program syn-
thesis. Most of the existing works on test-based program
repair suffer from test data overfitting, where the patched
program fails for tests outside the given test-suite [14, 26].
To alleviate overfitting, one may use more general oracles
beyond tests [6], or may generate tests to rule out overfit-
ting patches [7]. Certain works develop customized repair
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strategies for fixing security vulnerabilities by either em-
ploying heuristics [15], by applying fix templates that avoid
specific errors [29], or by hooking up with sanitizers [8]. In
contrast, ours is a general purpose repair engine, though we
have also shown its efficacy on the dataset of [8]. Our work
generates tests from an initial seed test by modifying the
path condition, in the style of concolic execution. However,
the path of a test contains yet to be inserted patches. Hence
the path exploration in concolic execution is accompanied
by a systematic reduction of the pool of patch candidates in
our approach. Finally, counterexample-guided inductive syn-
thesis (CEGIS) [1, 31, 32] represents a synthesis technique,
in which the desired solution is iteratively refined based
on a loop between a generator and a verifier. Our approach
also leverages counterexamples to reduce the patch space,
and has some relationship to CEGIS. In our work, we use
a counterexample-guided refinement of the parameter con-
straints of the available patches. The work of [17] performs
concolic execution on specific tests to check whether a patch
candidate meets a specification; if it does not, the resultant
constraint is added for the generation of future repair candi-
dates. In contrast, CPR works on abstract patch candidates
and refines them. Furthermore, [17] terminates as soon as
there is no counterexample anymore, which again can lead
to functionality deleting patches.

7 Discussion

Limitations and Extensions. In the formulation of our
repair algorithm, as well as in our experiments, we assume
that the correct patch is included in the initial patch pool
𝑃 . This is only the case, if our synthesis language/grammar
covers this patch. In general, this assumption might not hold.
In such a case, our ranking allows us to still present the most
promising patches, which can only repair the program for a
portion of the input space. Our approach currently focuses
on repairing boolean and integer expressions. In future we
want to extend our work to repair complete assignments as
well as side-effect free function calls.

Inputs to our method. Our approach requires some in-
gredients that differs from existing program repair strate-
gies: the user-provided (partial) specification and the fault
locations (see the input description in Section 3.2). The spec-
ification allows us to reason about many program inputs
going beyond a test suite. Other techniques rely on bug tem-
plates, sanitizers, existing test cases, or probabilistic models
to reason about the correct behavior. Our specifications are
lightweight, and our experiments show that even simple
specifications can be used to rule out overfitting patches in
an incremental manner. The fault location information is an
input to our approach, which can be derived from statistical
fault localization. Test-based repair tools may use a set of
fault locations, while our approach currently works with one
fault location at a time.

8 Perspective

A key difficulty in program repair (and program debugging)
comes from the lack of complete specification of intended
program behavior. Since a detailed specification of correct
behavior is usually not available, existing program repair
techniques are guided by tests. This inevitably leads to the
pernicious problem of patch overfitting [26], where an auto-
matically generated (plausible) patch may be perfectly fitted
to pass a given set of tests, but not other tests. Herein lies the
dilemma of program repair techniques today: how to gener-
ate a patch which works for a large set of tests, even if very
few of them may be available to guide the patch generation?
In this paper, we take a fresh look at the problem of pro-

gram repair. We note that the patches produced by current
program repair techniques may not even ensure very basic
notions of correctness such as crash-freedom, or assertions,
even when such simple specifications are readily available.
Our solution for alleviating the patch overfitting problem,
is to automatically and systematically generate tests. Our
concolic exploration identifies overfitting patches that are
plausible but do not satisfy the specification for at least one
of the generated inputs. Furthermore, by removing incorrect
but plausible patches we shrink the patch space and increase
the ranking of the correct patch, alleviating patch overfitting.
Our CPR tool also applies to test-suite based repair, by using
failing / passing tests to drive concolic path exploration.

Technically, our approach suggests a dual use of symbolic
execution for search-based test generation [4, 9], and for
specification inference based program repair [23, 25]. One
could potentially replace symbolic execution with other au-
tomated test generation techniques in our method, such as
recent systematic versions of greybox fuzzing [3].
Conceptually, we present a viewpoint of łgradual cor-

rectnessž to alleviate patch overfitting, where systematic co-
exploration of the input space and patch space, leads to less
over-fitting patches, over time. This notion of gradual cor-
rectness, as proposed for program repair in CPR, can also be
meaningful for program synthesis, recovery and transplan-
tation. Gradual correctness can thus help us produce high
quality automatically constructed code.

Our open-source tool and all data are publicly accessible:

• https://cpr-tool.github.io

• https://doi.org/10.5281/zenodo.4668317
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