
SCIENCE CHINA
Information Sciences

. PERSPECTIVE .

Automated Program Repair: A Step towards
Software Automation

Abhik ROYCHOUDHURY1* & Yingfei XIONG2,3*

1School of Computing, National University of Singapore, Singapore 117417, Republic of Singapore;
2Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing 100871, China;

3Institute of Software, Peking University, Beijing 100871, China

Citation Abhik Roychoudhury and Yingfei Xiong. Automated Program Repair: A Step towards Software

Automation. Sci China Inf Sci, for review

1 Introduction

Programming is seen as a problem solving activ-
ity, which combines precision with creativity. The
program needs to be precise at least to the extent
of passing given tests. At the same time, the pro-
grammer employs copious creativity in terms of
problem solving strategies, algorithm design, data
structure choice, or even choice of which libraries
to invoke. The recent growth of machine learn-
ing techniques and the possibility of applying such
techniques to large software repositories raise the
question to what extent the various software en-
gineering processes can be automated, which is
known as the software automation problem [1].

It is known that for many software engineering
projects up to 80% of the time is spent in debug-
ging and fixing errors. This is an unfortunate nar-
rative on the state-of-practice in software develop-
ment, prompting practitioners to label the situa-
tion as a legacy crisis a decade back [2]. Since then,
the scale of software has increased, and the use
of third party code, or geographically distributed
software development has also dramatically in-
creased. It is indeed not an exaggeration to say
that today’s software systems are often not mono-
lithic. Instead, they are assembled out of software
components written by various geographically dis-
tributed teams, legacy software components, and
third party software components purchased or ac-
quired for free. In the absence of strong oversight,
the challenges of debugging and fixing are exacer-

bated. This makes the prospect of automated pro-
gram repair particularly attractive in future soft-
ware development.

Classic automated repair techniques aim to
modify a buggy program to meet a given correct-
ness criterion; the correctness criterion is often
given as a test-suite. Classic program repair typi-
cally proceed with three steps: (i) fix localization
(ii) fix representation and (iii) fix selection, as de-
tailed below.

• In the first step, fix localization attempts to
find program locations where the code may be
changed to achieve the fix.

• In the second step, a space of candidate
patches is represented. The representation is often
based on meta-level techniques, such as program
transformation operations, and/or grammars to
constrain the newly generated code pieces.

• In the third step, the repair system selects a
candidate patch from the space to satisfy the cor-
rectness requirement. Typical methods to perform
the selection include heuristic search [3] and pro-
gram synthesis with symbolic execution [4, 5].

In fixing program errors, a key issue is the enun-
ciation of the correctness requirement. Since for-
mal specifications of intended program behavior
are typically unavailable, the correctness criteria
driving program repair are given by test-suites.
This presents a challenge for repair approaches
since the generated patches can break tests not
appearing in the given test-suite, or even intro-

* Corresponding author (email: abhik@comp.nus.edu.sg, xiongyf@pku.edu.cn)



Roychoudhury and Xiong, et al. Sci China Inf Sci 2

duce new errors in the un-tested or under-tested
program functionality. This problem is known as
“weak specification”, “weak test-suites”, or “over-
fitting”, and is often considered as one of the most
important challenges faced by the program repair
research [6, 7].

In this article we discuss two possible directions
to address the weak specification problem.

2 Repair with a Reference Imple-
mentation

Though a formal specification of program behav-
ior is often unavailable, in many situations there
exists a reference implementation of the program
to demonstrate the desired behavior. In the case
of an industrial standard for a program or a pro-
tocol, the organization responsible for the stan-
dard usually publishes a reference implementa-
tion to show how the standard should be imple-
mented, and other companies tries to be compat-
ible with the reference implementation. For ex-
ample, OpenJDK is the reference implementation
for the Java programming language, and Oracle
JDK and Jikes RVM are compatible with Open-
JDK. Similarly, reference implementations usually
exist for decoders/encoders for multimedia files,
network protocols, encryption algorithms, etc.

Different from a formal specification, a refer-
ence implementation specifies full execution be-
havior. Essentially the reference implementation
acts as an informal specification of intended be-
havior. The program under repair does not have
to be repaired to be fully identical to the reference
implementation, but only the observable behavior
should be equivalent after repair. To capture such
behavior, one possibility is to generate test cases
from the reference implementation. One could em-
ploy automated test generation methods such as
symbolic execution to automatically generate test
inputs. Dynamic symbolic execution engines such
as KLEE [8] can compute the set of inputs driv-
ing execution along a program path as a logical
formula called a path condition. Subsequently the
path condition for a random input can be mutated
to drive execution along other paths and thereby
generate inputs traversing these paths. Symbolic
execution can be used to systematically generate
a comprehensive test-suite from the reference im-
plementation, driving repair.

However, symbolic execution engines leverage
constraint solving and SMT solvers as the back-
end, which leads to scalability challenges for sym-
bolic execution. Several possibilities exist to ad-
dress this problem. First, one can guide symbolic

execution to reach specific targets as embodied by
efforts such as [9]. This can help generate test
cases stressing un-tested functionality and subse-
quently these tests can be used to guide program
repair. Second, systematic grey-box fuzzing meth-
ods which attempt to achieve enhanced path cov-
erage such as AFLFast [10] can be used. Grey-box
fuzzing methods employ compile-time instrumen-
tation followed by run-time detection of enhanced
coverage of control flow artifacts. With the recent
push on making grey-box fuzzing methods system-
atic, there exists an opportunity to generate abun-
dant test-data for driving program repair. Last
but not the least, symbolic execution techniques
specifically designed for exposing the behavioral
difference between two programs could be devel-
oped, such as the one by Mechtaev et al. [11].

3 Repair with Big Data

While obtaining the full specification of the pro-
gram is difficult, estimating the likelihood of cer-
tain patches being correct in the represented space
may be much easier for many types of bugs. For
example, given a bug with an unexpected NullEx-
ception, adding an if check to guard the statement
is much more likely to be correct than deleting the
respective statement. Therefore, another possible
direction is try to estimate the likelihood of the
patches in the represented space, and select the
most likely patch for the current context.

Towards this direction, recent program repair
techniques often add an additional step compared
with the classic techniques: fix prioritization. This
step estimates the likelihood of the patches and
prioritizes them. After adding this step, the goal of
the fix selection step is to select the highest ranked
patch that satisfies the (possibly weak) specifica-
tion, such as passing a given test-suite.

Some existing techniques try to employ heuris-
tic rules to rank the patches. These rules in-
clude minimizing the changes made by the patch
with some measurement of change distance [12],
anti-patterns [13], or checking if the execution of
the tests change under some expected directions.
However, heuristic rules are manually constructed
by researchers, and by nature cannot cover all sit-
uations, especially when the probabilities of the
patches depend on the local context of the project
and the specific types of the bugs.

The availability of software big-data presents a
unique opportunity for this problem. It remains an
open question whether we can get useful guidance
to estimate the likelihood of patches and correctly
prioritize them via mining software big-data. By



Roychoudhury and Xiong, et al. Sci China Inf Sci 3

collecting a corpus of patches and training over
the corpus, we may build a model to estimate the
likelihood of patches. Identifying the most-likely
patches with this model, we may repair bugs with
a high probability of correctness. in this research
direction, many challenges exist, and yet there are
many opportunities to address such challenges.

First, it is challenging to collect high-quality
training data (patches for training). While patches
can be found in the commit history of software
projects, a commit may also add new functional-
ities, refactor code, or mix several purposes. The
current approaches [14] use heuristics to identify
bug-fixing commits, such as the number of mod-
ified code lines or keywords in commit message,
but these heuristics all have limited precision and
recall. A possible direction, as studied in a recent
work [15], is to watch the development process and
automatically identifies commits between a failing
build and a passing build. Yet future work is still
needed to identify which part of a big commit re-
pairs the bug. Another opportunity is to learn
from more sources beyond just patches. For ex-
ample, existing approaches have utilized program
source code [16] and QA web sites [17]. A remain-
ing question is how to combine different sources to
achieve the best performance.

Second, it is challenging to build a learning
model for estimating the likelihood of patches.
Existing approaches have applied classic machine
learning models as well as deep learning to model
the code [18, 19]. However, we still lack under-
standing on how different models perform at dif-
ferent situations. Furthermore, these models usu-
ally treat the likelihood estimation procedure as a
black box, and cannot utilize the domain knowl-
edge of the program, such as the semantics. These
issues remain to be explored in future.

Third, it is challenging to identify the most
probable patch that meets the weak specifica-
tion. Though efficient methods exist to quickly
identify patches passing the tests in a prioritized
space [20, 21], it is often impossible to enumerate
all possible patches and sort them by priority. Re-
cent work [18] has proposed to decompose a patch
into a series of search steps, and instead of esti-
mating the likelihood of patches, the likelihood of
choices at each step are estimated. Future work
needs to be done to understand how this method
can be combined with semantic repair [4].

Acknowledgements This research was partially sup-

ported by a grant from the National Research Founda-

tion, Prime Ministers Office, Singapore under its National

Cybersecurity R& D Program (TSUNAMi project, No.

NRF2014NCR-NCR001-21) and administered by the Na-

tional Cybersecurity R&D Directorate, the National Key

Research and Development Program of China under Grant

No.2017YFB1001803, and National Natural Science Foun-

dation of China under Grant Nos. 61672045 and 61529201.

References

1 Mei H and Zhang L. Can big data bring a break-
through for software automation? Science China In-
formation Sciences, 2018, 61:056101.

2 Seacord R, Plakosh D, Lewis G. Modernizing Legacy
Systems: Software Technologies, Engineering Pro-
cesses and Business Practices. Addison Wesley, 2003.

3 Weimer W, Nguyen T V, Goues C L, et al. Automat-
ically finding patches using genetic programming. In
ICSE, 2009.

4 Nguyen H D T, Qi D W, Roychoudhury A, et al. Sem-
Fix: Program Repair via Semantic Analysis. In ICSE,
2013.

5 Mechtaev S, Griggio A, Cimatti A, et al. Symbolic ex-
ecution with existential second-order constraints. In
ESEC/FSE, 2018.

6 Qi Z C, Long F, Achour S, et al. An analysis of patch
plausibility and correctness for generate-and-validate
patch generation systems. In ISSTA, 2015.

7 Smith E K, Barr E, Goues C L, et al. Is the cure
worse than the disease? overfitting in automated pro-
gram repair. In FSE, 2015.

8 Cadar C, Dunbar D, Engler D. KLEE: Unassisted and
automatic generation of high-coverage tests for com-
plex systems programs. In OSDI, 2008.

9 Marinescu P, Cadar C. Katch: High-coverage testing
of software patches. In ESEC-FSE, 2019.

10 Böhme M, Pham V T, Roychoudhury A. Coverage
based greybox fuzzing as a markov chain. In CCS,
2016.

11 Mechtaev S, Nguyen M D, Noller Y, et al. Semantic
program repair using a reference implementation. In
ICSE, 2018.

12 Mechtaev S, Yi J, Roychoudhury A. Directfix: Look-
ing for simple program repairs. In ICSE, 2015.

13 Tan S H, Yoshida H, Prasad M, et al. Anti-patterns
in search-based program repair. In FSE, 2016.

14 Just R, Jalali D, Ernst M D. Defects4j: a database of
existing faults to enable controlled testing studies for
java programs. In ISSTA, pages 437–440, 2014.

15 Dmeiri N, Tomassi D, Wang Y, et al. Bugswarm: Min-
ing and continuously growing a dataset of reproducible
failures and fixes. In ICSE, 2019.

16 Xiong Y F, Wang J, Yan R F, et al. Precise condition
synthesis for program repair. In ICSE, pages 416–426,
2017.

17 Gao Q, Zhang H S, Wang J, et al. Fixing recurring
crash bugs via analyzing q&a sites (T). In ASE, 2015.

18 Xiong Y, Wang B, Fu G R, et al. Learning to synthe-
size. In GI, pages 37–44, 2018.

19 Gupta R, Pal S, Kanade A, Shevade S. DeepFix: Fix-
ing common C language errors by deep learning. In
AAAI, 2017.

20 Mechtaev S, Gao X, Tan S H, et al. Test-equivalence
analysis for automatic patch generation. ACM Trans.
Softw. Eng. Methodol., 27(4):15:1–15:37, 2018.

21 Wang B, Xiong Y F, Shi Y Q W, et al. Faster muta-
tion analysis via equivalence modulo states. In ISSTA,
pages 295–306, 2017.


	Introduction
	Repair with a Reference Implementation
	Repair with Big Data

