
2812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

Symbolic Verification of Cache
Side-Channel Freedom

Sudipta Chattopadhyay and Abhik Roychoudhury

Abstract—Cache timing attacks allow third-party observers
to retrieve sensitive information from program executions. But,
is it possible to automatically check the vulnerability of a
program against cache timing attacks and then, automatically
shield program executions against these attacks? For a given
program, a cache configuration and an attack model, our
CACHEFIX framework either verifies the cache side-channel
freedom of the program or synthesizes a series of patches to
ensure cache side-channel freedom during program execution.
At the core of our framework is a novel symbolic verifica-
tion technique based on automated abstraction refinement of
cache semantics. The power of such a framework allows sym-
bolic reasoning over counterexample traces and combines it with
runtime monitoring for eliminating cache side channels during
program execution. Our evaluation with routines from OpenSSL,
libfixedtimefixedpoint, GDK, and FourQlib libraries
reveals that our CACHEFIX approach (dis)proves cache side-
channel freedom within an average of 75 s. In nearly all test cases,
CACHEFIX synthesizes all patches within 20 min to ensure cache
side-channel freedom of the respective routines during execution.

Index Terms—Computational and artificial intelligence, com-
puter security, formal verification, software engineering.

I. INTRODUCTION

CACHE timing attacks [23], [24] are among the most criti-
cal side-channel attacks [25] that retrieve sensitive infor-

mation from program executions. Recent cache attacks [31]
further show that cache side-channel attacks are practical even
in commodity embedded processors, such as in ARM-based
embedded platforms [31]. The basic idea of a cache timing
attack is to observe the timing of cache hits and misses for a
program execution. Subsequently, the attacker use such timing
to guess the sensitive input via which the respective program
was activated.

Given the practical relevance, it is crucial to verify whether
a given program (e.g., an encryption routine) satisfies cache

Manuscript received April 3, 2018; revised June 8, 2018; accepted July
2, 2018. Date of current version October 18, 2018. This work was sup-
ported in part by SUTD under Grant SRIS17123, and in part by the National
Research Foundation, Prime Minister’s Office, Singapore, under Its National
Cybersecurity Research and Development Program, administered by the
National Cybersecurity Research and Development Directorate under Award
NRF2014NCR-NCR001-21. (Corresponding author: Sudipta Chattopadhyay.)

S. Chattopadhyay is with the Information Systems Technology and
Design, Singapore University of Technology and Design, Singapore (e-mail:
sudipta_chattopadhyay@sutd.edu.sg).

A. Roychoudhury is with the School of Computing, National University of
Singapore, Singapore (e-mail: abhik@comp.nus.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2858402

side-channel freedom, meaning the program is not vulnerable
to cache timing attacks. However, verification of such a prop-
erty is challenging for several reasons. First, the verification
of cache side-channel freedom requires a systematic integra-
tion of cache semantics within the program semantics. This,
in turn, is based on the derivation of a suitable abstraction of
cache semantics. Our proposed CACHEFIX approach automat-
ically builds such an abstraction and systematically refines it
until a proof of cache side-channel freedom is obtained or a
real (i.e., nonspurious) counterexample is produced. Second,
proving cache side-channel freedom of a program requires
reasoning over multiple execution traces. To this end, we
propose a symbolic verification technique within our CACHE-
FIX framework. Concretely, we capture the cache behavior
of a program via symbolic constraints over program inputs.
Then, we leverage recent advances on satisfiability modulo
theory (SMT) and constraint solving to (dis)prove the cache
side-channel freedom of a program.

An appealing feature of our CACHEFIX approach is to
employ symbolic reasoning over the real counterexample
traces. To this end, we systematically explore real counterex-
ample traces and apply such symbolic reasoning to synthesize
patches. Each synthesized patch captures a symbolic condition
ν on input variables and a sequence of actions that needs to be
applied when the program is processed with inputs satisfying
ν. The application of a patch is guaranteed to reduce the chan-
nel capacity of the program under inspection. Moreover, if our
checker terminates, then our CACHEFIX approach guarantees
to synthesize all patches that completely shields the program
against cache timing attacks [7], [13]. Intuitively, our CACHE-
FIX approach can start with a program P vulnerable to cache
timing attack. Then, it leverages a systematic combination of
symbolic verification and runtime monitoring to execute P
with cache side-channel freedom.

It is the precision and the novel mechanism implemented
within CACHEFIX that set us apart from the state of the
art. Existing works on analyzing cache side channels [14],
[22], [30] are incapable to automatically build and refine
abstractions for cache semantics. Besides, these works are
not directly applicable when the underlying program does
not satisfy cache side-channel freedom. Given an arbitrary
program, our CACHEFIX approach generates proofs of its
cache side-channel freedom or generates input(s) that manifest
the violation of cache side-channel freedom. Moreover, our
symbolic reasoning framework provides capabilities to sys-
tematically synthesize patches and completely eliminate cache
side channels during program execution.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4843-5391


CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2813

We organize the remainder of this paper as follows. After
providing an overview of CACHEFIX (Section II), we make
the following contributions.

1) We present CACHEFIX, a novel symbolic verification
framework to check the cache side-channel freedom of
an arbitrary program. To the best of our knowledge,
this is the first application of automated abstraction
refinement and symbolic verification to check the cache
behavior of a program.

2) We instantiate our CACHEFIX approach with direct-
mapped caches, as well as with set-associative caches
with least recently used (LRU) and first-in-first-
out (FIFO) policy (Section IV-C). In Section IV-D,
we show the generalization of our CACHEFIX

approach over timing-based attacks [13] and trace-based
attacks [7].

3) We discuss a systematic exploration of counterexamples
to synthesize patches and to shield program execu-
tions against cache timing attacks (Section V). We
provide theoretical guarantees that such patch synthe-
sis converges toward completely eliminating cache side
channels during execution.

4) We provide an implementation of CACHEFIX and
evaluate it with 25 routines from OpenSSL, GDK,
FourQlib, and libfixedtimefixedpoint
libraries. Our evaluation reveals that CACHEFIX can
establish proof or generate nonspurious counterexam-
ples within 75 s on average. Besides, in most cases,
CACHEFIX generated all patches within 20 min to
ensure cache side-channel freedom during execution.
Our implementation and all experimental data are
publicly available.

II. OVERVIEW

In this section, we demonstrate the general insight behind
our approach through examples. We consider the simple code
fragments in Fig. 1(a) and (b), where key is a sensitive input.
In this example, we will assume a direct-mapped cache having
a size of 512 bytes. For the sake of brevity, we also assume
that key is stored in a register and accessing key does not
involve the cache. The mapping of different program variables
into the cache appears in Fig. 1(c). Finally, we assume the
presence of an attacker who observes the number of cache
misses in the victim program. For such an attacker, examples
in Fig. 1(a) and (b) satisfy cache side-channel freedom if and
only if the number of cache misses suffered is independent
of key.

Why Symbolic Verification?: Cache side-channel freedom
of a program critically depends on how it interacts with the
cache. We make an observation that the program cache behav-
ior can be formulated via a well-defined set of predicates. To
this end, let us assume set(ri) captures the cache set accessed
by instruction ri and tag(ri) captures the accessed cache tag by
the same instruction. Consider the instruction r3 in Fig. 1(a).
We introduce a symbolic variable miss3, which we intend
to set to one if r3 suffers a cache miss and to set to zero
otherwise. We observe that miss3 depends on the following

logical condition:

�(r3) ≡ ¬
(

0 ≤ key ≤ 127 ∧ ρset
13 ∧ ¬ρtag

13

)

∧¬
(

key ≥ 128 ∧ ρset
23 ∧ ¬ρtag

23

)
(1)

where ρ
tag
ji ≡ (tag(rj) �= tag(ri)) and ρset

ji ≡
(set(rj) = set(ri)). Intuitively, �(r3) checks whether both r1
and r2, if executed, load different memory blocks than the one
accessed by r3. Therefore, if �(r3) is evaluated to true, then
miss3 = 1 (i.e., r3 suffers a cache miss) and miss3 = 0 (i.e., r3
is a cache hit), otherwise. Formally, we set the cache behavior
of r3 as follows:

�(r3) ⇔ (miss3 = 1); ¬�(r3) ⇔ (miss3 = 0). (2)

The style of encoding, as shown in (2), facilitates the usage
of state-of-the-art solvers for verifying cache side-channel
freedom.

In general, we note that the cache behavior of the program
in Fig. 1(a), i.e., the cache behaviors of r1, . . . , r4; can be for-
mulated accurately via the following set of predicates related
to cache semantics:

Predcache =
{
ρset

ji ∪ ρtag
ji | 1 ≤ j < i ≤ 4

}
. (3)

The size of Predcache depends on the number of memory-
related instructions. However, |Predcache| does not vary with
the cache size.

Key Insight in Abstraction Refinement: If the attacker
observes the number of cache misses, then the cache side-
channel freedom holds for the program in Fig. 1(a) when
all feasible traces exhibit the same number of cache misses.
Hence, such a property ϕ can be formulated as the nonexis-
tence of two traces tr1 and tr2 as follows:

ϕ ≡� ∃tr1, � ∃tr2 s.t.

(
4∑

i=1

miss(tr1)
i �=

4∑
i=1

miss(tr2)
i

)
(4)

where miss(tr)i captures the valuation of missi in trace tr.
Our key insight is that to establish a proof of ϕ (or its lack

thereof), it is not necessary to accurately track the values of
all predicates in Predcache [see (3)]. In other words, even if
some predicates in Predcache have unknown values, it might
be possible to (dis)prove ϕ. This phenomenon occurs due to
the inherent design principle of caches and we exploit this in
our abstraction refinement process.

To realize our hypothesis, we first start with an ini-
tial set of predicates (possibly empty) whose values are
accurately tracked during verification. In this example, let
us assume that we start with an initial set of predicates
Predinit = {ρset

13 , ρ
tag
13 , ρ

set
23 , ρ

tag
23 }. The rest of the predicates in

Predcache\Predinit are set to unknown value. With this config-
uration at hand, CACHEFIX returns counterexample traces tr1
and tr2 [see (4)] to reflect that ϕ does not hold for the program
in Fig. 1(a). In particular, the following traces are returned:

tr1 ≡ 〈miss1 = miss3 = 1, miss2 = miss4 = 0〉
tr2 ≡ 〈miss1 = 0, miss2 = miss3 = miss4 = 1〉.

Given tr1 and tr2, we check whether any of them are
spurious. To this end, we reconstruct the logical condition



2814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a) (b) (c) (d)

Fig. 1. Code fragment (a) satisfying cache side-channel freedom and (b) violating cache side-channel freedom. (c) Mapping of variables into the cache.
(d) Runtime actions and the execution order for the program in Fig. 1(b) to ensure cache side-channel freedom.

[see (2)] that led to the specific valuations of missi vari-
ables in a trace. For instance in trace tr2, such a logical
condition is captured via ¬�(r1) ∧∧i∈[2,4] �(ri). It turns out
that ¬�(r1)∧∧i∈[2,4] �(ri) is unsatisfiable, making tr2 spuri-
ous. This happened due to the incompleteness in tracking the
predicates Predcache.

To systematically augment the set of predicates and rerun
our verification process, we extract the unsatisfiable core from
¬�(r1) ∧ ∧

i∈[2,4] �(ri). Specifically, we get the following
unsatisfiable core:

U ≡ ¬ρset
34 ∨ ρtag

34 . (5)

Intuitively, with the initial abstraction Predinit, our checker
CACHEFIX failed to observe that r3 and r4 access the same
memory block, hence, U is unsatisfiable. We then augment our
initial set of predicates with the predicates in U and therefore,
refining the abstraction as follows:

Predcur =
{
ρset

13 , ρ
tag
13 , ρ

set
23 , ρ

tag
23 , ρ

set
34 , ρ

tag
34

}
.

CACHEFIX successfully verifies the cache side-channel
freedom of the program in Fig. 1(a) with the set of predicates
Predcur. We note that the predicates in Predcache \Predcur �= φ.
In particular, we still have unknown values assigned to the
following set of predicates:

Predunknown =
{
ρset

12 , ρ
tag
12 , ρ

set
14 , ρ

tag
14 , ρ

set
24 , ρ

tag
24

}
.

Therefore, it was possible to verify ϕ by tracking only half of
the predicates in Predcache. Intuitively, ρset

12 and ρtag
12 were not

needed to be tracked as r1 and r2 cannot appear in a single
trace, as captured via the program semantics. In contrast, the
rest of the predicates in Predunknown were not required for the
verification process, as neither r1 nor r2 influences the cache
behavior of r4—it is influenced completely by r3.

Key Insight in Fixing: In general, the state-of-the-art in
fixing cache side-channel is to revert to constant-time pro-
gramming style [8]. Constant-time programming style imposes
heavy burden on a programmer to follow certain programming
patterns, such as to ensure the absence of input-dependent
branches and input-dependent memory accesses. Yet, most
programs do not exhibit constant-time behavior. Besides, the
example in Fig. 1(a) shows that an application can still have

constant cache-timing, despite not following the constant-
time programming style. Using our CACHEFIX approach, we
observe that it is not necessary to always write constant-time
programs. Instead, the executions of such programs can be
manipulated to exhibit constant time behavior. We accomplish
this by leveraging our verification results.

We consider the example in Fig. 1(b) and let us
assume that we start with the initial abstraction Predinit =
{ρset

13 , ρ
tag
13 , ρ

set
23 , ρ

tag
23 }. CACHEFIX returns the following coun-

terexample while verifying ϕ [see (4)]:

tr1 ≡ 〈miss1 = miss3 = 1, miss2 = miss4 = 0〉
tr2 ≡ 〈miss2 = 1, miss1 = miss3 = miss4 = 0〉.

If we reconstruct the logical condition that led to the spe-
cific valuations of miss1, . . . ,miss4 in tr1 and tr2, then we get
the symbolic formulas �(r1) ∧ ¬�(r2) ∧ �(r3) ∧ ¬�(r4) and
¬�(r1)∧�(r2)∧¬�(r3)∧¬�(r4), respectively. Both the for-
mulas are satisfiable for the example in Fig. 1(b). Intuitively,
this happens due to r2, which loads the same memory block
as accessed by r3 only if key = 255.

We observe that tr2 will be equivalent to tr1 if a cache miss
is inserted in the beginning of tr2. To this end, we need to
know all inputs that lead to tr2. Thanks to the symbolic nature
of our analysis, we obtain the exact symbolic condition, i.e.,
¬�(r1) ∧ �(r2) ∧ ¬�(r3) ∧ ¬�(r4) that manifests the trace
tr2. Therefore, if the program in Fig. 1(b) is executed with
any input satisfying ¬�(r1)∧ �(r2)∧ ¬�(r3)∧ ¬�(r4), then
a cache miss is injected as shown in Fig. 1(d). This ensures
the cache side-channel freedom during program execution, as
all traces exhibit the same number of cache misses.

Our proposed fixing mechanism is novel that it does not rely
on any specific programming style. Moreover, as we generate
the fixes by directly leveraging the verification results, we can
provide strong security guarantees during program execution.

Overall Workflow of CACHEFIX: Fig. 2 outlines the overall
workflow of CACHEFIX. The abstraction refinement process
is guaranteed to converge toward the most precise abstraction
of cache semantics to (dis)prove the cache side-channel free-
dom. Moreover, as observed in Fig. 2, our cache side channel
fixing is guided by program verification output, enabling us
to give cache side channel freedom guarantees about the fixed
program.



CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2815

Fig. 2. Workflow of our symbolic verification and patching.

III. THREAT AND SYSTEM MODEL

In the following, we discuss the threat models and the type
of processors targeted by CACHEFIX.

A. Threat Model

We assume that an attacker makes observations on the exe-
cution traces of victim program P and the implementation
of P is known to the attacker. Besides, there does not exist
any error in the observations made by the attacker. We also
assume that an attacker can execute arbitrary user-level code
on the processor that runs the victim program. This, in turn,
allows the attacker to flush the cache (e.g., via accessing a
large array) before the victim routine starts execution. We,
however, do not assume that the attacker can access the address
space of the victim program P . We believe the aforementioned
assumptions on the attacker are justified, as we aim to verify
the cache side-channel freedom of programs against strong
attacker models.

We capture an execution trace via a sequence of hits (h)
and misses (m). Hence, formally we model an attacker as the
mapping O : {h,m}∗ → X, where X is a countable set. For
tr1, tr2 ∈ {h,m}∗, an attacker can distinguish tr1 from tr2 if
and only if O(tr1) �= O(tr2). In this paper, we instantiate our
checker for the following realistic attack models.

1) Otime: {h,m}∗ → N. Otime maps each execution trace to
the number of cache misses suffered by the same. This
attack model imitates cache timing attacks [13].

2) Otrace: {h,m}∗ → {0, 1}∗. Otrace maps each execution
trace to a bitvector (h is mapped to 0 and m is mapped
to 1). This attack model imitates trace-based attacks [7].

B. Processor Model

We assume an ARM-style processor with one or more
cache levels. However, we consider timing attacks only due
to first-level instruction or data caches [7], [13]. We currently
do not handle more advanced attacks on shared caches [32].
First-level caches can either be partitioned (instruction versus
data) or unified. We assume that set-associative caches have
either LRU or FIFO replacement policy. Other deterministic
replacement policies can easily be integrated within CACHE-
FIX via additional symbolic constraints. Finally, our timing
model only takes into account the effect of caches. Timing
effects due to other micro-architectural features (e.g., pipeline
and branch prediction) are currently not handled. For the sake

of brevity, we discuss the timing effects due to memory-related
instructions. It is straightforward to integrate the timing effects
of computation instructions (e.g., add) into CACHEFIX.

IV. ABSTRACTION REFINEMENT

Notations: We represent cache via a triple 〈2S , 2B,A〉
where 2S , 2B, and A capture the number of cache sets, cache
line size, and cache associativity, respectively. We use set(ri)

and tag(ri) to capture the cache set and cache tag, respec-
tively, accessed by instruction ri. Additionally, we introduce
a symbolic variable missi to capture whether ri was a miss
(missi = 1) or a hit (missi = 0). For instructions ri and rj, we
have j < i if and only if rj was (symbolically) executed before
ri.

A. Initial Abstract Domain

We assume that a routine may start execution with any initial
cache state, but it does not access memory blocks within the
initial state during execution [22]. Hence, for a given instruc-
tion ri, its cache behavior might be affected by all instructions
executing prior to ri. Concretely, the cache behavior of ri can
be accurately predicted based on the set of logical predicates
Predset and Predtag as follows:

Predi
set = {set(rj) = set(ri) | 1 ≤ j < i}

Predi
tag = {tag(rj) �= tag(ri) | 1 ≤ j < i}. (6)

Intuitively, Predi
set captures the set of predicates checking

whether any instruction prior to ri accesses the same cache set
as ri. Similarly, Predi

tag checks whether any instruction prior
to ri has a different cache tag than tag(ri). Based on this intu-
ition, the following set of predicates are sufficient to predict
the cache behaviors of N memory-related instructions:

Predset =
N⋃

i=1

Predi
set; Predtag =

N⋃
i=1

Predi
tag. (7)

For the sake of efficiency, however, we launch verification
with a smaller set of predicates Predinit ⊆ Predtag ∪ Predset as
follows:

Predinit =
N⋃

i=1

{
p | p ∈ Predtag ∪ Predset ∧ |σ(ri)| = 1

∧∀k ∈ [1, i). |σ(rk)| = 1 ∧ guardk ⇒ true
}
.

(8)

σ(ri) captures the set of memory blocks accessed by instruc-
tion ri and guardk captures the control condition under which
rk is executed. In general, our CACHEFIX approach works
even if Predinit = φ. However, to accelerate the convergence of
CACHEFIX, we start with the predicates whose values can be
statically determined (i.e., independent of inputs). Intuitively,
we take this approach for two reasons. First, the set Predinit can
be computed efficiently during symbolic execution. Second, as
the predicates in Predinit have constant valuation, they reduce
the size of the formula to be discharged to the SMT solver.
We note that guardk depends on the program semantics. The
abstraction of program semantics is an orthogonal problem
and for the sake of brevity, we skip its discussion here.



2816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

Algorithm 1 Abstraction Refinement Algorithm
Input: Program P , cache configuration C, attack model O
Output: Successful verification or a concrete counterexample

1: /* � is a formula representation of P */
2: /* Pred is cache-semantics-related predicates */
3: /* � determines cache behavior of all instructions */
4: (�,Pred, �) := EXECUTESYMBOLIC(P , C)
5: /* Formulate initial abstraction (see equation (8)) */
6: Predcur:=Predinit := GETINITIALABSTRACTION(Pred)
7: /* Rewrite � with initial abstraction */
8: REWRITE(�,Predinit)

9: /* Formulate cache side-channel freedom property */
10: ϕ := GETPROPERTY(O)
11: /* Invoke symbolic verification to check � ∧ ¬ϕ */
12: (res, tr1, tr2) := VERIFY(�, ϕ)

13: while (res=false) ∧ (tr1 or tr2 is spurious) do
14: /* Extract unsatisfiable core from tr1 and/or tr2 */
15: U := UNSATCORE(tr1, tr2, �)

16: /* Refine abstractions and repeat verification */
17: Predcur := REFINE(Predinit, U , Pred)
18: REWRITE(�,Predcur)

19: (res, tr1, tr2) := VERIFY(�, ϕ)

20: Predinit := Predcur

21: end while
22: return res

B. Abstract Domain Refinement

We use the mapping � : {r1, r2, . . . , rN} → {true, false} to
capture the conditions under which ri was a cache hit (i.e.,
missi = 0) or a cache miss (i.e., missi = 1). In particular, the
following holds:

�(ri) ⇔ (missi = 1); ¬�(ri) ⇔ (missi = 0). (9)

�(ri) depends on predicates in Predi
set ∪ Predi

tag and the
cache configuration. We show the formulation of �(ri) in
Section IV-C.

EXECUTESYMBOLIC: Algorithm 1 captures the overall
verification process based on our systematic abstraction refine-
ment. The symbolic verification engine computes a formula
representation � of the program P . This is accomplished
via a symbolic execution on program P (see procedure
EXECUTESYMBOLIC) and systematically translating the cache
and program semantics of each instruction into a set of
constraints (see procedure CONVERT).

CONVERT: During the symbolic execution, a set of sym-
bolic states, each capturing a unique execution path reaching
an instruction ri, is maintained. This set of symbolic states can
be viewed as a disjunction �(ri) ≡ ψ1 ∨ψ2 ∨ . . .∨ψj−1 ∨ψj,
where �(ri) ⇒ � and each ψi symbolically captures a
unique execution path leading to instruction ri. At each instruc-
tion ri, the procedure CONVERT translates �(ri) in such a
fashion that �(ri) integrates both the cache semantics (see
lines 13 and 14) and program semantics (see lines 18) of
ri. For instance, to integrate cache semantics of a memory-
related instruction ri, �(ri) is converted to �(ri) ∧ (�(ri) ⇔

Procedure 2 Symbolically Tracking Program and
Cache States

1: /* symbolically execute P with cache configuration C*/
2: procedure EXECUTESYMBOLIC(P , C)
3: i := 1; � := true; Predset := Predtag := φ

4: ri := GETNEXTINSTRUCTION(P)
5: while ri �= exit do
6: if ri is memory-related instruction then
7: /* Collect predicates for cache semantics */
8: Predset ∪ = Predi

set; Predtag ∪ = Predi
tag

9: /* �(ri) determines cache behavior of ri */
10: Formulate �(ri) /* see Section IV-C */
11: � ∪ = {�(ri)}
12: /* Integrate cache semantics within � */
13: � := CONVERT(�, �(ri) ⇔ (missi = 1))
14: � := CONVERT(�,¬�(ri) ⇔ (missi = 0))
15: end if
16: /* Integrate program semantics of ri within � */
17: /* ϕ(ri) is a predicate capturing ri semantics */
18: � := CONVERT(�, ϕ(ri))

19: i := i + 1
20: ri := GETNEXTINSTRUCTION(P)
21: end while
22: return (�,Predset ∪ Predtag, �)

23: end procedure

(missi = 1))∧(¬�(ri) ⇔ (missi = 0)). Similarly, the program
semantics of instruction ri, as captured via ϕ(ri), is integrated
within �(ri) as �(ri)∧ϕ(ri). Translating the program seman-
tics of each instruction to a set of constraints is a standard
technique in any symbolic model checking [19]. Moreover,
such a translation is typically carried out on a program in
static single assignment form and takes into account both data
and control flow. Unlike classic symbolic analysis, however,
we consider both the cache semantics and program semantics
of an execution path, as explained in the preceding.

GETINITIALABSTRACTION: We start our verification with
an initial abstraction of cache semantics [see (8)]. Such an
initial abstraction contains a partial set of logical predicates
Predinit ⊆ Predset ∪ Predtag. Based on Predinit, we rewrite �
via the procedure REWRITE as follows: we walk through �
and look for occurrences of any predicate p− ∈ (Predset ∪
Predtag)\Predinit. For any p− discovered in �, we replace p−
with a fresh symbolic variable Vp− . Intuitively, this means
that during the verification process, we assume any truth value
for the predicates in (Predset ∪ Predtag)\Predinit. This, in turn,
substantially reduces the size of the symbolic formula � and
simplifies the verification process.

VERIFY AND GETPROPERTY: The procedure VERIFY

invokes the solver to check the cache side-channel free-
dom of P with respect to attack model O. The property ϕ,
capturing the cache side-channel freedom, is computed via
GETPROPERTY. For example, in timing-based attacks, ϕ is
captured via the nonexistence of any two traces tr1 and tr2
that have different number of cache misses [see (4)]. In other
words, if the following formula is satisfied with more than



CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2817

one valuations for
∑N

i=1 missi, then side-channel freedom is
violated:

� ∧
((

N∑
i=1

missi

)
≥ 0

)
. (10)

Here, N captures the total number of memory-related instruc-
tions encountered during the symbolic execution of P .

REFINE AND REWRITE: When our verification process fails,
we check the feasibility of a counterexample trace trace ∈
{tr1, tr2}. Recall from (9) that ri is a cache miss if and only
if �(ri) holds true. We leverage this relation to construct the
following formula �trace for feasibility checking:

�trace =
N∧

i=1

{
�(ri), if miss(trace)

i = 1

¬�(ri), if miss(trace)
i = 0.

(11)

In (11), miss(trace)
i captures the valuation of symbolic vari-

able missi in the counterexample trace. We note that trace is
not a spurious counterexample if and only if �trace is satisfi-
able, hence, highlighting the violation of cache side-channel
freedom.

If �trace is unsatisfiable, then our initial abstraction Predinit
was insufficient to (dis)prove the cache side-channel freedom.
In order to refine this abstraction, we extract the unsatisfi-
able core from the symbolic formula �trace via the procedure
UNSATCORE. Such an unsatisfiable core contains a set of CNF
clauses ∈ ⋃k∈[1,N] �(rk). We note each �(rk) is a function of
the set of predicates Predtag ∪ Predset. Finally, we refine the
abstraction (see procedure REFINE in Algorithm 1) to Predcur
by including all predicates in the unsatisfiable core as follows:

Predcur := Predinit ∪ {p+ | p+ ∈ UnsatCore(�trace)

∧ p+ /∈ Predinit
}
. (12)

With the refined abstraction Predcur, we rewrite the sym-
bolic formula � (see procedure REWRITE). In particular, we
identify the placeholder symbolic variables for predicates in
the set Predcur \ Predinit. We rewrite � by replacing these
placeholder symbolic variables with the respective predicates
in the set Predcur \ Predinit. It is worthwhile to note that the
placeholder symbolic variables in (Predtag ∪ Predset) \ Predcur
remain unchanged.

C. Modeling Cache Semantics

For each memory-related instruction ri, the formulation of
�(ri) is critical to prove the cache side-channel freedom. The
formulation of �(ri) depends on the configuration of caches.
Due to space constraints, we will only discuss the symbolic
model for direct-mapped caches (symbolic models for LRU
and FIFO caches are provided in the supplement [18]). To sim-
plify the formulation, we will use the following abbreviations
for the rest of the section:

ρset
ij ≡ (

set(ri) = set(rj)
); ρ

tag
ij ≡ (

tag(ri) �= tag(rj)
)
. (13)

We also distinguish between the following variants of misses.
1) Cold Misses: Cold misses occur when a memory block

is accessed for the first time.

2) Conflict Misses: All cache misses that are not cold
misses are referred to as conflict misses.

Formulating Conditions for Cold Misses: Cold cache misses
occur when a memory block is accessed for the first time
during program execution. In order to check whether ri suf-
fers a cold miss, we check whether all instructions r ∈
{r1, r2, . . . , ri−1} access different memory blocks than the
memory block accessed by ri. This is captured as follows:


cold
i ≡

∧
j∈[1,i)

(
¬ρset

ji ∨ ρtag
ji ∨ ¬guardj

)
. (14)

Recall that guardj captures the control condition under which
rj is executed. Hence, if guardj is evaluated false for a
trace, then rj does not appear in the respective trace. If

cold

i is satisfied, then ri inevitably suffers a cold cache
miss.

Formulating Conditions for Conflict Cache Misses: For
direct-mapped caches, an instruction ri suffers a conflict miss
due to an instruction rj if all of the following conditions are
satisfied.
φ

cnf ,dir
ji : If rj accesses the same cache set as ri, however,

rj accesses a different cache tag as compared to ri. This is
formally captured as follows:

φ
cnf,dir
ji ≡ ρ

tag
ji ∧ ρset

ji . (15)

φ
rel,dir
ji : No instruction between rj and ri accesses the same

memory block as ri. For instance, consider the memory-block
access sequence (r1 : m1) → (r2 : m2) → (r3 : m2), where
both m1 and m2 are mapped to the same cache set and r1...3
captures the respective memory-related instructions. It is not
possible for r1 to inflict a conflict miss for r3, as the memory
block m2 is reloaded by instruction r2. φrel,dir

ji is formally
captured as follows:

φ
rel,dir
ji ≡

∧
j<k<i

(
ρ

tag
ki ∨ ¬ρset

ki ∨ ¬guardk

)
. (16)

Intuitively, φrel,dir
ji captures that all instructions between rj and

ri either access a different memory block than ri (hence, sat-
isfying ρtag

ki ∨¬ρset
ki ) or does not appear in the execution trace

(hence, satisfying ¬guardk).
Given the intuition mentioned in the preceding paragraphs,

we conclude that ri suffers a conflict miss if both φcnf,dir
ji and

φ
rel,dir
ji are satisfied for any instruction executing prior to ri.

This is captured in the symbolic condition 
cnf,dir
i as follows:



cnf,dir
i ≡

∨
j∈[1,i)

(
φ

cnf,dir
ji ∧ φrel,dir

ji ∧ guardj

)
. (17)

Computing �(ri): For direct-mapped caches, ri can be a
cache miss if it is either a cold cache miss or a conflict miss.
Hence, �(ri) is captured symbolically as follows:

�(ri) ≡ guardi ∧
(

cold

i ∨
cnf,dir
i

)
. (18)

D. Property for Cache Side-Channel Freedom

In this paper, we instantiate our checker for timing-based
attacks [13] and trace-based attacks [7] as follows.



2818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

Timing-Based Attacks: In timing-based attacks, an attacker
aims to distinguish traces based on their timing. In our
framework, we verify the following property to ensure cache
side-channel freedom:∣∣∣∣∣� ∧

((
N∑

i=1

missi

)
≥ 0

)∣∣∣∣∣
sol
(∑N

i=1 missi

) ≤ 1. (19)

N captures the number of symbolically executed, memory-
related instructions. sol(

∑N
i=1 missi) captures the number of

valuations of
∑N

i=1 missi. Intuitively, (19) aims to check that
the underlying program has exactly one cache behavior, in
terms of the total number of cache misses.

Trace-Based Attacks: In trace-based attacks, an attacker
monitors the cache behavior of each memory access. We define
a partial function ξ : {r1, . . . , rN} � {0, 1} as follows:

ξ(ri) =
{

1, if guardi ∧ ( missi = 1) holds

0, if guardi ∧ ( missi = 0) holds.
(20)

The following verification goal ensures side-channel freedom:
∣∣� ∧ |dom(ξ)| ≥ 0 ∧ (‖ri∈dom(ξ) ξ(ri)

) ≥ 0
∣∣
sol(X) ≤ 1

(21)

where dom(ξ) captures the domain of ξ , ‖ captures the ordered
(with respect to the indexes of ri) concatenation operation and
X = 〈|dom(ξ)|, ‖ri∈dom(ξ) ξ(ri)〉. Intuitively, we check whether
there exists exactly one cache behavior sequence.

V. RUNTIME MONITORING

CACHEFIX produces the first real counterexample when it
discovers two traces with different observations (with respect
to attack model O). These traces are then analyzed to com-
pute a set of runtime actions that are guaranteed to reduce
the uncertainty to guess sensitive inputs. Overall, our runtime
monitoring involves the following crucial steps.

1) We analyze a counterexample trace tr and extract the
symbolic condition for which the same trace would be
generated,

2) We systematically explore unique counterexamples with
the objective to reduce the uncertainty to guess sensitive
inputs,

3) We compute a set of runtime actions that need to be
applied for improving the cache side-channel freedom.

In the following, we discuss these three steps in more detail.

A. Analyzing Counterexample Trace

Given a real counterexample trace, we extract a symbolic
condition that captures all the inputs for which the same coun-
terexample trace can be obtained. Thanks to the symbolic
nature of our analysis, CACHEFIX already includes capabilities
to extract these monitors as follows:

ν ≡
∧

ri∈trace

{
�(ri), if miss(trace)

i = 1

¬�(ri), if miss(trace)
i = 0

(22)

where miss(trace)
i is the valuation of symbolic variable missi

in trace. We note that ν ⇒ ¬�(rj) for any rj that does not

appear in trace (i.e., rj /∈ trace). Hence, to formulate ν, it was
sufficient to consider only the instructions that appear in trace.

Once we extract a monitor ν from counterexample trace,
the symbolic system � is refined to �∧¬ν. This is to ensure
that we only explore unique counterexample traces.

B. Systematic Exploration of Counterexamples

The order of exploring counterexamples is crucial to satisfy
monotonicity, i.e., to reduce the channel capacity (a standard
metric to quantify the information flow from sensitive input
to attacker observation) of P with each round of patch gen-
eration. To this end, CACHEFIX employs a strategy that can
be visualized as an exploration of the equivalence classes of
observations (e.g., #cache misses), i.e., we explore all coun-
terexamples in the same equivalence class in one shot. In
order to find another counterexample exhibiting the same
observation as observation o, we modify the verification goal
as follows, for timing and trace-based attacks, respectively
[see (20) for ξ ]:

� ∧ ¬
((

N∑
i=1

missi

)
�= o

)

� ∧ ¬
⎛
⎝

|dom(ξ)| �= [|dom(ξ)|]o
∨ ‖ri∈dom(ξ) ξ(ri) �= [‖ri∈dom(ξ) ξ(ri)

]
o

⎞
⎠ (23)

where [X]o captures the valuation of X with respect to obser-
vation o and N is the total number of symbolically executed,
memory-related instructions. If (23) is unsatisfiable, then it
captures the absence of any more counterexample with obser-
vation o. We note that � is automatically refined to avoid
discovering duplicate or spurious counterexamples. If (23) is
satisfiable, our checker provides another real counterexample
with the observation o. We repeat the process until no more
real counterexample with the observation o is found, at which
point (23) becomes unsatisfiable.

To explore a different equivalence class of observation than
that of observation o, CACHEFIX negates the verification goal.
For Otime, as an example, the verification goal is changed as
follows:

� ∧ ¬
((

N∑
i=1

missi

)
= o

)
. (24)

We note that (24) is satisfiable if and only if there exists an
execution trace with observation differing from o.

C. Runtime Actions to Improve Side-Channel Freedom

Our checker maintains the record of all explored observa-
tions and the symbolic conditions capturing the equivalence
classes of respective observations. At each round of patch (i.e.,
runtime action) synthesis, we walk through this record and
compute the necessary runtime actions for improving cache
side-channel freedom.
Otime: Assume � = {〈ν1, o1〉, 〈ν2, o2〉, . . . , 〈νk, ok〉} where

each oi captures a unique number of observed cache misses
and νi symbolically captures all inputs that lead to observation
oi. Our goal is to manipulate executions so that they lead to the



CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2819

same number of cache misses. To this end, the patch synthesis
stage determines the amount of cache misses that needs to be
added for each element in �. Concretely, the set of runtime
actions generated are as follows:

〈
ν1,

(
max

i∈[1,k]
oi − o1

)〉
, . . . ,

〈
νk,

(
max

i∈[1,k]
oi − ok

)〉
. (25)

In practice, when a program is run with input I, we
check whether I ∈ νx for some x ∈ [1, k]. Subsequently,
(maxi∈[1,k] oi − ox) cache misses were injected before the
program starts executing.
Otrace: During trace-based attacks, the attacker makes an

observation on the sequence of cache hits and misses in an
execution trace. Therefore, our goal is to manipulate execu-
tions in such a fashion that all execution traces lead to the
same sequence of cache hits and misses. To accomplish this,
each runtime action involves the injection of cache misses or
hits before execution, after execution or at an arbitrary point
of execution. It also involves invalidating an address in cache.
Concretely, this is formalized as follows:

〈νi, 〈(c1, a1), (c2, a2), . . . , (ck, ak)〉〉 (26)

where νi captures the symbolic input condition where the run-
time actions are employed. For any input satisfying νi, we
count the number of instructions executed. If the number of
executed instructions reaches cj, then we perform the action aj

(e.g., injecting hits/misses or invalidating an address in cache),
for any j ∈ [1, k].

As an example, consider a trace-based attack in the exam-
ple of Fig. 1(b). Our checker will manipulate counterexample
traces by injecting cache misses and hits as follows (injected
cache hits and misses are highlighted in bold):

tr′′1 ≡ 〈miss,miss, hit, hit〉; tr′′2 ≡ 〈miss,miss, hit,hit.〉
Therefore, the following actions are generated to ensure cache
side-channel freedom against trace-based attacks:

〈key = 255, 〈(0,miss)〉〉, 〈0 ≤ key ≤ 254, 〈(3, hit)〉〉
We use string alignment algorithm [6] to make two traces
equivalent (via insertion of cache hits/misses or substitution
of hits to misses).

D. Practical Consideration

In practice, the injection of a cache miss can be performed
via accessing a fresh memory block [see Fig. 1(d)]. However,
unless the injection of a cache miss happens to be in the begin-
ning or at the end of execution, the cache needs to be disabled
before and enabled after such a cache miss. Consequently, our
injection of misses does not affect cache states. In ARM-based
processor, this is accomplished via manipulating the C bit of
CP15 register. The injection of a cache hit can be performed
via tracking the last accessed memory address and reaccessing
the same address.

To change a cache hit to a cache miss, the accessed memory
address needs to be invalidated in the cache. CACHEFIX

symbolically tracks the memory address accessed at each
memory-related instruction. When the program is run with

input I ∈ νi, we concretize all memory addresses with respect
to I. Hence, while applying an action that involves cache inval-
idation, we know the exact memory address that needs to
be invalidated. In ARM-based processor, the instruction MCR
provides capabilities to invalidate an address in the cache.

We note the preceding manipulations on an execution
requires additional registers. We believe this is possible by
using some system register or using a locked portion in the
cache.

E. Properties Guaranteed by CACHEFIX

CACHEFIX satisfies the following crucial properties (proofs
are included in the supplement [18]) on channel capacity,
Shannon entropy, and min entropy; which are standard metrics
to quantify the information flow from sensitive inputs to the
attacker observation.

Property 1 (Monotonicity): Consider a victim program P
with sensitive input K. Given attack models Otime or Otrace,
assume that the channel capacity to quantify the uncertainty of
guessing K is GP

cap. CACHEFIX guarantees that GP
cap monoton-

ically decreases with each synthesized patch [see (25), (26)]
employed at runtime.

Property 2 (Convergence): Consider a victim program P
with sensitive input K. In the absence of any attacker, assume
that the uncertainty to guess K is Ginit

cap, Ginit
shn, and Ginit

min, via
channel capacity, Shannon entropy, and Min entropy, respec-
tively. If CACHEFIX terminates and all synthesized patches
are applied at runtime, then the channel capacity (respectively,
Shannon entropy and Min entropy) will remain Ginit

cap (respec-
tively, Ginit

shn and Ginit
min) even in the presence of attacks captured

via Otime and Otrace.

VI. IMPLEMENTATION AND EVALUATION

In this section, we will discuss our implementation setup
and key findings from the evaluation.

A. Implementation Setup

The input to CACHEFIX is the target program and a cache
configuration. We have implemented CACHEFIX on top of
CBMC bounded model checker [1]. It first builds a formula rep-
resentation of the input program via symbolic execution. Then,
it checks the (un)satisfiability of this formula against a spec-
ification property. Despite being a bounded model checker,
CBMC is used as a classic verification tool in our experi-
ments. In particular for program loops, CBMC first attempts
to derive loop bounds automatically. If CBMC fails to derive
certain loop bounds, then the respective loop bounds need to be
provided manually. Nevertheless, during the verification pro-
cess, CBMC checks all manually provided loop bounds and
the verification fails if any such bound was erroneous. In our
experiments, all loop bounds were automatically derived by
CBMC. In short, if CACHEFIX successfully verifies a pro-
gram, then the respective program exhibits cache side-channel
freedom for the given cache configuration and targeted attack
models.

The implementation of our checker impacts the entire work-
flow of CBMC. We first modify the symbolic execution engine



2820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

TABLE I
SUMMARY OF CACHEFIX EVALUATION. TIMEOUT IS SET TO TEN MINUTES. Time CAPTURES THE TIME TAKEN BY CACHEFIX (I.E., # PREDICATES

|Predcur|), WHEREAS Timeall CAPTURES THE TIME TAKEN WHEN ALL PREDICATES (I.E., # PREDICATES |Predset ∪ Predtag|) ARE CONSIDERED

of CBMC to insert the predicates related to cache semantics.
As a result, upon the termination of symbolic execution, the
formula representation of the program encodes both the cache
semantics and the program semantics. Second, we systemati-
cally rewrite this formula based on our abstraction refinement,
with the aim of verifying cache side-channel freedom. Finally,
we modify the verification engine of CBMC to systemati-
cally explore different counterexamples, instrument patches
and refining the side-channel freedom properties on-the-fly.
To manipulate and solve symbolic formulas, we leverage Z3
theorem prover. All reported experiments were performed on
an Intel i7 machine, having 8GB RAM and running OSX.

B. Subject Programs and Cache

We have chosen security-critical subjects from OpenSSL
library [5], GDK library [3], arithmetic routines from
libfixedtimefixedpoint [4], and elliptic curve rou-
tines from FourQlib [2] to evaluate CACHEFIX (see
Table I). The choice of our subjects is driven by the criti-
cality of the respective routines in developing cryptographic
software. To stress test our checker, we include representative
routines exhibiting constant cache-timing, as well as routines
exhibiting variable cache timing. We set the default cache to
be 1KB direct-mapped, with a line size of 32 bytes.

C. Efficiency of Checking

Table I captures a summary of our evaluation for CACHE-
FIX. The outcome of this evaluation is either a successful
verification (✓) or a nonspurious counterexample (✗). CACHE-
FIX accomplished the verification tasks for all subjects only
within a few minutes. The maximum time taken by our
checker was 390 s for the routine fix_pow – a constant
time implementation of powers (xy). fix_pow has complex

memory access patterns, however, its flat structure ensures
cache side-channel freedom.

To check the effectiveness of our abstraction refinement pro-
cess, we compare CACHEFIX with a variant of our checker
where all predicates in Predset ∪ Predtag are considered.
Therefore, such a variant does not employ any abstraction
refinement, as the set of predicates Predset ∪ Predtag is suffi-
cient to determine the cache behavior of all instructions in the
program. We compare CACHEFIX with this variant in terms of
the number of predicates, as well as the verification time. We
record the set of predicates Predcur considered in CACHEFIX

when it terminates with a successful verification (✓) or a real
counterexample (✗). Table I clearly demonstrates the effec-
tiveness of our abstraction refinement process. Specifically, for
AES, DES and fix_pow, the checker does not terminate in
10 min when all predicates in Predset ∪ Predtag are considered
during the verification process. In general, the refinement pro-
cess reduces the number of considered predicates by a factor
of 1.81x on average. This leads to a substantial improvement
in verification time, as observed from Table I.

The routines chosen from OpenSSL library are single path
programs. However, AES and DES exhibit input-dependent
memory accesses, hence, violating side-channel freedom.
The other routines violate cache side-channel freedom due
to input-dependent loop trip counts. For example, routines
chosen from the GDK library employ a binary search of
the input keystroke over a large table. We note that both
libfixedtimefixedpoint and FourQlib libraries
include comments involving the security risks in fix_frac
and ecc_point_validate (see validate in Table I).

D. Overhead From Monitors

We evaluated the time taken by CACHEFIX for coun-
terexample exploration and patch generation (see Section V).



CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2821

TABLE II
OVERHEAD IN GENERATING MONITORS AND DUE TO THE APPLIED RUNTIME ACTIONS. Time CAPTURES THE TIME TO GENERATE ALL PATCHES. THE

OVERHEAD (MAXIMUM AND AVERAGE) CAPTURES THE NUMBER OF EXTRA CACHE MISSES, HITS, AND INVALIDATIONS INTRODUCED BY CACHEFIX

IN ABSOLUTE TERM (I.E., # ACTIONS) AND WITH RESPECT TO THE TOTAL NUMBER OF INSTRUCTIONS (I.E., % ACTIONS)

For each generated patch, we have also evaluated the overhead
induced by the same at runtime (see Table II).

Table II captures the maximum and average overhead
induced by CACHEFIX at runtime. We compute the over-
head via the number of additional runtime actions (i.e., cache
misses, hits or invalidations) introduced solely via CACHEFIX.
In absolute terms, the maximum (average) overhead captures
the maximum (average) number of runtime actions induced
over all equivalence classes. The maximum overhead was
introduced in case of DES – 300 actions for Otime and 371
actions for Otrace. This is primarily due to the difficulty in mak-
ing a large number of traces equivalent in terms of the number
of cache misses and the sequence of hit/miss, respectively.
Although the number of actions introduced by CACHEFIX is
non-negligible, we note that their effect is minimal on the
overall execution. To this end, we execute the program for 100
different inputs in each explored equivalence class and mea-
sure the overhead introduced by CACHEFIX (see “% actions”
in Table II) with respect to the total number of instructions
executed. We observe that the maximum overhead reaches up
to 3.2% and the average overhead is up to 2.1%. We believe
this overhead is acceptable in the light of cache side-channel
freedom guarantees provided by CACHEFIX.

Except AES and DES, the cache behavior of a single pro-
gram path is independent of program inputs. For the respective
subjects, exactly the same number of equivalence classes were
explored for both attack models (see Table II). Each explored
equivalence class was primarily attributed to a unique program
path. Nevertheless, due to more involved computations (see
Section V), the overhead of CACHEFIX in attack model Otrace
is higher than the overhead in attack model Otime. As observed
from Table II, CACHEFIX discovers significantly more equiva-
lence classes with respect to attack model Otrace as compared
to the number of equivalence classes with respect to attack
model Otime. This implies AES is more vulnerable to Otrace
as compared to Otime. Excluding DES subject to Otrace, our
exploration terminates in all scenarios within 20 mins.

E. Sensitivity With Respect to Cache Configuration

We evaluated CACHEFIX for a variety of cache associa-
tivity (1-way, 2-way, and 4-way), cache size (from 1KB to
8KB) and with LRU as well as FIFO replacement policies
(detailed experiments are included in the supplement [18]).
We observed that the verification time increases marginally
(about 7%) when set-associative caches were used instead of
direct-mapped caches and does not vary significantly with
respect to replacement policy. Finally, we observed changes
in the number of equivalence classes of observations for both
AES and DES while running these subjects with different
replacement policies. However, neither AES nor DES satis-
fied cache side-channel freedom for any of the cache size
and replacement policies tested in our evaluation. The rel-
atively low verification time results from the fact that the
total number of predicates (i.e., Predset ∪ Predtag) is indepen-
dent of cache size and replacement policy. Nevertheless, the
symbolic encoding for set-associative caches is more involved
than direct-mapped caches. This results in an average increase
to the number of predicates considered for verification (i.e.,
Predcur) by a factor of 1.5×. However, such an increased num-
ber of predicates does not translate to significant verification
timing for set-associative caches.

VII. REVIEW OF PRIOR WORKS

Earlier works on cache analysis are based on abstract
interpretation [35] and its combination with model check-
ing [17], to estimate the worst-case execution time (WCET) of
a program. In contrast to these approaches, CACHEFIX auto-
matically builds and refine the abstraction of cache semantics
for verifying side-channel freedom. Cache attacks are one of
the most critical side-channel attacks [7], [13], [25]–[28], [32],
[37], [38]. In contrast to the literature on side-channel attacks,
we do not engineer new cache attacks in this paper. Based on
a configurable attack model, CACHEFIX verifies and reinstates
the cache side-channel freedom of arbitrary programs.

Orthogonal to approaches proposing countermeasures
[21], [36], the fixes generated by CACHEFIX is guided by



2822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

program verification output. Thus, CACHEFIX can provide
cache side-channel freedom guarantees about the fixed pro-
gram. Moreover, CACHEFIX can be leveraged to formally
verify whether existing countermeasures are capable to ensure
side-channel freedom.

In contrast to recent approaches on statically analyzing
cache side channels [14], [22], [29], [30], our CACHEFIX

approach automatically constructs and refines the abstrac-
tions for verifying cache side-channel freedom. Moreover,
contrary to CACHEFIX, approaches based on static analysis
are not directly applicable when the underlying program does
not satisfy cache side-channel freedom. CACHEFIX targets
verification of arbitrary software programs, over and above
constant-time implementations [8], [11]. Existing works based
on symbolic execution [10], [34], taint analysis [20], [33], and
verifying timing-channel freedom [9] ignore cache attacks.
Moreover, these works do not provide capabilities for auto-
matic abstraction refinement and patch synthesis for ensuring
side-channel freedom. Finally, in contrast to these works, we
show that our CACHEFIX approach scales with routines from
real cryptographic libraries.

Finally, recent approaches on testing and quantifying cache
side-channel leakage [12], [15], [16] are complementary to
CACHEFIX. These works have the flavor of testing and and
they do not provide capabilities to ensure cache side-channel
freedom.

VIII. DISCUSSION

In this paper, we propose CACHEFIX, a novel approach to
automatically verify and restore cache side-channel freedom
of arbitrary programs. The key novelty in our approach is
two fold. First, our CACHEFIX approach automatically builds
and refines abstraction of cache semantics. Although targeted
to verify cache side-channel freedom, we believe CACHE-
FIX is applicable to verify other cache timing properties,
such as WCET. Second, the core symbolic engine of CACHE-
FIX systematically combines its reasoning power with runtime
monitoring to ensure cache side-channel freedom during pro-
gram execution. Our evaluation reveals promising results, for
25 routines from several cryptographic libraries, CACHEFIX

(dis)proves cache side-channel freedom within an average 75 s.
Moreover, in most scenarios, CACHEFIX generated patches
within 20 min to ensure cache side-channel freedom dur-
ing program execution. Despite this result, we believe that
CACHEFIX is only an initial step for the automated verifica-
tion of cache side-channel freedom. In particular, we do not
account cache attacks that are more powerful than timing or
trace-based attacks. Besides, we do not implement the syn-
thesized patches in a commodity embedded system to check
their performance impact. We hope that the community will
take this effort forward and push the adoption of formal tools
for the evaluation of cache side-channel. For reproducibility
and research, our tool and all experimental data are publicly
available: https://bitbucket.org/sudiptac/cachefix.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments.

REFERENCES

[1] CBMC: Bounded Model Checking for Software. Accessed: Oct. 23,
2017. [Online]. Available: https://www.cprover.org/cbmc/

[2] FourQLib Library. Accessed: Oct. 20, 2017. [Online]. Available:
https://github.com/Microsoft/FourQlib

[3] GDK Library. Accessed: Oct. 20, 2017. [Online]. Available:
https://developer.gnome.org/gdk3/

[4] A Library for Doing Constant-Time Fixed-Point Numeric Operations.
Accessed: Oct. 20, 2017. [Online]. Available: https://github.com/imdea-
software/verifying-constant-time

[5] OpenSSL Library. Accessed: Oct. 20, 2017. [Online]. Available:
https://github.com/openssl/openssl

[6] SSW Library. Accessed: Oct. 23, 2017. [Online]. Available:
https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library

[7] O. Acıçmez and Ç. K. Koç, “Trace-driven cache attacks on AES,”
in Information and Communications Security. Heidelberg, Germany:
Springer, 2006.

[8] J. B. Almeida et al., “Verifying constant-time implementations,” in Proc.
USENIX, 2016, pp. 53–70.

[9] T. Antonopoulos et al., “Decomposition instead of self-composition
for proving the absence of timing channels,” in Proc. PLDI, 2017,
pp. 362–375.

[10] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery
and quantification of information leaks,” in Proc. IEEE S P, 2009,
pp. 141–153.

[11] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,” in Proc.
CCS, 2014, pp. 1267–1279.

[12] T. Basu and S. Chattopadhyay, “Testing cache side-channel leakage,” in
Proc. ICST Workshops, 2017, pp. 51–60.

[13] D. J. Bernstein, “Cache-timing attacks on AES,” Dept. Math. Stat.
Comput. Sci., Univ. Illinois at Chicago, Chicago, IL, USA, Rep., 2005.
[Online]. Available: http://palms.ee.princeton.edu/system/files/Cache-
timing+attacks+on+AES.pdf

[14] P. Cañones, B. Köpf, and J. Reineke, “Security analysis of cache
replacement policies,” in Proc. POST, 2017, pp. 189–209.

[15] S. Chattopadhyay, “Directed automated memory performance testing,”
in Proc. TACAS, 2017, pp. 38–55.

[16] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller, “Quantifying
the information leak in cache attacks via symbolic execution,” in Proc.
MEMOCODE, 2017, pp. 25–35.

[17] S. Chattopadhyay and A. Roychoudhury, “Scalable and precise refine-
ment of cache timing analysis via path-sensitive verification,” Real Time
Syst., vol. 49, no. 4, pp. 517–562, 2013.

[18] S. Chattopadhyay and A. Roychoudhury, “Symbolic verification of cache
side-channel freedom,” CoRR, vol. abs/1807.04701, 2018. [Online].
Available: http://arxiv.org/abs/1807.04701

[19] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods Syst. Design, vol. 19, no. 1,
pp. 7–34, 2001.

[20] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proc. ISSTA, 2007, pp. 196–206.

[21] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic soft-
ware diversity,” in Proc. 22nd Annu. Netw. Distrib. Syst. Security
Symp. (NDSS), San Diego, CA, USA, 2015. [Online]. Available:
https://www.ndss-symposium.org/ndss2015/thwarting-cache-side-
channel-attacks-through-dynamic-software-diversity

[22] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
tool for the static analysis of cache side channels,” TISSEC, vol. 18,
no. 1, 2015, Art. no. 4.

[23] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in Proc. 27th USENIX Security Symp. (USENIX Security), 2018.

[24] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Proc. 40th IEEE Symp. Security Privacy (S&P), 2019.

[25] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptograph. Eng., vol. 8, no. 1, pp. 1–27, 2018.

[26] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proc. USENIX
Security, 2015, pp. 897–912.

[27] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” in Proc.
IEEE Symp. Security Privacy, 2016, pp. 38–55.

[28] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games—Bringing
access-based cache attacks on AES to practice,” in Proc. IEEE Symp.
Security Privacy, 2011, pp. 490–505.



CHATTOPADHYAY AND ROYCHOUDHURY: SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM 2823

[29] B. Köpf and D. A. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proc. CCS, 2007, pp. 286–296.

[30] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification of
cache side-channels,” in Proc. CAV, 2012, pp. 564–580.

[31] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in Proc. USENIX
Security Symp., 2016, pp. 549–564.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in Proc. IEEE Symp. Security Privacy,
2015, pp. 605–622.

[33] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity
to distinguish undue influence,” in Proc. PLAS, 2009, pp. 73–85.

[34] C. S. Pasareanu, Q.-S. Phan, and P. Malacaria, “Multi-run side-channel
analysis using symbolic execution and Max-SMT,” in Proc. CSF, 2016,
pp. 387–400.

[35] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyses,” Real Time Syst.,
vol. 18, nos. 2–3, pp. 157–179, 2000.

[36] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proc. ISCA, 2007, pp. 494–505.

[37] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proc. USENIX Security Symp.,
2014, pp. 719–732.

[38] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A timing attack
on openSSL constant-time RSA,” J. Cryptograph. Eng., vol. 7, no. 2,
pp. 99–112, 2017.

Sudipta Chattopadhyay received the Ph.D. degree
in computer science from the National University
of Singapore, Singapore, in 2013.

He is an Assistant Professor with the Information
Systems Technology and Design Pillar, Singapore
University of Technology and Design, Singapore.
In his doctoral dissertation, he researched on
Execution-Time Predictability, focussing on
Multicore Platforms. He seeks to understand the
influence of execution platform on critical software
properties, such as performance, energy, robustness,

and security. His research interests include program analysis, embedded
systems, and compilers.

Mr. Chattopadhyay serves in the review board of the IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING.

Abhik Roychoudhury received the Ph.D. degree
in computer science from the State University of
New York at Stony Brook, Stony Brook, NY, USA,
in 2000.

He is a Professor of computer science with the
National University of Singapore, Singapore. He
is currently leading the TSUNAMi center, a large
five-year long targeted research effort funded by
the National Research Foundation in the domain of
trust-worthy software. His research has been funded
by various agencies and companies, including the

National Research Foundation, Ministry of Education, A*STAR, Defense
Research and Technology Office, DSO National Laboratories, Microsoft, and
IBM. He has authored a book entitled Embedded Systems and Software
Validation (Systems-on-Silicon Series) (Morgan Kaufmann, 2009), which has
also been officially translated to Chinese by Tsinghua University Press. His
research group has built scalable techniques for testing, debugging, and repair
of programs using systematic semantic analysis. The research on automatically
repairing programs at a large-scale contributes to the vision of self-healing
software. His research interests include software testing and analysis, software
security, and trust-worthy software construction.

Dr. Roychoudhury is also the Lead Principal Investigator of the Singapore
Cyber-Security Consortium, which is a consortium of over 35 companies
in the cyber-security space engaging with academia for research and col-
laboration. He has served in various capacities in the program committees
and organizing committees of various conferences on software engineering,
specifically serving as the Program Chair of ACM International Symposium
on Software Testing and Analysis in 2016 and the General Chair of ACM
SIGSOFT Symposium on Foundations of Software Engineering in 2022. He
has served as an Editorial Board Member of the IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING from 2014 to 2018. He has been an ACM
Distinguished Speaker since 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


