
Verifix: Verified Repair of Programming Assignments

UMAIR Z. AHMED∗, National University of Singapore, Singapore

ZHIYU FAN∗, National University of Singapore, Singapore

JOOYONG YI†, Ulsan National Institute of Science and Technology, South Korea

OMAR I. AL-BATAINEH, National University of Singapore, Singapore

ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

Automated feedback generation for introductory programming assignments is useful for programming

education. Most works try to generate feedback to correct a student program by comparing its behavior with

an instructor’s reference program on selected tests. In this work, our aim is to generate verifiably correct

program repairs as student feedback. A student-submitted program is aligned and composed with a reference

solution in terms of control flow, and the variables of the two programs are automatically aligned via predicates

describing the relationship between the variables. When verification attempt for the obtained aligned program

fails, we turn a verification problem into a MaxSMT problem whose solution leads to a minimal repair. We

have conducted experiments on student assignments curated from a widely deployed intelligent tutoring

system. Our results show that generating verified repair without sacrificing the overall repair rate is possible.

In fact, our implementation, Verifix, is shown to outperform Clara, a state-of-the-art tool, in terms of repair

rate. This shows the promise of using verified repair to generate high confidence feedback in programming

pedagogy settings.

CCS Concepts: •Applied computing→Computer-assisted instruction; • Software and its engineering
→ Formal software verification; Software testing and debugging.

1 INTRODUCTION
CS-1, the introductory programming course, is an undergraduate course offered by Universities

and Massive Open Online Courses (MOOCs) across disciplines. Several programming assignments

are typically attempted by the students as a part of this course, which are evaluated and graded

against pre-defined test-cases. Given the importance of programming education and the difficulty

of providing relevant feedback for the massive number of students, there has been increasing

interest in automated program repair (APR) techniques for providing automated feedback to

student assignments [13, 16, 17, 30, 33, 34].

Existing approaches and their limitations. Table 1 provides a summary of state-of-the-art APR

works for introductory programming assignment, and compares them with our approach Verifix.

The repair rate of the state-of-the-art techniques [13, 16, 33] is astonishingly high, around 90%.

However, different from general test-based APR technique, these works make certain assumptions

such as the presence of multiple reference programs and a high quality tests.

Many student assignment feedback generation approaches [13, 16, 33] assume the existence

of a complete set of high quality test-cases to validate their repairs. Over-fitting the repair to an

incomplete specification is a well known problem of test-based APR tools [11, 28, 35]. Prior studies

have shown that trivial repairs such as functionality deletion alone can achieve ~50% repair success

rate on buggy student programs given a weak oracle [6]. Generating complex incorrect feedback

that merely passes all tests can potentially confuse novice students more than expert programmers.

∗
Joint first authors.

†
Corresponding author.

Authors’ addresses: Umair Z. Ahmed, umair@nus.edu.sg, National University of Singapore, Singapore; Zhiyu Fan, National

University of Singapore, Singapore, zhiyufan@comp.nus.edu.sg; Jooyong Yi, Ulsan National Institute of Science and

Technology, South Korea, jooyong@unist.ac.kr; Omar I. Al-Bataineh, National University of Singapore, Singapore, omerdep@

yahoo.com; Abhik Roychoudhury, National University of Singapore, Singapore, abhik@comp.nus.edu.sg.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

2 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Tool Completely Beyond Identical Verified Target Tool Dataset

Automated Reference CFG Repair Language Availability Availability

Clara [13] ✓ ✗ ✗ C, Python ✓ ✗

SarfGen [33] ✓ ✗ ✗ C# ✗ ✗

ITSP [34] ✓ ✓ ✗ C ✓ ✓

Refactory [16] ✓ ✓ ✗ Python ✓ ✓

CoderAssist [17] ✗ ✓ ✓ DP for C ✓ ✗

Verifix ✓ ✓ ✓ C ✓ ✓

Table 1. Programming assignment repair tools comparison. Most existing APR tools are com-
pletely automated and rely on test case evaluation (generate unverified repair).

Indeed, a prior study [34] shows that novice students when provided with incorrect/partial repair

feedback that merely passes more tests, have been shown to struggle more, as compared to expert

programmers given the same feedback. Hence, we suggest that the feedback given to novice students

needs rigorous quality assurance, whenever possible.

In a related vein, some approaches, in particular recent ones [13, 33], assume the existence of

multiple reference programs. This assumption is made to overcome the difficulty of generating

feedback when the Control-Flow Graph (CFG) structure of the student program is different from

the instructor provided reference program.
1
Using multiple reference programs can also diversify

the solution space, and thereby a feedback can be made more customized to a student solution [12].

However, the problem is that the existing approaches collect multiple reference programs manually

or based on testing (student submissions that pass all tests are considered correct), without formally

verifying their correctness. Automatic equivalence checking remains challenging despite recent

advances [7].

Insight. Many of the aforementioned problems of the existing APR techniques can be addressed

with a verified repair. We assume the presence of at least one reference solution, which is always

available in educational settings and can be given by an instructor. This setting is simpler than most

existing approaches [13, 16, 33] requiring both multiple reference solutions and a test-suite. We then

create a verifiably correct repair of the student assignment. In other words, the repaired student

assignment will be semantically equivalent to the reference assignment given by the instructor. In

terms of workflow, the repair engine indicates when it can generate a verified repair as feedback, and

when it does, the students can receive a feedback which is guaranteed to be correct. In other words,

we can have greater confidence or trust on the feedback generated by the repair tool. Furthermore,

student programs that are verified to be correct after repair can be used as additional trustworthy

reference programs in future.

Contribution: Verified repair. In this work, we propose a general approach to verified repair.

Verified repair engenders greater trust in the output of the automatic repair tool, which has been

identified to be a key hindrance in deployment of automated program repair [29]. We show that

verified repair is feasible and achievable in a reasonable time scale (on average 29.5 seconds) for

student programming assignments of a large public university. This shows the promise of using

verified repair to generate high confidence live feedback in programming pedagogy settings.
2
To

the best of our knowledge, ours is the first work to espouse verified repair for general purpose

1
SarfGen [33] and Clara [13] require that the control-flow structure of student and reference programs should be exactly

the same. Clara also demands aligned variables to be evaluated into the same sequence of values at runtime.

2
According to an earlier user study [34], students spend about 100s on average to resolve semantic errors.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 3

1 int check_prime(int n)
2 {
3 i f (n == 1)
4 return 0 ;
5 int j ;
6 for (j =2; j <n ; j ++)
7 {
8 i f (n%j == 0)
9 return 0 ;
10 }
11 return 1 ;
12 }

(a) A reference program

1 int check_prime(int n)
2 {
3

4

5 int i ;
6 for (i =1; i <=n−1; i ++)
7 {
8 i f (n%i == 0)
9 break ;
10 }
11 return 1 ;
12 }

(b) An incorrect student pro-
gram

1 int check_prime(int n)
2 {
3 if (n == 1)
4 return 0;
5 int i ;
6 for (i=2 ; i <=n−1; i ++)
7 {
8 i f (n%i == 0)
9 return 0;
10 }
11 return 1 ;
12 }

(c) The Verifix-generated repair

Fig. 1. Motivating example for the Prime Number programming assignment. Existing tools such as
Clara [13] and Sarfgen [33] cannot repair the incorrect student program in Fig 1(b) since its Control-
Flow Graph (CFG) differs from the CFG of instructor designed reference program in Fig 1(a). Our
tool Verifix generates the repaired program in Fig 1(c), which is verifiably equivalent to the refer-
ence implementation, due to superior Control-Flow Automata (CFA) based abstraction.

programming education. The only previous attempt on verified repair [17] is tightly tied to a

specific structure of programs implementing dynamic programming.

Repair tool: Verifix. We build our verified-repair technique by extending the existing program

equivalence checking technique. Although automatically proving the equivalence between two

programs remains challenging (mainly due to the difficulty of automatically finding loop invariants),

we found that student programs are in many cases amenable for equivalence checking. This is

because there is usually a reference program whose structure is similar to the student program, as

shown in earlier works [13, 33]. Exploiting this, Verifix produces a verified repair. Note that, Verifix

performs repair and equivalence checking at once. More concretely, Verifix aligns the incorrect

student program with the reference program into an aligned automaton, derives alignment relation

to relate the variable names of the two programs, and suggests repairs for the code captured by the

edges of the aligned automaton via Maximum Satisfiability-Modulo-Theories (MaxSMT) solving.

We use MaxSMT to find a minimal repair. Our approach can generate a program behaviourally

equivalent to the reference program while preserving the original control-flow of the student

program as much as possible. This leads to smaller patches/feedback which we believe are easier to

comprehend, in general. We evaluate our approach on student programming submissions curated

from a widely used intelligent tutoring system. Our approach produces small-sized verified patches

as feedback, which, whenever available, can be used by struggling students with high confidence.

Our tool Verifix is available at https://github.com/zhiyufan/Verifix.

2 OVERVIEW
Consider a simple programming assignment for checking whether a given number n is a prime

number. Figure 1(a) shows a reference implementation prepared by an instructor, and Figure 1(b)

shows an incorrect program submitted by a student.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

https://github.com/zhiyufan/Verifix

4 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Func
Entry

Func
Exit

False

True

True
False

False

True

Loop
Entry

Loop
Exit

(a) CFG of the reference program in Fig 1(a)

Func
Entry

Func
Exit

TrueFalse

Loop
Entry

Loop
Exit

False

True

(b) CFG of the incorrect student program in
Fig 1(b)

Fig. 2. Control Flow Graph (CFG) of the reference and incorrect program listed in Fig 1. Incorrect
program CFG in Fig 2(b) differs from reference program CFG in Fig 2(a) due to a missing return
node. Existing tools like Clara [13], Sarfgen [33] cannot repair the incorrect program.

(a) Reference CFA AR (b) Student’s CFA AS (c) Aligned CFA AF

Fig. 3. Control Flow Automata (CFA) of the reference and incorrect program listed in Fig 1. CFA
AR of reference program in Fig 3(a) is structurally aligned with CFA AS of student program in
Fig 3(b) to obtain an aligned CFA AF in Fig 3(c).

Limitations of the Existing Approaches. The state-of-the-art approaches such as Clara [13] and

Sarfgen [33] make the same-control-flow assumption described as follows.

To perform a repair, a given incorrect program and its reference implementation should have the
same control-flow structure.

Clara fails to repair the incorrect program shown in Figure 1(b) when the reference implemen-

tation shown in Figure 1(a) is used, reporting that the structures of these two programs do not

match. The CFGs of this incorrect program and its reference program are shown in Figure 2(b) and

Figure 2(a), respectively. Notice that that in the reference CFG (Figure 2(a)), the LoopExit node has

one incoming edge, whereas in the student program’s CFG (Figure 2(b)) the matching LoopExit

node has two incoming edges where the additional edge of Figure 2(b) comes from “n′%i ′ == 0”.

The problem is that “n′%i ′ == 0” does not match “n % j ==0” since the downward edge of node “n

% j ==0” does not reach LoopExit, unlike in “n′%i ′ == 0”, and hence the structures of the two CFGs

do not match. The fact that Clara treats a loop-free segment of the code as a single block does not

help. In Clara, two adjacent nodes, “n % j ==0” and “ret = 0”, of Figure 2(a) are grouped together,

but the outgoing edge of this group still does not reach LoopExit.

A common approach that has been used to overcome this problem is to use multiple reference

programs of diverse control-flow structures [13, 17, 33]. Since it would be labor-intensive for an

instructor to prepare multiple reference implementations, recent works (e.g., [13, 33]) gets around

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 5

this problem by using student submissions. That is, student submissions that pass all tests are added

into a pool of reference implementations. However, this approach exposes students to the risk of

getting wrong feedback generated based on an incorrect program that happens to pass all tests.

Our Approach. We show how we address the aforementioned limitations. Essentially, we do

not make the same control-flow-structure assumption. Instead, we conduct repair with Control

Flow Automata (CFA) where its nodes represent program locations and its edges represent guarded

actions. Figure 3 shows examples of CFAs, as will be described shortly in Section 2.1. Also, we

extend the existing equivalence checking technique into a verified repair technique. We traverse

each edge of the CFA obtained from a student submission and check its semantic equivalence

with the corresponding edge of the CFA obtained from a reference program. Note that each edge

represents a loop-free segment of a program. Equivalence checking is performed by encoding the

problem into an SMT (Satisfiability Modulo Theories) formula. If equivalence checking fails, we

reformulate the equivalence checking problem into a repair problem; we allow the expressions

of the student submission to be replaced with the expressions of the reference program (after

converting variable names). The number of replacements is minimized by encoding the repair

problem into a MaxSMT (Maximum Satisfiability Modulo Theories) formula.

In the following, we show how our repair algorithm works through the following three phases:

the setup phase, the verification phase, and the repair phase. The last two steps occur simultaneously

as explained in the following.

2.1 Setup Phase
In the setup phase, we model the given reference and student programs as Control Flow Automata

(CFA) with the nodes representing control-flow locations and the edges representing guarded

actions. Figure 3(a) and 3(b) show the CFA for the reference program (AR) and the CFA for the

student program (AS), respectively. Notice that each edge of a CFA is annotated with a sequence

of guarded actions. For example, in Figure 3(a), the edge between q1 and q2 is annotated with

“[n != 1] j = 2” where an assignment command j = 2 is guarded with the conditional expression

n != 1. In the figure, we label this guarded action with “b”. As another example, the self-edge of

node q2 is annotated with a sequence of two guarded actions, c and d , which indicates that c and d
should be executed in sequence. As in the case of c , a guarded action can have only a conditional

expression φ, which means that the NOP command is guarded with φ.
To perform verification/repair in the next phase, we build an aligned CFA AF by aligning the

nodes and edges of AR and AS . Figure 3(c) shows the aligned CFA for our running example.

Notation q1q
′
1
used in the entry node of Figure 3(c) denotes that node q1 of AR and node q′

1
of AS

are aligned with each other. The other nodes of AF are interpreted similarly. Meanwhile, notation

cd ; c ′d ′ used in the edge between q2q
′
2
and q2q

′
2
denotes that guarded-command-sequence cd of

AR is aligned with guarded-command-sequence c ′d ′ of AS . To align nodes and edges, we use

lightweight syntax-based approaches, as will be detailed in Section 4.1. Recall that the existing

approaches [13, 33] fail to handle our running example, due to their same-CFG assumption. We

relax this assumption by conducting node alignment and edge alignment separately. In our running

example, after aligning node q1 with q′
1
and q4 with q′

4
, we conduct edge alignment for the edge

between q1 and q4 (annotated with guarded action a) by creating a fresh edge between q′
1
and

q′
4
(annotated with a′ in Figure 3(c)). Similarly, a new edge c ′e ′ is constructed between q′

2
and q′

4
,

corresponding to the edge ce between q2 and q4, during the alignment stage since no such edge

exists in the student automata. Conversely, the edge c ′h′ between q′
2
and q′

3
of the student’s CFA

is removed because no matching edge exists in the reference automata. Our experimental results

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

6 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Block Student Transition Repaired Transition

a′ ∅ [n′ == 1] ret ′ = 0

b ′ [True] i ′ = 1 [n′! = 1] i ′ = 2

c ′ [i ′ <= n′ − 1] [i ′ <= n′ − 1]
d ′ [n′%i ′! = 0] i ′ = i ′ + 1 [n′%i ′! = 0] i ′ = i ′ + 1
e ′ ∅ [n′%i ′ == 0] ret ′ = 0

f ′ [i ′ > n′ − 1] [i ′ > n′ − 1]
д′ [True] ret ′ = 1 [True] ret ′ = 1

h′ [n′%i ′ == 0] ∅

Table 2. Incorrect student blocks and their corresponding repairs generated by Verifix, after mul-
tiple rounds of edge verification-repair of Figure 3 aligned automaton. The blocks a′ and e ′ are
created in the automata, while the block h′ is removed.

show that this simple extension alone reduces the structural alignment mismatch rate by 13% (see

Table 4).

While in our example, only one aligned automaton can be constructed, there can be multi-

ple ways to align AR and AS when multiple edges exist between two aligned nodes (Figure 5

shows an example). In such a case, we construct all possible aligned CFAs, and in the next phase

(verification/repair phase), each aligned automaton is investigated to generate a minimal repair.

To conduct verification/repair, we also need to align variables used in AR and AS . To align

variables, we use a syntax-based approach similar to [33]. For each edge of AF , we align variables

whose usage patterns are similar to each other (see Section 4.2). For example, Verifix infers the

following variable alignment predicate for the edge q1q
′
1
→ q2q

′
2
: {ret ↔ ret ′,n ↔ n′, j ↔ i ′}

where ret is a special variable holding the return value of the function under verification/repair.

2.2 Verification Phase
We perform verification for all aligned automata AF . If verification succeeds for AF or its re-

paired variation, semantic equivalence between student and reference programs is guaranteed (see

Theorem 1). Verification is performed inductively for individual edge, starting from the outgoing

edges of the initial node of AF (a;a′ and b;b ′ for our Figure 3(c)). More specifically, we perform

verification by checking whether q ∼ q′ (i.e., q is bisimilar to q′) holds for each aligned nodes q and

q′ of AF .

Consider the edge q1q
′
1

b ;b′
−→ q2q

′
2
. Given this edge, we should prove the following: when q1 ∼ q′

1

is assumed, q2 ∼ q′
2
holds after executing b;b ′. We achieve this by checking

φ1edдe : ϕq1q′1 ∧ψr ∧ψ
1

s ∧ ¬ϕq2q′
2

where ϕq1q′
1

and ϕq2q′
2

denote the variable alignment predicates at node q1q
′
1
and q2q

′
2
, respectively.

ϕq1q′
1

: (ret0 = ret
′
0
) ∧ (n0 = n

′
0
) ∧ (j0 = i

′
0
)

ϕq2q′
2

: (ret1 = ret
′
1
) ∧ (n1 = n

′
1
) ∧ (j1 = i

′
1
)

Meanwhile, ψr and ψ
1

s denote the guarded actions of b and b ′, respectively, in a Single Static

Assignment (SSA) form, where

ψr : (n0 , 1 =⇒ j1 = 2) ∧ (¬(n0 , 1) =⇒ j1 = j0)
ψ 1

s : (True =⇒ i ′
1
= 1) ∧ (¬True =⇒ i ′

1
= i ′

0
)

If φ1edдe is satisfiable, then q2 ∼ q′
2
does not hold, indicating verification failure. We check the

satisfiability of φ1edдe using an off-the-shelf SMT solver, Z3 [24].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 7

2.3 Repair Phase
For our running example, the SMT solver Z3 finds thatφ1edдe is satisfiable under a certain assignment

ϕ1ce which is

ϕ1ce : n0 = n
′
0
= 1, j0 = i

′
0
= 0

where ϕ1ce can be viewed as a counter-example to the edge verification. When ϕ1ce holds, variable
j1 of the reference program has a value 0 (since ¬(n0 , 1) =⇒ j1 = j0) byψr), whereas variable
i ′
1
of the student program (aligned with j1) has a different value 1 (since True =⇒ i ′

1
= 1 byψ 1

s),

violating ϕq2q′
2

. Using this counter-example, we perform a repair based on counter-example-guided

inductive synthesis or CEGIS strategy [31] (see Section 5.2). Following CEGIS strategy, we look

for a repair of ψ 1

s which rules out the counter-example ϕ1ce . Verifix returns two potential repair

candidates.

ψ 2

s : (False =⇒ i ′
1
= 1) ∧ (¬False =⇒ i ′

1
= i ′

0
)

ψ 3

s : (n′
0
, 1 =⇒ i ′

1
= 1) ∧ (¬(n′

0
, 1) =⇒ i ′

1
= i ′

0
)

When ψ 2

s (or ψ 3

s) is substituted for ψ 1

s in φ1edдe ∧ ϕ
1

ce (notice that the original formula φ1edдe is

conjoined with ϕ1ce), the modified formula is not satisfiable, indicating that under the context of the

counterexample (i.e., ϕ1ce),ψ
2

s (orψ 3

s) is a repair. Notice how the original formulaψ 1

s is repaired. In

ψ 2

s andψ 3

s , the original expression True is replaced with False and n′
0
, 1, respectively. To obtain

n′
0
, 1, we use the expression n0 , 1 appearing inψr , the guarded action for the reference program.

This copy mechanism that exploits the existence of a reference program is a de-facto standard

technique in recent works [13, 33].

So far, we only showed thatψ 2

s (orψ 3

s) is a repair only in the context of ϕ1ce . It is not known yet

whetherψ 2

s (orψ
3

s) is a repair in a general context. To check this, we retry edge verification for φ1edдe
after replacingψ 1

s withψ 2

s (orψ 3

s) in φ
1

edдe . In our example, verification attempt fails again for both

ψ 2

s andψ 3

s (that is, the repaired φ1edдe is still satisfiable), and the following new counter-example

ϕ2ce is obtained.

ϕ2ce : n0 = n
′
0
= 2, i0 = i

′
0
= 0

By considering both ϕ1ce and ϕ
2

ce , Verifix returns a new repair candidateψ 4

s ,

ψ 4

s : (n′
0
, 1 =⇒ i ′

1
= 2) ∧ (¬(n′

0
, 1) =⇒ i ′

1
= i ′

0
)

As compared withψ 1

s , two sub-expressions ofψ
1

s are repaired. As inψ 3

s , True is replaced with

n′
0
, 1. Also, i ′

1
= 1 is replaced with i ′

1
= 2 based on j1 = 2 appearing in ψr . This updated repair

candidate ψ 4

s rules out all counter-examples seen so far, and no further satisfying assignments

of φ1edдe are found. This completes the verification and repair, thereby repairing the edge b ′ in

Figure 3(b). The remaining edges are similarly verified/repaired, and Table 2 summarizes the buggy

student automata AS edges and their corresponding repairs generated by our repair tool Verifix.

We note that Verifix generates a minimal repair for each aligned edge under consideration.

That is, a generated edge repair modifies the minimum number of expressions required to repair

the edge (see Theorem 4). To obtain a minimal edge repair, we formulate a repair problem as a

partial MaxSMT problem, as described in Section 5.2. Essentially, Verifix tries to preserve as many

original expressions as possible, by assigning a higher weight penalty to the original expressions

(hence, replacing an original expression increases the cost of repair). While combining minimal

edge repairs does not necessarily lead to a globally minimal repair, our experimental results suggest

that our greedy approach works well in practice. Verifix tends to generate smaller repairs than a

state-of-the-art tool Clara (see Section 7.4).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

8 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

3 PROGRAMMODEL
Prior to explaining our alignment and verification-repair procedures, we introduce the key structures

used to model programs.

Abstract Syntax Tree (AST). An Abstract Syntax Tree (AST) consists of a set of nodes representing

the abstract programming constructs. With the tree hierarchy, or edges, representing the relative

ordering between the appearance of these constructs.We extend the standardASTwith special labels

for two node types: Func-Entry and Loop-Entry. Each AST consists of a root node corresponding to

a function definition, which is labelled as a function-entry node. Similarly, every loop construct in

the AST is labelled as a loop-entry node.

The AST for motivating example shown in Figure 1 consists of two labelled nodes: a Func-Entry
node q1 which maps to the check_prime function definition and a Loop-Entry node q2 which maps to

the for-loop construct. We note that some existing APR techniques for programming assignments,

like ITSP [34] which uses GenProg [19], operate on program ASTs directly.

Control Flow Graph (CFG). Existing state-of-art APR techniques like Clara [13] and SarfGen [33]

operate at the level of CFG, whose nodes are basic blocks and edges denote control transfer. We

extend the standard CFG by introducing four types of special labelled nodes: {Func-Entry, Loop-
Entry, Func-Exit, and Loop-Exit}; denoting the program states when control enters a function or a

loop, and when control exits a function or a loop, respectively. The Func-Entry and Loop-Entry CFG

nodes correspond with control entering AST nodes of the same type. The Func-Exit and Loop-Exit
CFG nodes correspond with the program state after control visits the last child of Func-Entry and

Loop-Entry AST node, respectively. These Func-Exit and Loop-Exit program states can also be

reached by altering the control-flow using return and break statements, respectively.

Figures 2(a) and 2(b) depict the CFG of the reference and student program in Figures 1(a) and 1(b),

respectively. These CFGs contain four special nodes denoting Func-Entry (q1/q′1), Loop-Entry (q2/q
′
2
),

Loop-Exit (q3/q′3), and Func-Exit (q4/q′4) program states.

Control Flow Automaton (CFA). Our tool Verifix operates at the level of the control flow automaton

(CFA), often used by model-checking and verification communities [15]. The CFA is essentially the

CFG, with code statements labeling the edges of CFA, instead of code statements labeling nodes as

in CFG. The nodes of our CFA are annotated with the node types mentioned earlier: Func-Entry,
Loop-Entry, Func-Exit, and Loop-Exit. The edges of our CFA are constructed by choosing all possible

code transitions between the program states in CFG. Depending on the reason for control-flow

transition, these edges can be of three types: normal, return or break. Figures 3(a) and 3(b) depict

the CFA modeled using the reference and student CFG in Figures 2(a) and 2(b), respectively. We

provide our precise definition of CFA in the following.

Definition 1 (Control Flow Automaton). A Control Flow Automaton (CFA) is a tuple of the form
⟨V ,E,v0,vt ,Ω,Ψ,Var ⟩, where:

• V : is a finite set of vertices (or nodes) of the automata, representing function and loop entry/exit
program states,
• E ⊆ V × V , is a finite set of edges of the automata representing normal, break, and return
transitions between program states,
• v0 : is the initial node representing function entry state,
• vt : is the terminal node representing function exit state,
• Ω : {u ↔ v | ∀u ∈ V ,∃v ∈ V }, for each function/loop entry node, maintains a mapping to the
corresponding exit node,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 9

Func
Entry

Loop-2
Entry

Loop-1
Entry

Loop-3
Entry

(a) Example AST with labelled and unlabelled
nodes.

Func
Entry

Loop-2
Entry

Loop-1
Entry

Loop-3
Entry

(b) Example AST L after deletion of unlabelled
nodes.

Fig. 4. Example demonstrating Abstract Syntax Tree (AST) transformation to retain nodes labelled
as function and loop entry.

b

c

b'

a

c'

a'

(a) Example AR and AS .

bb'
cc'

ba'

aa'

cc'

ab'

(b) Example AF after alignment.

Fig. 5. Example demonstrating edge alignment. Given node alignment V : {q1q
′
1
,q2q

′
2
}, the edges

are aligned based on type. The single break transitions c and c ′ are aligned with each other, while
the multiple normal edges are aligned combinatorially to produce two unique aligned automata.

• Ψ is a mapping from edge e toψe for all edges e , whereψe is the set of guarded actions labeling
e , and
• Var is the set of variables used in

⋃
e ψe .

For edge e in the CFA,ψe is thus the code statements labeling e . How we build a CFA is described

in Section 4.

4 ALIGNED AUTOMATA
Our methodology for repairing incorrect student programs relies on constructing an aligned

automaton AF from the given student automaton AS and the reference automaton AR . The

construction of the automatonAF consists of following steps: (i) modeling the student and reference

programs as Control Flow Automaton (CFA) AS and AR , (ii) the structural alignment of AS and

AR , and (iii) the inference of the variable alignment predicates.

4.1 Structurally Aligning AS and AR

To construct an aligned automaton AF , we first conduct node alignment between the nodes of

AS and AR . This step is followed by aligning the transition edges between AS and AR . A more

detailed description is provided below.

Node Alignment. Given two CFAs AS and AR , and their corresponding Abstract Syntax Trees

ASTS and ASTR for student and reference program, respectively, we construct node alignment

V : VS ↔ VR as follows.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

10 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

(1) Delete all unlabelled nodes from ASTS and ASTR to obtain AST L
S and AST L

R , respectively. An

AST L
consists of only Func-Entry and Loop-Entry labelled nodes.

(2) If the syntactic tree structures of AST L
S and AST L

R are identical with each other, align each

node of AST L
S with AST L

R and add toV . This step aligns the Func-Entry and Loop-Entry nodes

of AS and AR .

(3) For each pair of entry nodes (either Func-Entry or Loop-Entry) that are aligned with each

other, their corresponding exit nodes (either Func-Exit or Loop-Exit) are aligned with each

other.

For constructing node alignment V , we first align the labelled nodes of student and reference

Abstract Syntax Tree (AST). The labelled AST nodes can be of two types: Func-Entry and Loop-Entry.
These labels are same as those inAS andAR , but we take advantage of the tree structure in the AST.

Figure 4 demonstrates unlabelledAST node deletion in step-1 through an example, after which only

the Func-Entry and Loop-Entry labelled nodes are retained. For the reference program (respectively

student program) listed in Figure 1, the labelled AST L
R (resp. AST L

S) consists of two nodes q1 → q2
(resp. q′

1
→ q′

2
). Since both the AST L

trees are structurally the same, the node alignment V consists

of {q1q
′
1
,q2q

′
2
} after step-2 of node alignment, denoting the Func-Entry and the Loop-Entry aligned

nodes.

The step-3 of node-alignment finally aligns the function and loop exit nodes. Given the student

and reference automata in Figure 3, q4, which is the Func-Exit node corresponding to q1, is aligned
with q′

4
, which is the Func-Exit node corresponding to q′

1
. Similarly, the Loop-Exit nodes q3 and q′3

are aligned, since their corresponding Loop-Entry nodes q2 and q
′
2
were aligned in step-2.

The node alignment constructed thus, if successful, will lead to a bijective mapping from nodes of

AS to nodes ofAR . Node alignment fails if the two programs have different different function/loop-

ing structure from each other. While limited, our approach can handle more diverse programs than

the state-of-the-art approaches [13, 33] which require not only bijective mapping between nodes

but also bijective mapping between edges. In these approaches, q4 and q
′
4
of Figure 3 cannot be

aligned with each other, since the edge q2 → q4 of AR does not have a corresponding edge in AS .

Edge Alignment. Given two CFAs AS and AR , and their corresponding node alignment V :

VS ↔ VR , we construct an aligned CFA AF by aligning the edges of AS and AR . Suppose that

uS ↔ uR (i.e., node uS in AS is aligned with uR in AR) and vS ↔ vR . For each edge of type

t ∈ {break, return,normal }, we treat the following four cases differently.

(1) AS has only one edge from uS to vS of type t , and AR has only one edge from uR to vR of

the same type t .
(2) Only AR has an edge from uR to vR of type t , while AS has no edge from uS to vS of type t .
(3) Only AS has an edge from uS to vS of type t , while AR has no edge from uR to vR of type t .
(4) None of the above matches, andAS (orAR) has multiple edges from uS to vS (or from uR to

vR) of type t .

In the first case, we simply align the matching edges. For example, in Figure 3,AR contains only

one normal edge b between q1 and q2 andAS contains only one normal edge b ′ between q′
1
and q′

2
.

Hence, the aligned CFA AF has an edge b;b ′ as shown in Figure 3(c). An example of the second

case is shown with the two nodes, q1q
′
1
and q4q

′
4
, ofAF . WhileAR has one edge a between q1 and

q4, AS has no edge between q′
1
and q′

4
. In this case, we insert an edge a;a′ to AF where a′ has an

empty guarded action. The third case is the opposite of the second one. In this case, we remove the

edge between uS and vS since there is no matching edge in the reference automata.

Lastly, in the fourth case, there exist several possible edge alignments of the order of

(
M
N

)
× N !,

where M is the number of edges from uR → vR and N is the number of edges from uS → vS .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 11

Figure 5 demonstrates this case through an example, resulting in two possible edge alignments.

The single break transitions c and c ′ are aligned with each other, while the remaining normal edges
(i.e., a, b, a′ and b ′) are aligned combinatorially to produce two unique aligned automata. When

multiple aligned automata can be constructed, we choose the edge alignment which maximizes the

number of verified-equivalent edges in the resultant aligned automaton AF . The formal structure

of aligned automaton is described in the following.

Definition 2 (Aligned automaton). The automaton AF that results from aligning the automata
AS and AR is a tuple of the form ⟨V ,E,v0,vt ,Ω,Ψ, Pred⟩, where:
• V : VS ↔ VR , is a finite set of one-to-one bijective mappings between the nodes of the automata
AS and AR ,
• E ⊆ V ×V , is a finite set of edges representing normal, break, and return transitions between
the aligned nodes,
• v0

: v0

S ↔ v0

R , where v
0

S and v0

R are the initial function entry nodes of the automata AS and
AR respectively,
• vt : vtS ↔ vtR , where v

t
S and vtR are the final function exit nodes of the automata AS and AR

respectively
• Ω : {u ↔ v | ∀u ∈ V ,∃v ∈ V }, for each function/loop entry node, maintains a mapping to the
corresponding exit node,
• Ψ is a mapping from edge e toψe for all edges e , whereψe = ψs ∪ψr , andψs ,ψr are the set of
guarded actions at the aligned edges es and er of the automata AS and AR respectively, and
• Pred : VarS ↔ VarR , denoting variable alignment, is a bijective mapping between variables of
AS and AR .

4.2 Inferring Variable Alignment Predicates
To infer alignment predicates of AF , we use a syntactic approach based on variable-usage patterns

similar to that of SarfGen [33]. Our approach for computing a mapping between two sets of variables

proceeds as follows.

For each edge ei in AF we collect the usage set for each variable x/x ′ in the reference/student

program, namely the setsusaдe (x , ei) andusaдe (x
′, ei). If the student automaton has fewer variables

than reference automaton (|VarS | < |VarR |), then fresh variables are defined in VarS . The goal
is to find a variable alignment, a bijective mapping between VarR and VarS , which minimizes

the average distance between usaдe (x , ei) and usaдe (x ′, ei) for each i ∈ [1,n], where n is the

number of edges inAF . This is done by constructing a distance matrixMei for each edge ei of size
|VarR | × |VarS |, where

Mei (x ,x
′) = ∆ (usaдe (x , ei),usaдe (x

′, ei))

Using the matricesMe1 , . . . ,Men , we construct a global distance matrixMд for the entire set of

edges in AF , where

Mд (x ,x
′) =

n∑
i=1

Mei (x ,x
′)

n

We then choose to align the variable x in R to the variable x ′ in S , denoted as x ↔ x ′, if the pair
(x ,x ′) has the minimum average distance among all possible variable y aligned with x ′, that is
among all variable alignment pairs (y,x ′).

5 VERIFICATION AND REPAIR ALGORITHM
Once the aligned automaton AF is constructed, we can initiate the repair process of the incorrect

student program. Note that a repaired version of the incorrect student program produced by our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

12 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

algorithm is guaranteed to be semantically equivalent to the given structurally matched reference

program. Our algorithm traverses the edges of the automaton AF to perform edge verification

which basically checks the semantic equivalence between an edge of the student automaton and its

corresponding edge of the reference automaton.
3
In case the edge verification fails, we perform edge

repair after which edge verification succeeds. While the existing approaches [13, 33] also similarly

perform repair for aligned statements/expressions, the correctness of repair is not guaranteed

unlike in our algorithm.

We combine the edge verification and repair into a single step by extending the well-known

SyGuS (syntax-guided synthesis) approach [3] which can be defined as follows:

Definition 3 (SyGuS). SyGuS consists of ⟨φ,T , S⟩ where φ represents a correctness specification
expressed assuming background theory T and S represents the space of possible implementations (S
is typically defined through a grammar). The goal of SyGuS is to find out an implementation that
satisfies φ.

While in principle SyGuS can be directly used to perform repair, we have an additional non-

functional requirement not considered in SyGuS—that is, we want to preserve the student program

as much as possible for pedagogical purposes. To accommodate this additional requirement, we

introduce our approach, SyGuR (syntax-guided repair), formulated as follows:

Definition 4 (SyGuR). Syntax-guided Repair or SyGuR consists of ⟨φ,T , S, implo⟩where the first three
components are identical with those of SyGuS, and implo ∈ S represents the original implementation
that should be repaired. The goal of SyGuR is to find out a repaired implementation implr ∈ S
that satisfies φ. In addition, differences between implo and implr should be minimal under a certain
minimality criterion.

We realize SyGuR in the context of automated feedback generation for student programs. In this

section, we present the two algorithmic steps we perform to conduct SyGuR: edge verification and

edge repair.

5.1 Edge Verification
In this section, we describe how we detect faulty expressions in the given incorrect student program.

Recall that the edges of the automaton AF are constructed by aligning the edges of the student

automaton AS with the edges of the reference automaton AR . Recall also that the edges of AS
can be faulty while the edges of AR are considered always as non-faulty.

Each edge e : u
ψs ;ψr
−→ v of AF between nodes u and v asserts the following property:

{ϕu }ψs ;ψr {ϕv } (1)

where ϕu and ϕv are the variable alignment predicates at the source node u and target node

v of the edge e respectively, and ψr and ψs represent a list of guarded actions of the reference

implementation and student implementation, respectively, expressed in a Single Static Assignment

(SSA) form. For example, an original guarded action, if (x>1) x++, is converted into its SSA form,

((x1 > 1) =⇒ x2 = x1 + 1) ∧ (¬(x1 > 1) =⇒ x2 = x1). Note thatψs andψr do not interfere with each

other, since the variables used inψs andψr are disjoint from each other. Also note thatψr andψs
do not contain a loop (that is, a single edge does not form a loop), and thus an infinite loop does

not occur in the edge.

3
Our implementation performs a breadth-first search, while our algorithm is not restricted to a particular search strategy.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 13

Edge verification succeeds if and only if property (1) holds. In SyGuR, property (1) expresses a

correctness specification φe for edge e . To check property (1), we use an SMT solver by checking

the satisfiability of the following formula:

φe = ϕu ∧ψs ∧ψr ∧ ¬ϕv (2)

The satisfiability of φe indicates verification failure, or showing non-equivalence of two implemen-

tations along edge e . Conversely, the unsatisfiability of φe indicates verification success. Note that

there always exists a modelm that satisfies ϕu ∧ψr ∧ψs (this is because ϕu is not false, and the

SSA forms ofψr andψs are defined over disjoint variables), and verification succeeds only when

for all suchm, ¬ϕv does not hold. Intuitively, verification succeeds if and only if it is impossible for

the post-condition ϕv to be false after executingψr andψs under the pre-condition ϕu .
As for background theories in the SMT solver, we use: LIA (linear integer arithmetic) for integer

expressions, the theory of strings for modeling input/output stream, theory of uninterpreted func-

tions to deal with user-defined function calls such as check_prime, and LRA (linear real arithmetic)

to approximate floating-point expressions.

5.2 Edge repair
Once φe is found to be satisfiable for an edge e (which indicates that the edge verification fails),

our goal is to repair edge e by modifying the student implementation encoded inψs . Algorithm 1

shows our edge repair algorithm based on the CEGIS (counter-example-guided inductive synthesis)

strategy [31]. In step 1, edge verification is attempted, and verification failure results in a counter-

example ϕce that witnesses verification failure. In the remaining part of the algorithm, we modify

ψs toψ
′
s in a way that {ϕce }ψ

′
s ;ψr {ϕv } holds. If {ϕu }ψ

′
s ;ψr {ϕv } also happens to hold, edge repair is

deemed as completed. Otherwise, an SMT solver generates a new counter-example ϕ ′ce , and our

algorithm searches for ψ ′′s satisfying both {ϕce }ψ
′′
s ;ψr {ϕv } and {ϕ

′
ce }ψ

′′
s ;ψr {ϕv }. This process is

repeated until either edge repair is successfully done or it fails. Edge repair can fail either because

the search space is exhausted or timeout occurs.

Let us first consider the case where ψs and ψr have the same number of guarded actions and

all guarded actions have the same number of assignments. To ensure this requirement is met, we

call function Extend (see line 20 of Algorithm 1) which will be described later. Under the current

assumption thatψs andψr have the same number of guarded actions, Extend (ψs ,ψr) returnsψs ,
and thus, its return valueψ+s equalsψs .
To repair guarded actions ψ+s , we replace each of the conditional expressions and the update

expressions (RHS expressions) with a unique placeholder variable h. This makes an effect of making

holes inψ+s , and filling in a hole for repair amounts to equating h with a repair expression. Function

RepairSketch of the algorithm performs this task of making holes in ψ+s and returns ψf defined

asψ+s [e
(i) 7→ h (i)

]. In this definition, notation 7→ denotes a substitution operator defined over all

expressions e (i) appearing inψ+s and their corresponding placeholder variables h (i)
. In the following,

we use “hole” to refer to a placeholder variable.

In SyGuR (see Definition 4), the expression space of the holes is defined by implementation space

S . Previous state-of-the-art works [13, 33] use the expressions of the reference program for repair

(generated repairs are not verified in these works unlike in our approach), and we similarly define

the implementation space of each hole as follows:

Definition 5 (Implementation space of a hole). Let Cs (Cr) and Us (Ur) be respectively the set
of conditional and update expressions of ψ+s (ψr). Recall that ψ+s (ψr) represents guarded actions
of the student (reference) program. When a conditional expression ec is replaced by a hole hc , the
implementation space of hc is defined as Cs | C

′

r | true | f alse, where C
′

r represents the set of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

14 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

conditional expressions appearing inψr with all variables of Cr replaced with their aligned variables
of the student program (see Section 4.2 for variable alignment). Similarly, given an assignment x = hu
where hu represents a hole for an update expression eu , the implementation space of hu is defined
as Us | U

′

r | x , where U
′

r represents the set of update expressions of ψr with all variables of Ur
replaced with their aligned variables of the student program. The inclusion of an lhs variable x in
the implementation space is to allow assignment deletion—replacing x = eu with x = x simulates
assignment deletion.

The repair synthesis process for some faulty expression on the edge es relies on four factors:

the discovered counter-examples, the set of suspicious expressions in ψ+s , the set of reference

expressions inψr , and the inferred alignment predicates. These factors collectively determine the

set of expressions on the edge er that can be exploited to repair the buggy expressions on es .
Recall that given a list of counter-examplesCE, we search for a repairψ ′s that satisfies ∀ϕce ∈ CE :

{ϕce }ψ
′
s ;ψr {ϕv }. When searching for a repair, we preserve the expressions of the student program

as much as possible for pedagogical reasons. We achieve this by conducting a search for a repair

using a pMaxSMT (Partial MaxSMT) solver. Note that an input to a pMaxSMT solver consists of (1)

hard constraints which must be satisfied and (2) soft constraints all of which may not be satisfied.

Whenever a soft constraintC is not satisfied, cost is increased by the weight associated withC , and
a pMaxSMT solver searches for a model that minimizes the overall cost. We pass the following

formula to a pMaxSMT solver where hard constraints are underlined.

∀ϕce ∈ CE : (ϕce ∧ψr ∧ψf ∧ ϕv∧∧
(h (i),e (i),SJh (i)K)∈holes (ψf)

(h (i) = e (i) ∧ h (i) ∈ SJh (i)K\{e (i) })) (3)

where function holes (ψf) returns a set of (h
(i), e (i), SJh (i)K) in which h (i)

represents the placeholder

variable appearing inψf (recall thatψf is prepared by making holes inψs), e
(i)

denotes the original

expression of h (i)
extracted from student program, and SJh (i)K represents the implementation

space of h (i)
. Our soft constraints encode the property that each of the original expressions can

be either preserved or replaced with an alternative expression in the implementation space. To

preserve as many original expressions as possible, we assign a higher weight to h (i) = e (i) than
h (i) ∈ SJh (i)K\{e (i) }.

The Extend function. Previously, we consider only the cases where ψs and ψr have the same

number of guarded actions and all guarded actions have the same number of assignments. To ensure

this requirement, we invoke the Extend function which performs the following. First, ifψs has a
smaller number of guarded actions thanψr , thenψ

+
s (the return value of Extend) should contain

additional guarded actions, each of which uses the following template: [False] =⇒ x = x , where
x is constrained to be the variables of the student program. Notice that these additional guards

are initially deactivated to preserve the original semantics of the student program, but they can be

activated whenever necessary during repair, since False is replaced with a hole by RepairSktech.
After this step, Extend finds the guarded action ofψr that has the maximum number of assignments.

Given this maximum numberM , we check whether all guarded actions ofψs (including additional

guarded actions with the False guard) also have M assignments. Any guarded action that has a

smaller number of assignments thanM is appended with additional assignments, x = x where x
is constrained to be the variables of the student program. This process makes sure that for each

guarded action, the student program can have as many assignments as the reference program.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 15

Algorithm 1 Edge verification-repair

Input: Aligned edдe
Output: Verified/Repaired edдe
1: Let ϕu ≡ edge.sourceNode.invariants

2: Let ϕv ≡ edge.targetNode.invariants

3: Letψr ≡ edge.label.reference

4: Letψs ≡ edge.label.student

5: CEs ← [] // List of counter-examples

6: candidates ← [ψs]
7: repeat
8: // Step 1: attempt for edge verification

9: for eachψ i
s in candidates do

10: Let φiedдe ≡ ¬(ϕu ∧ψr ∧ψ
i
s =⇒ ϕv)

11: if ̸ |= φiedдe then // UNSAT

12: edдe .label .student ← ψ i
s // Update edge

13: return ✓ // Verifiably correct

14: else
15: ϕice |= φ

i
edдe // SAT

16: CEs ← CEs · ϕice
17: end if
18: end for
19: // Step 2: make holes inψs
20: Letψ+s ≡ Extend (ψs ,ψr)
21: Letψf ≡ RepairSketch(ψ+s)
22: // Step 3: define implementation space

23: φhard ← []; φsof t ← []

24: for each ϕice in CEs do
25: φhard ← φhard · (ϕ

i
ce ∧ψr ∧ψf ∧ ϕv)

26: end for
27: for each hole, expr ,weiдht in RepairSpace (ψf ,ψr ,ψs) do
28: φsof t ← φsof t · (hole = expr ,weiдht)
29: end for
30: // Step 4: search for a repair

31: if ̸ |= (φhard ,φsof t) then // UNSAT or UNKNOWN

32: return ✗ // Repair Failure

33: else
34: // Update candidates using a pMaxSMT solver

35: // There can be multiple candidates

36: candidates |= (φhard ,φsof t)
37: end if
38: until timeout

5.3 Properties preserved by Verifix
Once all the edges of the aligned automaton AF are repaired and verified, it is straightforward to

produce a repaired student automaton A ′S by copying repaired expressions from the automaton

AF to the automaton AS . In this section, we discuss several interesting properties of our repair

algorithm, namely soundness, completeness, and minimality of generated repairs.

Theorem 1 (Soundness). For all program inputs, A ′S and AR return the same program output.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

16 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Proof. Recall that for each repaired/verified edge u
ψs ;ψr
−→ v of a repaired automaton A ′F ,

{ϕu }ψs ;ψr {ϕv } holds. By structural induction on the edges of AF , the post-condition of A ′F ’s

final node holds true, and hence out = out ′ holds for the outputs aligned betweenAS andAR . Note

that for introductory programming assignments, output is clearly known (such as the return value

of the program), and we enforce the post-condition of A ′F ’s final node to contain out = out ′. □

Our edge repair algorithm (Algorithm 1) always returns a repaired edge as long as the underlying

MaxSMT/pMaxSMT solver used in the algorithm is complete (that is, UNKNOWN is not returned).

This can be stated as follows, using the concept of relative completeness [9]:

Theorem 2 (Relative completeness of edge repair). The completeness of Algorithm 1 is relative
to the completeness of the MaxSMT/pMaxSMT solver.

Proof. Whenever edge verification fails, Algorithm 1 performs repair in step 4 of the algorithm.

In case a repair exists in the repair space, Algorithm 1 reaches line 36, and a pMaxSMT solver is fed

with formula (3) to find out a repair. Thus, if the MaxSMT/pMaxSMT solver is complete, a repair is

always generated. □

Meanwhile, the overall repair algorithm of Verifix is not complete. If AF is failed to be con-

structed, the repair process cannot be started. Theorem 3 identifies the conditions under which

Verifix succeeds to generate a repair. In Theorem 3, we use the following definition of alignment

consistency:

Definition 6 (Alignment Consistency). For each edge e ofAF {ϕu }ψs ;ψr {ϕv }, modifyψs into the
ψ ′s as follows:ψ

′
s ≡ ψr [x

(i)
r 7→ x (i)

s] where x (i)
r denotes all reference-program variables appearing inψr

and x (i)
s denotes student-program variables aligned with x (i)

r . Repeat this for all edges ofAF . Then, we
say that AF is alignment consistent when {ϕu }ψ ′s ;ψr {ϕv } for all modified edges.

AF is alignment consistent only when the variable alignment predicates are such that a given

student program can be verifiably repaired by edge-to-edge copy of the reference program (patch

minimality is not considered).

Theorem 3 (Relative completeness). Our repair algorithm succeeds to generate a repair, under
the following assumptions:
(1) AF is constructed,
(2) AF is alignment-consistent, and
(3) The MaxSMT/pMaxSMT solver used for repair/verification is complete.

Proof. Assume the three assumptions are met. Since Verifix traverses all edges of AF one by

one without backtracking, it suffices to show that each edge is repaired by Algorithm 1 which at a

high level consists of the following two parts: verification (step 1 of the algorithm) and repair (step

2, 3, and 4).

First, consider the verification part. Verification is performed via a MaxSMT solver which returns

either (a) UNSAT (line 11) or (b) SAT (line 15) for φiedдe (see line 10). Note that the UNKNOWN case

is excluded by the third assumption. In case (a), edge verification is done. In case (b), the algorithm

moves to the repair part which we now consider.

In the repair part, a pMaxSMT solver is invoked at line 31 and 36 of Algorithm 1 and returns either

(i) UNSAT or (ii) SAT. The UNKNOWN case is excluded by the third assumption. Case (i) happens

only when the second assumption is violated (that is, a repair is not in the implementation space),

and we exclude this case from consideration. In case (ii), repair candidates are obtained (line 35),

and verification is re-attempted to see if one of the obtained candidatesψ ′s satisfies {ϕu }ψ
′
s ;ψr {ϕv }.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 17

The repetition between repair and verification is guaranteed to terminate, since the implementation

space is finite. This concludes the proof. □

Lastly, we consider the minimality of repair. In Verifix, use of MaxSMT guarantees the minimality

of edge repair.

Theorem 4 (Minimality of edge repair). Suppose that our algorithm repairs edge e : u → v ofAF
by changing F ⊆ Cs ∪Us (Cs andUs are defined in Definition 5). There does not exist F ′ s.t. |F ′ | < |F |
and the pre-/post-conditions of e are satisfied by replacing the expressions of F ′ with the expressions in
Cr ∪Ur .

Proof. Recall that we pass formula (3) to a pMaxSMT solver. In the formula, the number

placeholder variables h (i)
defines the maximum size of edge repair, and a minimal edge repair is

obtained when the minimum number of placeholder variables h (i)
are equated with expressions

different from their original expression e (i) , which happens when expressionh (i) = e (i) in formula (3)

is ignored by the pMaxSMT solver. Since a pMaxSMT solver ignores the minimum number of

h (i) = e (i) , the stated theorem holds. □

Theorem 4 does not necessarily guarantee the global minimality of a generated repair. In the

following theorem, we identify the conditions that should be additionally satisfied to guarantee

global minimality.

Theorem 5 (Global minimality). A repaired program generated by our algorithm is minimal if the
following conditions hold:
(1) Node alignment made in AF is optimal in the sense that there is no alternative node alignment

(other than the one generated by Verifix) that can lead to a smaller repair.
(2) The variable alignment predicates of AF are optimal in the sense that there is no alternative

variable alignment that can lead to a smaller repair.

Proof. Once node alignment and invariants of AF are fixed, repairing a student program

amounts to repairing each edge of AF for which edge verification fails. Since each edge is repaired

minimally (Theorem 4), the stated theorem holds. □

Verifix currently does not guarantee the global minimality of repair. Node alignment and variable

alignment made by Verifix are not necessarily optimal. Instead of considering all possible alignments,

we use a heuristics-based approach for the sake of efficiency. Nonetheless, our experimental results

show that Verifix tends to find smaller repairs than Clara. Note that the existing approaches designed

to generate minimal repairs [13, 33] also do not consider node/edge alignment in the calculation of

the minimality of a repair. Instead, a minimal repair is searched for only after node/edge alignment

is made. In fact, unlike those existing approaches that do not consider alignment at all, we consider

edge alignment by enumerating all possible edge alignments between aligned nodes.

6 EXPERIMENTAL SETUP
6.1 ResearchQuestions
We address the following research questions in this work.

(1) RQ1: How does Verifix perform in terms of the repair success rate, as compared to state-

of-the-art approaches? While Verifix generates verifiably correct repair, is the repairability

comparable to the existing approaches?

(2) RQ2: How does Verifix perform in terms of running time? Given that Verifix uses heavy-

weight SMT techniques to conduct verification, slowdown in running time as compared to

non-verification approaches is expected. How severely is the time performance affected?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

18 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

(3) RQ3: What are the reasons for repair failure in Verifix? The answers to this question can be

used to identify where to improve in the future work.

(4) RQ4: Does Verifix generate small sized repair? In a pedagogical setting, small repairs are

usually desired. While Verifix generates a minimal edge repair, it does not guarantee to

generate a globally minimal repair.What is the practical consequence of this greedy approach?

(5) RQ5: What is the effect of test-suite quality on repair when a test-based approach is used?

We ask this question to compare the existing test-based approaches with Verifix which does

not require a test.

(6) RQ6: How is the repair success rate of Verifix affected by the number of reference solu-

tions? We ask this question to assess the performance of Verifix when multiple reference

implementations are available.

6.2 Dataset
Evaluation of a programming assignment feedback tool requires a dataset of incorrect student as-

signments. For our dataset, we chose a publicly released dataset curated by ITSP
4
[34] for evaluating

feasibility of APR techniques on introductory programming assignments. This benchmark consists

of incorrect programming assignment submissions by 400+ first year undergraduate students

crediting a CS-1: Introduction to C Programming course at a large public university. Other datasets

used in previous work are either not publicly available [13, 17, 33] or use different programming

languages than C [16].

We take students’ incorrect attempts from four basic weekly programming labs in ITSP bench-

mark, where each lab consists of several programming assignments that cover different program-

ming topics. For example, the lab in week 3 (Lab-3 in Table 3) consists of four programming

assignments which teach students about floating-point expressions, printf, and scanf. Table 3

lists the four programming labs partitioned by different programming topics. Students had, on

average, a time limit of one hour duration for completing each individual assignment. Our im-

plementation currently does not support all programming language constructs such as pointers,

multi-dimensional arrays, and struct, which are necessary to support the remaining labs in the

ITSP benchmark. Note that support for more programming language constructs is orthogonal to

our verified-repair generation algorithm. As more programming language constructs are supported,

our repair algorithm can be used without modification to repair more diverse programs, these are

left as future work.

We use 341 compilable incorrect students’ submissions from 28 various unique programming

assignments as our subject. In addition to the incorrect student submissions, each programming

assignment in the ITSP benchmark contains a single reference implementation and a set of test

cases designed by the course instructor. Both Verifix and baseline Clara [13] have access to the

reference implementation and test cases to repair the incorrect student programs.

Baseline comparison. We compare our tool Verifix’s performance against the publicly released

state-of-art repair tool Clara
5
[13] on the common dataset of 341 incorrect student assignments. A

timeout of 5 minutes per incorrect student program was set for both Verifix and Clara to generate

repair. We do not directly compare our results against CoderAssist [17] tool since it does not work

with our dataset (CoderAssist targets dynamic programming assignments), while Refactory [16]

implementation targets Python programming assignments. About SarfGen, we could not obtain

access to the tool from its authors due to a copyright issue (SarfGen is commercialized). We instead

4
https://github.com/jyi/ITSP#dataset-student-programs

5
https://github.com/iradicek/clara

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

https://github.com/jyi/ITSP#dataset-student-programs
https://github.com/iradicek/clara

Verifix: Verified Repair of Programming Assignments 19

Lab-ID Topics # Assign- # Prog- Repair (%) Avg. Time (sec)

ments rams Clara Verifix Clara Verifix

Lab-3 Floating point, printf, scanf 4 63 54.0% 92.1% 2.0 39.7

Lab-4 Conditionals, Simple Loops 8 117 71.8% 74.4% 32.9 34.2

Lab-5 Nested Loops, Procedures 8 82 22.0% 45.1% 10.2 12.5

Lab-6 Integer Arrays 8 79 12.7% 21.5% 14.2 8.1

Overall - 28 341 42.8% 58.4% 21.3 29.5

Table 3. Lab-wise repair success rate (shown in the Repair column) of our tool Verifix and
Clara [13]. Time column represents the average runtime in seconds for all successfully repaired
programs. The number of assignments in each lab is shown in the #Assignments column, and the
number of incorrect student submissions in each lab is shown in the #Programs column.

address these comparisons in our related work Section 10. Our tool Verifix
6
is publicly released to

aid further research.

Our experiments were carried out on a machine with Intel
®

Xeon
®

E5-2660 v4 @ 2.00 GHz

processor and 64 GB of RAM.

6.3 Implementation
Verifix supports repairing compilable incorrect C programs, given a reference C program and op-

tional test cases. Verifix implementation is composed of three components: (1) Setup, (2) Verification,

and (3) Repair generation.

For the setup phase, we build on top of Clara
5
[13] parser to convert incorrect and reference C

programs into a Control-Flow Graph (CFG) representation. We then convert the obtained CFGs

into its dual Control-Flow Automata (CFA), and align the reference CFA with incorrect CFA.

In the verification phase, the reference and student program labels on each aligned edge are

converted into a Single Static Assignment (SSA) format using our custom Verification Condition

Generator (VCGen) implementation. We make use of Z3 [24] SMT solver to verify if the aligned

edges are equivalent.

In the repair phase, we encode each repair candidate using Boolean selectors. Z3 pMaxSMT solver

is used to select the repair with minimal cost. The final repaired CFA/CFG internal representation

is converted back into a program using a custom concretization module (reverse VCGen). After

which, we make use of Zhang-Shasha
7
tree-edit distance algorithm [37] to compute the patch size

between incorrect student program and the repaired student program.

7 EVALUATION
7.1 RQ1: Repair success rate
Table 3 compares the repair success rate of our tool Verifix against the state-of-art tool Clara [13]

on the common dataset of student submissions. Given a single reference implementation per

assignment, Verifix achieves an overall repair success rate of 58.4% on the 348 incorrect programs

across 28 unique assignments. In comparison, the baseline tool Clara achieves a lower overall repair

success rate of 42.8% on the same assignments, a difference of more than 15%. Note that the repairs
generated by Verifix are verifiably equivalent to the reference implementation, in addition to passing

all the instructor provided test cases. That is, Verifix generates a verifiably correct feedback for

58.4% of student submissions in diverse assignments, which is not possible using existing test-based

approaches.

6
https://github.com/zhiyufan/Verifix

7
https://github.com/timtadh/zhang-shasha

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

https://github.com/zhiyufan/Verifix
https://github.com/timtadh/zhang-shasha

20 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Lab-ID # Prog- Repair (%) Struct. Mismatch (%) Timeout (%) Unsupported (%) SMT issues (%)

rams Clara Verifix Clara Verifix Clara Verifix Clara Verifix Clara Verifix

Lab-3 63 54.0% 92.1% 0.0% 0.0% 42.9% 0% 3.2% 3.1% 0% 4.8%

Lab-4 117 71.8% 74.4% 7.7% 7.7% 19.6% 10.3% 0.9% 0.9% 0% 6.8%

Lab-5 82 22.0% 45.1% 75.6% 35.4% 1.2% 11.0% 1.2% 1.2% 0% 7.3%

Lab-6 79 12.7% 21.5% 83.5% 69.6% 2.5% 0% 1.3% 1.3% 0% 7.6%

Overall 341 42.8% 58.4% 40.2% 27.2% 15.5% 6.2% 1.5% 1.5% 0% 6.7%

Table 4. The distribution of the four reasons for repair failure, i.e., structural mismatch (4th col-
umn), timeout (5th column), unsupported language constructs (6th column), and SMT issues (7th
column). The first three columns are copied from Table 3.

The improvement in repair success rate of Verifix over Clara is partly due to the more flexible

structural alignment of Verifix than that of Clara. Recall that Verifix uses a more relaxed structural

alignment, as compared to the stricter structural alignment used by existing state-of-the-art ap-

proaches including Clara, as described in Section 4.1. Verifix requires the reference and incorrect

Control-Flow Automata (CFA) to have the same number of program states or nodes, denoting

functions and loops. While Clara additionally requires the reference and incorrect CFA to have the

same number of edges, denoting return/break/continue transitions. In Section 7.3, we investigate

the common reasons for repair failure.

7.2 RQ2: Running time
The time column of Table 3 shows the average running time of Verifix and Clara, in seconds. Verifix

on average takes 29.5s to successfully repair an incorrect program, as compared to 21.3s on average

by Clara. The running time of Verifix is particularly high in Lab-3 (39.7s) and Lab-4 (34.2s), whereas

in Lab-6, Verifix runs significantly faster than Clara (8.1s vs 14.2s). The high running time of Verifix

in Lab-3 and Lab-4 seems due to the fact that Lab-3 and Lab-4 programming assignments involve

non-linear arithmetic expressions. For example, one of the Lab-4 assignments is on computing the
distance between two co-ordinate points, which involves square-root computation. Note that SMT

solvers generally run slow when non-linear arithmetic expressions are used in the input formula.

There has been an effort to handle non-linear arithmetic more efficiently [10], and Verifix can be

benefited from the improvement of the SMT techniques.

We also note that while Clara runs faster than Verifix across the labs except for in Lab-6, its

repair success rate is always lower than that of Verifix across all labs. For example, in Lab-3, Clara’s

average running time is only 2.0s, but its repair success rate is only 54.0%, which is 38.1% lower

than that of Verifix (92.1%). Overall, while Verifix, which uses heavy-weight SMT techniques, tends

to require more running time than Clara, the overall results are nuanced by the other facts such as

repair success rate and correctness guarantee.

7.3 RQ3: Reasons for repair failure
Table 4 shows the distribution of the repair failure reasons for Verifix and Clara. Structural Mismatch
(shown in the 4th column) is the primary reason for repair failure of Verifix and Clara, accounting

for 27.2% and 40.2% of all the 341 incorrect student programs, respectively. Recall that a single

reference solution is used for each assignment in the labs. For simpler programs such as those in

Lab-3 and Lab-4, both tools achieve low structural mismatch rate. That is, almost all the incorrect

student programs can be structurally aligned with the reference program. As the complexity of

the programs increases (in our dataset, as the lab ID increases, the students submissions tend

to be more complex), the structural mismatch rate tends to increase in both tools. However, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 21

0.0 0.5 1.0 1.5 2.0
Relative Patch Size (RPS)

0.00

0.25

0.50

0.75

De
ns

ity

Verifix
Clara

Fig. 6. Kernel Density Estimate (KDE) plot of Relative Patch Size (RPS) by Verifix and Clara on 132
common successful repairs.

rate increases more gently in Verifix than in Clara. For example, in Lab-5, while the structural

mismatch rate of Clara drastically increases to 75.6%, Verifix maintains a much lower mismatch

rate of 35.4%. This difference in structural match rate results in a overall higher repair success rate

in Verifix as compared to Clara. For example, 45.1% of Verifix vs 22.0% of Clara for Lab-5. The high

structural mismatch rates in Lab-6 are related to the following: many incorrect students’ programs

use function calls, but the reference programs often do not have functions with matching function

signatures.

The second biggest failure reason is Timeout (5 minutes), accounting for 6.2% and 15.5% of the

dataset for Verifix and Clara, respectively. In Verifix, most of the running time is spent on SMT and

pMaxSMT solving by Z3 solver during verification and repair stage, respectively. In 1.5% of student

programs, repair failure occurs since our current implementation does not support all programming

language constructs used in our datasets. For example, both Verifix and Clara currently do not

support the GOTO statement. Lastly, in 6.7% of the incorrect programs, Verifix fails to generate a

repair due to the incompleteness of SMT solving. Common cases of this kind are when the SMT

solver returns UNKNOWN result, instead of SAT or UNSAT, during the verification or repair phase.

7.4 RQ4: Minimal repair
To investigate this research question, we compare the sizes of repairs generated from Verifix and

our baseline state-of-art tool Clara [13]. Since the size of the student programs vary significantly, we

normalize patch size with the size of original incorrect program to obtain Relative Patch Size (RPS),

given by: RPS = Dist (ASTs ,ASTf)/Size (ASTs). Where, ASTs and ASTf represents the Abstract

Syntax Tree (AST) of incorrect student program and fixed/repaired program generated by tool, the

Dist function computes a tree-edit-distance between these ASTs, and the Size function computes

the #nodes in the AST.

In our benchmark of 341 incorrect programs, Verifix can successfully repair 199 student programs,

Clara can successfully repair 146 programs, while Verifix and Clara both can successfully repair

132 common programs. Out of these 132 commonly repaired programs, Verifix generates a patch

with smaller RPS in 67 of the cases, Clara generates a patch with smaller RPS in 47 of the cases,

and both tools generate a patch of the exact same relative patch size in 18 cases. Note that in the

case of Clara, a smaller repair does not necessarily imply better quality repair since these repairs

can overfit the test cases (see Section 7.5).

Figure 6 plots the Kernel Density Estimate (KDE) of Relative Patch Size (RPS) for these 132

common programs that both Verifix and Clara can successfully repair, in order to visualize the

RPS distribution for these large number of data points. KDE is an estimated Probability Density

Function (PDF) of a random variable, often used as a continuous smooth curve replacement for

a discrete histogram. From the Figure 6 plot we observe that the density of patch-sizes (y-axis)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

22 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

1 void main () {
2 int n1 , n2 , i ;
3 scanf ("%d␣%d" , &n1 , &n2) ;
4 if(n2 <= 2) / / Repair #1: Delete spurious print
5 printf("%d ", n2); / / Verif ix ✓ , Clara ✗

6 for (i=n1 ; i <=n2 ; i ++){
7 i f (check_prime(i)==0) / / Repair #2: Delete ==0
8 printf ("%d␣ " , i) ; / / Verif ix ✓ , Clara ✓

9 }
10 }

Fig. 7. Example from a Lab-5 Prime Number assignment. The main function contains two errors,
both of which are fixed by Verifix, while Clara’s repair overfits given test-suite by ignoring first
error.

25 50 75 100
Visible Test-Case Sampling %

30

40

50

60

Re
pa

ir
Ac

cu
ra

cy
 %

On
 V

isi
bl

e
+

Hi
dd

en
 Te

st
-C

as
es

58.4

32.3

37.2
41.3 42.8

Verifix
Clara

Fig. 8. Repair accuracy of Clara and Verifix on various test case samplings.

produced by Verifix is greater than that of Clara when RPS < 0.8 (x-axis). On the other hand, the

density of patch-sizes generated by Clara is greater than that of Verifix when RPS ≥ 0.8. That
is, a large proportion of repairs generated by Verifix have a small relative patch-size, since the

density concentration of repairs is towards lower RPS (x-axis). In comparison, a significantly larger

proportion of Clara’s repairs have RPS ≥ 0.8, as compared to Verifix.

7.5 RQ5: Overfitting
Majority of the programming assignment repair tools [13, 16, 33, 34] generate repairs that satisfy a

given test suite (incomplete specification). Verifix is distinguished from these existing test based

approaches in that it generates a verifiably correct repair. Figure 7 demonstrates an example from a

Lab-5 Prime Number assignment, where Clara’s [13] repair overfits the test cases. With the help

of a reference implementation, Verifix is able to detect a new counter-example where the student

program deviates from correct behavior, when input stream is "1 2" (n1 = 1, n2 = 2). Given this

new unseen test case, the repair suggested by Clara results in an incorrect output "2 2 ", while the

repair suggested by Verifix results in the correct behaviour producing output "2 ".

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 23

In order to measure the degree of overfitting repairs generated by each tool, we compare the

impact of test case quality on repair accuracy. This is done by running Clara and Verifix on our

common benchmark of 341 incorrect programs under four different settings, where a percentage of

test cases were hidden from tool during repair generation. For each of the 28 unique assignments,

with 6 instructor designed test cases on average, we randomly sampled X% as "visible" test cases.

Once the repair was successfully generated by a tool on the limited visible test case sample, we

re-evaluated the repaired program on all test cases, including hidden ones. We carried out this

experiment under four different settings, with a random sampling rate of 25%, 50%, 75%, and 100% of

the available test cases. This entire experiment was repeated 5 times, where we randomly sampled

test cases each time, and we report on the distribution of repair accuracy achieved by each tool.

Figure 8 displays the result of our overfitting experiment, with the X-axis representing the

visible test case sampling %, and Y-axis representing the repair accuracy % obtained by APR tool

on the entire test-suite (visible and hidden test cases). Each box plot displays the distribution

of repair accuracy per test case sampling, by showing the minimum, maximum, upper-quartile,

lower-quartile and median values. The median value of each box-plot is shown as text above the

box-plot.

From Figure 8 we observe that Verifix’s repair accuracy is constant. That is, Verifix’s repair

does not change based on the percentage of visible test cases provided, since it does not use the

available test cases for repair generation or evaluation/verification. On the other hand, Clara’s

repair accuracy varies from a median value of 42.8% (when all test cases are made visible) to a

median value of 32.3% (when only 25% of test cases are made available to Clara). In other words,

Clara overfits on 42.8 − 32.3 = 10.5% of our benchmark of 341 incorrect programs, when 25% of

test cases are randomly chosen. Similarly, overfitting of 42.8− 41.3 = 1.5% is observed when visible

test case sampling rate is 75%, or 5 visible test cases (⌈75% × 6⌉ = 5) on average. In other words,

when even a single test case on average is hidden from Clara, its generated repair can overfit the

test cases.

Moreover, the choice of test case sampling has a large effect on Clara’s repair accuracy, as evident

from the variation in box-plot distribution. In the case of 25% visible test case sampling, Clara’s

repair accuracy ranges from a minimum value of 29.9 to maximum of 32.8; depending on which

two test cases (⌈25% × 6⌉ = 2) were made available.

Hence, APR tools such as Clara [13] which rely on availability of good quality test cases for their

repair generation and evaluation can suffer from overfitting. Even when the instructor misses out

on a single important test case coverage during assignment design. Thereby generating incomplete

feedback to students struggling with their incorrect programs. Verifix on the other hand does not

suffer from overfitting limitation, due to its sole reliance on reference implementation for repair

generation and evaluation/verification.

7.6 RQ6: Repair success rate with multiple reference implementations
In the previous sections, we conducted experiments with a single reference implementation for each

assignment. Several previous works, including Clara [13] and SarfGen [33], assume the prevalence

of multiple reference solutions to help alleviate structural matching issues. In this section, we

compare the repair success rate of both Verifix and our baseline tool Clara [13], on being provided

access to multiple reference solutions. As additional reference implementations, we use 341 student

submissions in the ITSP dataset [34] that pass all test-cases. While passing all tests does not

guarantee the correctness of a program, previous works [13, 33] used similar approaches.

To evaluate the change in repair success rate on providing access to multiple reference imple-

mentations, we run Verifix and Clara with diverse sampling rates of 0%, 25%, 50%, 75%, and 100%;

for each sampling rate of N%, we randomly sample N% of all available reference implementations,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

24 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

0% 25% 50% 75% 100%
Sampling rate of multiple reference programs

0%

20%

40%

60%

80%

100%
Re

pa
ir

sc
ue

ss
 ra

te
 o

f i
nc

or
re

ct
 p

ro
gr

am
s

58.4%

42.8%

62.5%

50.7%

65.4%

60.7%

68.9%

62.2%

69.5%

63.0%

Overall Repair Success Rate with Multi-Referene Program

Verifix
Clara

(a) Overall repair success rates for all labs

0% 25% 50% 75% 100%
Sampling rate of multiple reference programs

0%

20%

40%

60%

80%

100%

Re
pa

ir
sc

ue
ss

 ra
te

 o
f i

nc
or

re
ct

 p
ro

gr
am

s

27.2%

40.2%

23.5%

32.8%

19.6%

27.6%

19.6%

27.3%

18.5%

26.7%

Overall Structural Mismatch Rate with Multi-Reference Program

Verifix
Clara

(b) Overall structural mismatch rates for all labs

Fig. 9. Repair success rates and structural mismatch rates across different sampling rates of mul-
tiple reference solutions. The X and Y axes represent the sampling rate of the reference solutions
and the observed repair success rate, respectively.

in addition to the instructor-provided reference program. For example, 0% sampling rate indicates

only the instructor provided reference solution was used (single-reference program). While 100%

indicates that all reference programs were made available for the repair tool, in addition to the

instructor provided reference program. To prevent a student’s incorrect program P being repaired

by his/her own final submission P ′ that passes all test-cases, we exclude P ′ from the sampled set of

multi-reference programs (if it exists) when P is being repaired. We run our baseline tool Clara [13]

in its default mode for multi-reference programs; its clustering algorithm is first executed on the set

of sampled reference implementations, followed by running its repair algorithm on each incorrect

program using the obtained clusters.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 25

The results of multi-reference experiments are shown in Figure 9. Figure 9(a) shows how repair

success rate changes as more reference programs are used, while Figure 9(b) shows how structural

mismatch rate changes. A student submission S is considered structurally mismatched with a

sampled group of reference programs G when no program in G structurally matches S . From
Figure 9(a) we observe that the repair success rate increases for both Verifix and Clara, as more

reference implementations are made available for repair. From Figure 9(b) we note that this is

primarily due to a reduction in structural alignment mismatch between the set of multiple reference

implementations (with more diverse program structures) and the given incorrect program.
8
We

note that similar observations have been made regarding the effect of multi reference programs on

repair success rate in prior work [16].

From Figure 9(a) we observe that Verifix achieves a higher success rate over Clara across all

sampling rates. The gap between the repair rate of both tools reduces as more reference programs

are provided, indicating that Clara’s repair success rate could eventually match that of Verifix’s

on being provided a large number of reference solutions. From Figure 9(b) we observe that Verifix

maintains a lower structural mismatch rate over Clara across all sampling rates. When all reference

solutions are used, structural mismatch rate of Verifix and Clara drops down to 18.5% and 26.7%,

respectively. This result demonstrates the benefit of using Verifix’s CFA (Control-Flow-Automata)

based structural alignment algorithm over Clara’s CFG (Control-Flow-Graph) based alignment

algorithm, even in the case of multi-reference solutions.

8 USER STUDY
In order to evaluate the usefulness of the repair generated by Verifix, we conducted a user study of

tutors of introductory programming courses. Note that students have expressed positive feedback

about using feedback generation systems such as Clara [13] and SarfGen [33]. Verifix uses the same

copy mechanism for repair as these tools (i.e., parts of a reference implementation are copied) and

can generate the same style of feedback. The main difference between Verifix and the existing tools

lies in that Verifix generates verifiably correct repairs. We believe that tutors can better appreciate

the quality of repairs than novice students, and our user study sheds helpful light on understanding

its pedagogical value. A user study with students is left as future work.

8.1 User StudyQuestionnaire
In this user-study, we explored the practical value of Verifix in aiding tutors in the task of grading

and providing feedback on incorrect student submissions. This was explored using the following

questions:

(1) Rate the quality of the generated repair (in terms of semantic correctness, size, etc).

(2) Rate the possibility that you would like to use the repair (either complete or partial) as

feedback to the student.

(3) Rate the possibility that you would like to use the repair indirectly: to help formulate your

own custom feedback to student.

(4) Rate the possibility that these repairs can help you in grading?

(5) Will examples of student incorrect submissions and repairs like these help you in improving

the grading policy?

(6) If the repair is known to be verifiably (provably) correct, does it give you more confidence in

using it?

8
Repair failures may also occur due to reasons other than structural mismatch, as discussed in Section 7.3.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

26 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

Fig. 10. Boxplot of the responses–with the scales from 1 (very low) to 5 (very high)–collected from
14 tutors. Red line represents the median value and green triangle represents the mean value. The
whiskers denote the minimum/maximum value, and the rectangle denotes the first/third quartile.

8.2 User Study Setup
To answer the above questions, we circulated a Google-Form survey among the tutors of introduc-

tory programming courses at NUS (National University of Singapore) and UNIST (Ulsan National

Institute of Science and Technology). After which, 14 tutors in total volunteered for this survey

and completed their responses. For this survey, we randomly selected 10 incorrect student sub-

missions from our benchmark of 341 programs, on which Verifix could successfully generate a

repair. For each incorrect student program, the tutors were shown the assignment title, assignment

description, a sample testcase, and the differences between a student-written buggy program and

its repair generated by Verifix. All the volunteered tutors were shown the same 10 incorrect student

submissions in the same order. One of the incorrect student submissions used in our user study is

shown in Appendix A.

The tutors were asked three questions (questions 1–3 listed in Section 8.1) for each buggy student

submission, followed by three questions (questions 4–6 listed in Section 8.1) as an overall summary

at the end of the user study. The tutors were asked to provide their ratings on a numeric scale from

1 (very low) to 5 (very high) for each question.

8.3 User Study Results
The overall result of the 14 tutor responses is summarized using boxplots in Figure 10. From

Figure 10 we note that the tutors responded with an overall positive rating for all six of our

questionnaire (Q1–Q6), with a mean/median value of >= 3.8 in all the cases. We observe that

the tutors rate the quality of Verifix generated repairs (Q1) highly, with a mean/median rating of

~4.0. Our tool’s verification capability improved the tutors’ confidence in accepting our generated

repairs, with a mean/median rating of ~4.4. The tutors, on average, found Verifix’s repair useful

for providing feedback to students, both directly (Q2) and indirectly (Q3), giving a mean/median

rating between 3.5–4.0. While a larger variation is observed in the case of direct usage of repair as

feedback (Q2), this discrepancy reduces for indirect usage of repair as feedback (Q3), where tutors

can quickly design customized feedback using the generated repair. The tutors agreed on the utility

of Verifix’s repair in grading (Q4) and in improving grading policy (Q5), giving a mean/median

rating between 4–4.5.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 27

9 THREATS TO VALIDITY
Our aligned automata setup phase consists of a syntactic procedure to obtain a unique edge and

variable alignment between the reference and student automata. Producing an incorrect alignment

does not affect our soundness or relative completeness guarantees, but can increase the size of a

generated patch. This however occurs rarely in practice, as demonstrated by our RQ4 (Section 7.4).

The arithmetic theory of SMT solvers is incomplete for non-linear expressions, which can affect

our relative completeness. However, this issue affects 6.7% of our dataset of incorrect student

programs in practice, as demonstrated by our results in Table 4.

Evaluating repair tools using multiple correct student submissions, instead of restricting to a

single instructor reference solution, could help improve the repair success rate. We mitigate this

risk by noting that such an evaluation has been undertaken earlier [16, 33], and would benefit both

Verifix and our baseline tool Clara in terms of reduced structural mismatch rate. Furthermore, we

cannot always assume the availability of a large number of reference solutions, in general.

10 RELATEDWORK
10.1 General Purpose Program Repair
Automated Program Repair (APR) [11, 23] is an enabling technology which allows for the automated

fixing of observable program errors thereby relieving the burden of the programmers. General

purpose APR techniques such as GenProg [19], SemFix [26], Prophet [20] and Angelix [22], require

an incomplete correctness specification typically in the form of a test-suite. These techniques

achieve low repair success rate on student programs that suffer from multiple mistakes, since

they can scale to large programs but not necessarily to large repair search spaces [34]. As student

programs are substantially incorrect, the search space of repairs is typically large.

ITSP [34] reports positive results on deploying general APR tools for grading purpose by expert

programmers, and negative result when used by novice programmers for feedback. Their low repair

success rate and reliance on test-cases (overfitting) can be seen as a motivator for our work.

S3 [18] synthesizes a program using a generic grammar and user-defined test-cases. Semgraft

[21] uses simultaneous symbolic execution on a buggy program and a reference program to find a

repair, which makes the two program equivalent for a group of test inputs; this class of test inputs

is captured by a user-provided input condition. Our work shifts away from test inputs and instead

constructs verification guided repair. Furthermore, for our application domain of pedagogy, we

seek to build minimal repairs by retaining as much of the buggy program as possible.

10.2 Repair of Programming Assignments
Autograder [30] is one of the early approaches in this domain. In Autograder, the correctness of

generated patches are verified only in bounded domains (e.g., the size of a list in the program is

bounded to a constant number), and thus the verification result is generally unsound. Autograder

also requires instructors to manually provide an error model that specifies common correction

patterns of student mistakes, which is not needed in Verifix.

Clara [13] too performs bounded unsound verification. Clara checks whether each concrete

execution trace of the student program matches that of the reference program, and performs a

repair on mismatch. Since a concrete execution trace is obtained from test execution, the correctness

of a generated patch cannot be guaranteed. We have provided a detailed experimental comparison

with Clara. Clara assumes the availability of multiple correct student submissions with matching

control-flow to the incorrect submissions, limiting their applicability unlike Verifix. Sarfgen [33]

generates patches based on a lightweight syntax-based approach, and assumes the availability of

previous student submissions. Both Clara and SarfGen require strict Control-Flow Graph (CFG)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

28 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

similarity between the student and reference program. In comparison, Verifix requires matching

function and loop structure between student and reference program. Unlike Clara and SarfGen,

Verifix can recover from differences in return/break/continue edge transitions due to its usage of

Control-Flow Automata (CFA) based abstraction.

Refactory [16] handles the CFG differences by mutating the CFG of the student program to that

of the reference program by using a limited set of semantics-preserving refactoring rules, designed

manually. For example, refactoring a while-loop by replacing it with a for-loop structure. Note that

Verifix, unlike Refactory, keeps the original CFG of the student program as much as possible, as

shown in Fig 1. Our goal is to produce small feedback of high quality. We cannot experimentally

compare with Refactory since its implementation targets Python programming assignments.

CoderAssist [17], to the best of our knowledge, is the only APR approach that can generate

verified feedback. CoderAssist clusters submissions based on their solution strategy followed by

manual identification (or creation) of correct reference solutions in each cluster. After the clustering

phase, CoderAssist undertakes repair at the contract granularity rather than expression granularity

— that is, while CoderAssist can suggest which pre-/post-condition should be met for a code block,

CoderAssist does not have the capacity to suggest a concrete expression-level patch. CoderAssist

repair algorithm and evaluation results focus on dynamic programming assignments. In contrast,

Verifix is designed and evaluated as a general-purpose APR.

There have been several attempts to use neural networks [1, 5, 6, 14, 27, 32] for program repair.

These approaches typically target syntactic/compilation errors, and the repair rate for seman-

tic/logical errors is low [27]. Such machine learning based techniques do not offer any relative

completeness guarantees, and the repair is evaluated against incomplete specification (e.g. tests).

There has been prior work on live deployment of APR tools for repairing student programs [2, 34].

The work of ITSP [34] shows negative results on providing semantic repair feedback to students

on their programs. At the same time, the work of Tracer [2] demonstrates positive results for

repair based feedback, albeit on simpler (compilation) errors. In this work, we present an approach

for repairing complex logical errors in student programs. Our tool Verifix can generate verified

feedback for 58.4% of incorrect student submissions from 28 diverse assignments, collected from

an actual CS-1 course offering. The human acceptability of our verified feedback can be further

investigated via future user-studies.

10.3 Program Equivalence Verification
Verifix performs program equivalence verification which itself is a separate long-standing research

area [4, 7, 25, 36]. In program equivalence verification, it is proved whether given two programs are

semantically equivalent to each other. Program equivalence verification is usually performed by first

constructing a product program (similar to our aligned CFA) where the loops of the two programs

are aligned with each other [4, 36]. Aligning loops is considered as one of the major challenges in

program equivalence verification [7]. In the traditional application areas of program equivalence

verification such as optimized-code verification [8, 25], the original code and its optimized code

often have different program structures, and thus alignment is challenging in those programs.

This problem is much less severe in introductory programming assignments, as shown in our

experiments, where Verifix fails to obtain a repair due to structural mismatch between the student

and reference program in 27.2% of our dataset. The main difference of our work from program

equivalence verification is that we add a CEGIS (counter-example-guided inductive synthesis) loop

inside the verification procedure, so that repair and verification can take place hand in hand.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 29

11 DISCUSSION
In this paper, we have presented an approach and tool Verifix, for providing verified repair as

feedback to students undertaking introductory programming assignments. The verified repair is

generated via relational analysis of the student program and a reference program. Verifix is able

to achieve better repair success rate than existing approaches on our common benchmark. The

repairs produced by Verifix are of better quality than state-of-art techniques like Clara [13], since

they are often smaller in size, while being verifiably equivalent to the instructor provided reference

implementation.

We feel that technologies like Verifix have a place in intelligent tutoring systems of the future.

Specifically, they may be used to give feedback to struggling students learning programming. Since

Verifix generates verifiably correct repairs, it can used first for generating feedback. If Verifix is able

to generate a feedback, it can used with confidence. For the cases where Verifix is unable to generate

a feedback, other heuristic based student feedback generation approaches may then be used. We

envision such a workflow for future intelligent tutoring systems for teaching programming.

ACKNOWLEDGMENTS
This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3 program

"Automated Program Repair". This work was also partly supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2021R1A2C1009819,

No.2021R1A5A1021944) and the Institute for Information & Communications Technology Planning

& Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2021-0-01001).

REFERENCES
[1] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani. 2018. Compilation error repair:

for the student programs, from the student programs. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training. 78–87.

[2] Umair Z. Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare. 2020. Characterizing the pedagogical

benefits of adaptive feedback for compilation errors by novice programmers. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Education and Training (ICSE). 139–150.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-Guided Synthesis. In Proceedings of
the International Conference on Formal Methods in Computer-Aided Design (FMCAD). 1–17.

[4] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In Interna-
tional Symposium on Formal Methods. Springer, 200–214.

[5] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program corrector for introductory program-

ming assignments. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE, 60–70.
[6] Darshak Chhatbar, Umair Z. Ahmed, and Purushottam Kar. 2020. MACER: A Modular Framework for Accelerated

Compilation Error Repair. In International Conference on Artificial Intelligence in Education. Springer, 106–117.
[7] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence

checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 1027–1040.

[8] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound loop superoptimization for google native

client. ACM SIGPLAN Notices 52, 4 (2017), 313–326.
[9] Stephen A Cook. 1978. Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7,

1 (1978), 70–90.

[10] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, Xuan Tung Vu, et al. 2018. Wrapping computer algebra is surprisingly

successful for non-linear SMT. In SC-square 2018-Third International Workshop on Satisfiability Checking and Symbolic
Computation.

[11] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated Program Repair. Commun. ACM 62

(2019). Issue 12.

[12] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2014. Feedback generation for performance problems in introductory

programming assignments. In FSE. 41–51.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

30 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

[13] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated clustering and program repair for introductory

programming assignments. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 465–480.

[14] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing common c language errors by

deep learning. In Conference on Artificial Intelligence (AAAI). 1345–1351.
[15] T.A. Henzinger, R Jhala, R Majumdar, and G Sutre. 2002. Lazy Abstraction. In ACM SIGPLAN SIGACT Symposium on

Principles of Programming Languages (POPL).
[16] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoudhury. 2019. Re-factoring based program

repair applied to programming assignments. In Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 388–398.

[17] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016. Semi-supervised verified feedback

generation. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 739–750.

[18] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: syntax-and semantic-guided

repair synthesis via programming by examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (FSE). 593–604.

[19] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic Method for Automatic Software

Repair. IEEE Transactions on Software Engineering 38, 1 (Jan 2012), 54–72.

[20] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 298–312.

[21] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2018. Semantic

Program Repair Using a Reference Implementation. In Proceedings of the 40th International Conference on Software
Engineering (ICSE).

[22] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable multiline program patch synthesis via

symbolic analysis. In Proceedings of the 38th International Conference on Software Engineering (ICSE). 691–701.
[23] Martin Monperrus. 2018. Automatic software repair: a bibliography. Comput. Surveys 51 (2018). Issue 1.
[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In TACAS. 337–340.
[25] George C Necula. 2000. Translation validation for an optimizing compiler. In Proceedings of the ACM SIGPLAN 2000

conference on Programming language design and implementation. 83–94.
[26] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. SemFix: program repair via

semantic analysis. In Proceedings of the 35th International Conference on Software Engineering (ICSE). 772–781.
[27] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. 2016. sk_p : a neural program corrector

for MOOCs. In Companion Proceedings of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. 39–40.

[28] Z Qi, F Long, S Achour, and M Rinard. 2015. An Analysis of Patch Plausibility and Correctness for Generate-and-

Validate Patch Generation Systems. In Proceedings of the 2015 International Symposium on Software Testing and Analysis
(ISSTA).

[29] Tyler J Ryan, Gene M Alarcon, Charles Walter, Rose Gamble, Sarah A Jessup, August Capiola, and Marc D Pfahler. 2019.

Trust in automated software repair. In International Conference on Human-Computer Interaction. Springer, 452–470.
[30] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory

programming assignments. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and
implementation (PLDI). 15–26.

[31] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketching

for finite programs. In Proceedings of the 12th international conference on Architectural support for programming languages
and operating systems. 404–415.

[32] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic neural program embedding for program repair. arXiv
preprint arXiv:1711.07163 (2017).

[33] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair: data-driven feedback generation for

introductory programming exercises. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 481–495.

[34] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roychoudhury. 2017. A feasibility study of

using automated program repair for introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (FSE). 740–751.

[35] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, and Abhik Roychoudhury. 2018. A correlation study

between automated program repair and test-suite metrics. Empirical Software Engineering 23, 5 (2018), 2948–2979.

[36] Anna Zaks and Amir Pnueli. 2008. Covac: Compiler validation by program analysis of the cross-product. In International
Symposium on Formal Methods. Springer, 35–51.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

Verifix: Verified Repair of Programming Assignments 31

[37] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing distance between trees and related

problems. SIAM journal on computing 18, 6 (1989), 1245–1262.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

32 Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roychoudhury

A APPENDIX

Table 5. Example of questions we present in the user study

Assignment 7: Write a program to print pattern 1

Description: Given an integer N(N>0) as input, your program should output the following pattern.

Input: 5

Output: 5432*\n 543*1\n 54*21\n 5*321\n *4321

Student buggy submission Repaired program

1 int main () {
2 int a , n ,N, i , j ;
3 scanf ("%d" ,&N) ;
4 for (j =1; j <=N; j=j +1){
5 for (i=1;i<=N ; i= i+1) {
6 i f (i+j==6)
7 printf (" ∗ ") ;
8 else {
9 a=N+1-i;
10 printf ("%d" ,a) ;
11 }
12 }
13 printf (" \n") ;
14 }
15 return 0 ;
16 }

1 int main () {
2 int a , n ,N, i , j ;
3 scanf ("%d" ,&N) ;
4 for (j =1; j <=N; j=j +1){
5 for (i=N;i>=1 ; i= i -1) {
6 i f (i==j)
7 printf (" ∗ ") ;
8 else {
9

10 printf ("%d" ,a) ;
11 }
12 }
13 printf (" \n") ;
14 }
15 return 0 ;
16 }

Question 1: Rate the quality of the generated repair (in terms of semantic correctness, size, etc).

Question 2: Rate the possibility that you would like to use the repair (either complete or partial) as feedback

to the student.

Question 3: Rate the possibility that you would like to use the repair indirectly: to help formulate your

own custom feedback to student.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2022.

	Abstract
	1 Introduction
	2 Overview
	2.1 Setup Phase
	2.2 Verification Phase
	2.3 Repair Phase

	3 Program Model
	4 Aligned Automata
	4.1 Structurally Aligning AS and AR
	4.2 Inferring Variable Alignment Predicates

	5 Verification and Repair Algorithm
	5.1 Edge Verification
	5.2 Edge repair
	5.3 Properties preserved by Verifix

	6 Experimental Setup
	6.1 Research Questions
	6.2 Dataset
	6.3 Implementation

	7 Evaluation
	7.1 RQ1: Repair success rate
	7.2 RQ2: Running time
	7.3 RQ3: Reasons for repair failure
	7.4 RQ4: Minimal repair
	7.5 RQ5: Overfitting
	7.6 RQ6: Repair success rate with multiple reference implementations

	8 User Study
	8.1 User Study Questionnaire
	8.2 User Study Setup
	8.3 User Study Results

	9 Threats to Validity
	10 Related Work
	10.1 General Purpose Program Repair
	10.2 Repair of Programming Assignments
	10.3 Program Equivalence Verification

	11 Discussion
	References
	A Appendix

