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Automated program repair is a problem of finding a transformation (called a patch) of a given incorrect

program that eliminates the observable failures. It has important applications such as providing debugging

aids, automatically grading student assignments and patching security vulnerabilities. A common challenge

faced by existing repair techniques is scalability to large patch spaces, since there are many candidate patches

that these techniques explicitly or implicitly consider.

The correctness criteria for program repair is often given as a suite of tests. Current repair techniques do

not scale due to the large number of test executions performed by the underlying search algorithms. In this

work, we address this problem by introducing a methodology of patch generation based on a test-equivalence

relation (if two programs are "test-equivalent" for a given test, they produce indistinguishable results on this

test). We propose two test-equivalence relations based on runtime values and dependencies respectively and

present an algorithm that performs on-the-fly partitioning of patches into test-equivalence classes.

Our experiments on real-world programs reveal that the proposed methodology drastically reduces the

number of test executions and therefore provides an order of magnitude efficiency improvement over existing

repair techniques, without sacrificing patch quality.
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1 INTRODUCTION
As every developer knows, debugging is difficult and extremely time-consuming. Due to the slow

adoption of automated verification and debugging techniques, finding and eliminating defects

remains mostly a manual process. Automated patch generation approaches can potentially alleviate

this problem since they have been shown to be able to address defects in real-world programs

and require minimal developer involvement. Specifically, they have been successfully applied for

providing debugging hints [39], automatically grading assignments [30, 45] and patching security

vulnerabilities [22]. However, the problem of huge search spaces pose serious challenges for current

program repair techniques.

Authors’ addresses: Sergey Mechtaev, National University of Singapore, mechtaev@comp.nus.edu.sg; Xiang Gao, National

University of Singapore, gaoxiang@comp.nus.edu.sg; Shin Hwei Tan, National University of Singapore, shinhwei@comp.

nus.edu.sg; Abhik Roychoudhury, National University of Singapore, abhik@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1049-331X/2017/1-ART1 $$15.00

https://doi.org/0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


1:2 Mechtaev et al.

The goal of program repair is to modify a given incorrect program to eliminate the observable

failures. Specifically, the goal of test-driven program repair is to modify the buggy program so that

it passes all given tests. The tests are typically provided by developers, but can also be automatically

generated in a counterexample-guided refinement loop [1] when a formal specification is available.

Patches (program modifications) that pass all given tests are referred to as plausible in the program

repair literature [28]. Since a test-suite is an incomplete specification, plausible patches may not

coincide with user’s intentions but may merely overfit the tests [32]. To address this problem,

state-of-the-art techniques define a cost function (priority) on the space of candidate patches and

search for a patch that optimizes this function. For example, changes can be prioritized based on

syntactic distance [21], semantic distance [3] and information learned from human patches [17].

Patch generation systems need to consider large spaces of possible modifications in order to

address many kinds of defects. One of the key challenges of program repair is scalability to large

search spaces. Current techniques may require substantial time to generate patches and yet they

consider and generate only relatively simple program transformations [15]. This impacts the ability

of program repair to produce human-like repairs, since human patches often involve complex

source code modifications. Besides that, a recent study [16] demonstrated that extending the search

space with more transformations may cause repair systems to find fewer correct repairs because of

the increased search time.

Although existing test-driven program repair techniques employ different methodologies (e.g.

GenProg [42] uses genetic programming, SemFix [25] and Angelix [22] are based on constraint

solving, Prophet [17] is based on machine learning), they all search for patches by repeatedly

executing tests. Due to the high cost of test executions in large real-world programs, the number of

performed test executions is the main bottleneck of many existing program repair algorithms.

Existing search methodologies can be divided into two categories: syntax-based and semantics-

based. Syntax-based techniques (e.g. GenProg) explicitly generate and test syntactic changes. Thus,

the number of test executions performed by such techniques is proportional to the number of

explored candidate patches. Semantics-based techniques infer specification for identified statements

through path exploration and synthesize changes based on this specification. For instance, Angelix

explores deviations of execution paths for given tests using symbolic execution (which can be

considered as a variant of test execution), and Prophet explores deviations of execution paths for

given tests by enumerating sequences of condition values. Thus, the number of test executions

performed by such techniques is proportional to the number of explored paths.

The purpose of this work is to improve the scalability of program repair without sacrificing

the quality of generated patches. In order to achieve this, we propose a methodology based on a

test-equivalence relation [8, 9]. If two programs are test-equivalent for a test, then the programs

produce indistinguishable results on that test:

Definition 1.1 (Test-equivalence). Let P be a set of programs, t be a test. An equivalence relation

(reflexive, symmetric and transitive)
t

∼ ⊂ P × P is a test-equivalence relation for t if it is consistent

with the results of t , that is ∀p1,p2 ∈ P, if p1
t

∼ p2 then p1 and p2 either both pass t or both fail t .

The proposed algorithm partitions the space of candidate patches into test-equivalence classes by

performing on-the-fly analysis during test execution. This enables our methodology to alleviate the

limitations of previous techniques. Compared with syntax-based techniques, it reduces the number

of test executions since a single execution is sufficient to evaluate multiple patch candidates (specif-

ically, all patches in the same test-equivalence class). Compared with semantics-based techniques,

it reduces the number of test executions for two reasons. First, it avoids exploration of “infeasible”

paths (sequences of values), i.e. paths or sequences of values that cannot be induced by any of the

considered candidate patches in the context of given tests. Second, it reuses information inferred
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across multiple tests to skip redundant executions, while previous semantics-based techniques

perform path exploration independently for each test.

Contributions. The main contributions of this work are described in the following.

(1) We propose the use of test-equivalence relations to drastically prune the search space explored

for the purpose of program repair.

(2) We adapt a test-equivalence relation used in mutation testing [8] (that we call value-based

test-equivalence) to program repair by integrating it with syntax-guided program synthesis.

(3) We define a new test-equivalence relation based on dynamic data dependencies and propose

a method of synthesizing assignment statements through the composition of value-based

and dependency-based test-equivalence relations.

(4) We introduce a new patch space exploration algorithm that performs on-the-fly (during test

execution) partitioning of patches into test-equivalence classes, thereby achieving efficient

program repair that requires fewer test executions to generate a patch.

(5) We conduct an evaluation of the algorithm on real-world programs from the GenProg ICSE’12

benchmark [12]; it demonstrates that test-equivalence significantly reduces the number of

required test executions and therefore increases the efficiency of test-driven program repair

and scales it to larger search spaces without sacrificing patch quality.

Outline. In the next section, we provide examples demonstrating limitations of existing techniques

and formulate key insights of our methodology. Section 3 formally defines the two test-equivalence

relations. Section 4 introduces a repair algorithm based on these relations, Section 5 describes its

implementation and Section 6 presents its experimental evaluation. Section 7 discusses related

work, Section 8 discusses future research directions and Section 9 concludes.

2 MOTIVATING EXAMPLES
This section gives three examples demonstrating limitations of existing techniques: a large num-

ber of redundant test executions, ineffectiveness in searching for optimal repairs and restricted

applicability. We also formulate key insights that enable our method to address these limitations.

2.1 Example: repairing conditions
Consider a defect in the revision 0661f81 of Libtiff

1
from the GenProg ICSE’12 benchmark. The

code in Figure 1a is responsible for flushing data written by the compression algorithm, and the

defect is caused by the wrong highlighted condition. Libtiff test-suite contains 78 tests, and this

defect is manifested by a failing test called “tiffcp-split”. Figure 1b demonstrates the developer patch

that modifies the wrong condition by removing the clause tif->tif_rawcc != orig_rawcc.

We demonstrate how existing automated program repair algorithms generate a patch for this

condition. First, repair algorithms perform fault localization to identify suspicious program state-

ments. The number of localized statements in existing tools may vary from tens to thousands

depending on algorithms and configurations (it can potentially include all executed statements). In

this example, we consider only the location of the buggy expression highlighted in Figure 1a.

Second, program repair algorithms define a search space of candidate patches. In this work, we

primarily focus on two state-of-the-art approaches that have been shown to scale to large real-world

programs: Angelix [22] and Prophet [17]. Specifically, our goal was to support a combination of

transformations implemented in these systems. Thus, the search space for the highlighted condition

includes all possible replacements of its subexpressions by expressions constructed from visible

program variables and C operators, refinements (e.g. appending && EXPR and || EXPR), replacements

1
Libtiff is a software library that provides support for TIFF image format: http://simplesystems.org/libtiff/
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...

(*tif ->tif_close)(tif);

if (tif->tif_rawcc > 0

&& tif->tif_rawcc != orig_rawcc

&& (tif->tif_flags & TIFF_BEENWRITING)!= 0

&& !TIFFFlushData1(tif)) {

TIFFErrorExt(tif ->tif_clientdata ,

module ,

"Error␣flushing␣data␣before␣

directory␣write");

return (0);

}

...

(a) Incorrect condition in Libtiff (rev. 0661f81).

...

(*tif ->tif_close)(tif);

if (tif->tif_rawcc > 0

&& (tif->tif_flags & TIFF_BEENWRITING)!= 0

&& !TIFFFlushData1(tif)) {

TIFFErrorExt(tif ->tif_clientdata ,

module ,

"Error␣flushing␣data␣before␣

directory␣write");

return (0);

}

...

(b) Developer patch for incorrect condition.

Fig. 1. Defect in Libtiff library from GenProg ICSE’12 benchmark.

of operators and swapping arguments. In total, the search space in our synthesizer contains 56 243

modifications of the buggy condition.

Finally, program repair algorithms explore the search space in order to try to find a modification

that passes all given tests. We say that an element of a search space is explored if the algorithm

identifies if it passes all the tests or fails at least one. Existing search space exploration methods

can be classified into two categories: syntax-based and semantics-based. Syntax-based algorithms

explicitly generate and test syntactic changes. In this example, a syntax-based algorithm have

to execute the failing test 56 243 times to evaluate all candidates
2
. Since there are 78 tests in the

test-suite, 907 457 test executions are required to explore the search space
3
. Given the high cost of

test execution, this approach has poor scalability.

Semantics-based techniques (e.g. Semfix [25], SPR [15], Angelix and Prophet) split exploration

into two phases. First, they infer a synthesis specification for the identified expression through

path exploration. For this example, they enumerate and execute sequences of condition values (e.g.

true, true, true, false, ...) to find those sequences that enable the program to pass the test. Second,

they synthesize a modification of the condition to match the inferred specification. In this example,

there are 256 possible execution paths (the condition is evaluated multiple times during the test

execution), therefore a semantics-based algorithm performs 256 test executions for the failing tests,

and 1320 for the whole test-suite
4
. Although semantics-based techniques were shown to be more

scalable [15], they are subject to the path explosion problem: the number of execution paths can

be infinite. To address this, current systems introduce a bound for the number of explored paths,

however it may affect their effectiveness: if a path followed by the correct patch is omitted, then

this correct patch cannot be generated.

The algorithm proposed in this work performs on-the-fly partitioning of program modifications

into test-equivalence classes. We demonstrate the effect of the relation
t

∼value described in Section 3.3.

Two modifications of a program expression are test-equivalent w.r.t.
t

∼value if they are evaluated

into the same sequences of values during the test execution. Surprisingly, the space of 56 243

2
Since the search space contains the correct patch in this example, the algorithm can stop search earlier after the patch is

found. Then, the number of test executions depends on the exploration order.

3
This data is obtained by executing our implementation of syntactic enumeration.

4
This data is obtained by executing Angelix.
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1. ((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

|| (tif ->tif_flags & TIFF_BEENWRITING)

2. ((tif ->tif_rawcc > 0) || (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING)

3. ((tif ->tif_rawcc == 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING)

4. (((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING )) || (imagedone >= orig_rawcc)

5. (((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING )) || (tif->tif_flags >= 74)

Fig. 2. Each of 56 243 search space elements is test-equivalent to one of these 5 expressions.

modifications can be partitioning into only 5 test-equivalence classes for the failing test “tiffcp-split”

w.r.t.
t

∼value; five elements of the search space that represent different test-equivalence classes are

given in Figure 2. Since all patches in the same test-equivalence class exhibit the same behaviour

for the corresponding test, the failing test can be executed only 5 times to evaluate all candidates.

Our algorithm computes test-equivalence classes for each test in the test-suite. However, since

test-equivalence classes for different tests may intersect, our algorithm takes advantage of this to

skip redundant execution across different tests. Specifically, for each next test it only evaluates

subspaces of modifications that are not included into failing test-equivalence classes of previously

executed tests. Meanwhile, semantics-based techniques perform specification inference for each

test independently without reusing information across tests. As a result, our algorithm requires

only 103 test executions to evaluate all 56 243 modifications with the whole test-suite.

Key insight. The key insight that enables our method to reduce the number of required test exe-

cutions is that, compared with techniques that explore execution paths, it takes the expressiveness

of the patch space into account (e.g. it identifies that only 5 out of 256 possible execution paths are

induced by the considered set of 56 243 transformations). Compared with syntactic enumeration, it

substantially reduces executions since a single execution evaluates a whole test-equivalence class.

2.2 Example: optimal repair
Since a test-suite is an incomplete specification, test-driven program repair suffers from the test

overfitting problem [32]. To address this issue, state-of-the-art techniques define a priority (a cost

function) in the space of patches and search for a program modification that optimizes this function.

Ideally, this function should assign higher cost to overfitting patches. For instance, Prophet [17]

demonstrates how such a cost function learned from human patches enables the generation of

more correct repairs.

Consider a program p in Figure 3a that counts odd numbers in the interval (0,i]. The * indicates a

wrong condition that has to bemodified by the repair algorithm (the correct condition is i mod 2 = 1).
We denote a program obtained by substituting * with an expression e as p[∗/e]. The repair algorithm
searches for a plausible patch (a substitution of * with a condition) from the space P in Figure 3b

such that the resulting program passes the test t defined as follows:

t B ({ i 7→ 4, c 7→ 0 }, λσ . σ (c ) = 2)

where t is pair of (1) an initial program state (mapping from variables to values) and (2) a test

assertion (a boolean function over program states) denoted using lambda notation. We assume that

* is such that p fails t . Besides that, we consider a cost function κ defined for the considered space

of substitutions in Figure 3c. The goal is to find a plausible patch with the lowest cost.
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while i > 0 do

if * then

c := c + 1

fi;

i := i - 1

od

(a) Buggy program p.

P B { p[∗/i ≥ 0],

p[∗/c ≥ 0],

p[∗/i mod 2 = 1],

p[∗/i mod 2 = 0],

p[∗/i > 2] }

(b) Search space.

κ (p[∗/i ≥ 0]) B 0.1

κ (p[∗/c ≥ 0]) B 0.2

κ (p[∗/i mod 2 = 1]) B 0.3

κ (p[∗/i mod 2 = 0]) B 0.4

κ (p[∗/i > 2]) B 0.5

(c) Cost function.

Fig. 3. Example of optimal program repair problem.

In order to find a patch for the example program, techniques like Angelix and Prophet enumerate

possible sequences of values that a condition can take during test execution. Since there can be

potentially infinite number of such sequences, existing approaches introduce a bound for the

number of explored sequences and use an exploration heuristics to choose which sequences to

explore. For instance, Prophet enumerates sequences where the condition first always takes the true

branch until a certain point after which it always takes the false branch. Thus, for the considered

example it would enumerate the following sequences:

{ true, true, true, true },

{ true, true, true, false },

{ true, true, false, false },

{ true, false, false, false }

For each of these sequences, Prophet executes the program with the test t in such a way that the

condition * takes the values as in this sequence during the execution. Only the third sequence

{ true, true, false, false } enables the program to pass t , therefore it will be selected as a specification

for expression synthesis. The synthesizer will find the expression i > 2 obtaining a suboptimal

patch p[∗/i > 2]with the cost 0.5, since this is the only expression from the search space satisfying the

specification. However, the correct expression i mod 2 = 1with a lower cost 0.3 cannot be generated,
since the corresponding sequence { false, true, false, true } is not explored by the algorithm.

In contrast to techniques like Angelix and Prophet, our algorithm iterates through the search

space in such a way that at each steps it selects and evaluates an unevaluated candidate with the

lowest cost. Specifically, it starts by choosing the candidate p[∗/i ≥ 0] with the cost 0.1. It executes

this candidate on-the-fly computing its test-equivalence class w.r.t.
t

∼value described in Section 2.1.

This class contains the program p[∗/c ≥ 0], since the conditions i ≥ 0 and c ≥ 0 produce the same

sequence of values { true, true, true, true } for t . Since p[∗/i ≥ 0] does not pass the test, the whole

corresponding test-equivalence class is marked as failing. Next, it selects p[∗/i mod 2 = 1] with the cost

0.3 since p[∗/c ≥ 0] was indirectly evaluated through test-equivalence at the previous step. Since this

candidate passes the test, the algorithm outputs it as a found repair.

Key insight. Our algorithm guides exploration based on a given cost function and focuses on

high priority areas of the space of patches. By construction, if it finds a patch, then this patch

is guaranteed to be the global optimum in the search space w.r.t. the cost function. Angelix and

Prophet, on the other hand, may spend executions for value sequences that correspond to suboptimal

candidates or correspond to no candidates at all (e.g. { false, true, true, true }), and therefore may

miss the best patch in their search space.
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...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

ifd = part_nb;

if (decompress) {

method=get_method(ifd);

...

(a) Before if-statement.

...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

ifd = 0;

if (decompress) {

method=get_method(ifd);

...

(b) Before if-statement.

...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

if (decompress) {

ifd = part_nb;

method=get_method(ifd);

...

(c) Inside if-statement.

Fig. 4. Candidate patches for defect of Gzip from GenProg ICSE’12 benchmark.

2.3 Example: repairing assignments
Although current program repair approaches have been shown to be relatively effective inmodifying

existing program expressions, they provide limited support for more complex transformations. In

this work, we consider one such transformation that inserts a new assignment statement to the

buggy program. Techniques like Prophet and GenProg can generate patches by copying/moving

existing program assignments, however this approach has limitations: (1) assignments for local

variables cannot be copied from different parts of the program because of their scope and (2) each

insertion of an assignment is validated separately, which yield a large number of required test

executions. Existing techniques do not apply specification inference for assignment synthesis (as

described in Section 2.1 for conditions) because such specification has to encode all possible side

effects that can be caused by assignment insertion (for each variable that can appear in the left-hand

side of the assignment), which makes inferring such specification infeasible for large programs.

We show how test-equivalence can scale assignment synthesis for a defect in Gzip
5
from the Gen-

Prog ICSE’12 benchmark. Consider three candidate patches in Figure 4 that insert the highlighted

statements at several program locations. First, our algorithm identifies that the program in Figure 4a

is test-equivalent to the program in Figure 4b (w.r.t. the relation
t

∼value described previously in

Section 2.1) since they differ only in the right-hand side of the highlighted assignments and the cor-

responding expressions take the same values during test execution. Second, using a simple dynamic

data dependency analysis our algorithm identifies that the program in Figure 4a is test-equivalent

to the program in Figure 4c since (1) they insert the same assignment at different program locations,

(2) both these locations are executed by the test since the true branch of the if-statement is taken

during the test execution and (3) the variables ifd and part_nb are not used/modified between

these locations during test execution. We refer to such a test-equivalence relation as
t

∼deps . Finally,
our algorithm merges the results of the two analyses (as the transitive closure of their union) and

determines that the program in Figure 4b is test-equivalent to the program in Figure 4c. Therefore,

a single test execution is sufficient to evaluate all these patches.

Key insight. Since test-equivalence is a weaker property than the property of “passing the

test” expressed by the inferred specification in semantics-based techniques, it permits using more

lightweight analysis techniques. Specifically, we demonstrate that a composition of two lightweight

test-equivalence analyses enables us to scale assignment synthesis.

5
Gzip is a file compression/decompression application: https://www.gnu.org/software/gzip/

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:8 Mechtaev et al.

⟨Stmt⟩ ::= ⟨Var⟩ B ⟨AExpr⟩
| skip
| ⟨Stmt⟩ ; ⟨Stmt⟩
| if ⟨BExpr⟩ then ⟨Stmt⟩ else ⟨Stmt⟩ fi
| while ⟨BExpr⟩ do ⟨Stmt⟩ od

⟨AExpr⟩ ::= ⟨Var⟩
| ⟨Num⟩
| ⟨AExpr⟩ ⟨AOp⟩ ⟨AExpr⟩

⟨BExpr⟩ ::= true
| false
| ⟨BExpr⟩ ⟨BOp⟩ ⟨BExpr⟩
| ⟨AExpr⟩ ⟨ROp⟩ ⟨AExpr⟩

⟨AOp⟩ ::= + | - | * | ...

⟨BOp⟩ ::= and | or | ...

⟨ROp⟩ ::= < | <= | = | ...

Fig. 5. Syntax of programming language L.

3 TEST-EQUIVALENCE RELATIONS
This section formally introduces two test-equivalence relations for spaces of program modifications

generated through program synthesis. In the subsequent Section 4, we demonstrate how these

relations can be applied for scaling patch generation. However, we believe that these relations can

be also used in different domains; other potential applications are discussed in Section 7.

3.1 Preliminaries
We introduce our methodology for an imperative programming language L. The syntax of L is

defined in Figure 5, where Z is the integer domain, B is the boolean domain (true and false), Stmt is
a set of statements, AExpr is a set of arithmetic expressions, BExpr is a set of boolean expressions,

Expr = AExpr ∪ BExpr , Num is a set of integer literals, Var is a set of variables over Z. A program

in L is a sequence of statements. We denote subsets of L as P, subsets of expressions Expr as
E, all variables from Var encountered in an expression e as Var (e ), a program that is obtained by

substituting a statement (expression) s with a statement (expression) s ′ in a program p as p[s/s ′].
The semantics of L is defined in Figure 6, where program state σ : Var → Z is a function from

program variables into values, Σ is a set of program states. We indicate a modification of a program

state σ where the value of the variable v is updated to n as σ [v 7→ n].

Definition 3.1 (Test). Let p ∈ L be a program, t ∈ Σ × (Σ → B) be a test, that is a pair (σin,ϕ),
where σin in the initial program state (input) and ϕ is the test assertion (a boolean function over

program states). We say that p passes t (indicated as Pass[p,t]) iff ⟨p,σin⟩ ⇓ σout ∧ ϕ (σout ).

A test execution can be represented through a derivation tree as in the following example:

Example 3.2 (Derivation tree). Consider a program p defined as “x B y + 1;y B x” and a test

t B (σin,λσ . σ (y) = 3) where the input state σin B {x 7→ 1,y 7→ 2}. According to the semantics in

Figure 6, the following relation holds: ⟨p,σin⟩ ⇓ σout , where σout B {x 7→ 3,y 7→ 3}. This relation

can be established by the following derivation tree obtained by applying the semantics rules:

⟨y, ...⟩ ⇓ 2
VAR

⟨1, ...⟩ ⇓ 1
NUM

⟨y + 1, {x 7→ 1,y 7→ 2}⟩ ⇓ 3
OP

⟨x B y + 1, {x 7→ 1,y 7→ 2}⟩ ⇓ {x 7→ 3,y 7→ 2}
ASSIGN

⟨x , ...⟩ ⇓ 3
VAR

⟨y B x , {x 7→ 3,y 7→ 2}⟩ ⇓ {x 7→ 3,y 7→ 3}
ASSIGN

⟨x B y + 1;y B x , {x 7→ 1,y 7→ 2}⟩ ⇓ {x 7→ 3,y 7→ 3}
SEQ

The output state {x 7→ 3,y 7→ 3} satisfies the test assertion λσ . σ (y) = 3, therefore p passes t .
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VAR

⟨v,σ ⟩ ⇓ σ (v )

NUM

⟨n,σ ⟩ ⇓ n

OP

⟨e1,σ ⟩ ⇓ n1 ⟨e2,σ ⟩ ⇓ n2 n3 = n1 op n2
⟨e1 op e2,σ ⟩ ⇓ n3

ASSIGN

⟨e,σ ⟩ ⇓ n

⟨v B e,σ ⟩ ⇓ σ [v 7→ n]

SEQ

⟨s1,σ ⟩ ⇓ σ1 ⟨s2,σ1⟩ ⇓ σ2

⟨s1 ; s2,σ ⟩ ⇓ σ2

IF-TRUE

⟨e,σ ⟩ ⇓ true ⟨s1,σ ⟩ ⇓ σ1

⟨if e then s1 else s2 fi,σ ⟩ ⇓ σ1

IF-FALSE

⟨e,σ ⟩ ⇓ false ⟨s2,σ ⟩ ⇓ σ2

⟨if e then s1 else s2 fi,σ ⟩ ⇓ σ2
WHILE-TRUE

⟨e,σ ⟩ ⇓ true ⟨s1,σ ⟩ ⇓ σ1 ⟨while e do s od,σ1⟩ ⇓ σ2

⟨while e do s od,σ ⟩ ⇓ σ2

WHILE-FALSE

⟨e,σ ⟩ ⇓ false

⟨while e do s od,σ ⟩ ⇓ σ

SKIP

⟨skip,σ ⟩ ⇓ σ

Fig. 6. Semantics of L.v — variables, n — integer values, e — expressions, s — statements, σ — program states.

ALGORITHM 1: Value-projection operator via enumerative synthesis

Input: set of expressions E, program state σ , value n
Output: set of expressions E′

1 E′ := ∅;

2 foreach e ∈ E do
3 if ⟨e, σ ⟩ ⇓ n then
4 E′ := E′ ∪ {e };

5 return E′;

3.2 Generalized synthesis
The presented methodology of test-equivalence analysis is introduced for program repair techniques

that rely on syntax-guided program synthesis to generate patches. Such techniques generate

expressions for “holes” in programs based on the values of visible program varables (program state)

and expected results for the synthesized expressions. Thus, we define synthesis specification as a

finite set of input-output pairs (an input is represented by a program state from Σ and an output is

an integer or a boolean value); we denote the set of all specifications as Spec B 2
Σ×(Z∪B)

.

Definition 3.3 (Synthesis procedure). A syntax-guided synthesis procedure synthesize : 2Expr ×
Spec → Expr is a function that takes a set of expressions (the synthesis search space) and

a specification, and returns an expression from the search space that meets the specification.

Specifically, for a given search space E and specification spec, if synthesize(E, spec) = e then

e ∈ E ∧
∧

σ ,n∈spec⟨e,σ ⟩ ⇓ n.

In order to integrate synthesis with test-equivalence analysis, we impose additional requirements

for the program synthesizer: it should define a value-projection operator over its search space.

The value-projection operator Πvalue
σ ,n produces a maximal subset of a given set of expressions

consisting only of expressions that are evaluated into n in the context σ :

Πvalue
σ ,n (E) = {e | e ∈ E ∧ ⟨e,σ ⟩ ⇓ n}

In this work, we use an enumerative synthesizer [1] that demonstrated positive results in program

synthesis competitions
6
. Since it represents the search space explicitly as a set of expressions, it is

straightforward to realize the value-projection operator in such a synthesizer (Algorithm 1). Other

possible realizations are discussed in Section A.
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EXPR-MOD

Modified (e ) ⟨e,σ ⟩ ⇓ n c ′ = Πvalue
σ ,n (c )

⟨e,σ ,c⟩ ⇓value ⟨n,c
′⟩

EXPR-NMOD

¬Modified (e ) ⟨e,σ ⟩ ⇓ n

⟨e,σ ,c⟩ ⇓value ⟨n,c⟩

ASSIGN

⟨e,σ ,c⟩ ⇓value ⟨n,c
′⟩

⟨v B e,σ ,c⟩ ⇓value ⟨σ [v 7→ n],c ′⟩

IF-TRUE

⟨e,σ ,c⟩ ⇓value ⟨true,c1⟩ ⟨s1,σ ,c1⟩ ⇓value ⟨σ1,c2⟩

⟨if e then s1 else s2 fi,σ ,c⟩ ⇓value ⟨σ1,c2⟩

IF-FALSE

⟨e,σ ,c⟩ ⇓value ⟨false,c1⟩ ⟨s2,σ ,c1⟩ ⇓value ⟨σ2,c2⟩

⟨if e then s1 else s2 fi,σ ,c⟩ ⇓value ⟨σ2,c2⟩

SEQ

⟨s1,σ ,c⟩ ⇓value ⟨σ1,c1⟩ ⟨s2,σ1,c1⟩ ⇓value ⟨σ2,c2⟩

⟨s1 ; s2,σ ,c⟩ ⇓value ⟨σ2,c2⟩

SKIP

⟨skip,σ ,c⟩ ⇓value ⟨σ ,c⟩

WHILE-FALSE

⟨e,σ ,c⟩ ⇓value ⟨false,c ′⟩

⟨while e do s od,σ ,c⟩ ⇓value ⟨σ ,c
′⟩

WHILE-TRUE

⟨e,σ ,c⟩ ⇓value ⟨true,c1⟩ ⟨s1,σ ,c1⟩ ⇓value ⟨σ1,c2⟩ ⟨while e do s od,σ1,c2⟩ ⇓value ⟨σ2,c3⟩

⟨while e do sod,σ ,c⟩ ⇓value ⟨σ2,c3⟩

Fig. 7. Augmented semantics of L for computing test-equivalence classes w.r.t. t

∼value . v — variables, n —
integer values, e — expressions, s — statements, σ — program states, c — sets of expressions, Modified —
predicate over expressions.

3.3 Value-based test-equivalence relation

This section introduces a test-equivalence relation
t

∼value for spaces of programs that differ only in

expressions. From the conceptual point of view, the introduced relation generalizes relations that

have been used in mutation testing [8]. From the algorithmic point of view, our approach differs

from the previous work on test-equivalence in that the relation is integrated with syntax-guided

program synthesis (used for patch synthesis) via the value-projector operator.

Intuitively, two programs p and p ′ such that p ′ = p[e/e ′] for some expressions e and e ′ are test-

equivalent for some test t w.r.t.
t

∼value if, during the executions of p and p ′ with t , the expressions
e and e ′ are evaluated into the same values. An example of applying this relation is given in

Section 2.1.

We define the relation
t

∼value constructively using an augmented semantics of L. We chose this

presentation since it simultaneously defines an algorithm of computing test-equivalence classes in

spaces of modification generation through program synthesis. The implementation of this semantics

via program instrumentation is discussed in Section 5.

The semantics in Figure 7 extends the semantics in Figure 6 by defining the function ⇓value . It is

parameterized by a predicate Modified : Expr → B that marks the modified program expression,

substitutions of which are analyzed for test-equivalence. The function ⇓value additionally maintains

a set of expressions (denoted as c), such that the substitutions of the modified expression with c
form the computed test-equivalent class.

The augmented semantics describes an algorithm of identifying test-equivalence classes that,

for a given set of expressions (the synthesis search space), “filters out” those that do not belong

to the test-equivalent class of the current program by repeatedly applying the value-projection

operator. The application of the value-projection operator to the current set of expressions c is
highlighted in Figure 7. Thus, it identifies all expressions from c that produce the same value as the

original expression at this evaluation step. Since each expression can be evaluated multiple times

during test execution, the value-projection operator can also be applied multiple times. Therefore,

the test-equivalence class is computed as Πvalue
σ1,n1

◦ Πvalue
σ2,n2

◦ ... ◦ Πvalue
σk ,nk (E), where E is a set of all

6
SyGuS-Comp 2014: http://www.sygus.org/SyGuS-COMP2014.html
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substitutions of the modified expression, ni are the values of the modified expression computed

during test execution and σi are the corresponding program states.

Definition 3.4 (Value-based test-equivalence relation). Let P be a set of programs, t = (σin,ϕ) be a

test.
t

∼value⊂ P × P is a value-based test-equivalence relation iff p1
t

∼value p2 for p1,p2 ∈ P if ∃e,e ′ ∈
Expr such that p2 = p1[e/e ′] and ⟨p1,σin, {e,e

′}⟩ ⇓value ⟨_, {e,e
′}⟩ given that Modified B λx . x = e .

In this definition, we call two programs that differ only in expressions to be test-equivalent if

the corresponding expressions produce the same values according to the semantics in Figure 6.

Specifically, by passing the program p1, the test input σin and the set of expressions {e,e ′} as the
arguments to ⇓value , we obtain the same set {e,e ′} as the result.

Proposition 3.5. The relation t

∼value is a test-equivalence relation according to Definition 1.1.

The proposition above formally states that (1)
t

∼value is an equivalence relations and (2) if two

programs that differ only in expressions are test-equivalent according to the semantics in Figure 7,

then these two programs either both pass the test of both fail the test. A proof for the above

proposition is given in Section C.

Example 3.6 (Test-equivalent programs w.r.t. t

∼value). Consider a program p1 defined as

if x > 0 then x B y else skip fi

a program p2 defined as

if y = 2 then x B y else skip fi

and a test t B (σin,λσ . σ (y) = 3) where the input state σin B {x 7→ 1,y 7→ 2}. These programs are

test-equivalent w.r.t. the value-based test-equivalence relation for the test t , since they differ only

in the if-condition and the following relation holds:

⟨p1,σin, {“x > 0”,“y = 2”}⟩ ⇓value ⟨σout , {“x > 0”,“y = 2”}⟩

where σout B {x 7→ 2,y 7→ 2}. This relation can be established by the following derivation tree:

...

⟨x > 1,σin⟩ ⇓ true
OP {“x > 0”,“y = 2”} = Πvalue

σin,true ({“x > 0”,“y = 2”})

⟨x > 0,σin, {“x > 0”,“y = 2”}⟩ ⇓value ⟨true, {“x > 0”,“y = 2”}⟩
EXPR-MOD

...

...
ASSIGN

⟨if x > 0 then x B y else skip fi,σin, {“x > 0”,“y = 2”}⟩ ⇓value ⟨σout , {“x > 0”,“y = 2”}⟩
IF-TRUE

3.4 Dependency-based test-equivalence relation

This section introduces a test-equivalence relation
t

∼deps for spaces of programs that differ in

locations in which an assignment statement is inserted. Let a location in program p be a statement

of p. We say that a program p ′ is obtained by inserting the assignment v B e at the location l iff
p ′ = p[l/v B e;l]. Let p be a program and programs p1 and p2 are obtained by inserting the assignment

v B e at the locations l1 and l2 of p respectively. Informally, p1 and p2 are test-equivalent for

some test t if, during an execution of p1 with t , (1) for each occurrence of l1 in the execution trace

there is a “matching” occurrence of l2 (the variable v is not read or overwritten between these

occurrences and the variables Var (e ) are not overwritten between these occurrences), and (2) for

each occurrence of l2 in the execution trace there is a “matching” occurrence of l1. An example of

applying this relation is given in Section 2.3.
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VAR-LEFT-EXE

Left (v ) ∧ x

⟨v,σ ,l ,c,x⟩ ⇓deps ⟨σ (v ),l ∩ c,∅, false⟩

VAR-LEFT-NEXE

Left (v ) ∧ ¬x

⟨v,σ ,l ,c,x⟩ ⇓deps ⟨σ (v ),l \ c,∅,x⟩

VAR-NLEFT

¬Left (v )

⟨v,σ ,l ,c,x⟩ ⇓deps ⟨σ (v ),l ,c,x⟩

OP

⟨e1,σ ,l ,c,x⟩ ⇓deps ⟨n1,l1,c1,x1⟩ ⟨e2,σ ,l1,c1,x1⟩ ⇓deps ⟨n2,l2,c2,x2⟩ n3 = n1 op n2
⟨e1 op e2,σ ,l ,c,x⟩ ⇓deps ⟨n3,l2,c2,x2⟩

ASSIGN-INS

Inserted (v B e ) ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓deps ⟨σ
′,l ,c, true⟩

ASSIGN-LR-EXE

¬Inserted (v B e ) ∧ (Left (v ) ∨ Right (v )) ∧ x ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓deps ⟨σ
′,l ∩ c,∅, false⟩

ASSIGN-LR-NEXE

¬Inserted (v B e ) ∧ (Left (v ) ∨ Right (v )) ∧ ¬x ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓deps ⟨σ
′,l \ c,∅, false⟩

ASSIGN-NLR

¬Inserted (v B e ) ∧ ¬Left (v ) ∧ ¬Right (v ) ⟨e,σ ,l ,c,x⟩ ⇓deps ⟨n,l1,c1,x1⟩

⟨v B e,σ ,l ,c,x⟩ ⇓deps ⟨σ [v 7→ n],l1,c1,x1⟩

SEQ

⟨s1,σ ,l ,c,x⟩ ⇓deps ⟨σ1,l1,c1,x1⟩ ⟨s2,σ1,l1,c1 ∪ {s2},x1⟩ ⇓deps ⟨σ2,l2,c2,x2⟩

⟨s1 ; s2,σ ,l ,c,x⟩ ⇓deps ⟨σ2,l2,c2,x2⟩

SKIP

⟨skip,σ ,l ,c,x⟩ ⇓deps ⟨σ ,l ,c,x⟩

IF-TRUE

⟨e,σ ,l ,c,x⟩ ⇓deps ⟨true,l1,c1,x1⟩ ⟨s1,σ ,l1,c1 ∪ {s1},x1⟩ ⇓deps ⟨σ1,l2,c2,x2⟩

⟨if e then s1 else s2 fi,σ ,c⟩ ⇓deps ⟨σ1,l2,c2,x2⟩

IF-FALSE

⟨e,σ ,l ,c,x⟩ ⇓deps ⟨false,l1,c1,x1⟩ ⟨s2,σ ,l1,c1 ∪ {s2},x1⟩ ⇓deps ⟨σ2,l2,c2,x2⟩

⟨if e then s1 else s2 fi,σ ,l ,c,x⟩ ⇓deps ⟨σ2,l2,c2,x2⟩

WHILE-TRUE

⟨e,σ ,l ,c,x⟩ ⇓deps ⟨true,l1,c1,x1⟩ ⟨s1,σ ,l1,c1 ∪ {s1},x1⟩ ⇓deps ⟨σ1,l2,c2,x2⟩ ⟨while e do s od,σ1,l2,c2,x2⟩ ⇓deps ⟨σ2,l3,c3,x3⟩

⟨while e do s od,σ ,l ,c,x⟩ ⇓deps ⟨σ2,l3,c3,x3⟩

WHILE-FALSE

⟨e,σ ,l ,c,x⟩ ⇓deps ⟨false,l ′,c ′,x ′⟩

⟨while e do s od,σ ,l ,c,x⟩ ⇓deps ⟨σ ,l
′,c ′,x ′⟩

NUM

⟨n,σ ⟩ ⇓ n

⟨n,σ ,l ,c,x⟩ ⇓deps ⟨n,l ,c,x⟩

Fig. 8. Augmented semantics of L for computing test-equivalence classes w.r.t. t

∼deps . v — variables, n —
integer values, e — expressions, s — statements, σ — program states, l ,c — sets of locations, x — boolean
values, Inserted — predicate over statements, Left,Right — predicates over variables.

The relation is formally defined through an augmented semantics ofL. As in Section 3.3, we chose

this representation since it simultaneously defines an algorithm of identifying test-equivalence

classes. The implementation of this semantics via program instrumentation is discussed in Section 5.

The semantics in Figure 8 extends the semantics in Figure 6 by defining the function ⇓deps . It is

parameterized by a predicate Inserted : Stmt → B that marks the inserted assignment, a predicate

Left : V → B that marks the left-hand side variable of the inserted assignment, and a predicate

Right : V → B that marks the variables used in the right-hand side of the inserted assignment.

⇓deps additionally maintains:

• l — a set of locations representing test-equivalent insertions;

• c — a set of locations that are executed after the last read/write of the variables involved in

the inserted assignment;

• x — a boolean value that indicates if the inserted assignment was evaluated after the last

read/write of the variables involved in the inserted assignment.

The augmented semantics describes an analysis algorithm that, for a given set of locations, “filters

out” those that do not correspond to the test-equivalent insertions of a given assignment. For a
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programwith inserted assignmentv B e , the semantics in Figure 8 computes sequences of executed

locations (stored in the set c) such that each sequence contains the inserted statementv B e (the rule
ASSIGN-INS) and all the rest of the statements in this sequence do not read/overwrite the variable

v and do not overwrite the variables in e (the rule ASSIGN-NLR). When such a sequence is found,

the set of locations executed in this sequence is intersected with the current set of test-equivalent

insertions (l ∩ c in the rules VAR-LEFT-EXE and ASSIGN-LR-EXE). When the inserted assignment

v B e is not executed in such a sequence, the set of locations executed in this sequence is removed

from the set of test-equivalent insertions (l \c in the rules VAR-LEFT-NEXE and ASSIGN-LR-NEXE),

since for these locations this is no “matching” occurrence of v B e .

Definition 3.7 (Dependency-based test-equivalence relation). Let P be a set of programs, t = (σin,ϕ)

be a test.
t

∼deps⊂ P × P is a dependency-based test-equivalence relation iff p1
t

∼deps p2 for p1,p2 ∈ P
if there is program p with locations l1,l2 such that p1 = p[l1/v B e;l1] and p2 = p[l2/v B e;l2] and

⟨p1,σin, {l1,l2},∅, false⟩ ⇓deps ⟨_, {l1,l2},_,_⟩ given that Inserted B (λs . s = “v B e”), Left B
(λv ′. v ′ = v ), Right B (λv ′. v ′ ∈ Var (e )).

In this definition, we call two programs that differ in locations of an assignment insertion to

be test-equivalent if the difference does not affect dynamic data dependencies according to the

semantics in Figure 6. Specifically, by passing the program p1, the test input σin and the set of

locations {l1,l2} as the arguments to ⇓deps , we obtain the same set {l1,l2} as the result.

Proposition 3.8. The relation t

∼deps is a test-equivalence relation according to Definition 1.1.

The proposition above formally states that (1)
t

∼deps is an equivalence relations and (2) if two

programs that differ only in locations in which the same assignment statement is inserted are such

that these differences do not impact dynamic data dependencies (according to the semantics in

Figure 8), then these two programs either both pass the test of both fail the test. A proof for the

above proposition is given in Section C.

Example 3.9 (Test-equivalent programs w.r.t. t

∼deps). Consider a program p1 defined as

x B y;

if y > 0 then

y B x + 1

else skip fi

a program p2 defined as

if y > 0 then

x B y;

y B x + 1

else skip fi

and a test t B (σin,λσ . σ (y) = 3) where the input state σin B {x 7→ 1,y 7→ 2}. These programs are

test-equivalent w.r.t. the dependency-based test-equivalence relation for the test t , since they differ

only in the location of the assignment x B y and the following relation holds:

⟨p1,σin, {l1,l2},∅, false⟩ ⇓deps ⟨σout , {l1,l2},_,_⟩

where l1 is the location of x B y in p1, l2 is the location of x B y in p2, σout B {x 7→ 2,y 7→ 3}. This

relation can be established by the derivation tree in Figure 9.
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M (s1; s2) = ∪s ′∈M (s1 ) { s
′
; s2 } ∪ ∪s ′∈M (s2 ) { s1; s

′ }

M (if e then s1else s2 fi) = ∪s ′∈M (s1 ) { if e then s
′else s2 fi } ∪ ∪s ′∈M (s2 ) { if e then s1else s

′ fi }

M (while e do s od) = ∪s ′∈M (s ) { while e do s
′ od}

M (s | s is not a sequence) = MEXPRESSION (s ) ∪MREFINEMENT (s ) ∪MGUARD (s ) ∪MASSIGNMENT (s )

MEXPRESSION (v B e ) = ∪e ′∈E { v B e ′ }

MEXPRESSION (if e then s1 else s2 fi) = ∪e ′∈E { if e
′ then s1 else s2 fi }

MEXPRESSION (while e do s od) = ∪e ′∈E { while e
′ do s od}

MREFINEMENT (if e then s1 else s2 fi) = ∪e ′∈E { if e and e
′ then s1 else s2 fi,if e or e

′ then s1 else s2 fi }

MREFINEMENT (while e do s od) = ∪e ′∈E { while e and e
′ do s od,while e or e ′ do s od}

MGUARD (v B e ) = ∪e ′∈E { if e
′ then v B e else skip fi }

MASSIGNMENT (s ) = ∪e ′∈E,v ′∈V { v
′ B e ′; s }

Fig. 10. Search space definition via transformation schemasM .

3.5 Composing relations
In the proposed test-equivalence analysis framework, several relations can be composed in a

mutually-reinforcing fashion. By combining several analyses we can produce a more effective

(coarse-grained) partitioning of the space of program modifications into test-equivalence classes.

Definition 3.10 (Composition of test-equivalence relations). Let P be a finite search space and

t

∼1,
t

∼2, ...,
t

∼n be test-equivalence relations in P. A composition of
t

∼1,
t

∼2, ...,
t

∼n is a test-equivalence

relation
t

∼∗ such that it is the transitive closure of the union of
t

∼1,
t

∼2, ...,
t

∼n :

t

∼∗ B (
⋃
i

t

∼i )
∗

In this work, we define a test-equivalence relation
t

∼∗ as a composition of the relations
t

∼value

and
t

∼deps introduced in Section 3.3 and Section 3.4:

t

∼∗ B (
t

∼value ∪
t

∼deps )
∗

An example of applying
t

∼∗ is given in Section 2.3.

The definition above is non-constructive in that it does not define an algorithm of computing test-

equivalence classes w.r.t.
t

∼∗. One possible way to compute test-equivalence classes is to separately

evaluate a given program using the semantics in Figure 7 and Figure 8 and merge the results,

however this requires multiple program executions. Instead, we use a more efficient approach by

defining an augmented semantics of L for
t

∼∗ by combining the semantics in Figure 7 and Figure 8

as shown in Section B. This semantics enables our approach to compute a test-equivalence class

w.r.t.
t

∼∗ via a single execution.

4 PATCH GENERATION
Automated program repair techniques search for patches in spaces of candidate program modifica-

tions. A search space in program repair is defined as in the following.

Definition 4.1 (Search space). A search space is a finite set of syntactically different programs

obtained by applying a given transformation functionM : L → 2
L
to the buggy program.
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ALGORITHM 2: Enumerative patch generation

Input: search space P, cost function κ , test-suite T
Output: ordered set of repairs R

1 R := ∅;

2 while P , ∅ do
3 p := pick(P, κ );
4 isPassing := true;
5 foreach t ∈ T do
6 isPassing := eval(p , t );
7 if ¬isPassing then
8 break;

9 if isPassing then
10 R := R ∪ {p };

11 P := P \ {p };

12 return R;

Previous systems (e.g. SPR/Prophet [15, 17] and SemFix/Angelix [22, 25]) defined their search

spaces through parameterized transformation schemas such that each schema transforms a given

program into a program with “holes” and the “holes” are filled with expressions using a program

synthesizer. We define our search space in a similar fashion via the function M in Figure 10 (E

indicates the synthesized expressions).

Definition 4.2 (Optimal program repair). Let T be a test-suite (a set of tests), p ∈ L be a buggy

program (∃t ∈ T . ¬Pass[p,t]), M : L → 2
L
be a transformation function, P B M (p) be the

corresponding search space, κ : P → R be a cost function. The goal of optimal program repair is to
find a repair p ′ ∈ P such that ∀t ∈ T . Pass[p ′,t] and κ (p ′) is minimal among all such programs.

Our patch generation algorithm systematically explore the search space by (1) evaluating candi-

dates in the order defined by the prioritization (cost function) starting from the highest priority

patch and (2) skipping redundant executions by on-the-fly identifying test-equivalence classes w.r.t.

a given test-equivalence relation.

In order to abstract over various optimal synthesis methodologies (synthesis with cost), we

assume that there is a function pick that for a given set of programs P and a cost function κ, returns
a program from P with the minimal value of κ.
Consider a baseline enumerative patch generation method described in Algorithm 2. It takes a

patch space (Definition 4.1), a cost function and a test-suite as inputs, and outputs a sequence of

search space elements that pass all the given tests ordered according to the cost function. First, the

algorithm initializes the list of output repairs R. Second, it iterates through the search space by (1)

picking the best (the lowest cost according to κ) remaining candidate using pick and (2) evaluating

the candidate with the tests using eval. Finally, it output the list of found plausible patches R.
The overall workflow of our approach is described in Algorithm 3. Our algorithm takes a patch

space, a cost function, a test-suite and a test-equivalence relation as inputs and outputs a sequence of

search space elements that pass all the given tests ordered according to the cost function. Compared

with Algorithm 2, our test-equivalence based algorithm also maintains sets C and C for each

test. C (t ) is a set of test-equivalence classes (therefore, C is a set of sets of programs) in which

all candidates pass t ; C (t ) is the corresponding set of failing test-equivalence classes. First, our

algorithm initializes the list of output repairs R and the passing and failing test-equivalence classes

C andC for all tests t . Second, it iterates through the search space by (1) picking the best (the lowest

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Test-equivalence Analysis for Automatic Patch Generation 1:17

ALGORITHM 3: Systematic exploration with partitioning into test-equivalence classes

Input: search space P, cost function κ , test-suite T , test-equivalence relation t

∼

Output: ordered set of repairs R
1 R := ∅;

2 foreach t ∈ T do
3 C (t ), C (t ) := ∅, ∅;

4 while P , ∅ do
5 p := pick(P, κ );
6 if ∃t .

∨
c∈C (t ) p ∈ c then

7 P := P \ {p };
8 continue;

9 foreach t ∈ T do
10 if

∨
c∈C (t ) p ∈ c then

11 continue;

12 isPassing, [p] := ẽval(p , t , P, t

∼);

13 if isPassing then
14 C (t ) := C (t ) ∪ {[p]};
15 else
16 C (t ) := C (t ) ∪ {[p]};
17 break;

18 if ∀t .
∨
c∈C (t ) p ∈ c then

19 R := R ∪ {p };

20 P := P \ {p };

21 return R;

cost according to κ) remaining candidate using pick and (2) evaluating the candidate with the tests

and computing test-equivalence classes.

For a given candidate, in order to identify the result of a test execution and the corresponding

test-equivalence class, the algorithm evaluates the candidate using the function ẽval. The function
ẽval takes a program p, a test t , a search space P and a test-equivalence relation

t

∼ and returns the

result of executing p with t (as a boolean value isPassing) and a set of programs [p] such that [p] is

a test-equivalence class of p in P w.r.t. the relation
t

∼. The concrete implementation of ẽval depends
on the relation

t

∼ and is formally described for the relations
t

∼value and
t

∼deps in Definition 4.3 and

Definition 4.4 respectively.

The test-equivalence classes are used at two steps of search space exploration. First, after a next

candidate is picked, the algorithm checks if the candidate belongs to any of the existing failing

classes (line 6). If the candidate is in a failing class of at least one test, evaluation of this candidate

is omitted. Second, after a next test is selected for evaluating a candidate, the algorithm checks

if the candidate is in a passing class of the given test (line 10). If a candidate is in a passing class

of a test, then the algorithm omits execution of this candidate with this test. We now discuss the

function ẽval specifically for the two notions of test-equivalence we have studied, value-based

test-equivalence and dependency-based test-equivalence.

Definition 4.3 (Value-based test-equivalence analysis). Let P be a search space,p ∈ P be a program,

t = (σin,ϕ) be a test. Let e be an expression in p such that ∃p ′ ∈ P∃e ′ ∈ Expr . p ′ = p[e/e ′]. Then,
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value-based test-equivalence analysis ẽval is defined as follows:

ẽval (p,t ,P, t∼value ) = (ϕ (σout ),
⋃
e ′∈C

{p[e/e ′]}), given that

Modified B λx . x = e,

E B {e ′ | ∃p ′ ∈ P . p ′ = p[e/e ′]},

⟨p,σin,E⟩ ⇓value ⟨σout ,C⟩

In this analysis, we identify a test-equivalence class of a program with an expression e in the

space of all programs in P that differ only in e . The test-equivalence class is computed by passing

the set of all “alternative” expressions E as an argument of ⇓value . Note that in this definition we

explicitly select an expression e , substitution of which are analyzed for test-equivalence. For each

element of a search space produced by the transformation functionM in Figure 10, there is always

at most one such e . We now discuss the function ẽval for dependency-based test-equivalence.

Definition 4.4 (Dependency-based test-equivalence analysis). Let P be a search space, p ∈ P be a

program, t = (σin,ϕ) be a test. Let p
′
be a program, l1 be a location such that p = p ′[l1/v B e;l1] and

∃p ′′ ∈ P . ∃l2 ∈ p
′′. p ′′ = p ′[l2/v B e;l2]. Then, dependency-based test-equivalence analysis ẽval is:

ẽval (p,t ,P, t∼deps ) = (ϕ (σout ),
⋃
l ∈L′
{p ′[l/v B e;l]}), given that

Inserted B λs . s = “v B e”, Left B λv ′. v ′ = v, Right B λv ′. v ′ ∈ Var (e ),
L B { l | l ∈ p ′ ∧ ∃p ′′ ∈ P . p ′′ = p ′[l/v B e;l]

⟨p,σin,L,∅, false⟩ ⇓deps ⟨σout ,L′,_,_⟩

In this analysis, we identify a test-equivalence class of a program with an assignment v B e in
the space of all programs in P that differ only in locations of this assignment. The test-equivalence

class is computed by passing the set of all “alternative” locations L as an argument of ⇓deps .

Finally, note that Algorithm 3 can be used in different ways. The output of the algorithm is a

sequence of plausible patches R ordered according to the function κ. A sequence of repairs can

used to provide several patch suggestions for developers. The number of suggested repairs can be

controlled by introducing a limit and breaking from the main loop when the required number of

plausible patches is found. Certain applications may require generation of all plausible patches

(e.g. in order to narrow candidates through test generation [31]). In this case, the algorithm can be

modified so that it outputs whole test-passing partitions instead of single patches.

5 IMPLEMENTATION
We have implemented the described approach in a tool called f1x (pronounced as [Ef-w2n-Eks]) for
the C programming language.

Analysis. Our implementation of the proposed test-equivalence analyses is built upon a combina-

tion of static (source code) and dynamic instrumentation. Specifically, to implement the augmented

semantics in Section 3.3 for the relation
t

∼value , we apply the transformation schemasM (Figure 10)

to the source code of the buggy program and replace “holes” with calls to a procedure implementing

the value-projection operator. To implement the augmented semantics in Section 3.4 for the relation

t

∼deps , we implemented a dynamic instrumentation using Pin [18] that tracks reads and writes of

the variables involved in assignment synthesis.

Search space. The goal of this work was to design and evaluate test-equivalence relations for

transformations used in existing program repair systems. Our system combines the transformation
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schemas of SPR/Prophet and Angelix (we studied implementation of these systems in order to

closely reproduce their search spaces), described as follows.

EXPRESSION Modify an existing side-effect free integer expression or condition (adopted fromAn-

gelix). A variant ofMEXPRESSION in Figure 10 for C programs. Partitioned into test-equivalence

classes based on the expression values using
t

∼value .
REFINEMENT Append a disjunct/conjunct to an existing condition (adopted from Prophet). A

variant ofMREFINEMENT in Figure 10 for C programs. Partitioned into test-equivalence classes

based on the condition values using
t

∼value .
GUARD Add an if-guard for an existing statement (adopted from Angelix and Prophet). A variant

of MGUARD in Figure 10 for C programs. Partitioned into test-equivalence classes based on

the condition values using
t

∼value .
ASSIGNMENT Insert an assignment statement (adopted from Prophet

7
). A variant ofMASSIGNMENT

in Figure 10 for C programs. Partitioned into test-equivalence classes using
t

∼∗.
INITIALIZATION Insert memory initialization (adopted from Prophet). Not partitioned.

FUNCTION Replace a function call with another function (adopted from Prophet). Not partitioned.

The two last transformation schemas adopted from Prophet are not partitioned by our algo-

rithm, since they generate relatively small search spaces. Our transformations differ from that of

SPR/Prophet in the following ways: (1) Prophet implements a transformation schema for inserting

guarded return statements. Although our algorithm can partition these transformations using the

relation
t

∼value , such transformations were shown to frequently generate overfitting patches [38]

and therefore we exclude them from our search space; (2) Prophet implements a transformation

that copies existing program statements. Since such statements can be arbitrarily complex and they

cannot be partitioned by our algorithm, we do not include this transformation.

Cost function. Several techniques have been proposed to increase the probability of generating

correct repairs by prioritizing patches [3, 17, 21]. For our system we implement an approach that

assigns higher priority to smaller changes [21]:

κ (p) B distance(p, porig )

where p is a patched program (an element of the search space), porig is the original program, distance
is defined as the number of added, modified and deleted AST nodes.

6 EXPERIMENTAL EVALUATION
We evaluate our approach in terms of the following research questions:

(RQ1) What are the effectiveness and efficiency of our approach compared with state-of-the-art

program repair systems?

(RQ2) Does our approach scale to larger search spaces compared with state-of-the-art systems?

Does test-equivalence relation enable higher scalability of our implementation?

(RQ3) What is the impact of each test-equivalence relation on the number of test executions

performed by our algorithm?

6.1 Evaluation setup
Our evaluation compares f1x against three repair approaches: Angelix, Prophet and GenProg-AE.

These repair techniques are chosen as they use different repair algorithms including symbolic

analysis (Angelix), machine-learning (Prophet) and genetic algorithm (GenProg). We evaluate all

7
Prophet generates new assignments by copying and modifying existing assignments. Instead, f1x synthesizes assignments

and therefore its search space includes a superset of assignments that can be generated by Prophet.
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Table 1. Subject programs and their basic statistics

Program Description LOC Defects Tests Execution cost (sec)

libtiff Image processing library 77K 24 78 8.18

lighttpd Web server 62K 9 295 29.75

php Interpreter 1046K 44 8471 427.25

gmp Math library 145K 2 146 53.52

gzip Data compression utility 491K 5 12 0.43

python Interpreter 407K 11 35 156.46

wireshark Network packet analyzer 2814K 7 63 9.92

fbc Compiler 97K 3 773 240.27

repair approaches on the GenProg ICSE’12 benchmark [12] for our evaluation because it includes

defects from large real-world projects, and was designed for systematic evaluation of program

repair tools. Moreover, the test suites in this benchmark were independently augmented to prevent

repair tools from generating implausible patches [28]. The benchmark consists of 105 defects

from eight subjects (i.e. libtiff, lighttpd, PHP, gmp, gzip, python, wireshark, and fbc) which have

developer-written test suites. Table 1 shows the statistics of each evaluated subject. The column

“Execution cost” denotes the time taken to execute the test-suite for a given subject.

We selected the following systems and their configurations for evaluation:

F1X f1x that implements search with test-equivalence partitioning described in Algorithm 3.

F1XE
f1x

E
is a variant of f1x that enumerates changes without test-equivalence partitioning

(Algorithm 2). It is considered to evaluate implementation-independent effect of partitioning.

ANG Angelix 1.1 [22] that implements a symbolic path exploration and prioritizes syntactically

small changes.

PR Prophet 0.1 [17] that implements value search (a variant of path exploration) for conditional

expressions and patch prioritization based on machine learning.

PR* Prophet* that is a variant of Prophet that disables transformations for (1) inserting overfitting

return insertions and (2) copying complex statements except for assignments. This variant is

considered to match the transformation implemented in F1X/F1X
E
, since the search space of

F1X/F1X
E
is effectively the combination of the search spaces of PR* and ANG.

GP GenProg-AE 3.0 [42] that implements a group of analysis techniques to avoid evaluating

functionally-equivalent patches (as opposite to test-equivalent as in our approach). Compared

to the earlier version of GenProg that uses genetic algorithm [14] that is inherently stochastic,

GenProg-AE leverages a deterministic repair algorithm.

We run all the configurations (F1X, F1X
E
, ANG, PR, PR*, GP) in two modes:

Stop-after-first-found The algorithm terminates after finding the first patch. This mode repre-

sents the usual program repair usage scenario.

Full exploration The algorithm terminates after searching through the entire search space. This

mode allows us to obtain data that is independent on (1) the exploration order and (2) whether

a plausible patch is present in the search space.

We reuse the configurations from previous studies for running Angelix, Prophet and GenProg-

AE [28, 42]. As Prophet takes a correctness model as input to prioritizes patches akin to the provided

model, we used the default model that is publicly available
8
.

We conduct all experiments on Intel
®
Xeon™ CPU E5-2660 machines running Ubuntu 14.04, and

use a 10 hours timeout for running each configuration.

8
Prophet website: http://rhino.csail.mit.edu/prophet-rep/
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Table 2. Effectiveness of program repair approaches.

Subject

Plausible Equivalent to human

F1X F1X
E

ANG PR PR* GP F1X F1X
E

ANG PR PR* GP

libtiff 13 10 10 5 3 5 5 3 3 2 1 0

lighttpd 5 3 - 4 4 4 0 0 - 0 0 0

php 15 7 10 18 15 7 6 3 4 10 6 2

gmp 2 1 2 2 2 1 2 1 2 1 1 0

gzip 3 2 2 2 2 2 2 0 1 1 1 0

python 5 1 - 6 5 3 0 0 - 0 0 1

wireshark 4 4 4 4 4 4 0 0 0 0 0 0

fbc 1 1 - 1 1 1 1 1 - 1 1 0

Overall 49 29 28 42 36 27 16 8 10 15 10 3
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Fig. 11. Average patch generation time.

6.2 Effectiveness and efficiency (RQ1)
Table 2 summarizes the effectiveness results for F1X, F1X

E
, ANG, PR, PR* and GP executed in the

stop-after-first-found mode. The second through seventh columns denote the number of plausible

patches generated by each repair approach, while the eighth through thirteenth columns represent

the number of patches syntactically equivalent to the human patches. As Angelix does not support

lighttpd, python and fbc, the corresponding cells for these subjects are marked with “-". The overall

results illustrate that F1X generates the highest number of plausible patches compared to all other

evaluated repair approaches. The “Equivalent to human" column in table 2 shows that F1X generates

8 more human-like patches than F1X
E
, 6 more human-like patches than ANG, 1 more human-like

patch than PR, 2 more human-like patches than PR* and 13 more human-like patches than GP.
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gmp gzip python wireshark fbc
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Fig. 12. Average time for patches generated by both F1X and F1XE .

We attribute the high number of patches generated by F1X to the larger patch space supported

by F1X compared to other approaches. Since F1X combines the search spaces of ANG and PR*, it

fixes all defects that are fixed by either of these tools. Note that F1X finds more patches than F1X
E

within the time limit due to the performance gain from our partitioning.

Figure 11 illustrates the average patch generation time for the configurations. The x-axis of

Figure 11 represents the eight subjects in the benchmark, while the y-axis shows the average

time taken to generate a patch for all defects for a given subject where each bar depicts a patch

generation approach. Overall, the average patch generation time for F1X is significantly shorter

than all other repair approaches. For instance, F1X requires only 121 seconds on average to generate

a patch for libtiff, while ANG takes 1262 seconds (F1X is
1262

121
=10.5X faster than ANG). Meanwhile,

PR* takes 1701 seconds on average to produce a patch for libtiff (F1X is
1701

121
=14X faster than PR*).

Notably, F1X is 16X faster than GP for libtiff (GP takes 1940 seconds on average to generate a

patch for libtiff). The average patch generation time for PR is slightly higher compared to PR* as it

searches through a slightly larger patch space.

The results shown in Figure 11 validate our claim that F1X is able to achieve significant improve-

ment on the patch generation time due to its efficient search algorithm. F1X and F1X
E
demonstrate

a comparable average time of patch generation. Note that for some subjects (e.g. python), the

average time of F1X
E
is lower than that of F1X. This is because F1X

E
finds a subset of patches found

by F1X, and patches found exclusively by F1X contribute to its higher average time. However, when

considering only patches found by both F1X and F1X
E
, F1X shows consistently better performance,

as shown in Figure 12.

RQ1: Compared with existing automated program repair tools, f1x generates more patches

since its search space is a combination the search spaces of ANG and PR*. Despite a larger

search space, it finds patches in an order of magnitude faster.

6.3 Exploration speed (RQ2)
Definition 6.1 (Explored candidates). We say that a candidate patch is explored if the algorithm

identified whether the patch passes all given tests or fails at least one. Note that we only consider

candidate patches in which the source code modification is executed by all given failing tests.

Table 3 shows the exploration statistics for F1X, F1X
E
, PR, PR* and GP (we exclude ANG because

the search space for Angelix is encoded via logical constraints). The second through sixth columns

depicts the data for the stop-after-first-found mode, while the seventh through eleventh columns
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Table 3. Exploration statistics of program repair tools in stop-after-first-found and full exploration modes.
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represents the data for the full exploration mode. Each cell in the second through eleventh columns

is of the form

X

Y
=Z where X represents the average number of “explored candidates" by a repair

approach, Y represents the average number of test executions performed by a repair approach, Z

denotes the exploration speed (computed by the ratio of the number of “explored candidates" over

the number of test executions). The average for the stop-after-first-found is computed among the

fixed defects, whereas the average for the full exploration mode is computed among all defects.

In general, F1X has an order of magnitude higher exploration speed compared to all other

patch generation approaches in both the stop-after-first-found mode and the full exploration mode.

For example, in the full exploration mode, F1X requires on average only 620 test executions to

explores 689925 candidates for wireshark. For the same subject, PR requires 13099 test executions

for exploring 23043 candidates, PR* requires 17442 test executions for exploring 18554 candidates

and GP requires 2213 test executions for exploring 2008 candidates. The efficiency of exploration

can also be indirectly shown by comparing the average number of plausible patches found in full

exploration mode. For this, we compared the results of F1X and PR, since these configuration found

the largest number of patches. F1X generate 2265 plausible patches on average, while PR generate

only 9 plausible patches on average.

To enable generation of more patches, an ideal repair approach should scale to larger spaces by

exploring more candidates within the time budget. The data in Table 3 shows that F1X scales to

larger search spaces, since it explores more candidates within the time limit due to fewer number

of test executions. This explains the effectiveness and the efficiency of F1X compared with other

tools shown in Table 2 and Figure 11. Recall that F1X
E
is a variant of F1X without test-equivalence

partitioning. For the same search space, F1X
E
explores less candidates than F1X within the time

limit since it requires more test executions. From this observation, we conclude that test-equivalence

partitioning is responsible for the higher scalability of F1X.
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Table 4. Effect of equivalence relations on the number of test executions on Libtiff

Transformation Relation Locations Candidates Partitions Test executions

MEXPRESSION
t

∼value 109 428641 424 739

MREFINEMENT
t

∼value 45 48942 87 154

MGUARD
t

∼value 87 106389 199 347

MASSIGNMENT

t

∼value 121 17181 3436 5983

t

∼deps 121 17181 1809 2308

t

∼∗ 121 17181 480 671

RQ2: f1x scales to larger search space by exploring more candidates with fewer number of

test executions.

6.4 Effect of equivalent relation (RQ3)
To investigate the effect of each equivalence relation on the number of test executions, we conduct

another experiment on all 24 defects in Libtiff. We selected Libtiff, because due to the structure of its

source code, Libtiff subjects have the largest total number of candidates patches in the search space

(9618864 = 400786 ∗ 24), where 400786 is the average number of candidates per version, 24 is the

number of versions (see Table 3). Our goal is to determine if there is a single equivalence relation

that dominantly contributes to the reduction in the number test executions or if a composition of

these relations will result in greater reduction.

Table 4 shows the effect of the three equivalent relations (
t

∼value ,
t

∼deps , and
t

∼∗) in F1X on the

average number of test executions for Libtiff. For each transformation from Figure 10, the table

demonstrates the number of locations in which the transformation was applied (the “Locations”

column), the test-equivalence relations that was applied for the search space produced by this

transformation (the “Relation” column), the number of different candidate patches generated

(the “Candidates” column), the number of partitions that were identified for the failing test (the

“Partitions” column) and the number of tests required to explore all the corresponding candidates

with the whole test suite (the “Test executions” column).

These results demonstrate that for the transformations MEXPRESSION , MREFINEMENT and MGUARD
our algorithm produces a small number of test-equivalence classes for the failing tests (with 500-

1000 elements in each partition on average) which also resulted in a small number of executions

for the whole test suite. For the relation MASSIGNMENT , the reduction is less significant, however

the composition of relations
t

∼∗ is significantly more efficient (the number of test executions is

significantly less) than the individual relations
t

∼value ,
t

∼deps .

RQ3: f1x partitions a large number of patches into a small number of test-equivalence classes

using two relations:
t

∼value and
t

∼deps . The composition of these two relations is more effective

than the individual relations.

7 RELATEDWORK
Program synthesis. Existing program synthesis techniques can be used to generate patches

by directly searching in patch spaces, however this approach has limitations as explained in the

following. First, the cost of test execution in a typical program repair problem is substantially higher
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than that in program synthesis, since the subjects on which program repair is carried out today are

significantly larger (e.g. a single test execution for PHP interpreter from GenProg benchmark [12]

takes 1-10 seconds on commodity hardware, while a typical solution in SyGuS-Comp competition

can be executed in 10
−6

seconds). Second, the complexity of repaired programs makes it infeasible

to apply precise deductive techniques. For instance, Sketch [33] fills “holes” in sketches (partial

programs), and can be potentially applied to generate repairs for identified suspicious statements.

However, it translates programs into boolean formulas and therefore can repair only relatively

small programs [5]. Since program synthesis algorithms may not be directly applicable to program

repair, they are used as parts of program repair algorithms for filling “holes” in programs based on

inferred specification [15, 22]. In our technique, we do not use program synthesis as a black box, but

integrate synthesis with program analysis by imposing additional requirements on the underlying

synthesizer: support for the value-projection operator (Section 3.2). Since our implementation uses

an enumerative program synthesis, it is straightforward to realize such operators. However, other

techniques can also be used for this purpose. For instance, FlashMeta [26] compactly represents its

search space as version space algebra (VSA) [23]. Moreover, it defines the operation Filter over this
representation that is effectively the value-projection operator, therefore it can be potentially used

in our algorithm as a more efficient representation of the space of program modifications.

Program repair search algorithms. Syntax-based techniques generate patches by enumerating and

testing syntactic changes. Since (1) repair tools have to explore large search spaces to address many

classes of defects and (2) test execution has high cost for large real-world programs, they scale to

relatively small search spaces. GenProg-AE [42] eliminates redundant executions by identifying

functionally-equivalent patches via lightweight analyses. Instead of functional equivalence, our

technique applies test-equivalence, which is a weaker and therefore a more effective relation

(produces larger equivalence classes). Semantics-based techniques split search into two phases.

First, they localize suspicious statements and infer specification for the identified statements that

captures the property of “passing the test suite”. Such specification can be expressed as logical

constraints [25] or angelic values [15, 44]. Second, they apply off-the-shelf program synthesizers

in order to modify the selected statements according to this specification. To infer specification,

existing techniques perform path exploration by altering test executions. Since the number of

execution paths in programs can be infinite, these methods are subject to the path explosion problem.

For instance, Nopol [44], SPR [15] and Prophet [17] enumerate values of conditional expressions

(which is a special case of path exploration) in order to find angelic values that enable the program

to pass the failing test. As shown in Section 2.1, such techniques may perform a large number

of redundant executions that are avoided by our algorithm. SemFix [25] and Angelix [22] are

semantics-based techniques relying on symbolic execution and SMT-based synthesis. Since our

methodology does not use symbolic methods, it is orthogonal to SemFix and Angelix from that

point of view of underlying analysis. Existing syntax and semantic-based techniques are limited to

modifying side-effect free expressions. For instance, they can only generate new assignments by

copying them from other parts of the program. Meanwhile, we demonstrate that test-equivalence

can scale assignment synthesis using a combination of value- and dependency-based analyses.

Program repair prioritization approaches. In order to address the test over-fitting problem [32],

various techniques have been proposed to prioritize patches that are more likely to be correct.

For instance, DirectFix [21] prioritizes candidate patches based on syntactic distance, Qlose [3]

prioritizes patches bases on semantic distance, Prophet [17] utilizes information learned from

human patches, ACS [43] prioritizes patches based on information mined from previous version

and API documentation, S3 [11] prioritizes patches based on a combination of syntactic and

semantic properties. Meanwhile, relifix [35] leverages different program version for generating
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patches, whereas SEMGRAFT [20] uses references implementation as implicit correctness criteria.

Droix [36] fixes crashes in Android apps using Android activity lifecycle management rules for

patch prioritization. Our technique finds the best patch (the global optimum) in its search space

according to an arbitrary cost function. Meanwhile, previous techniques applied to large real-world

programs did not provide such guarantees. Techniques based on genetic programming [2, 14]

and random search [27] guarantee only a local optimum by definition. Semantics-based repair

techniques may miss the global optimum, which is shown in Section 2.2.

Program repair using types and formal specification. Several approaches utilize temporal logic

formulas [7], contracts [41] and types [29] to guide program repair. Our test-equivalence analysis

can potentially optimize these approaches. Besides, our test-driven patch generation algorithm can

be used in a counterexample-guided refinement loop [1] to repair programs based on given formal

specification.

Mutation testing. The scalability of program repair is related to scalability of mutation testing,

since mutation testing also evaluates a large number of program modifications. To address this

problem in mutation testing, a common approach is to reduce the number of mutation operators

(transformations) to avoid redundant executions [24]. This approach may not be suitable for

program repair, because program repair search spaces have to be rich enough to enable generation

of non-trivial human-like repairs. Test-equivalence has been applied to scale mutation testing.

Mutant analysis by Just et al. [8] performs a pre-pass that partitions mutants based on infected

states, which can thought of as a variant of
t

∼value relation. More recent techniques [19, 40] extend

this approach by performing more fine-grained partitioning. Our method adapts value-based test-

equivalence relation that has been used in mutation testing to program repair by integrating it with

syntax-guided program synthesis through value-projector operator (Section 3.2). Apart from that,

we introduce a new dependency-based test-equivalence relation for partitioning more complex

program modification that might be required to fix real bugs.

Compiler testing. Equivalence modulo inputs (EMI) [9, 10] (a variant of test-equivalence) was

successfully applied to compiler testing. Specifically, for a compiler, a program and an input, it

generates input-equivalent variants of the program by altering unexecuted statements and checks

that these variants compiled by the compiler produce the same outputs. A recent extension if this

approach [34] modifies executed statements by inserting random code guarded by a condition that

is evaluated into false in the context of the given test, which can be considered as an application

of value-based test-equivalence relation. Our dependency-based test-equivalence relation and the

proposed composition of several analyses might be used to increase the effectiveness of compiler

testing by synthesizing non-trivial input-equivalent program modifications.

8 DISCUSSION AND FUTUREWORK
We envision the following design of a future general-purpose program repair system (a system that

is able to address many kinds of defects in commodity software). This system will (1) implement a

large number of transformations to address many kinds of defects, (2) implement test-equivalence

analyses for these transformations to ensure scalability and (3) implement intelligent search space

prioritization strategies over the patch space, to address the overfitting problem. This work is a

step towards such a design. In our future works, we plan to investigate the following aspects.

Test-equivalence relations. The effectiveness of the relation t

∼value (the size of test-equivalence
classes it induces) may depend on the size of the output domain of modified expressions. Since it

identifies equivalence based on concrete values, it may not be effective for expressions of large
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output domains (e.g. strings). In future, we plan to investigate a generalization of this relation that

defines two changes to be test-equivalent iff they drive test execution along the same path. Such a

relation will be computed using dynamic symbolic execution [4].

Transformations. Existing program repair systems provide very limited support for repairing

function calls. We hypothesize that a generalization of the relation
t

∼deps may enable repair systems

to extend search spaces by incorporating function call transformations in a scalable fashion.

Current limitations. Although we demonstrated that our approach based on test-equivalence

significantly outperforms previous repair techniques, it has several limitations. The proposed

analysis assumes deterministic test execution. Besides, our algorithm is designed to search in finite

spaces of candidate patches. It can be potentially generalized for infinite spaces by encoding them

symbolically. Finally, the current algorithm is designed to synthesize single-line patches (involving

a single modification). It can be potentially extended for multi-line modifications using the approach

of Angelix [22].

Subject Programs. The subjects for the evaluation (GenProg ICSE’12 benchmark [12]) were

previously used for evaluating related approaches [15, 17, 22]. GenProg ICSE’12 benchmark was

constructed to address generalizability concerns in evaluation of repair tools [12]. Moreover, the test

suites were independently augmented [28] to avoid generation of implausible patches. Nevertheless,

a possible threat to validity is that our results may not generalize for other programs and defects.

In future, it may be worthwhile to evaluate our approaches on other relevant benchmarks [13, 37]

9 CONCLUSION
Traditionally, many problems in software testing which involve exploring huge search spaces,

such as mutation testing, have been shown to benefit from test equivalence [8, 9]. In this paper,

we have adopted the notion of test-equivalence for program repair, and provided several test-

equivalence relations: based on runtime values, based on dynamic data dependencies and their

composition. We also proposed an algorithm of automatic patch generation based on on-the-fly

test-equivalence analysis. This enables us to explore larger patch spaces in substantially less time,

thereby significantly enhancing the practicality of modern day program repair technology.
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A ALTERNATIVE IMPLEMENTATIONS OF VALUE-PROJECTION OPERATOR
We define the value-projection operator Πvalue

σ ,n (Section 3.2) for SMT-based synthesis [6] and DSL-

based synthesis [26].

A.1 Symbolic synthesis
In SMT-based component-based synthesis [6], the search space is represented implicitly through

logical constraints. To synthesize an expression from a given specification, it solves the following

formula:

∃e ∈ E .
∧

σ ,n∈spec

⟨e,σ ⟩ ⇓ n

To support quantification over expressions, it uses location variables (denoted via the prefix l) to
encode all expressions constructed from given components C (e.g. +, −, variables, etc) as follows.

ϕwpf B ϕrange ∧ ϕcons ∧ ϕacyc

ϕrange B
∧
c ∈C

(
0 ≤ lcout < |C | ∧

∧
k ∈[1,NI (c )]

0 ≤ lcink < |C |
)

ϕcons B
∧

(c,s )∈C×C,c,s

lcout , lsout

ϕacyc B
∧

c ∈C,k ∈[1,NI (c )]

lcout > lcink

ϕconn B
∧

(c,s )∈C×C
k ∈[1..NI (s )]

lcout = lsink ⇒ cout = s ink

The algorithm also imposes library constraint (ϕlib) that capture semantics of given components. For

example, for the component c B h1 + h2, the library constraint is cout = c in
1
+ c in

1
. Given the above

constraints, the search space is encoded through the formula ϕ defined as ϕ B ϕwpf ∧ ϕlib ∧ ϕconn.
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In this context, the value-projection operator can be implemented as follows:

Πvalue
σ ,n (ϕ) B ϕ ∧ eout = n ∧

∧
variable v ∈C

vout = σ (v )

where eout captures the output of the synthesized expression. Effectively, this operator conjoins the

formula representing the search space with the input-output relation represented via σ and n.

A.2 DSL-based synthesis
In FlashMeta [26] synthesis framework, the search space is compactly represented via version

space algebra (VSA) [23]. Assume that the set of expression E is defined through applications of

operators to a given set of variables; we denote an operator as F .

The grammar for a version space algebra Ñ is defined as

Ñ B { e1, ...,ek } | U (Ñ1, ..., Ñk ) | F▷◁ (Ñ1, ..., Ñk )

such that

• e ∈ { e1, ...,ek } if ∃i . e = ei ;
• e ∈ U (Ñ1, ..., Ñk ) if ∃i . e ∈ Ñi ;

• e ∈ F▷◁ (Ñ1, ..., Ñk ) if e = F (e1, ...en ) ∧ ∀i . ei ∈ Ñi .

For version space algebra Ñ , FlashMeta implements a clustering operator denoted as Ñ |σ . Ñ |σ is

a mapping from values to version space algebras { n1 7→ Ñ1, ...,nk 7→ Ñk } such that

• Ñ = Ñ1 ∪ ... ∪ Ñ ;

• Ñi ∩ Ñj = ∅ for all i , j;

• ∀e ∈ Ñi . ⟨e,σ ⟩ ⇓ ni ;
• ∀i, j . i , j → ni , nj .

In this context, the value-projection operator can be implemented as follows:

Πvalue
σ ,n (Ñ ) B Ñ |σ (n)

B SEMANTICS FOR COMPOSITION OF TEST-EQUIVALENCE RELATIONS
Section 3.5 presents a non-constructive definition of the composition of test-equivalence relations

t

∼∗ (it does not define an algorithm for computing test-equivalence partitions). Although it is

possible to compute test-equivalence partitions w.r.t.
t

∼∗ by separately applying the value-based

test-equivalence analysis in Figure 7 and dependency-based test-equivalence analysis in Figure 8,

this approach would require performing multiple program executions. A more efficient approach is

to compute test-equivalence partitions for
t

∼∗ directly thorough a combination of the semantics in

Figure 7 and Figure 8 as shown in Figure 13. For a given program p with an assignment v B ε , this
semantics identifies a mapping { l1 7→ E1, ...,lk 7→ Ek } that denotes all test-equivalent insertions
of assignments of v B e ′ at each location li so that e ′ ∈ Ei . In this semantics, l and c denote such
mappings, l ∩ c denotes λx . l (x ) ∪ c (x ) and l \ c denotes λx . l (x ) \ c (x ).

For this semantics of
t

∼∗, test-equivalence analysis for the patch generation algorithm in Section 4

can be defined as follows:

Definition B.1 (Composed test-equivalence analysis). Let P be a search space, p ∈ P be a program,

t = (σin,ϕ) be a test. Let p
′
be a program, l1 be a location such that p = p ′[l1/v B e;l1] and ∃p ′′ ∈

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Test-equivalence Analysis for Automatic Patch Generation 1:31

VAR-LEFT-EXE

Left (v ) ∧ x

⟨v,σ ,l ,c,x⟩ ⇓∗ ⟨σ (v ),l ∩ c,∅, false⟩

VAR-LEFT-NEXE

Left (v ) ∧ ¬x

⟨v,σ ,l ,c,x⟩ ⇓∗ ⟨σ (v ),l \ c,∅,x⟩

VAR-NLEFT

¬Left (v )

⟨v,σ ,l ,c,x⟩ ⇓∗ ⟨σ (v ),l ,c,x⟩

OP

⟨e1,σ ,l ,c,x⟩ ⇓∗ ⟨n1,l1,c1,x1⟩ ⟨e2,σ ,l1,c1,x1⟩ ⇓∗ ⟨n1,l1,c1,x1⟩ n3 = n1 op n2
⟨e1 op e2,σ ,l ,c,x⟩ ⇓∗ ⟨n3,l2,c2,x2⟩

ASSIGN-INS

Inserted (v B e ) ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓∗ ⟨σ
′,l ,c, true⟩

ASSIGN-LR-EXE

¬Inserted (v B e ) ∧ (Left (v ) ∨ Right (v )) ∧ x ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓∗ ⟨σ
′,l ∩ c,∅, false⟩

ASSIGN-LR-NEXE

¬Inserted (v B e ) ∧ (Left (v ) ∨ Right (v )) ∧ ¬x ⟨v B e,σ ⟩ ⇓ σ ′

⟨v B e,σ ,l ,c,x⟩ ⇓∗ ⟨σ
′,l \ c,∅, false⟩

ASSIGN-NLR

¬Inserted (v B e ) ∧ ¬Left (v ) ∧ ¬Right (v ) ⟨e,σ ,l ,c,x⟩ ⇓∗ ⟨n,l1,c1,x1⟩

⟨v B e,σ ,l ,c,x⟩ ⇓∗ ⟨σ [v 7→ n],l1,c1,x1⟩

SEQ

⟨s1,σ ,l ,c,x⟩ ⇓value∗ ⟨σ1,l1,c1,x1⟩ ⟨s2,σ1,l1,c1,x1⟩ ⇓value∗ ⟨σ2,l2,c2,x2⟩

⟨s1 ; s2,σ ,l ,c,x⟩ ⇓∗ ⟨σ2,l2,c2,x2⟩

SKIP

⟨skip,σ ,l ,c,x⟩ ⇓∗ ⟨σ ,l ,c,x⟩

IF-TRUE

⟨e,σ ,l ,c,x⟩ ⇓∗ ⟨true,l1,c1,x1⟩ ⟨s1,σ ,l1,c1,x1⟩ ⇓value∗ ⟨σ1,l2,c2,x2⟩

⟨if e then s1 else s2 fi,σ ,c⟩ ⇓∗ ⟨σ1,l2,c2,x2⟩

IF-FALSE

⟨e,σ ,l ,c,x⟩ ⇓∗ ⟨false,l1,c1,x1⟩ ⟨s2,σ ,l1,c1,x1⟩ ⇓value∗ ⟨σ2,l2,c2,x2⟩

⟨if e then s1 else s2 fi,σ ,l ,c,x⟩ ⇓∗ ⟨σ2,l2,c2,x2⟩

WHILE-TRUE

⟨e,σ ,l ,c,x⟩ ⇓∗ ⟨true,l1,c1,x1⟩ ⟨s1,σ ,l1,c1,x1⟩ ⇓value∗ ⟨σ1,l2,c2,x2⟩ ⟨while e do s od,σ1,l2,c2,x2⟩ ⇓value∗ ⟨σ2,l3,c3,x3⟩

⟨while e do s od,σ ,l ,c,x⟩ ⇓∗ ⟨σ2,l3,c3,x3⟩

WHILE-FALSE

⟨e,σ ,l ,c,x⟩ ⇓∗ ⟨false,l ′,c ′,x ′⟩

⟨while e do s od,σ ,l ,c,x⟩ ⇓∗ ⟨σ ,l
′,c ′,x ′⟩

NUM

⟨n,σ ⟩ ⇓ n

⟨n,σ ,l ,c,x⟩ ⇓∗ ⟨n,l ,c,x⟩

STMT-L

⟨s,σ ,l ,c,x⟩ ⇓∗ ⟨σ
′,l ′,c ′,x ′⟩ c ′′ = λx . if x = s then c ′(x ) ∩ Πvalue

σ ,n (ε ) else c ′(x )

⟨s,σ ,l ,c,x⟩ ⇓value∗ ⟨σ
′,l ′,c ′′,x ′⟩

Fig. 13. Augmented semantics of L for computing test-equivalence classes w.r.t. t

∼∗. v — variables, n —
integer values, e — expressions, s — statements, σ — program states, l ,c — functions from locations to sets of
expressions, x — boolean values, Inserted — predicate over statements, Left,Right — predicates over variables,
ε — right-hand side of inserted assignment.

P . ∃l2 ∈ p
′′. ∃e ′. p ′′ = p ′[l2/v B e′;l2]. Then, dependency-based test-equivalence analysis ẽval is:

ẽval (p,t ,P, t∼deps ) = (ϕ (σout ),
⋃
l ∈p

⋃
e ∈L′ (l )

{p ′[l/v B e;l]}), given that

Inserted B λs . s = “v B e”, Left B λv ′. v ′ = v, Right B λv ′. v ′ ∈ Var (e ),
L B λl . {e | ∃p ′′ ∈ P . p ′′ = p ′[l/v B e;l]}

⟨p,σin,L,λx . ∅, false⟩ ⇓∗ ⟨σout ,L′,_,_⟩

In this analysis, we identify a test-equivalence class of a program with an assignment v B e ′

in the space of all programs in P that differ only in the expressions e ′ and the locations of this

assignment. The test-equivalence class is computed by passing the “alternative” mapping from

locations to expressions L as an argument of ⇓∗.
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Trace
(
⟨v,σ ⟩ ⇓ σ (v )

VAR
i
)
B { λσ . σ [xi 7→ σ (v )] } Trace

(
⟨n,σ ⟩ ⇓ n

NUM
i
)
B { λσ . σ [xi 7→ n] }

Trace
( ⟨e1,σ ⟩ ⇓ n1 ⟨e2,σ ⟩ ⇓ n2 n3 = n1 op n2

⟨e1 op e2,σ ⟩ ⇓ n3
OP

i
)
B Trace(⟨e1,σ ⟩ ⇓ n1)@Trace(⟨e2,σ ⟩ ⇓ n2)@{ λσ . σ [xi 7→ σ (xl ) op σ (xr )] }

Trace
(
⟨skip,σ ⟩ ⇓ σ

SKIP
i
)
B { λσ . σ } Trace

( ⟨e,σ ⟩ ⇓ n

⟨v B e,σ ⟩ ⇓ σ [v 7→ n]
ASSIGN

i
)
B Trace(⟨e,σ ⟩ ⇓ n)@{ λσ . σ [v 7→ n] }

Trace
( ⟨s1,σ ⟩ ⇓ σ1 ⟨s2,σ1⟩ ⇓ σ2

⟨s1 ; s2,σ ⟩ ⇓ σ2
SEQ

i
)
B Trace(⟨s1,σ ⟩ ⇓ σ1)@Trace(⟨s2,σ1⟩ ⇓ σ2)

Trace
( ⟨e,σ ⟩ ⇓ true ⟨s1,σ ⟩ ⇓ σ1

⟨if e then s1 else s2 fi,σ ⟩ ⇓ σ1
IF-TRUE

i
)
B Trace(⟨e,σ ⟩ ⇓ true)@Trace(⟨s1,σ ⟩ ⇓ σ1)

Trace
( ⟨e,σ ⟩ ⇓ false ⟨s2,σ ⟩ ⇓ σ2

⟨if e then s1 else s2 fi,σ ⟩ ⇓ σ2
IF-FALSE

i
)
B Trace(⟨e,σ ⟩ ⇓ false)@Trace(⟨s2,σ ⟩ ⇓ σ2)

Trace
( ⟨e,σ ⟩ ⇓ true ⟨s1,σ ⟩ ⇓ σ1 ⟨while e do s od,σ1⟩ ⇓ σ2

⟨while e do s od,σ ⟩ ⇓ σ2
WHILE-TRUE

i
)
B Trace(⟨e,σ ⟩ ⇓ true)@Trace(⟨s1,σ ⟩ ⇓

σ1)@Trace(⟨while e do s od,σ1⟩ ⇓ σ2) Trace
( ⟨e,σ ⟩ ⇓ false

⟨while e do s od,σ ⟩ ⇓ σ
WHILE-FALSE

i
)
B Trace(⟨e,σ ⟩ ⇓ false)

Fig. 14. Definition of Trace.@— list concatenation operator,v — variables, n — integer values, e — expressions,
s — statements,σ —program states, i — index of current rule application, l ,r — indexes of child rules application
(left and right), xi — variable introduced for each rule application, Trace(⟨e1,σ ⟩ ⇓ n1) indicates an application
of Trace to the derivation tree for ⟨e1,σ ⟩ ⇓ n1.

C PROPERTIES OF TEST-EQUIVALENCE SEMANTICS
We introduce a linear representation of a derivation tree that we refer to as a trace. A trace of a

derivation tree D (for the semantics in Figure 6) is denoted as Trace(D) (Figure 14). The trace of the
derivation tree in Example 3.2 is a sequence of functions

{ f 0
VAR
, f 1

NUM
, f 2

OP
, f 3

ASSIGN
, f 4

VAR
, f 5

ASSIGN
, f 6

SEQ
}

where f i
RULE

is a state transformation function for the rule RULE with the index i in the derivation

tree computed in depth-first order from left to right. Note that σout = f 0
VAR
◦ f 1

NUM
◦ f 2

OP
◦ f 3

ASSIGN
◦

f 4
VAR
◦ f 5

ASSIGN
◦ f 6

SEQ
(σin) (by construction).

C.1 Value-based test-equivalence relation
This section describes properties and their proofs for the semantics of value-based test-equivalence

relation in Figure 7. In an analogous manner to the previous section, we define the function Trace
for the value-based semantics in such a way that it transforms each rule application into a function

f i
RULE

: Σ × E → Σ × E, where the seconds element of the tuple denotes the computed class of

expressions.

Lemma C.1. Let p be a program, e be an expression, t B (σin,ϕ) be a test, Modified B λx . x = e .
If ⟨p,σin,Cin⟩ ⇓value ⟨_,Cout⟩ (with the corresponding derivation tree D) and e ∈ Cout , then for each
applications of the rule EXPR-MOD in the derivation tree D with premises ⟨e,σ ⟩ ⇓ n and c ′ = Πvalue

σ ,n (c ),
the expression e is in the set c ′.

Proof. The rule EXPR-MOD is either encountered inD or not. If it is not applied in the derivation

tree, thenCout = Cin since EXPR_MOD is the only rule that affects c . If it is applied in the derivation

tree, represent the derivation tree as a trace:

{ f 0
R_0
, f 1

R_1
, ..., f k

R_k
}
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Then, (σout ,Cout ) = f 0
R_0
◦ f 1

R_1
◦ ... ◦ f k

R_k
(σin,Cin). Therefore, the set Cout can be represented as

Πvalue
σ1,n1

◦Πvalue
σ2,n2

◦...◦Πvalue
σm,nm (Cin), where each application of the value-projector operator corresponds

to an application of the rule EXPR-MOD. Since the value-projector operator outputs a subset of its

argument set, ∀i . e ∈ Πvalue
σi ,ni ◦ ... ◦ Π

value
σm,nm (Cin). Therefore, e ∈ c

′
for each application of the rule

EXPR-MOD in D. □

Lemma C.2. Let p be a program, e be an expression, t B (σin,ϕ) be a test,Modified B λx . x = e . If
⟨p,σin,C

1

in⟩ ⇓value ⟨_,C
1

out⟩ and ⟨p,σin,C
2

in⟩ ⇓value ⟨_,C
2

out⟩ and C
1

in ⊆ C2

in, then C
1

out ⊆ C2

out .

Proof. It is trivial that for any n and σ if C1

in ⊆ C2

in, then Πvalue
σ ,n (C1

in) ⊆ Πvalue
σ ,n (C2

in). Then, the

lemma follows from the fact that Cout can be represented as Πvalue
σ1,n1

◦ Πvalue
σ2,n2

◦ ... ◦ Πvalue
σk ,nk (Cin). □

Lemma C.3. Let p1 and p2 be programs such that ∃e,e ′ ∈ Expr . p2 = p1[e/e ′], t B (σin,ϕ) be
a test. If p1

t

∼value p2 and ⟨p1,σin, {e,e ′}⟩ ⇓value ⟨σout , {e,e ′}⟩ (for Modified B λx . x = e), then
⟨p2,σin, {e,e

′}⟩ ⇓value ⟨σout , {e,e
′}⟩ (for Modified B λx . x = e ′).

Proof. ⟨p1,σin, {e,e
′}⟩ ⇓value ⟨σout , {e,e

′}⟩ for Modified B λx . x = e with the corresponding

derivation tree D. Therefore, in each application of the rule EXPR-MOD of the derivation tree,

c ′ = {e,e ′} (Lemma C.1). Consequently, in each occurrence of EXPR-MOD, ⟨e,σ ⟩ ⇓ n ⇔ ⟨e ′,σ ⟩ ⇓ n.
Assume that D ′ is obtained by replacing all occurrences of e with e ′ in the derivation tree D. Since
⟨e,σ ⟩ ⇓ n ⇔ ⟨e ′,σ ⟩ ⇓ n in each application of the rule EXPR-MOD, D ′ is a valid derivation tree for

⟨p2,σin, {e,e
′}⟩ ⇓value ⟨σout , {e,e

′}⟩ with Modified B λx . x = e ′. □

Lemma C.4. Let p be program, t B (σin,ϕ) be a test. If ⟨p,σin,_⟩ ⇓value ⟨σout ,_⟩ , then ⟨p,σin⟩ ⇓ σout .

Proof. A derivation tree for the semantics in Figure 7 can be transformed into a valid derivation

tree of the standard semantics (Figure 6) by removing the argument c and changing the applications
of EXPR-MOD and EXPR-NMOD into corresponding applications of EXPR. □

Proposition C.5. Let P be a set of programs such that for any p1,p2 ∈ P, ∃e,e ′ ∈ Expr such that
p2 = p1[e/e ′], t B (σin,ϕ) be a test. Then,

t

∼value as in Definition 3.4 is an equivalence relation in P.

Proof. Reflexivity. Let p be a program, e be an expression in p, Modified B λx . x = e . Since
∀e . ⟨e,σ ⟩ ⇓ n ⇔ {e} = Πvalue

σ ,n ({e}), c ′ = {e} in each application of EXPR-MOD for c = {e}. Therefore,

⟨p1,σin, {e}⟩ ⇓value ⟨_, {e}⟩. Consequently, p
t

∼value p. Symmetry. Let p1,p2 be programs and e1,e2
be expressions such that p2 = p1[e1/e2] and p1

t

∼value p2. Assume ⟨p1,σin, {e,e
′}⟩ ⇓value ⟨σout , {e,e

′}⟩.

Then, ⟨p2,σin, {e,e
′}⟩ ⇓value ⟨σout , {e,e

′}⟩ (Lemma C.3). Therefore, p2
t

∼value p1. Transitivity. Let
p1,p2,p3 be programs and e1,e2,e3 be expressions such that p2 = p1[e1/e2] and p3 = p1[e1/e3]. Assume

p1
t

∼value p2 andp1
t

∼value p3. Note that for any σ , if ⟨e1,σ ⟩ ⇓ n∧c
′ = Πvalue

σ ,n ({e1,e2,e3}), then e2 ∈ c
′∧

e3 ∈ c
′
(Lemma C.1 and Lemma C.2). Thus, ⟨e1,σ ⟩ ⇓ n ⇔ {e1,e2,e3} = Πvalue

σ ,n ({e1,e2,e3}). Therefore,

∀σ . ⟨e2,σ ⟩ ⇓ n ⇔ {e2,e3} = Πvalue
σ ,n ({e2,e3}). Consequently, ⟨p2,σin, {e2,e3}⟩ ⇓value ⟨_, {e2,e3}⟩ for

Modified B λx . x = e2 and p2
t

∼value p3. □

Proposition C.5 can be trivially generalized for spaces involving modifications of multiple

expressions since the union of several equivalence relations is an equivalence relation.

Proposition C.6. Let p1 and p2 be programs such that ∃e,e ′ ∈ Expr . p2 = p1[e/e ′], t B (σin,ϕ) be
a test. If p1

t

∼value p2, then p1 and p2 either both pass t or both fail t .
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Proof. Assume that ⟨p1,σin, {e,e
′}⟩ ⇓value ⟨σout , {e,e

′}⟩ for Modified B λx . x = e . Therefore,
⟨p2,σin, {e,e

′}⟩ ⇓value ⟨σout , {e,e
′}⟩ for Modified B λx . x = e ′ (Lemma C.3), ⟨p1,σin⟩ ⇓ σout

(Lemma C.4) and ⟨p2,σin⟩ ⇓ σout (Lemma C.4). Since p1 and p2 produce the same output state

for σin, they either both pass t or both fail t . □

Proposition C.7. The relation t

∼value is a test-equivalence relation according to Definition 1.1.

Proof. Proposition C.5 states that
t

∼value is an equivalence relation and Proposition C.6 states

that any two programs equivalent w.r.t.
t

∼value produce indistinguishable results for the given test.

Therefore,
t

∼value is a test-equivalence relation. □

C.2 Dependency-based test-equivalence relation
This section describes properties and their proofs for the semantics of dependency-based test-

equivalence relation in Figure 8. In an analogous manner to the previous section, we define the

function Trace for the dependency-based semantics in such a way that it transforms each rule

application into a function f i
RULE

: Σ × Stmt × Stmt ×B→ Σ × Stmt × Stmt ×B, where the seconds
and the third elements of the tuple denote global and current test-equivalence classes, and the last

boolean element indicates if the inserted assignment has been executed.

Lemma C.8. Let p be a program, e be an expression and v be a variable, such that the assignment
“v B e” is at the location s of p, Inserted B λs . s = “v B e”, Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈
Var (e ). Then, ⟨p,σin, {s},∅, false⟩ ⇓deps ⟨_, {s},_,_⟩.

Proof. Consider a trace of the derivation tree of the relation ⟨p,σin, {s},∅, false⟩ ⇓deps ⟨_,_,_,_⟩:

{ fR_0, fR_1, ..., fR_k }

For each i , if (_,l ,c,x ) = fR_i ◦ ... ◦ fR_k (σin, {s},∅, false), then x = true ⇔ s ∈ c since x is set to

true only when the rule ASSIGN-INS is applied (that adds s to c), and x is set to false in the rules

VAR-LEFT-EXE, VAR-LEFT-NEXE, ASSIGN-LR-EXE and ASSIGN-LR-NEXE (that make c = ∅).
Therefore, when the rules VAR-LEFT-NEXE and ASSIGN-LR-NEXE are applied, s < c . Thus, s is
never removed from l in the derivation tree. Therefore, ⟨p,σin, {s},∅, false⟩ ⇓deps ⟨_, {s},_,_⟩. □

Assume that { fR_0, fR_1, ..., fR_k } is a trace of some program p in a derivation tree for the

semantics in Figure 8. We call a sequence of rule applications I B { fR_l, ..., fR_r} a test-equivalent
interval iff
• it does not include the rules VAR-LEFT-EXE, VAR-LEFT-NEXE, ASSIGN-LR-EXE and ASSIGN-

LR-NEXE;

• it contains an application of the rule ASSIGN-INS;

• it is maximal (not a sub-interval of another test-equivalent interval).

Note that each application of the rule ASSIGN-INS is included into a test-equivalent interval

(possibly consisting only of this rule). We enumerate all test-equivalent intervals in the trace as

I0, I1, ..., Ik from left to right.

Lemma C.9. Let p1 and p2 be programs, e be an expression and v be a variable, such that there is
program p with locations l1,l2 so that p1 = p[l1/v B e;l1], p2 = p[l2/v B e;l2], Inserted B λs . s = “v B e”,
Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈ Var (e ), p1

t

∼deps p2. Assume that I 1
0
, I 1
1
, ..., I 1k are the test-

equivalent intervals in the trace of p1 for a derivation tree ⟨p1,σin,_,_,_⟩ ⇓deps ⟨_,_,_,_⟩. Then, for
each I 1i there is a corresponding test-equivalent interval I

2

i in the trace of ⟨p2,σin,_,_,_⟩ ⇓deps ⟨_,_,_,_⟩
such the first rules in the intervals receive the same inputs state for the same program location and the
last rules in the intervals produce the same state for the same program location in the trace.
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Proof. Assume I 1i B { f
1

R_0
, ..., f 1

R_k
} and I 2i B { f

2

R_0
, ..., f 2

R_l
}. We prove that for any state σ , if

(σ ′,_,_,_) = f 1
R_0
◦ ... ◦ f 1

R_k
(σ ,_,_,_) and the rules f 1

R_0
and f 2

R_0
are applied for the same program

location, then (σ ′,_,_,_) = f 2
R_0
◦ ... ◦ f 2

R_l
(σ ,_,_,_) and f 1

R_l
and f 2

R_r
are applied for the same

program location. This fact is proved by induction on the rule index in the test-equivalent interval,

excluding the applications of ASSIGN-INS. Then, this fact can be used to prove the lemma by

induction on the index of the test-equivalent interval. □

Lemma C.10. Let p be program, t B (σin,ϕ) be a test. If ⟨p,σin,_,_,_⟩ ⇓deps ⟨σout ,_,_,_⟩, then
⟨p,σin⟩ ⇓ σout .

Proof. A derivation tree for the semantics in Figure 8 can be transformed into a valid derivation

tree of the standard semantics (Figure 6) by removing the arguments l , c and x , changing the

applications of VAR-LEFT-EXE, VAR-LEFT-NEXE and VAR-NLEFT into corresponding applications

of VAR and the applications of ASSIGN-INS, ASSIGN-LR-EXE, ASSIGN-LR-NEXE and ASSIGN-NLR

into corresponding applications of ASSIGN. □

Proposition C.11. Let P be a set of programs, e be and expression andv be a variable, such that for
any p1,p2 ∈ P, there is program p with locations l1,l2 such that p1 = p[l1/v B e;l1] and p2 = p[l2/v B e;l2],
t B (σin,ϕ) be a test. Then,

t

∼deps as in Definition 3.7 is an equivalence relation in P.

Proof. Reflexivity. Let p ∈ P be a program, s is the location of “v B e” in p, Inserted B
λs . s = “v B e”, Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈ Var (e ). ⟨p,σin, {s},∅, false⟩ ⇓deps
⟨_, {s},_,_⟩ (Lemma C.8). Consequently, p

t

∼deps p. Symmetry. Let p1,p2 be programs such that

there is program p with locations l1,l2 such that p1 = p[l1/v B e;l1], p2 = p[l2/v B e;l2], and p1
t

∼deps
p2. Since ⟨p1,σin, {l1,l2},∅, false⟩ ⇓deps ⟨_, {l1,l2},_,_⟩, ⟨p2,σin, {l1,l2},∅, false⟩ ⇓deps ⟨_, {l1,l2},_,_⟩
(Lemma C.9). Therefore p2

t

∼deps p1. Transitivity. Let p1,p2,p3 be programs such that there is pro-

gram p with locations l1,l2,l3 such that p1 = p[l1/v B e;l1], p2 = p[l2/v B e;l2] and p3 = p[l3/v B e;l3], and

p1
t

∼deps p2, p1
t

∼deps p3. Therefore, ⟨p1,σin, {l1,l2,l3},∅, false⟩ ⇓deps ⟨_, {l1,l2,l3},_,_⟩. Therefore, the
locations {l1,l2,l3} belongs to each test-equivalent interval of the corresponding trace. Consequently,

⟨p2,σin, {l2,l3},∅, false⟩ ⇓deps ⟨_, {l2,l3},_,_⟩. Therefore, p2
t

∼deps p3 □

Proposition C.12. Let p1 and p2 be programs such that there is program p with locations l1,l2 such
that p1 = p[l1/v B e;l1] and p2 = p[l2/v B e;l2], t B (σin,ϕ) be a test. If p1

t

∼deps p2, then p1 and p2 either
both pass t or both fail t .

Proof. Without loss of generality we assume that the last statement of p1 and p2 is v B v . Then,
p1 and p2 produce the same output states for the inputs σin (Lemma C.9 and Lemma C.10). Therefore,

p1 and p2 either both pass t or both fail t . □

Proposition C.13. The relation t

∼deps is a test-equivalence relation according to Definition 1.1.

Proof. Proposition C.11 states that
t

∼deps is an equivalence relation and Proposition C.12 states

that any two programs equivalent w.r.t.
t

∼deps produce indistinguishable results for the given test.

Therefore,
t

∼deps is a test-equivalence relation. □

C.3 Composition of test-equivalence relations
This section describes properties and their proofs for the semantics in Figure 13. In an analogous

manner to the previous sections, we define the function Trace for the dependency-based semantics

in such a way that it transforms each rule application into a function f i
RULE

: Σ × (Stmt →
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2
Expr ) × (Stmt → 2

Expr ) ×B→ Σ× (Stmt → 2
Expr ) × (Stmt → 2

Expr ) ×B, where the seconds and the
third elements of the tuple denote global and current test-equivalence classes, and the last boolean

element indicates if the inserted assignment has been executed.

Lemma C.14. Let p be a program, e be an expression and v be a variable, such that the assignment
“v B e” is at the location s of p, Inserted B λs . s = “v B e”, Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈
Var (e ). Then, ⟨p,σin,lin,λx . ∅, false⟩ ⇓∗ ⟨_,lin,_,_⟩, where lin B λx . if x = s then {e} else ∅.

Proof. Consider a trace of the derivation tree of the relation ⟨p,σin,lin,λx . ∅, false⟩ ⇓∗ ⟨_,_,_,_⟩:

{ fR_0, fR_1, ..., fR_k }

For each i , if (_,l ,c,x ) = fR_i ◦ ... ◦ fR_k (σin,lin,λx . ∅, false), then x = true ⇔ e ∈ c (s ) since x is

set to true only when the rule ASSIGN-INS is applied (that updates c for the argument s), and
x is set to false in the rules VAR-LEFT-EXE, VAR-LEFT-NEXE, ASSIGN-LR-EXE and ASSIGN-

LR-NEXE (that make c = λx . ∅). Therefore, when the rules VAR-LEFT-NEXE and ASSIGN-LR-

NEXE are applied, e < c (s ). Thus, l (s ) always includes at least e in the derivation tree. Therefore,

⟨p,σin,lin,λx . ∅, false⟩ ⇓∗ ⟨_,lin,_,_⟩. □

Lemma C.15. Let p1 and p2 be programs, e1 and e2 be expressions andv be a variable, such that there
is programp with locations l1,l2 so thatp1 = p[l1/v B e1 ;l1],p2 = p[l2/v B e2 ;l2], Inserted B λs . s = “v B e”,
Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈ Var (e ), p1

t

∼∗ p2. Assume that I 1
0
, I 1
1
, ..., I 1k are the test-

equivalent intervals in the trace of p1 for a derivation tree ⟨p1,σin,_,_,_⟩ ⇓∗ ⟨_,_,_,_⟩. Then, for each
I 1i there is a corresponding test-equivalent interval I 2i in the trace of ⟨p2,σin,_,_,_⟩ ⇓∗ ⟨_,_,_,_⟩ such
the first rules in the intervals receive the same inputs state for the same program location and the last
rules in the intervals produce the same state for the same program location in the trace.

Proof. Assume I 1i B { f
1

R_0
, ..., f 1

R_k
} and I 2i B { f

2

R_0
, ..., f 2

R_l
}. We prove that for any state σ , if

(σ ′,_,_,_) = f 1
R_0
◦ ... ◦ f 1

R_k
(σ ,_,_,_) and the rules f 1

R_0
and f 2

R_0
are applied for the same program

location, then (σ ′,_,_,_) = f 2
R_0
◦ ... ◦ f 2

R_l
(σ ,_,_,_) and f 1

R_l
and f 2

R_r
are applied for the same

program location. This fact is proved by induction on the rule index in the test-equivalent interval,

excluding the applications of ASSIGN-INS. Then, this fact can be used to prove the lemma by

induction on the index of the test-equivalent interval. □

Lemma C.16. Let p be program, t B (σin,ϕ) be a test. If ⟨p,σin,_,_,_⟩ ⇓∗ ⟨σout ,_,_,_⟩, then
⟨p,σin⟩ ⇓ σout .

Proof. A derivation tree for the semantics in Figure 13 can be transformed into a valid derivation

tree of the standard semantics (Figure 6) by removing the arguments l , c and x , changing the

applications of VAR-LEFT-EXE, VAR-LEFT-NEXE and VAR-NLEFT into corresponding applications

of VAR and the applications of ASSIGN-INS, ASSIGN-LR-EXE, ASSIGN-LR-NEXE and ASSIGN-NLR

into corresponding applications of ASSIGN, removing applications of STMT-L. □

Proposition C.17. Let P be a set of programs, e be and expression and v be a variable, such
that for any p1,p2 ∈ P, there is program p with locations l1,l2 and expressions e1 and e2 such that
p1 = p[l1/v B e1 ;l1] and p2 = p[l2/v B e2 ;l2], t B (σin,ϕ) be a test. Then, t

∼∗ as in Definition 3.7 is an
equivalence relation in P.

Proof. Reflexivity. Let p ∈ P be a program, s is the location of “v B e” in p, Inserted B
λs . s = “v B e”, Left B λv ′. v ′ = v , Right B λv ′. v ′ ∈ Var (e ). ⟨p,σin,lin,λx . ∅, false⟩ ⇓∗ ⟨_,lin,_,_⟩
where lin B λx . if x = s then {e} else ∅ (Lemma C.14). Consequently, p

t

∼∗ p. Symmetry. Let
p1,p2 be programs and e1 and e2 be expressions such that there is program p with locations
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l1,l2 such that p1 = p[l1/v B e1 ;l1], p2 = p[l2/v B e2 ;l2], and p1
t

∼∗ p2. Since ⟨p1,σin, {l1 7→ {e1},l2 7→
{e2},_ 7→ ∅},∅, false⟩ ⇓∗ ⟨_, {l1 7→ {e1},l2 7→ {e2},_ 7→ ∅},_,_⟩, ⟨p2,σin, {l1 7→ {e1},l2 7→ {e2},_ 7→
∅},∅, false⟩ ⇓∗ ⟨_, {l1 7→ {e1},l2 7→ {e2},_ 7→ ∅},_,_⟩ (Lemma C.15). Therefore p2

t

∼∗ p1. Transitiv-
ity. Let p1,p2,p3 be programs and e1,e2,e3 be expressions such that there is program p with locations

l1,l2,l3 such that p1 = p[l1/v B e1 ;l1], p2 = p[l2/v B e2 ;l2] and p3 = p[l3/v B e3 ;l3], and p1
t

∼∗ p2, p1
t

∼∗ p3.
Therefore, ⟨p1,σin, {l1 7→ {e1},l2 7→ {e2},l3 7→ {e3},_ 7→ ∅},∅, false⟩ ⇓∗ ⟨_, {l1 7→ {e1},l2 7→ {e2},l3 7→
{e3},_ 7→ ∅},_,_⟩. Therefore, the locations {l1,l2,l3} belongs to each test-equivalent interval of

the corresponding trace. Consequently, ⟨p2,σin, {l2 7→ {e2},l3 7→ {e3},_ 7→ ∅},∅, false⟩ ⇓∗ ⟨_, {l2 7→
{e2},l3 7→ {e3},_ 7→ ∅},_,_⟩. Therefore, p2

t

∼∗ p3 □

Proposition C.18. Let p1 and p2 be programs and e1 and e2 be expressions such that there is
program p with locations l1,l2 such that p1 = p[l1/v B e1 ;l1] and p2 = p[l2/v B e2 ;l2], t B (σin,ϕ) be a test.
If p1

t

∼∗ p2, then p1 and p2 either both pass t or both fail t .

Proof. Without loss of generality we assume that the last statement of p1 and p2 is v B v .
Then, p1 and p2 produce the same output states for the inputs σin (Lemma C.15 and Lemma C.16).

Therefore, p1 and p2 either both pass t or both fail t . □

Proposition C.19. The relation t

∼∗ is a test-equivalence relation according to Definition 1.1.

Proof. Proposition C.17 states that
t

∼∗ is an equivalence relation and Proposition C.18 states

that any two programs equivalent w.r.t.
t

∼∗ produce indistinguishable results for the given test.

Therefore,
t

∼∗ is a test-equivalence relation. □
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