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Automated program repair is an emerging area which attempts to patch software errors and vulnerabilities. In this paper, we formulate
and study a problem related to automated repair, namely automated patch transplantation. A patch for an error in a donor program is
automatically adapted and inserted into a “similar” target program. We observe that despite standard procedures for vulnerability
disclosures and publishing of patches, many un-patched occurrences remain in the wild. One of the main reasons is the fact that
various implementations of the same functionality may exist and, hence, published patches need to be modified and adapted. In this
paper, we therefore propose and implement a workflow for transplanting patches. Our approach centers on identifying patch insertion
points, as well as namespaces translation across programs via symbolic execution. Experimental results to eliminate five classes of
errors highlight our ability to fix recurring vulnerabilities across various programs through transplantation. We report that in 20 of 24
fixing tasks involving eight application subjects mostly involving file processing programs, we successfully transplanted the patch and
validated the transplantation through differential testing. Since the publication of patches make an un-patched implementation more
vulnerable, our proposed techniques should serve a long-standing need in practice.

CCS Concepts: • Software and its engineering → Software maintenance tools; Software testing and debugging; Software
reliability.

Additional Key Words and Phrases: Program repair, code transplantation, patch transplantation, dynamic program analysis

1 INTRODUCTION

Automated program repair [15] is an emerging research area which involves automatically fixing observable software
errors or vulnerabilities. The goal of automated program repair is to (minimally) modify a program to meet a correctness
criterion such as passing of given test(s) and/or satisfying a formal specification such as an assertion. The last decade
has witnessed a flurry of research activities in building automated repair techniques which use search [61], program
analysis [37], machine learning [26], as well as judicious combinations of such machinery. In this paper, we propose
and study a related, but different problem. If the patch for an error or a vulnerability in a buggy program P is available
(e.g., the vulnerability has been patched manually and the fix is available), can the patch be automatically transplanted
or adapted into another “similar" buggy program P ′? We call this the automated patch transplantation problem.
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2 Shariffdeen et al.

Many use-cases which can benefit from a solution to automate patch transplantation exist. First, security fixes in
latest software version may be “backported" to older program versions. Such backporting is not restricted to security
fixes but also can be used to enhance compatibility issues in software versions, such as managing the collateral evolution
of device drivers to enable their functioning despite evolution of the operating system. (e.g., prior work on evolution of
Linux backporting [38]).

Second, patch transplantation can be useful for propagating fixes to different implementations of the same protocol
or functionality, as opposed to different versions of the same program. Implementations of the same protocol or
functionality can differ due to the difference in the programming language or difference in implementation while using
the same programming language. Porting a patch across languages is more challenging and beyond the scope of the
patch transplantation problem. To elaborate on the transplantation across different implementations, let us consider
the Heartbleed vulnerability (CVE-2014-0160), which could lead to disclosure of private information by applications
using OpenSSL [10]. Although a patch for the Heartbleed vulnerability is available, it cannot be immediately inserted
into any OpenSSL implementation, instead the patch needs to be adapted. As different web servers rely on different
implementations of OpenSSL, Heartbleed continues to persist in the wild [49], despite the patch being widely available.
Thus by automatically adapting patches of Heartbleed to other vulnerable OpenSSL implementations, we can reduce
the exposure to vulnerabilities.

In general, one of the crucial steps towards defense against published exploits is to integrate available patches into
one’s system as quickly as possible. The challenge in incorporating patches from different sources is to be able to adapt
the code modifications involved. Often, shared libraries are customized with new features, different data structures or
rewriting previous implementation to match the integrated environment. Hence, directly applying a general patch is
not trivial and sometimes difficult. This is the problem addressed by our work.

Problem Statement. Given buggy and fixed donor programs Pa , Pb , and a buggy program similar to Pa , also called a
host or target program Pc , the goal is to fix Pc to produce a fixed version of Pc , namely Pd . We assume that Pa and Pc
fail on the same failing input tF .

For security patches, tF is an exploit which takes advantage of an existing software vulnerability. A formulation of
the automated patch transplantation problem explaining the inputs and outputs of the problem appears in Figure 1.
Note that Pa, Pb , Pc , tF are inputs to the patch transplantation problem, and the output is Pd , the program with the
transplanted patch.

Differences with other problems studied. We note that the patch transplantation problem formulated by our work is
different, though related, to the program repair problem and the program transplantation problem. The program repair
problem seeks to (minimally) modify a program so as to meet a correctness criteria such as passing a given test-suite.
To relieve the burden of fixing bugs, many techniques have been previously proposed for automated program repair
such as genetic programming, semantic analysis based repair techniques, and machine learning guided techniques.
Unlike the automated repair problem we do not try to synthesize patches or fit into patch patterns; instead the patch
transplantation problem is more “goal-directed”— it automatically identifies a patch from the donor, extracts the
identified patch, computes an insertion location for the patch in the target program and inserts that patch by adapting to
the context of the insertion point. The patch transplantation problem is also different from the program transplantation
problem. The program transplantation problem deals with transplanting a feature from program P into another program
P ′ such that the transplanted feature must not disrupt the existing functionality of its target P ′ and must actually
execute and add the functionality of the desired feature to its target. These techniques are limited to transferring a
Manuscript submitted to ACM
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Fig. 1. The Automated Patch Transplantation Problem

logical block of code (such as a function or a check) instead of patches that may involve several disjoint blocks of code.
Moreover, program transplantation techniques typically require manual identification of the insertion point, unlike our
patch transplantation problem where the insertion point is automatically identified.

Contributions. The contributions of this paper can be summarized as follows.

(1) We propose the patch transplantation problem which demonstrates a real practical issue in security of open
source software. When vulnerabilities are detected and manually fixed, it provides an opportunity to the attackers
to easily exploit the vulnerability on similar un-fixed implementations. The patch transplantation task takes care
of this concern by automatically adapting available manual fixes for “similar" un-fixed open source programs.

(2) We present PatchWeave, a technique that automatically extracts patches and transplants them to another target
program that fails on the same test case. We also propose a classification for patch transplantation based on the
difficulty and use this classification to adapt the transplantation process.

(3) We conduct an evaluation of our approach on real-world programs, specifically in transplanting fixes of reported
vulnerabilities. Our evaluation also compare PatchWeave against several approaches (including F1X, Prophet,
µSCALPEL, and our version of LASE for C programs). These experiments demonstrate the efficacy of our method
in adapting patches for software vulnerabilities.

2 MOTIVATIONAL EXAMPLE

We next present an example of an integer overflow error in OpenJPEG (a C library for the open-source JPEG2000 codec)
to have a better understanding of the challenges in the patch transplantation problem. Figure 2 shows the integer
overflow error in OpenJPEG, this code snippet is simplified for brevity. There is a potential overflow at line 560, where
OpenJPEG allocates memory to cp->tcps by computing the value as cp->tw * cp->th. Input image files with large
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width and height fields may cause the calculation at line 560 to overflow, eventually writing beyond the end of the
allocated buffer. In the error-triggering input, the JPG file height field is 210 and the width field is 2147483646.

405 static void j 2 k _ r e a d _ s i z ( o p j _ j 2 k _ t ∗ j 2 k ) {
415 image−>y1 = c i o _ r e a d ( c io , 4 ) ; /* Ysiz */
416 image−>x0 = c i o _ r e a d ( c io , 4 ) ; /* X0siz */
417 image−>y0 = c i o _ r e a d ( c io , 4 ) ; /* Y0siz */
418 cp−>tdx = c i o _ r e a d ( c io , 4 ) ; /* XTsiz */
419 cp−>tdy = c i o _ r e a d ( c io , 4 ) ; /* YTsiz */
420 cp−> tx0 = c i o _ r e a d ( c io , 4 ) ; /* XT0siz */
421 cp−>ty0 = c i o _ r e a d ( c io , 4 ) ; /* YT0siz */

423 if ( ( image−>x0 <0 ) | | ( image−>x1 <0 ) | | ( image−>y0 <0 ) | | ( image−>y1 <0 ) ) {
424 opj_event_msg ( j2k −>c in f o , . . . ) ;
427 return ;
428 } . . .
517 cp−>tw = i n t _ c e i l d i v ( image−>x1 − cp−>tx0 , cp−>tdx ) ;
518 cp−>th = i n t _ c e i l d i v ( image−>y1 − cp−>ty0 , cp−>tdy ) ;
519 . . .

/* the overflow error */
560 cp−> t c p s = ( o p j _ t c p _ t ∗ ) o p j _ c a l l o c ( cp−>tw ∗ cp−>th , sizeof ( o p j _ t c p _ t ) ) ; . . .
622 }

Fig. 2. Overflow error in OpenJPEG 1.5.1

Automated Program Repair. Consider the scenario where we attempt to fix this bug using two state-of-the-art
program repair tools (F1X[31] and Prophet[26]). Since these two APR techniques require a test suite, we created a
test suite inclusive of the failing test case and a passing test case, and also provided the correct location for the fix to
generate the patch, which enables us to compare the two patches generated at the same location. Figure 3a and 3b
show the two patches generated by F1X and Prophet, respectively. F1X was able to generate a patch which modifies an
existing if statement to avoid the failing test case. However, the fix in Figure 3a does not generalize for test cases beyond
the given test suite, since it only fixes the two given test cases. Similarly, Prophet generated a patch which omits the
execution of a statement (i.e., Line 518 in Figure 2) by inserting a condition which is always false (i.e., semantically
equivalent to deleting a statement). The correct patch for this bug would be to evaluate if the computation of cp->tw
* cp->th would result in an overflow and avoid the overflow by following an error handling procedure. Both APR
generated patches failed to generalize the patch to the extent of avoiding the overflow, rather generated a patch that
could simply pass the failing test suite. Prophet is a technique based on machine learning which generates arbitrary
code changes and relies on the test suite for correctness, whereas F1X is semantic-based which uses code analysis to
generate the patch that attempt to address the underlying bug rather than changing the code just enough to satisfy the
test suite. However, it relies on the test suite to generate the correct constraints to obtain the correct patch. If sufficient
test cases are provided, the generated patch would be more generalized. This example highlights one of the limitations
of current automated program repair techniques, which is generally known as the overfitting problem [29, 43, 52]. As
illustrated in our motivational example, APR generated patches cannot repair bugs without sufficient number of test
cases to generalize the patch, and the sufficient number differs from one bug to another. When used to fix security
vulnerabilities, such inaccurate patches could lead to undesirable effects by believing that the vulnerability has been
fixed when in fact it has not.
Manuscript submitted to ACM
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405 static void j2k_read_siz (...) { ....
423 if (( image−>x0<0)||(image−>x1<0)||

(image−>y0<0)||(image−>y1<0)) {
423 if (( image−>x0==0)||(image−>x1<0)||

(image−>y0<0)||(image−>y1<0)) {
....

622 }

(a) Patch generated by F1X

405 static void j2k_read_siz (...) { ....
518 cp−>th = int_ceildiv (image−>y1 − cp−>ty0, cp−>tdy);
518 if (!(1) )
519 cp−>th = int_ceildiv (image−>y1 − cp−>ty0, cp−>tdy);
520

....
623 }

(b) Patch generated by Prophet

Fig. 3. Patches generated using Automated Program Repair

Patch Transplantation. A different implementation of the JPEG2000 codec can be found in JasPer (a utility for image
manipulation) which could also serve as a fix for this vulnerability in OpenJPEG. We discovered that the input file
that exploits the vulnerability in OpenJPEG 1.5.1 is able to exploit the same vulnerability in JasPer 1.900.12, and also
fixes the bug in JasPer 1.900.13. Our approach will extract the code that fixes the bug in JasPer 1.900.13 and insert into
OpenJPEG 1.5.1 in the following way. First, we build the binaries with an integer sanitizer to identify potential overflow
locations. Next, we check if the two programs share the same vulnerability. In our example, both JasPer 1.900.12 and
OpenJPEG 1.5.1 throw integer overflow errors due to multiplication operation of 210 * -2147483646. We identify that the
line number jpc_dec.c@1234 in JasPer 1.900.12 as the donor buggy location and line number j2k.c@560 in OpenJPEG
1.5.1 as the target buggy location.
Donor Selection. Figure 5a shows the patch for JasPer 1.900.13 which includes a check. Specifically, JasPer at commit
b9be3d9 contains the vulnerability and JasPer at commit d91198a contains the fix (i.e., the pair selection is JasPer-b9be3d9
(Pa ), JasPer-d91198a (Pb ), OpenJPEG-1.5.1 (Pc )).
Patch Extraction. Next, PatchWeave analyses the source code diff and aligns the execution trace of Pa and Pb to narrow
down the changes to be the patch that fixes the bug. Lines 1198 and 1235-1238 in Figure 5a are the changes in JasPer
1.900.13 that check if the multiplication results in an overflow through a function jas_safe_size_mul. This function
determines if the two parameters (dec->numhtiles and dec->numvtiles) can be multiplied without an overflow. If
an overflow occurs, it will return false, otherwise, it will return true and assign the multiplication result to the size
variable.
Concolic Execution. Once we identify the patch for transplantation, we need to translate the statements in the patch
and find the insertion point. For this purpose, we perform concolic execution [48] on all three programs in our pair
selection with the same input file to capture the symbolic paths for the execution of each program. When identifying
the insertion point for the transplantation, the patch can be inserted at any location from the starting point of the
execution trace to the crashing point (or a suspicious buggy point). As there could be potentially many candidate
locations, we identify a divergent point (see Def 4.1) in Pc , similar to the divergence caused by the patch in Pb with
respect to Pa . A divergence in the trace of Pb with respect to Pa is caused by a code change (i.e. patch) which resulted
in the difference and is most likely to be a potential divergent point at which the patch has been applied to. One of
the potential divergent points is the condition at line 1235 in Figure 5a. We find a similar location in Pc using partial
path condition dominance (see Def. 4.3). We calculate the partial path condition in Pb at line 1235 in Figure 5a, and we
traverse through the execution trace of Pc to find a similar location where the partial path condition dominates, i.e dc .
Candidate Function.Once we have identified a divergent point in Pc , the next step is to traverse through the estimated
divergent point dc and the crashing point lc in Pc , in order to identify the candidate functions to transplant the patch. For
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Fig. 4. Variable mapping between OpenJPEG and JasPer

each function f executed in Pc from and inclusive ofdc up to lc , we consider the variables used within the function f . For
each variable v in f , we capture the symbolic expressions and generate a mapping with the variables used in our patch.
More precisely, we check for a function that has a mapping for the variables dec->numvtiles and dec->numhtiles,
which is likely to be a candidate function. Among all candidate functions, we choose the first candidate in the trace
(that is the function that executes first) for two reasons: (1) the patch can impact more paths and (2) the vulnerability is
fixed earlier in the execution of the failing input. In our example, the divergent point and the crashing point lie in the
same function j2k_read_siz. However, this may not hold for the general cases as the divergent point and the crashing
point can be in two different functions.
Candidate Location.We consider the availability of the variables we mapped at previous stage, for each location in
our candidate function to find candidate locations for our patch. For each statement inside the function, we compute
the list of available variables, and find the candidate points where the variables in our generated mapping are usable.
Among the candidate locations, we choose the first candidate for the same reasons mentioned above. In our example,
we choose line number 519 in Figure 2.
Code Transplantation. Once we have identified the insertion location as line number 519 in Figure 2, our next step is
to translate the patch to the namespace of Pc , and insert the code at the identified insertion location. We make use of
AST node context information from both Pa and Pc programs to adapt to the insertion point context. Then, we translate
the variables to the namespace of OpenJPEG using symbolic analysis (explained in Section 4.3), where we obtain the
mappings of dec->numvtiles into cp->tw and dec->numhtiles into cp->th as illustrated in Figure 4. We use this
mapping to translate the variable names in the patch while weaving the patch into the insertion point in Pc . Using
dependency analysis, we identify that jas_safe_size_mul function is missing in our target program Pc . We perform
transplantation of this function by following the same steps (i.e., extract the missing source, translate the variables, find
a suitable insertion location and transplant into the target program) such that the function can be called within the
inserted patch.
Final Result. Patch transplantation is able to successfully repair the bug in OpenJPEG 1.5.1, preventing any potential
buffer-overflows due to the integer overflow caused during the calculation of the buffer size as shown in Figure 5b.
Although F1X [31] and Prophet [26] was able to generate patches that pass the failing test case, the generated patches
Manuscript submitted to ACM
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1188 static int j p c _ d e c _ p r o c e s s _ s i z ( . . . )
{

. . . .
1198 s i z e _ t s i z e ;

. . .
/* overflow check */

1235 if ( ! j a s _ s a f e _ s i z e _mu l ( dec−>numht i l e s , dec−>
numvt i l e s , &s i z e ) ) {

1236 return −1;
1237 }

dec−>numt i l e s = dec−>numht i l e s ∗ dec−>numv t i l e s ;
1238 dec−>numt i l e s = s i z e ;
1241 if ( ! ( dec−> t i l e s = j a s _ a l l o c 2 ( dec−>numt i l e s , sizeof (

j p c _ d e c _ t i l e _ t ) ) ) ) {

1242 return −1;

1243 }
. . . .

1290 }

(a) Developer patch in JasPer 1.900.13

/* Adapted patch for OPENJPEG 1.5.1 */
48 # d e f i n e SIZE_MAX (18446744073709551615UL )
56 inline static bool j a s _ s a f e _ s i z e _mu l ( s i z e _ t x ,

s i z e _ t y , s i z e _ t ∗ r e s u l t ) {
57 if ( x && y > SIZE_MAX / x ) {
58 return false ;
59 }
60 ∗ r e s u l t = x ∗ y ;
61 return true ;
62 }

440 static void j 2 k _ r e a d _ s i z ( o p j _ j 2 k _ t ∗ j 2 k ) {
554 s i z e _ t s i z e ;
556 if ( ! j a s _ s a f e _ s i z e _mu l ( cp−>tw , cp−>th , &s i z e ) ) {
557 return −1;
558 }

/* the overflow error */
601 cp−> t c p s = ( o p j _ t c p _ t ∗ ) o p j _ c a l l o c ( cp−>tw ∗ cp

−>th , sizeof ( o p j _ t c p _ t ) ) ;
663 }

(b) Transplanted Patch in OpenJPEG 1.5.1

Fig. 5. Patch generated using transplantation

are of poor quality due to the quality of the test suite. This is where, patch transplantation differs from test driven patch
generation: a) the patch is a human-written patch which is extracted and then adapted to the context of the target
program (i.e., Pc ). Since human-written patches are more reliable and general than the generated patches via APR, we
eliminate the problem of overfitting as further proved in our experimental results in Table 6 (Section 6). The result of
differential fuzzing highlights that the patches generated using APR do not generalize for unseen test cases; b) patch
transplantation can fix more bugs compared to program repair techniques because APR relies on a good test suite for
fault localization to identify patch locations. Since patch transplantation does not depend on a test suite, with the use of
the partial path condition dominance relationship (see Def. 4.3) we can find the correct patch location.

3 PROBLEM FORMULATION

Although programs with vulnerabilities may not share common code, they can share different implementations of the
same protocol (e.g., OpenSSL) or same standard (e.g., JPEG 2000). Hence, finding a vulnerability in one program can lead
to malicious users adapting attacks to other similar programs. This is the scenario we seek to prevent via automated
patch transplantation. In this section, we first introduce the notations that we will use throughout the paper and then
formulate the problem of patch transplantation. Pa represents the buggy version of a program, whereas Pb (also known
as the donor in the terminology used in software transplantation [8]) denotes the subsequent version in which the fault
in Pa is fixed. tF represents the test that failed in Pa but passes in Pb , while Pc denotes the target program (also known
as the host in the terminology used in software transplantation [8]) that fails in tF .

Definition 3.1 (Similar Vulnerability). We consider two vulnerabilities as similar if there exists a failing test tF ex-
ploiting both vulnerabilities and the two vulnerabilities exhibits the same output in terms of the return code and
crashing/buggy instruction. For instance, the motivational example in Section 2 where both JasPer 1.900.12 and
OpenJPEG 1.5.1 exhibited similar integer overflow vulnerability for the same test case.

Definition 3.2 (Similar Programs). We consider two programs Pa and Pc as similar if there exists a failing test
tF exploiting a similar vulnerability in both programs. Our goal is to transplant a fix of Pa into the other similar program
Pc .
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Definition 3.3 (Patch Transplantation). Given a pair of buggy and fixed programs (Pa , Pb ) and a program Pc similar
to Pa , we try to extract the patch between Pa and Pb . The patch is then inserted into Pc which involves finding an
insertion point, and adapting the patch with new variable mappings and context information.

Type missing dependency? namespace translation? example
Class-I No No porting across forks
Class-II Yes No backporting
Class-III No Yes collateral evolution
Class-IV Yes Yes collateral evolution

Table 1. Types of Patches

3.1 Classes of Patch Transplantation

There are three major challenges in transplanting a patch from Pb to Pc due to the differences in the two programs. The
first challenge is the difference between the namespace and data structures used in the two implementations where the
identifiers are not identical, hence an adaptation for the variables is required. The second challenge is to identify and
transplant missing dependencies for the patch to work. For example, the patch would require a supplementary function,
a subroutine or a definition that is used in the patch, which is missing in the target program Pc . The third challenge is
to correctly identify the insertion location of the patch in Pc .

To perform a thorough analysis of the patches, we identify four classes of patches based on the origin of the patch
and the adaptation required for the target system to apply the patch (Table 1). Further, we define an equivalence relation
between the original patch and transplanted patch based on the adaptation required as given below.

Syntactically Equivalent. Patchfix is “Syntactically Equivalent” if Patchorig and Patchfix are exactly the same code. If
the namspace and data structure of the two programs Pb and Pc are identical, and the code is identical the transplanted
patch would be syntactically equivalent to the original patch.
Semantically Equivalent. Patchfix is “Semantically Equivalent” if Patchorig and Patchfix are not syntactically the
same but produce the same semantic behavior. This requires a namespace and/or data structure translation.

3.2 Class-I : Syntactically Equivalent Transplantation

No adaptation is required for the transplantation. This is the trivial case where the original patch can be applied directly.
An example is the backporting of patches to past versions of the same program or porting patches across forked projects.

The patch for CVE-2018-14526 is an example for Class-I. It is a vulnerability in the processing of EAPOL-Keyframes
for wpa_supplicant1. An attacker could modify the frame to bypass authentication. To fix this vulnerability, an official
patch2 in Listing 6a was released and adapted by every operating system that provides the wpa_supplicant driver.
FreeBSD driver had to integrate this patch to two different versions of its forks and Listing 6b shows the patch3 for
FreeBSD 10.4. The FreeBSD developer had to identify the insertion point in the FreeBSD driver, which is different
from the original patch, but no adaptation was required for the patch code itself. This highlights the fact that even for

1wpa_supplicant is a WPA Supplicant for Linux, BSD, Mac OS X, and Windows with support for WPA and WPA2 (IEEE 802.11i /RSN)
2https://w1.fi/security/2018-1/0001-WPA-Ignore-unauthenticated-encrypted-EAPOL-Key-data.patch
3https://www.freebsd.org/security/patches/SA-18:11/hostapd-10.patch
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int wpa_sm_rx_eapol ( . . . ) {
. . . .
if ( ( sm−>pro to == WPA_PROTO_RSN | |

sm−>pro to == WPA_PROTO_OSEN) &&
( key_ in f o & WPA_KEY_INFO_ENCR_KEY_DATA ) &&
mic_ len ) {

if ( ! ( k ey_ in f o & WPA_KEY_INFO_MIC ) ) {
wpa_msg ( sm−>ctx −>msg_ctx , MSG_WARNING,

"WPA: I gno r e EAPOL−Key with encry . . " ) ;
goto out ;

}

if ( wpa_ supp l i c an t _de c ryp t _key_da t a ( sm , key ,
mic_ len , ver , key_data ,& key_da t a_ l en ) )

. . . .
}

(a) Developer’s patch for wpa_supplicant 2018-1

int wpa_sm_rx_eapol ( . . . ) {
. . . .

if ( sm−>pro to == WPA_PROTO_RSN &&
( key_ in f o & WPA_KEY_INFO_ENCR_KEY_DATA ) ) {

if ( ! ( k ey_ in f o & WPA_KEY_INFO_MIC ) ) {
wpa_msg ( sm−>ctx −>msg_ctx , MSG_WARNING,
"WPA: I gno r e EAPOL−Key with encry . . " ) ;

goto out ;
}

if ( wpa_ supp l i c an t _de c ryp t _key_da t a ( sm , key , ver ) )

. . . .
}

(b) Developer’s patch for FreeBSD SA-18:11

Fig. 6. Example for Class-II: CVE-2006-4806

identical patches finding the insertion point is non-trivial as the predicates in which the patch is inserted in Listing 6a
and Listing 6b are different.

There is a potential issue in the case whereWPA2/RSN style of EAPOL-Key construction is used with TKIP negotiated
as the pairwise cipher. Hence, a patch was released by the standard organization and adapted by every operating system
that provides the wpa_supplicant driver. The developers at FreeBSD had to identify the correct insertion point but
no adaptation was required for the patch code itself as depicted above. The context is different with respect to the
variable names and additional code in place in FreeBSD as shown in listing 6b, compared to the original patch shown in
listing 6a.

3.3 Class-II : Syntactically Equivalent Transplantation with Dependency

A dependent function is required for the patch to apply the solution. The dependent component could be from the
original patch or could be a missing supplementary code in the recipient program. For example, adding functions for
the patch from latest version, which is missing in the old version.

CVE-2006-4806 is an example for Class-II, where the patch requires an dependent function to transplant the patch
in the recipient program. It occurs due to a buffer overflow in imlib2 (an image file processing library) which could
allow remote attackers to cause a denial of service attack. To fix the vulnerability, developers of imlib2 applied a patch
(Figure 7a) which includes a supplementary function named IMAGE_DIMENSIONS_OK which checks if the provided width
and height (im->w and im->h) are within standard limits of the application to prevent memory overflow. The same
vulnerability exist in older version of imlib2, specifically in imlib2 1.4.0 which does not include the definition of the
function IMAGE_DIMENSIONS_OK, hence the transplantation of the patch (Figure 7b) involves the dependency for the
patch to correctly fix the vulnerability in imlib2 1.4.0.

3.4 Class-III: Semantically Equivalent Transplantation

In this class of patches, adaptation is required to apply the transformation into the target system due to syntactic
differences. For instance, when two programs are semantically equivalent but syntactically different, the patch needs to
be modified before transplanting into the recipient program. This requires a namespace translation between Pb and Pc .
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char l o ad ( Im l i b Image ∗ im . . ) {

. . . .
im−>w = w = c i n f o . image_width ;
im−>h = h = c i n f o . image_he igh t ;

if ( ! IMAGE_DIMENSIONS_OK (w, h ) ) {
im−>w = im−>h = 0 ;
j p eg_de s t r oy_de compre s s (& c i n f o ) ;
f c l o s e ( f ) ;
return 0 ;

}
. . . .

}

(a) Developer’s patch in imlib2 1.4.3

# d e f i n e IMAGE_DIMENSIONS_OK (w, h ) \
( ( (w) > 0 ) && ( ( h ) > 0 ) && \

( ( unsigned long long ) (w) ∗ \
( unsigned long long ) (w) <= \
( 1 ULL << 29 ) − 1 ) )

char l o ad ( Im l i b Image ∗ im . . ) {
. . . .
im−>w = w = c i n f o . image_width ;
im−>h = h = c i n f o . image_he igh t ;

if ( ! IMAGE_DIMENSIONS_OK (w, h ) ) {
return 0 ;

}
. . . .

}

(b) Adapted patch for imlib2 1.4.0

Fig. 7. Example for Class-II: CVE-2006-4806

static void ReadImage ( . . . . ) {
. . . .
if ( ! ReadOK ( fd , &c , 1 ) ) {

return ;
}

if ( c > 1 2 )
return ;

. . . .
}

(a) developer patch for LibGD 2.0.34 RC1

int r e a d r a s t e r ( void ) {
. . . .
d a t a s i z e = g e t c ( i n f i l e ) ;
if ( d a t a s i z e > 1 2 )

return 0 ;
c l e a r = 1 << d a t a s i z e ;
e o i = c l e a r + 1 ;

. . . .
}

(b) developer patch for Libtiff 4.0.4

Fig. 8. Example for Type II: CVE-2013-4231

CVE-2013-4231 is an example of Class-III class, where the patch requires an adaptation in terms of namespace
translation. It occurs due to an buffer overflow in Libtiff, a library for processing Tagged Image File Format files. A bug
in one of the library modules which processes GIF images causes an overflow which can be fixed by inserting a check
as shown in Figure 8b. Since the maximum LZW bits allowed in GIF standard is 12, the patch for the overflow error
involves inserting a check condition. This vulnerability also exists in LibGD and ImageMagick libraries which are also
image processing software similar to Libtiff. All three programs are vulnerable to the same exploit because they follow
the same standard for GIF image processing. The adaptation required for the patch is the namespace mapping from
datasize in Libtiff to c in LibGD and change of return type to match the function return type (Figure 8a).

3.5 Class-IV : Semantically Equivalent Transplantation with Dependency

For syntactically different yet semantically equal patch which requires a dependency to be transplanted, are considered
as Class-IV patches. The dependent component, itself may require adaptation due to namespace differences between the
Manuscript submitted to ACM
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bool j as_ image_cmpt_domains_same ( j a s _ imag e_ t ∗ image )
{
int cmptno ;
j a s_ image_cmpt_ t ∗ cmpt ;
j a s_ image_cmpt_ t ∗ cmpt0 ;
cmpt0 = image−>cmpts_ [ 0 ] ;
for ( cmptno = 1 ;

cmptno < image−>numcmpts_ ;
++cmptno ) {

cmpt = image−>cmpts_ [ cmptno ] ;
if ( cmpt−> t l x _ != cmpt0−> t l x _ | |

cmpt−> t l y _ != cmpt0−> t l y _ | |
cmpt−>hs t ep_ != cmpt0−>hs t ep_ | |
cmpt−>vs t ep_ != cmpt0−>vs t ep_ | |
cmpt−>width_ != cmpt0−>width_ | |
cmpt−>he i gh t _ != cmpt0−>he i gh t _ ) {
return 0 ;

} }
return 1 ;

}

(a) Original function in Jasper 1.900.14

bool j as_ image_cmpt_domains_same ( o p j _ t c d _ t i l e _ t ∗ t )
{
int cmptno ;
o p j _ t c d _ t i l e c omp_ t ∗ cmpt ;
o p j _ t c d _ t i l e c omp_ t ∗ cmpt0 ;
cmpt0 = &t−>comps [ 0 ] ;
for ( cmptno = 1 ;

cmptno < t−>numcomps ;
++cmptno ) {

cmpt = &t−>comps [ cmptno ] ;

if ( cmpt−>x0 != cmpt0−>x0 | |
cmpt−>y0 != cmpt0−>y0 | |
cmpt−>x1 != cmpt0−>x1 | |
cmpt−>y1 != cmpt0−>y1 ) {
return 0 ;

} }
return 1 ;

}

(b) Manually adapted function for OpenJPEG 1.5.1

Fig. 9. Example for Class-IV: CVE-2016-9389

donor Pb and the recipient Pc . This requires a namespace translation between Pb and Pc and data structure translation
for the patch to work.

CVE-2016-9389 is an example for Class-IV, where the patch requires a dependency to transplant the patch in the
recipient program. CVE-2016-9389 is a buffer overflow vulnerability in JasPer 1.900.13 version and fixed in 1.900.14
which allows remote attackers to cause a denial of service attack. The same vulnerability also exists in OpenJPEG
1.5.1, adapting the patch for OpenJPEG 1.5.1 requires mapping variables across different data structures, specifically
jas_image_t -> opj_tcd_tile_t and transplanting the missing function jas_image_cmpt_domains_same. Listing 9a
and Listing 9b depict the difference between the original function and adapted function used in the patch.

4 DESIGN

The goal of PatchWeave is to extract a patch from a given donor program and insert into a target program by computing
the patch location and adapting the patch to the context of the target program. First, we will introduce the notations
that we will use throughout the rest of the paper, and then we present an overview of our approach and discuss in detail
how each phase in our approach works. We will make use of our motivational example presented earlier in Section 2 to
guide through each phase.

4.1 Symbols and Definitions

Table 2 summarizes the notations used in our paper, where Pa is used to identify the donor program before the patch
and Pb identifies the donor program with the developer fix. Similarly, Pc is used to identify the target program in which
we aim to repair the bug and Pd denotes the patched target program after the transplantation.

We now define a Divergent Point which identifies a location in the program which will be used to compute the
insertion location for the transplantation. Figure 10 shows the divergent points with respect to the source code that
differs for Pa , Pb , Pc .

Definition 4.1 (Divergent Point). Given two traces π Fa and π Fb in Pa and Pb of a failing input tF , the set of divergent
points between π Fa and π Fb are the set of locations where π Fb starts deviating from π Fa in terms of instructions executed.
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Symbol Description

Pa the buggy version of the donor program
Pb the fixed version of the donor program
Pc the buggy version of the target program
Pd the fixed version of the target program
tF the test case that failed in Pa but passes in Pb
da a divergent point in Pa
dc a divergent point in Pc which is mapped to da
lc a buggy location in Pc where the program produces an observable error
π Fa the execution trace of tF in Pa
π Fb the execution trace of tF in Pb
π Fc the execution trace of tF in Pc

Table 2. Annotations used and their description

Fig. 10. Illustration of divergent points for Pa , Pb , Pc

We make use of a relation between two given path conditions πa and πb , to map a divergent point from one program
to another using the following definitions.

Definition 4.2 (Partial Path Condition). Given a trace πi of an input i in a program P , and given a point l in the trace
πi , the partial path condition of i in program P at l , denoted ppc(P, i, l) is the path condition of πi up to and including l .

For the patch transplantation problem that we investigate in this research, we extract the patch from one program
and transplant to another similar program (Def 3.2). Due to the similarity of the two programs, an inherent property
is following a standard or a protocol in which the data processing order is the same. For instance, the order of
reading/processing input bytes from the input is more or less the same. Making use of this inherent property, we define
a relation ‘partial path condition dominance’ to identify a mapping of program locations from Pa to Pc .

Definition 4.3 (Partial Path Condition Dominance). Given two partial path conditions α and γ , we define partial path
condition dominance for γ , denoted dom(γ ,α), if γ satisfies the condition where input bytes appearing in α are a subset
of the input bytes appearing in γ .
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4.2 Overview

Figure 11 shows the overall workflow of PatchWeave. Given Pa , Pb , Pc and tF , we first verify that two programs are
similar programs as stated in Definition 3.2. Then, PatchWeave transplants the patch from Pb to Pc in five steps: patch
extraction, patch localization, patch adaptation, patch enforcement and patch verification as described in Algorithm 1.

Fig. 11. The overall workflow for PatchWeave

First, during patch extraction (Lines 1-2 in Algorithm 1), PatchWeave takes as input program Pa , program Pb and
outputs the difference of the two programs in two formats: textural difference and AST structural difference. A textual
difference (text_d) between the two programs provides a list of diff locations in terms of source file paths and line
numbers. We use information from the textual difference to identify potentially changed locations which are relevant for
the patch, and use this information to generate the AST in a granular level instead of generating AST for the complete
program. Since the difference between the two programs may contain modifications that are irrelevant for the bug fix,
we use trace based filtering to identify the correct patch from the difference of the two programs. In the initial steps
in Algorithm 1, we preprocess the diff locations using the traces generated by executing Pa , Pb and Pc for the failing
test case tF . From the textual difference at each diff location, we identify a code chunk which represents the textual
difference from Pa to Pb at the given diff location. Using GumTree, we obtain the AST structural difference at each diff
location from the two programs Pa and Pb which captures the transformation from Pa to Pb with respect to its abstract
syntax tree. The objective of this phase is to correctly identify the patch which fixes the bug, expressed in the form
of an AST transformation script. Since the transformation of the AST abstracts concrete identifiers and capture the
difference at a fine-grained level, PatchWeave could adapt the patch to different contexts.

Second, during patch localization (Lines 3-5 in Algorithm 1), PatchWeave computes a patch location for the trans-
plantation of the filtered patch. PatchWeave divides the task of patch localization into two sub-tasks, (1) finding
the patch function, and (2) finding the patch location within the identified function. At Line 3 in Algorithm 1, the
EstimateDivergentPoint method uses concolic execution [48] to obtain the partial path conditions of Pa , Pb and
Pc for the input tF to find a divergent point in Pc (i.e. dc ) similar to the divergent point observed in Pa (i.e. da ) with
respect to the filtered patch. Once we identified a similar divergent point in Pc , PatchWeave iterates over the trace
of the target program Pc to find a patch location. We locate the patch function using FindPatchFunction method,
which uses the estimated divergent location and the variables used in the code chunk to search for a candidate patch
function. First, it filters the functions invoked by Pc in tracec starting from the estimated divergent point dc . Then, it
finds the first function in the filtered list, which can be mapped to variables used in the code chunk into variables used
in the function. Similarly, FindPatchLoc method searches for a patch location within the identified patch function
using live analysis of the variables mapped by FindPatchFunction method. Finally, patch localization provides the
identified insertion location for the patch in terms of a target function and the position within the target function to
insert the patch, which also gives the context information (i.e. variable mapping) required to translate the patch from
the namespace of Pa into the namespace of Pc .
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Algorithm 1: PatchWeave Algorithm
input :Buggy version of Donor Pa

Fixed version of Donor Pb
Buggy version of Target Pc
Failing test case tF

output :Fixed version of Target Pd or ϕ

tracea ← Trace(Pa, tF )
traceb ← Trace(Pb , tF )
tracec ← Trace(Pc , tF )
text_d ← Diff(Pa, Pb )
text_d_f iltered ← FilterDiff(text_d, tracea, traceb )
text_d_f iltered ← text_d_f iltered . reverse()
while text_d_f iltered do

/* Patch Extraction */

1 da, code_chunk ← text_d_f iltered . pop()
2 trans f ormation_script ← GumTree(code_chunk)

/* Patch Localization */

3 dc ← EstimateDivergentPoint(da, tracec )
4 candidate_f unction,var_map ← FindPatchFunction(dc , tracec )
5 candidate_loc ← FindPatchLoc(candidate_f unction,var_map, trans f ormation_script)

/* Patch Adaptation */

6 translated_script ← TranslateScript (trans f ormation_script,da,dc )
/* Patch Enforcement */

7 Pd ← Transform(translated_script,var_map, candidate_loc)
end
if SyntaxCheck(Pd ) then

return Pd
end
return ϕ

In the patch adaptation phase (Line 6 in Algorithm 1), PatchWeave obtains a translated patch for Pc . The first
step of this phase is to obtain an AST transformation which can convert Pc into Pd . At this point, we have the AST
transformation script for Pa , and we have computed the target location for the insertion of the patch. TranslateScript
method in Line 6 uses an AST node matching algorithm to obtain a mapping between the target function identified
from patch localization phase and the AST of Pa . Using this mapping we can translate the AST transformation script
into the context of the target program Pc . Second, using the variable map computed earlier in patch localization phase
we translate the concrete identifiers (i.e., variable names and data structures) from Pb to Pc .

In patch enforcement (Line 7 in Algorithm 1), PatchWeave uses the mapping of concrete identifiers and the adapted
AST transformation to weave the patch into the identified patch location in Pc . In this phase, dependency analysis is
used to locate and evolve the patch such that all required dependencies (i.e. header files, macro definitions, etc) for the
patch are transplanted such that the patch is syntactically correct. Finally, after successful transplantation, we validate
our transplanted patch. Given the patched version of Pc , we call it Pd , we validate Pd as follows. First, we use a syntax
checker (SyntaxCheck(Pd) in Algorithm 1) which performs static analysis on Pd with a set of syntax-rules to fix any
found plausible errors (i.e., unused variables, implicit conversion). Second, we recompile the patched target application
and check that the build is successful without any syntactical errors. Third, we execute the patched application on the
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bug-triggering input to verify that the patch has successfully eliminated the vulnerability for that input. Finally, to
check for the deviation of Pd ’s behavior from Pc ’s behavior, we perform differential fuzz testing over 100 generated test
cases using the input tF as the seed.

4.3 Step 1: Patch Extraction

PatchWeave uses trace based filtering to narrow down the changes from Pa to Pb which only consist of codemodifications
relevant for the bug. The dynamic profiler used by PatchWeave during trace collection is a modified version of KLEE [9].
PatchWeave executes the programs Pa and Pb in LLVM IR instructions with the vulnerability triggering input tF until
the buggy location is reached or the program crashes. The modified version of KLEE uses the debugging information in
the program to translate each instruction executed to a location in a source file. Using the traces collected, combined
with the textual difference obtained from the difference of the two source codes of Pa and Pb , we filter the differences
not witnessed in the trace. The underlying assumption is that any modification required for the fix of the bug should be
executed in the patched version of the donor Pb . In essence, what we extract as the patch is the necessary and sufficient
modification required for the fix.

The filtered patch can be viewed as a code difference composed of multiple code chunks across different locations,
each of which is a contiguous sequence of lines corresponding to a sequence of insertions, deletions or both. Once we
identified the necessary code chunks required for the patch, we capture the modification as a transformation of an
abstract syntax tree. PatchWeave constructs an Abstract Syntax Tree (AST) for the function that contains the identified
chunk in both Pa and Pb . Using a tree difference algorithm GumTree[11], we generate a transformation script for the
ASTs constructed earlier. This transformation script captures the modifications of line insertion, deletion or both in the
context of the AST. The set of such transformations at each identified chunk is the output of this phase.

Fig. 12. Patch extraction phase of PatchWeave

In our motivational example in Section 2, for the two versions of our donor program JasPer, we obtained an AST
script as depicted in Figure 12. Although the original developer patch includes a statement replacement in line 1238 in
Figure 5a, this statement is never executed for the input tF in the fixed version of JasPer. Hence, we filter this statement
and only include the insertion of the variable declaration and the if-condition which checks for the overflow.
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4.4 Step 2: Patch Localization

For each code chunk collected in the previous phase, the patch localization step aims to search for the location in Pc to
insert the respective code chunk. Algorithm 2 explains how PatchWeave estimates a similar location in Pc . The diff
location of each chunk is a divergent point in Pa since the execution of the tF in Pa and Pb start to differ at this location.
For each such divergent point da , we first calculate the partial path condition of the failing input tF in Pa at da . This
is the path condition of the trace π Fa of input tF in program Pa up to and including the divergent point. We estimate
a similar location in Pc using partial path condition dominance, on the trace of input tF in program Pc . We map a
divergent point da to the earliest point dc in the execution trace of tF in program Pc which satisfies

dom(ppc(Pc , tF ,dc ),ppc(Pa, tF ,da ))

where dom is a dominance relation defined in Def. 4.3. Note that the two programs although semantically similar
may have different input verification, hence a superset of the input bytes of da in Pc may not exist. For instance, in
our motivational example, the divergent point is at “libjasper/jpc/jpc_dec.c:1234” and the input bytes appearing in
the partial path condition at this points are shown below in “input_bytes_a”. Similarly, OpenJPEG 1.5.1 input bytes
appearing at the full path condition are given below in “input_bytes_c”.

i n pu t _ by t e s _ a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 , 3 8 , 3 9 , 4 0 , 4 1 , 4 2 , 4 3 , 4 4 , 4 5 ,
4 6 , 4 7 , 6 2 , 6 3 , 6 4 , 6 5 , 6 6 , 6 7 , 6 8 , 6 9 , 7 7 , 7 8 , 7 9 , 8 0 , 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 , 8 7 , 8 8 , 89 , 90 , 9 3 , 9 4 , 9 5 , 9 6 , 9 7 , 9 8 , 9 9 , 1 00 , 1 09 ,
1 10 , 1 11 , 1 12 , 1 13 , 1 14 , 1 15 , 1 16 , 1 17 , 1 18 , 1 19 , 1 20 , 1 21 , 1 22 , 1 23 , 1 24 , 1 25 , 1 26 , 1 27 , 1 28 , 1 29 , 1 30 , 1 31 , 1 32 , 1 33 , 1 34 , 1 35 , 1 36 ,
1 37 , 1 38 ]

i n pu t _ by t e s _ c = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 , 3 8 , 3 9 , 4 0 , 4 1 , 4 2 , 4 3 , 4 4 , 4 5 ,
4 6 , 4 7 , 5 8 , 6 2 , 6 3 , 6 4 , 6 5 , 6 6 , 6 7 , 6 8 , 6 9 , 7 0 , 7 7 , 7 8 , 7 9 , 8 0 , 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 , 8 7 , 8 8 , 9 3 , 9 4 , 9 5 , 9 6 , 9 7 , 9 8 , 9 9 , 1 00 , 1 01 ,
1 02 , 1 03 , 1 04 , 1 05 , 1 06 , 1 07 , 1 08 , 1 09 , 1 10 , 1 11 , 1 12 , 1 13 , 1 14 , 1 15 , 1 16 , 1 17 , 1 18 , 1 19 , 1 20 , 1 21 , 1 22 , 1 23 , 1 24 , 1 25 , 1 26 , 1 27 , 1 28 ,
1 29 , 1 30 , 1 31 , 1 32 , 1 33 , 1 34 , 1 35 , 1 36 , 1 37 , 1 38 ]

Note that input bytes [89, 90] are missing in “input_bytes_c”, because OpenJPEG 1.5.1 does not use these bytes at
any control location. Hence, we need to rule out any byte that does not appear in Pc before checking for the dominance
relation. Algorithm 2 explains how PatchWeave overcomes this issue by taking the intersection of input bytes of the full
path condition of Pc and the input bytes of the partial path condition at divergent point da in Pa . Once the filtered input
bytes for the dominance relation is obtained, PatchWeave iterates through all control locations in Pc in a reverse order
(i.e. starting from the last execution location) and traverses until the dominance relation does not hold, which would
give us the estimated divergent location. We iterate in reverse order to be time efficient because the patch location is
much closer to the crash/buggy location.

Once we identify a location in Pc the patch can be inserted at any location between dc and the crash location, in the
execution trace of the failing test in Pc . Note that there can be multiple divergent points due to multiple changes made
between Pa and Pb . Once a location dc is found for a given da , the adaptation of the code chunk can be applied at any
location visited between dc and the crashing point (in the execution trace of tF in Pc ). The search for this patch location
consists of two steps: (1) identifying patch function, and (2) finding the correct patch line within the patch function.
Given tF , our approach performs concolic execution on the three programs (Pa , Pb and Pc ) along the paths taken by tF .

4.4.1 Patch function. Algorithm 3 presents how PatchWeave finds the candidate patch function. The insertion point is
bounded between dc (divergent point) and lc (crash location), a candidate function is any function invoked between
dc and lc in the execution trace of tF in Pc . In Algorithm 3, list_functions denotes all such functions executed
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Algorithm 2: Estimating a divergent point (estimateDivLoc(d,p))
routine :getPartialPathCondition(p) takes a program location and outputs the partial path condition

extractInputBytes(p) takes a partial path condition and outputs the input bytes in the path condition
extractControlLocations(p) takes a program trace and outputs control locations

input :a divergent point in Pa (da ), execution trace of Pc for input tF (π Fc )
output :a location in Pc or ϕ

ppca ← дetPartialPathCondition(da )
bytes_lista ← extractInputBytes(ppca )
listcontrol ← extractControlLocations(π Fc )
locationend ← listcontrol .last()
ppcend ← дetPartialPathCondition(locationend )
bytes_listend ← extractInputBytes(ppcend )
bytes_lista ← bytes_lista ∩ bytes_listend
/* Iterate through the control locations in Pc to find a location which satisfies the

dominance relation */
estimate_loc ← ϕ
while listcontrol do

locationc ← listcontrol .pop()
ppcc ← дetPartialPathCondition(locationc )
bytes_listc ← extractInputBytes(ppcc )
if bytes_lista ⊑ bytes_listc then

estimate_loc ← locationc
else

return estimate_loc
end

end
return estimate_loc

between dc and lc in the execution trace of tF in Pc . PatchWeave traverses through each such function and generates
symbolic expressions for the variables to find a mapping between the variables in the code chunk at the divergent
point da . Given a function fc in Pc , our goal is to map each variable in the code chunk to variables in function fc in Pc .
Thus, for each variable in the code chunk, if a variable can be mapped to a variable in fc of Pc with the same symbolic
expression4(getMap(l,f) in Algorithm 3), we consider fc as a candidate patch function. In our motivational example,
function j2k_read_siz is our candidate insertion function since it is within the range of the estimated divergent point
and the crashing location, and it includes variables that match the symbolic expressions of the variables in the code
chunk that we want to transplant.

4.4.2 Patch Location. Computing the patch location has two variants based on the type of transformation of the patch.
If the original patch is modifying an existing statement in Pa , then the objective is to find a similar statement in Pc .
However, if the patch is introducing new statements, the patch line will be determined by the liveness property of the
variables required for the patch, i.e., the patch line should be a line at which all variables required for the patch holds a
value. We identify the line where the transformation of the patch needs to be inserted based on the mapping of the
variables in the patch in Pb and to variables in the patch function in Pc . Let the variables appearing in patch be Varsab
and let them be mapped to variables Varsc in Pc in the previous step of identifying the patch function. Recall that the

4These symbolic expressions are calculated by the concolic execution of tF in programs Pb and Pc .
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Algorithm 3: Finding patch function (FindPatchFunction(dc , tracec ))
routine :extractCode(p) takes a program location and outputs the program statements at given location

estimateDivLoc(d,p) is the routine described in Algorithm 2
extractIdentifiers(c) takes a code chunk and output the list of variable names
extractFunctions(d,p) takes a program location d, a trace p, output the functions executed up to d
getMap(l,f) takes a list of variable names and a function, outputs if variable mapping is possible

input :a divergent point in Pa (da ), execution trace of Pc for input tF (π Fc )
output :a candidate function fc in Pc or ϕ

code_chunk ←extractCode(da )
dc ←estimateDivLoc(da, π Fc )
list_identi f iers ← extractIdentifiers(code_chunk)
list_f unctions ←extractFunctions(dc , π Fc )
for function fc in list_f unctions do

if getMap(list_identi f ers, fc ) then
return fc

end
end
return null

mapping of Varsab to Varsc was achieved by (1) concolic execution of input tF in Pb and Pc , and then (2) mapping
variables based on which variables in Pc have the same symbolic expressions as the symbolic expressions of variables
Varsab in program Pb . Given a patch function fc in Pc , we filter out all control locations in fc where the variables Varsc
are not live. Moreover, if the patch function is on the stacktrace when the crash occurs in Pc when executing tF , we can
further narrow down the patch locations to all locations in fc executed. For any selected candidate patch location in
function fc , we check if Varsab in the patch possess the same symbolic expressions as the variables Varsc at the patch
location.

4.5 Step 3: Patch Adaptation

The patch adaptation phase processes the translation of the AST transformation script obtained from the patch extraction
phase and translates the concrete identifiers to the namespace at the insertion location identified from the patch
localization phase. PatchWeave first translates the AST transformation script into the context at the insertion location.
For each code chunk identified for transplantation at the extraction phase, PatchWeave obtains the corresponding AST
transformation. Translating the transformation script to the context of Pc involves three steps: node translation, position
translation and namespace translation. First, we present the structure of a transformation step in the transformation
script as follows:

• Delete NodeA: Delete node NodeA from ASTa

• Insert NewNode into NodeB at k: Inserts the node NewNode as the k − th child of node NodeB in ASTb

• Move NodeA into NodeB at k: Moves the node NodeA in ASTa to be the k-th child of node NodeB in ASTb

• Update NodeA to NodeB: Replace the label in node NodeA with the label of node NodeB
• Update and Move NodeA into NodeB at k: First update the label of node NodeA from the matching node and
then move node NodeA to the k-th position of node NodeB
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For instance, in our motivational example in Figure 12, one of the transformation action is “Insert IfStmt(8271) into
CompoundStmt(8077) at 24”, which describes as inserting the node of type “IfStmt” identified by the id 8271 in Pb , into
the node of type “CompoundStmt” identified by the id 8077 in Pb .

4.5.1 Node Translation. Given a transformation of an AST node in Pa into a AST node in Pb , we want to replace the
node with a node in Pc and apply the same transformation. For this purpose, we use the tree differencing algorithm
GumTree[11] implementation on LLVMAST. GumTreemaps nodes in the two input ASTs based on certain heuristics [11].
It outputs a set of mapped nodes denoted as (X ,Y ) = (X1,Y1), ..., (Xi ,Yi ) where X = X1, ..,Xi and Y = Y1, ..,Yi are the
mapped nodes in the two ASTs and ‘i’ is the number of mapped nodes. We use this technique to generate a mapping
between Pa and Pc . Specifically, we generate the AST of the function which contains the AST node of Pa , and the AST
of the candidate function in Pc identified in the previous phase. Once we obtain the mapping of nodes in the ASTs of
Pa and Pc , PatchWeave uses this mapping to translate the transformation script obtained in the extraction phase.

Fig. 13. AST Node Mapping in Patch Adaptation Phase

Figure 13 shows the AST nodes translation using our motivational example. The arrows indicate a mapping identified
by GumTree from one AST to another. To translate the transformation operation into Pc , we first translate the operation
into the context of Pa and then translate back from Pa into Pc . In Figure 13, node 6 and 8 in the AST of JasPer 1.900.13
is mapped to the nodes 6 and 7 in the AST of JasPer 1.900.12 respectively. Similarly, node 6 and 7 in the AST of JasPer
1.900.12 is mapped to the nodes 5 and 6 in AST of OpenJPEG 1.5.1. Thus, giving us the translation of node 6 and 8 from
AST of JasPer 1.900.13 into node 5 and 6 in OpenJPEG 1.5.1 respectively.

Let us consider in our motivational example where we transplant an “if” statment from Pb into Pc . Figure 13
shows the translation of the AST nodes. The diagram depicts the node translation for the transformation operation
of “Insert IfStmt(8271) into CompoundStmt(8077) at 24” discussed earlier. The green node in Figure 13 represents the
“IfStmt” node which need to be inserted while the yellow nodes represent the “CompoundStmt” nodes in all three
programs. First, we map the “CompoundStmt(8077)” node from Pb into the “CompoundStmt(8077)” node in Pa , and
then “CompoundStmt(8077)” node from Pa into the “CompoundStmt(3886)” node in Pc as shown in Figure 13. At this
point of the adaptation, the transformation operation is “Insert IfStmt(8271) into CompoundStmt(3886) at X”. Next, we
adjust the position of the transformation related to the translated AST node “CompoundStmt(3886)” in Pc .
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4.5.2 Position Translation. Given a translation of nodes for the transformation action, we convert the position relative
to the translated AST node. For example, some transformations such as INSERT, MOVE requires a position attribute
which describes a position relative to the target node in which the transformation would take place. PatchWeave uses
the patch location identified in previous phase to identify the target AST position by translating the patch location into
a relative AST node position.

4.5.3 Namespace Translation. To translate the namespace of patch from Pb into Pc , the first step is to generate a
mapping between the variables in the patch and Pc . For each variable in the patch, PatchWeave finds the corresponding
variable in Pc despite the difference in data structures. As a single variable could have multiple instances due to different
invocations, PatchWeave keeps track of all such instances to identify any instance of a variable in Pc that matches with a
variable in the patch. For each such instance, PatchWeave records the bit value of KLEE [9], the symbolic expression and
the variable name. PatchWeave is relying on the data-type agnostic representation of KLEE to translate values across
different data-structures. (i.e. same numeric input represented in a signed integer value and unsigned integer differ).
For each variable v in the patch, PatchWeave lists variables u from Pc where any instance of the variable u is equal to
the bit value of the given variable v . PatchWeave then filters the variables using equivalence of symbolic expressions of
v and u, which guarantees that the two variables are not only equal in terms of the value computed but also in terms
of symbolic expressions. For any given variable v in the patch, if there are several variables in Pc having the same
bit value and symbolic expression as v , PatchWeave selects the variable whose name has the minimum Levenshtein
distance with the name of variable v (e.g., if array[i] is matched against temp and arr [j], PatchWeave selects arr [j] due
to the minimum Levenshtein distance).

4.6 Step 4: Patch Enforcement

Once the translation of the variables in the patch into the namespace of Pc is complete, we obtain the translated patch.
Although the patch has been translated successfully, we still need to identify and transplant any missing definitions
used in the patch, such as a function specific for Pa or any macro definition only defined in Pa . The final step of the
transplantation is to analyze each AST node in Pc to identify such missing definitions and ensure that the relevant
missing functions can be called from within Pc at the insertion point. For example, if the patch is using a function
defined in an external library which is not used in Pc , PatchWeave would include the relevant header files automatically
so that the library can be called from Pc . In the case where a custom function defined in Pa is used in the patch,
PatchWeave translates the function to match the namespace of Pc as shown in our motivational example.

5 IMPLEMENTATION

We have implemented PatchWeave in Python 2.7, in combination with Clang 7.1 [2] and KLEE 1.4 [9]. Clang is used for
compiling the AST’s and obtaining the LLVM IR for symbolic execution in KLEE. We extend KLEE to support concolic
execution for C/C++ programs. We leverage Z3 [3] SMT solver for equivalence checking and LibTooling to enforce the
textual edits and for source code instrumentation required in symbolic analysis.

We use the clang AST because it offers source-to-source transformation for C/C++ code and the C++ standard. For
example, parenthesis expressions and compile time constants are available in an unreduced form in the AST. This makes
Clang’s AST a good fit for refactoring tools such as ours. Since we use a compiled AST contrast to a static AST built
from the source code, the AST is lightweight but also does not include pragmas which is commonly used in software to
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produce different code for different environments. For our analysis, we do not require such level of details since we
only repair the bug for the vulnerability observed in one environment.

PatchWeave is implemented with 6394 lines of Python code and 4164 lines of C/C++ code not including the modified
KLEE used for symbolic analysis.

6 EXPERIMENT AND EVALUATION

First, we evaluate the efficacy of PatchWeave on eight real world applications to transplant fixes for vulnerabilities
reported in the CVE database and recurring bugs [42] discovered in our experiments, where each subject consists of
(donor program, target program, detected error). In terms of the problem formulation shown in Figure 1, donor program
corresponds to Pb , target program corresponds to Pc , and detected error corresponds to the failing input tF . Thus,
a patch from Pb is transplanted into Pc . Second, we evaluate the quality of the transplanted patch using differential
fuzzing and manually examine the patches for correctness and compare them to the developer fix (if any exist). Third,
we compare PatchWeave against state of the art APR tools including F1X [31] and Prophet [26]. Next, we provide our
comparison effort with feature transplantation tools and the results. Last, we compare against a syntactic approach for
transplantation, namely LASE [36].

6.1 Data Set

We evaluate PatchWeave on five classes of errors, including integer overflow, division by zero, null pointer dereference,
buffer overflow and memory errors. We obtain our subjects from a public repository [1] that contains exploits and steps
to reproduce vulnerabilities published in the CVE database. To evaluate the patch transplantation ability of PatchWeave,
we studied the transplantation of patches on one application program processing an input format to another application
program exercising similar functionality on the same input format. We select subjects based on two criteria: (1) they
have exploits reported in the referenced public repository [1], and (2) they should be popular C and C++ open-source
programs which have been cited in literature [5, 23]. Table 3 shows the summary of each selected subject, together
with a short description about the functionality of the subject, lines of code (LOC), the range of the program versions
and the number of versions we evaluated.

Name Description LOC Version Range Count

JasPer Image manipulations 26k 1.900.2 - 2.0.14 44
OpenJPEG JPEG 2000 image manipulations 200k 1.4 - 2.1.1 8
LibWebP WebP image manipulations 67k 0.1.2 - 1.0.2 14
LibTIFF TIFF images processing 70k 4.0.0 - 4.0.9 10
LibMing SWF processing 66k 0.4.3 - 0.4.8 6
Libsndfile Audio manipulation 52k 1.0.25 - 1.0.28 4
Libzip ZIP archive processor 13k 1.0.0 - 1.5.2 14
WavPack Lossless Wave file compressor 33k 4.40.0 - 5.1.0 12

Table 3. Experiment subjects and their details

For our experiments, we select vulnerabilities and their corresponding exploits from reported issues in the projects
listed in Table 3 using the following criteria: (1) the vulnerability should be exploitable and its report includes a proof of
exploit, (2) the vulnerability should be fixed and verified by the developer, and (3) the vulnerability should be reported
in the CVE database between 2016-2018. For each vulnerability collected, we run against each of the subjects (each
version of each program listed in Table 3) to find any similar vulnerability exhibiting in a different program other than
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the one it was reported on. Any two pairs that exhibit similar vulnerability (Def 3.1) are considered for evaluation under
two criteria. 1) if the two programs are not from the same project, we select the latest version of the target project in
the range we presented in Table 3 or 2) if both programs are from the same project, it implies a backporting pair. For
backporting, we select the oldest version in the range we presented in Table 3 which exhibits the same vulnerability. We
further filtered commits which did not compile as we cannot verify if the vulnerability has been fixed for the exploit.
Note that the exploits we collected can trigger vulnerabilities that are common to two different programs which are not
relevant for the original program it was reported with. For example, an exploit which was reported with OpenJPEG,
could trigger a vulnerability which is common to Jasper and LibTiff.

6.2 Experimental Setup

All experiments are conducted on a Dell PowerEdgeR530 with Intel(R) Xeon(R) CPU E5-2660 processor and 64GB RAM.
We use Docker [4] containers to exploit and repair the vulnerable applications.

6.3 Evaluation

Our evaluation aims to address the following research questions:

RQ1 How effective is PatchWeave on real-world programs?
RQ2 Can we localize the correct function for transplantation using our patch localization algorithm?
RQ3 What is the quality of the transplanted code?
RQ4 How effective is our approach compared to Automated Program Repair (APR) tools?
RQ5 How effective is our approach compared to existing transplantation techniques?
RQ6 How effective is a semantic transplantation technique compared with syntactic transplantation techniques?

6.4 [RQ1] Efficacy of PatchWeave

We select a set of real-world applications and CVE bug reports as described in Section 6.1 and run PatchWeave to
transplant patches from the donor program to the target program, in the identified pair list. We validate the efficacy of
PatchWeave by comparing our results to developer patches (if any exist) for the bugs as the ground truth. We extract
the developer patches from the bug reports or the commits provided by the developers. Table 4 presents the results of
our experiments. The “Bug ID” column specifies an identifier of the bug if the bug has been reported. If the bug has been
reported in CVE we indicate the CVE identifier or if the bug has been reported in the project bug tracker, we indicate the
bug identifier. Some bugs have been fixed without being reported hence may not have a bug ID, which is indicated by
‘N/A’. The “Exploit ID” column indicates the CVE where we obtained the exploits / test cases (tF ). The “Donor” column
specifies the program name and version of the donor, while the “Target” column shows the same information for the
target program. The “Target Location” column indicates the source code location in the target program that contains the
vulnerability. The “Error” column specifies the type of vulnerability. The “Patch Commit” column represents the commit
id for the patch in the donor program and “Patch Class” shows the classes of patches defined in Section 3. The “Time
(min)” column shows the total time taken in minutes for PatchWeave to fix the error/vulnerability by transferring the
patch, starting from patch extraction to patch verification or ✗ to indicate the patch transplantation was unsuccessful.

The “Diff. Fuzz.” column denotes the results of differential fuzz testing in the form x/y, where x is the number of test
cases where Pc results in a crash and Pd gracefully exits; similarly y is the number of test case where Pd crashes or
produce a different output than Pc . The “Patch Size” column denotes the modified lines of code in the transferred patch
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(e.g., if an expression within an if-statement is modified, we consider “Patch Size”=1). The “Function Hops” column is a
measure of efficiency in finding the patch function, (e.g., “Function Hops” = 1 means that we find the patch function at
the first iteration of the loop in Algorithm 3). The “Patch Similarity” column denotes the patch quality of PatchWeave
relative to human-written patches (defined in Section 6.6).

ID Bug ID Exploit ID Donor Target Target
Location Error Patch

Commit
Patch
Class

Time
(min)

Diff.
Fuzz.

Patch
Size

Function
Hops

Patch
Similarity

1 Bug-169 CVE-2016-8691 JasPer-1.900.3 OpenJPEG-1.5.1 int.h@87 DZ d8c2604 III 5.0 37/0 3 1 C2
2 CVE-2016-8691 CVE-2016-8691 OpenJPEG-1.5.2 JasPer-1.900.2 jpc_dec .c@1194 DZ e55d5e2 III 8.0 22/0 3 4 C2
3 N/A CVE-2016-9387 JasPer-1.900.13 OpenJPEG-1.5.1 j2k.c@560 IO d91198a IV 7.5 5/0 27 1 C2
4 CVE-2016-9387 CVE-2016-9387 OpenJPEG-1.5.2 JasPer-1.900.12 jpc_dec .c@1234 IO 6e0162a III 8.5 42/0 3 1 C2
5 Bug-155 CVE-2017-6850 JasPer-2.0.12 OpenJPEG-1.5.1 cio.c@146 NPD 7692d6d III ✗ -/- - - -
6 CVE-2016-6850 CVE-2017-6850 OpenJPEG-1.5.2 JasPer-1.900.30 jas_malloc .c@111 NPD 7720188 III 15.0 9/0 4 1 C2
7 N/A CVE-2016-8692 JasPer-1.900.3 OpenJPEG-1.3 int.h@87 DZ 3c55b39 III 3.5 52/0 3 1 C2
8 CVE-2016-8692 CVE-2016-8692 OpenJPEG-1.4 JasPer-1.900.2 jpc_dec .c@1196 DZ f4d394d III 5.5 20/0 3 4 C2
9 N/A CVE-2016-9387 JasPer-1.900.14 OpenJPEG-2.1.0 j2k.c@2099 UIO ba2b9d00 III 6.0 42/0 4 1 C2
10 N/A CVE-2016-9387 OpenJPEG-2.1.1 JasPer-1.900.13 jpc_dec .c@1244 UIO 58fc8645 III 18.0 46/0 13 2 C2
11 Bug-312 CVE-2016-9262 OpenJPEG-1.5.1 LibWebP@0.3.0 jpegdec.c@251 SIO 6280b5ad III 2.5 90/0 4 1 C2
12 N/A CVE-2016-9830 JasPer-1.900.4 LibWebP@0.2.0 cwebp.c@120 ShO 6109f6a II 5.0 99/0 2 1 C1
13 N/A CVE-2016-9830 LibWebP@0.3.0 JasPer-1.900.3 mi f _cod .c@394 ShO 7a650c6a I 11.0 98/0 1 13 C1
14 CVE-2016-9390 CVE-2016-9390 OpenJPEG-1.5.2 JasPer-1.900.13 jpcmct .c@151 HBO 69cd4f9 III ✗ -/- - - -
15 Bug-297 CVE-2016-9390 JasPer-1.900.14 OpenJPEG-2.1.0 libopenjpeg/mct.c@84 HBO dee11ec IV ✗ -/- - - -
16 CVE-2016-9393 CVE-2016-9393 JasPer-1.900.17 OpenJPEG-1.5.2 j2k.c@447 UIO f7038068 III 12.0 42/0 3 1 N.A.
17 CVE-2016-8884 CVE-2016-8884 LibTiff-3.8.0 Jasper-1.900.8 bmp_dec .c@394 MWE 50373d7d III 26.0 18/0 8 23 C2
18 N/A CVE-2017-6828 Libsndfile-1.0.26 WavPack-5.1.0 common.c@992 ShO 3e91aaf7 III ✗ -/- - - -
19 CVE-2016-9387 CVE-2016-9387 Jasper-1.900.13 Jasper-1.900.2 jpc_dec .c@1206 IO d91198a II 8.0 34/0 29 1 C1
20 CVE-2016-9265 CVE-2016-9265 LibMing-0.4.8 LibMing-0.4.6 listmp3.c@187 DZ b0704f80 I 5.5 98/0 2 1 C1
21 CVE-2016-9266 CVE-2016-9266 LibMing-0.4.8 LibMing-0.4.6 listmp3.c@94 NS 2e5a98a0 I 5.5 29/0 17 1 C1
22 Bugzilla-2634 CVE-2017-14039 LibTiff-4.0.8 LibTiff-4.0.0 tiff2ps.c@2443 HBO 5ed9fea5 I 26.0 75/0 5 18 C1
23 CVE-2017-8365 CVE-2017-8365 Libsndfile-master Libsndfile-1.0.26 src/pcm.c@670 GBO fd0484ab I 16.0 73/0 9 3 C1
24 CVE-2017-14107 CVE-2017-14107 Libzip-1.3.0 Libzip-1.1.2 zip_dirent .c@108 MAF 9b46957e I 42.0 90/0 4 13 C1

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},
Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift},

Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}

Table 4. Summary of PatchWeave experiment results

Overall, PatchWeave has successfully fixed the errors for all evaluated pairs via patch transplantation, except for
four errors. PatchWeave fails to fix ID 5 in Table 4 because the patch for JasPer includes program-specific changes that
cannot be translated to OpenJPEG as intended. Specifically, the changes involve refactoring of existing functions and
modifications to internal function calls, which are irrelevant for the bug-fix. Similarly, the developer patch in ID 18
contains changes for multiple bug fixes so our approach fails to extract the specific patch for the bug. In ID 14 and 15 of
Table 4, the transplantation was unsuccessful due to the higher number of iterations executed within the execution of tF
which produced a large symbolic path condition in which checking of partial path conditions became computationally
infeasible.

Artifact and Tool Release. Experiment results in the form of generated patches and developer patches are publicly
available at our website5. Other experimental data is publicly available at Docker Hub via docker image rshariffdeen/-
patchweave:experiments. Meanwhile, our tool is publicly available at https://github.com/rshariffdeen/PatchWeave.

6.5 [RQ2] Effectiveness of patch localization

We evaluate the effectiveness of the patch localization technique in PatchWeave (i.e. partial path condition dominance
relations defined in Definition 4.3). Table 5 summarizes the efficacy of PatchWeave for patch localization. The “Donor”
column specifies the program name and version of the donor, while the “Target” column shows the same information

5https://patchweave.github.io/
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for the target program. The “Error” column specifies the type of vulnerability and “Patch Class” shows the classes of
patches defined in Section 3. The “Time (min)” column shows the total time taken in minutes for PatchWeave to fix the
error/vulnerability by transferring the patch, starting from patch extraction to patch verification or ✗ to indicate the
patch transplantation was unsuccessful.

“In Top-3?” column and “In Top-5?” column indicate if the patch function has been located after localization within
3 hops and 5 hops respectively. The “Localized Function Hops” column indicates the absolute measure of efficiency
in finding the patch function (same as “Function Hops” column in Table 4). Similarly, “Non-Localized Function Hops”
column indicates the number of hops required to iterate in order to find the identified patch function without patch
localization. “Filter Count” represents the number of functions filtered from the search space using patch localization
and “Reduction Ratio” represents the efficiency of the patch localization in terms of the number of hops saved as a
percentage of the total number of hops without patch localization. The percentage is calculated in the form x/y, where
“x” is the number of functions filtered and “y” is the total number of functions hops required when not using patch
localization.

ID Donor Target Error Patch
Class

Time
(min)

In
Top-3?

In
Top-5?

Localized
Function Hops

Non-Localized
Function Hops

Filter
Count

Reduction
Ratio

1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ III 5.0 ✓ ✓ 1 18 17 17/17 = 100%
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ III 8.0 ✗ ✓ 4 65 61 61/64 = 95%
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO IV 7.5 ✓ ✓ 1 34 33 33/33 = 100%
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO III 8.5 ✓ ✓ 1 82 81 81/81 = 100%
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD III ✗ - - - - - -
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD III 15.0 ✓ ✓ 1 33 32 32/32 = 100%
7 JasPer-1.900.3 OpenJPEG-1.3 DZ III 3.5 ✓ ✓ 1 18 17 17/17 = 100%
8 OpenJPEG-1.4 JasPer-1.900.2 DZ III 5.5 ✗ ✓ 4 65 61 61/64 = 95%
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO III 6.0 ✓ ✓ 1 57 56 56/56 = 100%
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO III 18.0 ✓ ✓ 2 70 68 68/69 = 98%
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO III 2.5 ✓ ✓ 1 82 81 81/81 = 100%
12 JasPer-1.900.4 LibWebP@0.2.0 ShO II 5.0 ✓ ✓ 1 7 6 6/6 = 100%
13 LibWebP@0.3.0 JasPer-1.900.3 ShO I 11.0 ✗ ✗ 13 13 0 0/12 = 0%
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO III ✗ - - - - - -
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO IV ✗ - - - - - -
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO III 12.0 ✗ ✗ 1 34 33 33/33 = 100%
17 LibTiff-3.8.0 Jasper-1.900.8 MWE III 26.0 ✗ ✗ 23 46 23 23/45 = 51%
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO III ✗ - - - - - -
19 Jasper-1.900.13 Jasper-1.900.2 IO II 8.0 ✓ ✓ 1 79 78 78/78 = 100%
20 LibMing-0.4.8 LibMing-0.4.6 DZ I 5.5 ✓ ✓ 1 2 1 1/1 = 100%
21 LibMing-0.4.8 LibMing-0.4.6 NS I 5.5 ✓ ✓ 1 2 1 1/1 = 100%
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO I 26.0 ✗ ✗ 18 76 58 58/75 = 77%
23 Libsndfile-master Libsndfile-1.0.26 GBO I 16.0 ✓ ✓ 3 17 14 14/16=87.5%
24 Libzip-1.3.0 Libzip-1.1.2 MAF I 42.0 ✗ ✗ 13 25 12 12/24 = 50%

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},
Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift},

Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}

Table 5. Effectiveness of patch localization in PatchWeave

PatchWeave successfully locates the patch function for 20 test-cases presented in Table 5 among these 11 instances
are the first candidate function, and 13 hits the Top-3 selection and 15 hits the Top-5 selection.

PatchWeave can correctly identify the insertion points for all patches transplanted for all evaluated (donor, target)
pairs. In general, there could be several potential insertion points for a given patch, our algorithm has successfully
identified one of these insertion points. On average, our approach requires six iterations to find the insertion points
for all evaluated patches (“Function Hops” column in Table 4 and “Localized Function Hops” column in Table 5). As
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our approach can automatically identify all insertion points within a reasonable number of iterations, this serves as
evidence for the effectiveness of our localization algorithm using the partial path condition dominance relationship.

6.6 [RQ3]Quality and diversity of patches

Given a developer-written patch Patchdev , an automatically transplanted patch Patchauto , we measure patch quality
using the criteria:

(C1) Syntactically Equivalent. Patchauto is “Syntactically Equivalent” if Patchauto and Patchdev are syntactically the
same.
(C2) Semantically Equivalent. Patchauto is “Semantically Equivalent” if Patchauto and Patchdev are not syntactically
the same but could be refactored to produce the same semantic behavior.

Table 4 shows that our approach could successfully generate patches of comparable quality to the developer-written
patches (i.e., eight generated patches are “Syntactically Equivalent” and 11 are “Semantically Equivalent”). We attribute
the success of PatchWeave in generating patches that are of comparable quality to developer-written patches to the code
reuse advocated by our approach in the form of patches. The “Patch Size” column in Table 4 indicates that our approach
is effective in transplanting compact patches (i.e., they are all expressible within 1–29 lines of code). Meanwhile, the
“Diff. Fuzz.” column shows that all of the transplanted patches have been validated through differential fuzzing.

In terms of the patch types covered, the “Patch Type” column shows that PatchWeave could successfully transplant
patches for all types of patches defined in Table 1. In terms of the class of errors covered, the “Error” column shows
that PatchWeave could successfully transplant patches for all evaluated five classes of vulnerabilities, namely: buffer
overflow, integer overflow, divide-by-zero, memory errors (including null pointer dereferences) and shift overflows.

6.7 [RQ4] Comparison with APR

Although not directly comparable, automated program repair can be used to directly repair program bugs instead
of transplanting from a different program. Hence, we compare our technique with two state-of-the-art program
repair techniques to show how transplantation addresses the limitations of program repair (i.e. bounded search space,
overfitting problem). Comparison results are shown in Table 6. The “Time” column shows the total time taken in
minutes for each tool to fix the error/vulnerability, or ✗ to indicate the repair was unsuccessful. The “Fuzz” column
denotes the results of differential fuzz testing in the form x/y, where x is the number of test cases where Pc results in a
crash and Pd gracefully exits; similarly y is the number of test case where Pd crashes or produce a different output than
Pc .

F1X [31]: We evaluate our benchmark with F1X , one of the latest semantic-based automated program repair tool for C
programs; the authors of [31] provided us access to the tool at our email request. We choose to evaluate on F1X because
it represents a state-of-the-art program repair tool which has been shown in prior work to be more efficient and effective
than several search based and semantic program repair tools. F1X uses test-equivalence relations to partition patch
candidates, which leads to significant improvement of the patch generation time without sacrificing patch quality.
However, F1X , like most existing repair tools, may suffer from the overfitting problem, where a generated patch may
be plausible (passing all given tests), but overfitting (fails for tests outside the given tests). For each vulnerability (each
row of Table 4), we created a test suite Tm which includes the failing test case and a passing (non-crashing) test case.
Then, we give Tm and the fix location to F1X for patch generation. In summary, F1X was able to fix 19 bugs out of
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ID Donor Target Error Patch
Class PatchWeave F1X Prophet

Time Fuzz Time Fuzz Time Fuzz

1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III 5.0 37/0 0.16 20/13 10 69/2
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III 8.0 22/0 1.5 24/0 3.5 23/0
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV 7.5 5/0 0.33 52/0 2 38/7
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III 8.5 42/0 6 14/27 2 0/41
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III ✗ -/- 0.16 11/3 ✗ -/-
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III 15.0 9/0 0.5 8/0 3 0/9
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III 3.5 52/0 0.25 30/29 1 1/69
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III 5.5 20/0 1.5 33/0 3.5 20/0
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III 6.0 42/0 0.67 37/49 ✗ -/-
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III 18.0 46/0 6 35/7 ✗ -/-
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III 2.5 90/0 ✗ -/- 3 41/0
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II 5.0 99/0 0.25 38/0 ✗ -/-
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I 11.0 98/0 0.5 93/4 ✗ -/-
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III ✗ -/- ✗ -/- ✗ -/-
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV ✗ -/- ✗ -/- ✗ -/-
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III 12.0 42/0 1 44/9 1 0/69
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III 26.0 18/0 0.33 15/0 ✗ -/-
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III ✗ -/- ✗ -/- ✗ -/-
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II 8.0 34/0 7.5 13/26 2 0/42
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I 5.5 98/0 0.33 100/0 2 0 /42
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I 5.5 29/0 0.33 100/0 6 94/6
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I 26.0 75/0 0.33 0/100 ✗ -/-
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I 16.0 73/0 1 66/2 ✗ -/-
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I 42.0 90/0 ✗ -/- ✗ -/-

Total 24 20 20 19 8 12 3
Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},

Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift},
Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}

Table 6. Comparison with program repair techniques

24, but only eight out of the 19 fixes are not overfitting (as shown in rows with x/0 in the “Fuzz” column in Table 6).
Effectively, only eight bugs have been successfully repaired by F1X .

Prophet [26]: We also evaluate our benchmark with Prophet, one of the popular search-based automated repair
tools; We choose to evaluate on Prophet because it represents a state-of-the-art program repair tool which has been
shown in [26] to be more efficient and effective than other search based tools. Prophet uses a probabilistic, application-
independent model generated from a collection of human written patches, to find the correct code. We run Prophet using
the default configuration (with the pre-trained model and enabled the condition-ext option and the replace-ext
option). For each vulnerability (each row of Table 4), we created a test suite Tm which includes the failing test case and
a passing (non-crashing) test case. Then, we giveTm and fix location to Prophet, to repair the bug. In summary, prophet
was able to repair 12 bugs out of 24, however only three of the 12 fixes are not overfitting. Effectively, only three bugs
have been successfully repaired by Prophet.

Compared to Prophet, F1X was able to generate higher number of correct patches for our benchmark. Prophet is a
search-based technique which modifies the code and rely on the test suite for correctness of the code, whereas F1X
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static void j2k_read_siz (...)
{

cio_read ( cio , 2) ;
if (0)

cio_read ( cio , 2) ;

}

(a) F1X Patch

static void j2k_read_siz (...)
{

if (e−>id == id ) {
break;

if (e−>id == id && !(1) ) {
break;

}

(b) Prophet Patch

static void j2k_read_siz (...)
{

if (image−>comps[i].dx == 0 ||
image−>comps[i].dx > 255) {

return;
}

}

(c) Transplanted Patch

static void j2k_read_siz (...)
{

if (!( image−>comps[i].dx ∗
image−>comps[i].dy)) {

opj_event_msg (..) ;
return;

}
}

(d) Developer Patch

Fig. 14. Comparison of transplantation vs APR patch for bug-1

generates a patch using the constraints generated by the test suite. Hence, the semantic-based repair approach is more
effective than the search-based repair approach in our experiments.

Although F1X and Prophet was able to fix most of the bugs listed in our benchmark, the quality of the patches are
low. This is indicated in Table 6 column “F1X ” and “Prophet” with the patches produced by both failing on a large
number of differential fuzzing test cases, where the output generated by the program before the fix and after the fix
differ for non-crashing instances. Figure 14 shows the patch comparison for bug ID 1 in Table 4. F1X generates an
overfitting patch for the divide by zero bug (i.e., bug ID 1 in Table 4), which avoids the execution of an API call by
inserting a condition which is always false. The quality of the patch is determined by the differential fuzz testing of
the patch, which shows failure for 13 out of 100 test cases generated using fuzzing, as indicated in Table 6. Similarly,
Prophet generates a patch which exclude the execution of a statement by inserting a false logical connective. The
quality of the patch is revealed to be over-fitting by the differential fuzz testing of the patch which shows failure for two
test cases on average for 100 generated test cases. However, the transplanted patch which is adapted from a developer
patch from JasPer program does not fail on any of the fuzz input generated for differential analysis. Moreover, manual
inspection of the patch, as shown in Figure 14d is correct (semantically equivalent to human patches) for the divide
by zero bug, which checks if the denominator is zero. Furthermore, our evaluation also emphasizes the following: (1)
quality of the patch in automated repair tools depends on the quality of the test suite, (2) it is difficult for automated
repair tools to produce multi-line fixes. Compared to human written patches current methods produce lower quality
patches [13], hence augmenting transplantation techniques can improve the quality of the patches.

6.8 [RQ5] Comparison with Transplantation Tools

We compare our tool with existing transplantation tools to investigate the effectiveness of our approach. There are several
transplantation tools proposed by prior work. CodePhage [51] is the most relevant tool for comparison as it transfers
security fixes, compared to µSCALPEL [8] and CodeCarbonCopy [50] which transfers functionality. However, both
CodePhage and CodeCarbonCopy are not publicly available for evaluation. We requested the authors of CodePhage [51]
to provide access to the tool for comparison purpose, however due to unavoidable circumstances the primary developer
was not available, hence we were not able to obtain the tool. Since µSCALPEL is the only publicly available tool for
evaluation in C programs, we evaluate our approach against µSCALPEL [8]. Table 7 gives an overview of the comparison.

We compare PatchWeave with µSCALPEL [8] for four errors. Since µSCALPEL is designed for transplantation of a
feature, we only consider PatchWeave with µSCALPEL for patches that involves transplantation of a new function.
Specifically, we manually specify the insertion point for the patch and evaluate the effectiveness of µSCALPEL for
four errors. Note that µSCALPEL has an advantage over PatchWeave under this setup because it does not need to search
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ID Donor Target Error Patch Class PatchWeave µSCALPEL

1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III ✓ N/A
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III ✓ N/A
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV ✓ Seg Fault
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III ✓ N/A
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III ✗ N/A
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III ✓ N/A
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III ✓ N/A
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III ✓ N/A
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III ✓ N/A
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III ✓ N/A
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III ✓ N/A
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II ✓ Seg Fault
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I ✓ N/A
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III ✗ N/A
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV ✗ Seg Fault
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III ✓ N/A
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III ✓ N/A
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III ✗ N/A
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II ✓ Seg Fault
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I ✓ N/A
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I ✓ N/A
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I ✓ N/A
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I ✓ N/A
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I ✓ N/A

Total 24 20 0
Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},

Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift},
Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}

Table 7. Comparison with Transplantation Techniques

for the entry points and the insertion points. For each of these errors, as µSCALPEL is based on genetic programming
(GP), we rerun µSCALPEL for 10 times with different seeds for 30 minutes for each run due the stochastic nature of GP.
Table 7 shows that all of the runs for µSCALPEL could not complete as they resulted in segmentation fault. The reason
is because the implementation of µSCALPEL was unable to parse the function in the donor program specifically "JasPer"
which is the donor program for the four errors we tried for transplantation. µSCALPEL fails to extract the function
from the donor program hence unable to successfully repair the bug. We have reported this issue to the developers of
µSCALPEL [8] and the developers have acknowledged the issue. Similar inefficiency of µSCALPEL confirmed with the
results of another prior experiments of µSCALPEL that have been independently conducted by other researchers [27].

6.9 [RQ6] Syntactic vs Semantic Patch Transplantation

While PatchWeave performs semantic patch transplantation based on concolic execution, existing approach (i.e.,
LASE [36]) infers syntactic edit scripts from examples (in our problem formulation in Figure 1, Pb serves as one such
example) and uses the inferred scripts to find edit locations, customizes the script to each location, and applies the
customized script. Since LASE targets Java programs and there are no other syntactic patch transplantation tools
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available for C programs, we implemented a prototype inspired by the LASE [36] technique for comparison purpose.
Our comparison tool uses the same technique of clone detection and AST transformation to locate the insertion point
and transplant the patch. This allows us to perform a comparison of syntactic vs semantic approaches for patch
transplantation. Our prototype implementation uses clone detection to identify a similar function in Pc with the help
of Deckard [18] syntactic distance calculation. It uses GumTree [11] algorithm to formulate an AST transformation
script which can be used to transplant the patch from Pb to Pc . Table 8 shows the overall results of the comparison. The
“Time” column shows the total time taken in minutes for each tool to fix the error/vulnerability, or ✗ to indicate the
repair was unsuccessful. The “Fuzz” column denotes the results of differential fuzz testing in the form of x/y, where x
is the number of test cases where Pc results in a crash and Pd gracefully exits, whereas y is the number of test case
where Pd crashes or produce a different output than Pc . The “Function” column indicates that if the syntactic approach
was able to correctly identify the insertion function for the transplantation, and the “Var Map” column represents if the
AST node matching for variable mapping based on GumTree [11] algorithm was able to correctly map variables used
for the transplantation.

ID Donor Target Error Patch
Class Semantic Method Syntactic Method

Time Fuzz Function Var Map Time Fuzz

1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III 5.0 37/0 ✓ ✗ ✗ -/-
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III 8.0 22/0 ✗ ✗ ✗ -/-
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV 7.5 5/0 ✓ ✗ ✗ -/-
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III 8.5 42/0 ✗ ✗ ✗ -/-
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III ✗ -/- ✗ ✗ ✗ -/-
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III 15.0 9/0 ✗ ✗ ✗ -/-
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III 3.5 52/0 ✗ ✗ ✗ -/-
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III 5.5 20/0 ✓ ✗ ✗ -/-
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III 6.0 42/0 ✗ ✗ ✗ -/-
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III 18.0 46/0 ✗ ✗ ✗ -/-
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III 2.5 90/0 ✗ ✗ ✗ -/-
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II 5.0 99/0 ✓ ✓ 4.0 99/0
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I 11.0 98/0 ✓ ✓ ✗ -/-
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III ✗ -/- ✗ ✗ ✗ -/-
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV ✗ -/- ✗ ✗ ✗ -/-
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III 12.0 42/0 ✓ ✗ ✗ -/-
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III 26.0 18/0 ✗ ✗ ✗ -/-
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III ✗ -/- ✗ ✗ ✗ -/-
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II 8.0 34/0 ✓ ✓ 5.5 40/0
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I 5.5 98/0 ✓ ✓ 10.5 100/0
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I 5.5 29/0 ✓ ✓ 6.0 32/1
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I 26.0 75/0 ✓ ✓ 8.0 76/1
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I 16.0 73/0 ✗ ✗ ✗ -/-
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I 42.0 90/0 ✓ ✓ 6.0 95/0

Total 24 20 20 11 7 6 4
Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},

Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift},
Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}

Table 8. Comparison with Syntactic Patch Transplantation
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Syntactic approach was able to successfully repair almost all bugs in Class-I and Class-II (six out of eight bugs)
because these bugs do not require variable translations. The donor fix included changes which are not relevant for the
bug in ID 13, hence the syntactic approach failed to filter the relevant fix. These two classes represent syntactically
very similar programs such as backporting versions or forked projects, hence AST node matching could find the
correct insertion point once the inserting function is located using clone detection. One interesting observation in our
experiment is that for Class-I and Class-II syntactic method performs better compared to the semantic method. This is
because the semantic method requires expensive symbolic execution to calculate the insertion point while syntactic
method only requires clone detection which is relatively lightweight. Syntactic method was not able to transplant any
of the fixes that require a translation of variables although in few cases it was able to identify the correct insertion
function. This is due to the failure of syntactic approach to map variables across different data-structures. In these cases,
our approach PatchWeave is more effective.

7 DISCUSSION

Variable Mapping Accuracy. For all our experimental evaluations, the variable mapping is successful and we did not
evaluate the mapping separately, because our technique relies on symbolic relationship which defines the equivalence
in terms of the symbolic expressions of the variables. The symbolic expressions are generated from the same input
provided to both programs. There are few limitations in mapping variables using symbolic expressions for memory
pointers and function return values which are not stored as a variable.
Requirement on the number of test cases Our approach requires only one test case for patch transplantation.
Many vulnerability reports include a test case which is mostly available for the developers. Furthermore, recurring
vulnerabilities can find test cases from other similar projects (i.e. donor program or upstream repo of the fork).
Patch Size. As shown in the “Patch Size” column in Table 4, patch size does not have an effect on the transplantation
since the major task is generating the translation between the variables. In fact, the difficulty lies when the patch is
inside a loop which is difficult for symbolic execution to reach (which is one of the difficulties in symbolic execution),
an example is Test Case 15 in Table 4.
Syntactic Prototype. One significant difference in our prototype and LASE [36] technique is that our prototype does
not infer a bug fix pattern based on generalizations of multiple examples. In the patch transplantation problem, only
one patch is provided to transplant from the donor to the target program. Hence, the implemented prototype does not
infer a bug fix pattern from multiple examples as defined in LASE [36]. Nevertheless, our prototype can still be used to
compare the effectiveness of clone detection versus symbolic path condition for identifying the insertion point, as well
as the AST based node matching GumTree algorithm versus symbolic equivalence for variable mapping as discussed in
Section 6.9.

8 RELATEDWORK

Software Transplantation.Automated software transplantation has been applied for solving several software maintenance
tasks, including feature transplantation [8, 28], transplanting validation checks [51], and transplanting shellcode for
remote exploits [7]. µSCALPEL [8] and CodeCarbonCopy [50] transplant new functionality from a donor application
Pb into a recipient application Pc . Both of these approaches require developer to specify the insertion point and identify
the functionality to be extracted for transplantation. µSCALPEL [8] uses genetic programming with program slicing to
transplant functionality from a donor system to a target system but requires manually specifying the entry point of
code and the insertion point in the host program. Meanwhile, CodeCarbonCopy [50] requires manual specification of
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(1) the donor function that captures the functionality to be transplanted, (2) the insertion point in the host program, and
(3) extra parameters for removing irrelevant functionality in the transferred code. Code Phage [51] eliminates errors
such as integer overflow by transferring checks from Pb to Pc . All three approaches are limited in transplanting new
code (e.g., function and check condition) and could not handle the case where the donor and the recipient are code edits
in the form of a patch. Meanwhile, PatchWeave provides a fully automated approach for patch transplantation without
the manual effort required to specify the donor function and the insertion point.

Several techniques transplant Java code edits [27, 66]. Although the donor Pa and the recipient Pc in the patch
transplantation problem could be regarded as code clones, GRAFTER [66] uses code clones for test reuse and differential
testing, whereas PatchWeave uses the similarity between Pa and Pc to automatically identify insertion points. Similar
to our work that encourages code reuse, program splicing [27] reuses existing code from the web, whereas we reuse
security patches. Overall, [66] and [27] supports Java programs instead of C programs but prior study shows that there
are less exact clones in C functions than Java methods [47]. The lack of exact clones in C functions implies that the
clones’ adaptation in C programs could be more challenging than in Java programs.

Patch Transformation Inference. To improve the quality of generated patches, several approaches infer code edits
from Java methods [17, 22, 25, 35, 36], and student-written examples from C# programs [46]. One of the main difference
in transplanting code edits for Java and C, apart from the inherent structure enforced in Java (classes, methods etc),
is locating the insertion point. Java based transformation tools rely on the existence of code clones (a syntactically
similar method) to locate a suitable insertion point. Since such clones are not common for C functions[47], we cannot
rely on clone detection methods to locate an insertion point. For other work on inferring code edits, prior approaches
either infer specifications from reference implementation [32] (with code edits being synthesized from specifications),
or employ predefined repair operators derived from previous program versions and/or patch patterns [19, 55]. Our
approach differs from all of these approaches in that (1) it infers C code edits from existing patches of vulnerabilities, (2)
insertion point of the code edit is found automatically, (3) the approach is not restricted to any specific pattern of code
edits. Long et al use multiple examples to infer a transformation to fix a specific type of bug [25]. However, in reality,
many examples to fix a particular vulnerability may not exist thus preventing such inference techniques.

Automated Program Repair. Several approaches have been proposed to automatically generate patches [24, 26, 30, 33,
34, 37, 41, 54, 56, 59, 60, 62–64]. A review of the area appears in [15]. Though some of the vulnerabilities evaluated could
be fixed automatically by existing repair approaches, our approach does not generate patches from a set of predefined
templates or mutations. Instead, our approach extracts patches from the donor program automatically and transplants
the extracted patches into the host program. Prior research on automated repair [53] have identified the overfitting
problem where the generated patches can overfit a test suite. We alleviate overfitting by transplanting a fix obtained
from a similar program.

Backporting. Backporting new features to older software versions is important in systems such as Linux kernel [58].
Several approaches were proposed to support backporting [14, 39, 45, 57]. Although PatchWeave could be applied for
backporting patches to older versions, our approach is not limited to the case where the donor and the host are different
versions of the same program.

Patch Differencing and Patch Analysis. Various program differencing algorithms have been introduced for comput-
ing source code modifications between two program versions [6, 11, 12, 16, 20, 21, 44, 65]. Our approach relies on
GumTree [11] for (1) extracting edit actions between the donor and the host program, and (2) matching the AST
between Pb and Pc . While other program differencing algorithms may be used to enhance the effectiveness of the patch
adaptation step, we studied a different problem than existing works.
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9 THREATS TO VALIDITY

There are several threats to validity of our approach, related to the external tools we use or the datasets that we use
in our experiments. We seek to mitigate such threats by using actively maintained external tools such as KLEE, and
conducting our experiments on a wide variety of subjects, including those studied by previous work on software
transplantation [51].

We would like to highlight two issues related to the availability of tests. First, we assume the presence of at least
one test (i.e., the exploit). If no test is available, as may be the case in certain domains (e.g., backporting of Linux
patches [40]), our technique cannot be applied as it is. Furthermore, relying only on one test case could result in a patch
that is overfitted, which is likely to disrupt correct behavior of the application. We address this concern, with the use of
differential fuzz testing where we generate mutated inputs from the single failing test case. Then we employ differential
behavior analysis to detect if the transplanted patch introduces disruption to correct behavior, by comparing the output
of Pc and Pd for each generated test-case. Second, due to practical considerations, we have not assumed the presence of
a large number of tests. Moreover, requiring more than one test case is often an impractical requirement since more
often vulnerability reports contain a single-exploit, hence our focus is to provide an automation to help developers fix
the issue given a single test-case is provided. If more tests are available, we could extend our technique to efficiently
navigate all candidate patches and select one (similar to the selection of patches in prior work in program repair e.g.
F1X [31]). However, such a patch space exploration is not part of our current PatchWeave implementation.

10 CONCLUSION

We formulate the patch transplantation problem in this paper. We also propose a fully automated solution to patch
transplantation based on concolic execution. The patch transplantation problem caters to a real-life need in the practice
of software security: even when an important vulnerability is detected and a patch is constructed, it is non-trivial to
adapt the patch for other similar implementations exhibiting the same vulnerability. Indeed, associating a CVE to a
newly found vulnerability and publishing the patch, may make these other similar un-patched implementations more
vulnerable since attackers will have more knowledge on how to exploit the vulnerability. The patch transplantation
problem studied in this paper provides a solution to reduce or remove such exposure to vulnerabilities.
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