
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 1

Coverage-based Greybox Fuzzing
as Markov Chain

Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury

Abstract—Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is
generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it
is discarded. We observe that most tests exercise the same few “high-frequency” paths and develop strategies to explore significantly
more paths with the same number of tests by gravitating towards low-frequency paths. We explain the challenges and opportunities of
CGF using a Markov chain model which specifies the probability that fuzzing the seed that exercises path i generates an input that
exercises path j. Each state (i.e., seed) has an energy that specifies the number of inputs to be generated from that seed. We show
that CGF is considerably more efficient if energy is inversely proportional to the density of the stationary distribution and increases
monotonically every time that seed is chosen. Energy is controlled with a power schedule. We implemented several schedules by
extending AFL. In 24 hours, AFLFast exposes 3 previously unreported CVEs that are not exposed by AFL and exposes 6 previously
unreported CVEs 7x faster than AFL. AFLFast produces at least an order of magnitude more unique crashes than AFL. We compared
AFLFast to the symbolic executor Klee. In terms of vulnerability detection, AFLFast is significantly more effective than Klee on the
same subject programs that were discussed in the original Klee paper. In terms of code coverage, AFLFast only slightly outperforms
Klee while a combination of both tools achieves best results by mitigating the individual weaknesses.

Index Terms—vulnerability detection, fuzzing, path exploration, symbolic execution, automated testing

F

1 INTRODUCTION

R ECENTLY, there has been a controversial debate about
the efficiency of symbolic execution-based whitebox

fuzzers versus more lightweight greybox fuzzers [2], [3].
Symbolic execution is a systematic effort to stress different
behaviors and thus considerably more effective. Yet, today
most vulnerabilities were exposed by particularly light-
weight fuzzers that do not leverage any program analysis.

It turns out that even the most effective technique is less
efficient than blackbox fuzzing if the time spent generating
a test case takes too long [4]. Symbolic execution is very
effective because each new test exercises a different path
in the program. However, this effectiveness comes at the
cost of spending significant time doing program analysis and
constraint solving. Blackbox fuzzing, on the other hand, does
not require any program analysis and generates several
orders of magnitude more tests in the same time.

Coverage-based Greybox Fuzzing (CGF) is an attempt
to make fuzzing more effective at path exploration without
sacrificing time for program analysis. CGF uses lightweight
(binary) instrumentation to determine a unique identifier
for the path that is exercised by an input. New tests are
generated by slightly mutating the provided seed inputs (we
also call the new tests as fuzz). If some fuzz exercises a new
and interesting path, the fuzzer retains that input; otherwise,
it discards that input. The provided and retained seeds are
fuzzed in a continuous loop, contributing even more seeds.

• The authors are affiliated with the Department of Computer Science,
School of Computing, National University of Singpore in Singapore.
E-mail: {marcel, thuanpv, abhik}@comp.nus.edu.sg

• An earlier version appeared at the 23rd ACM Conference on Computer
and Communications Security (ACM CCS’16) [1].

Manuscript received July 01, 2017; revised xxxxxxx.

Compared to symbolic execution, CGF does not require
program analysis which brings several benefits. There is no
imprecision, for instance, in the lifting of the control-flow
graph from the program binary or the encoding of the path
condition as SMT formula. CGF is more scalable because the
time for one test depends on the program’s execution time
rather than its size or complexity. CGF is highly paralleliz-
able because the retained seeds represent the only internal
state. AFL implements the state-of-the-art of CGF, is behind
hundreds of high-impact vulnerability discoveries [5], has
been shown to generate valid image files (JPEGs) from an
initial seed that is virtually empty [6], and has also been
integrated with symbolic execution (which helps where AFL
“gets stuck”) [3]. Clearly, increasing the efficiency of fuzzers,
like AFL, has a real and practical impact on vulnerability
detection.

“Ultimately, the key to winning the hearts and minds of
practitioners is very simple: you need to show them how
the proposed approach finds new, interesting bugs in the
software they care about.” – Michal Zalewski [2]

We discuss challenges of existing CGFs and opportu-
nities to boost their efficiency by an order of magnitude.
Our key observation is that most fuzz exercises the same few
paths: Existing CGFs generate too many inputs which stress
the same behavior. More efficient CGFs exercise more paths
with the same amount of fuzz. For instance, suppose we
want to expose vulnerabilities in libpng. Fuzzing a valid
image file, there may be a 90% chance that a mutated variant
exercises a path π which rejects invalid image files. Fuzzing
an invalid image file, there may be a 99.999% chance that a
mutated variant exercises the same path π. So, independent
of the initial seed image files, an above-average amount of

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 2

fuzz is bound to exercise that path π which rejects invalid
inputs. Informally, we call π a high-frequency path.

In this paper, we propose several strategies to system-
atically bias the fuzzer towards exercising low-frequency
paths so as to explore more paths with the same amount
of fuzz. The results are very encouraging. Our AFL exten-
sion AFLFAST discovered 9 vulnerabilities in GNU binutils
which are now listed as CVEs in the US National Vulner-
ability Database. AFLFAST exposes 6 CVEs up to 14 times
faster than AFL and exposes 3 CVEs that are not exposed
by AFL in eight runs of 24 hours. AFLFAST reports an
order of magnitude more unique crashes than AFL.1 We will
argue that our strategies have no detrimental impact on the
effectiveness of AFL. So, given more than 24 hours, AFL is
expected to report the same unique crashes and expose the
three remaining CVEs.

To explain the remarkable performance gains of AFL-
FAST, we model Coverage-based Greybox Fuzzing (CGF)
as a Markov chain. The chain specifies the probability pij
that fuzzing the seed exercising path i generates an input
exercising path j. We let each state (i.e., seed) have an
energy that specifies the amount of fuzz that is generated by
fuzzing that seed when it is chosen next. For instance, the
minimum energy required to discover a new and interesting
path j by fuzzing the seed which exercises path i is expected
to be p−1ij . Note, however, that in practice pij is clearly
unknown. The energy of a state is controlled by a pre-
defined power schedule.

AFL implements a power schedule that assigns an en-
ergy that is constant in the number of times s(i) the seed
has been chosen for fuzzing. Every time the seed is chosen,
about the same number of inputs are generated. In some
cases, AFL might assign significantly more than the min-
imum energy required to discover a new and interesting
path; in other cases, AFL might assign not enough energy.
In contrast, AFLFAST implements a power schedule that
assigns an energy that is exponential in s(i). When the seed
is fuzzed for the first time, very low energy is assigned.
Every time the seed is chosen thereafter, exponentially more
inputs are generated up to a certain bound. This allows to
rapidly approach the minimum energy required to discover
a new path.

In fact, AFL implements a power schedule that assigns
constantly high energy. Often, 80k inputs are generated for
each seed which takes about one minute. This addresses
the problem of rapid mixing: Independent of the initial seed
inputs, after a (burn-in) time some paths will always be
exercised by significantly more fuzz than others. Assigning
a lot of energy to the inital seeds allows to discover many
more “neighbors” that exercise low-frequency paths. For
instance, it makes sense to fuzz a valid image file for the
longest time with the objective to generate many more valid
image files. It is also a good idea to assign a lot of energy to
these neighbors and their neighbors. However, after some
time, as more seeds are discovered, many seeds will start
to exercise high-frequency paths and AFL ends up assigning
way too much energy. The chance to generate a valid image
file is significantly lower if the latest seed is an invalid file.

1. AFL reports an input that exercises a new and interesting path
and crashes the program (i.e., which would otherwise be retained as new
seed) as a unique crash.

In contrast, AFLFAST implements a power schedule that
assigns energy that is inversely proportional to the density of
the stationary distribution. In other words, it assigns low
energy to seeds exercising high-frequency paths and high
energy to seeds exercising low-frequency paths. To estimate
the fuzzer’s probability of exercising a path i, AFLFAST uses
the maximum-likelihood estimator p̂i = f(i)/n where f(i)
is the number of fuzz exercising i and n is the total number
of fuzz generated throughout the fuzzing campaign.

AFL chooses seeds in the order they are added. Once all
seeds have been fuzzed, AFL resumes with the first. A new
cycle begins. AFLFAST effectuates a different search strategy.
It chooses seeds in the order of their likely progressiveness
(while choosing a seed only once per cycle). In the same
cycle, AFLFAST chooses seeds earlier i) that exercise lower-
frequency paths and ii) that have been chosen less often.
The search strategy allows to fuzz the best seeds early on.
However, independent of the search strategy and given the
same power schedule, when a cycle is completed the same
seeds will have been fuzzed.

We note that power schedules and search strategies
merely impact AFL’s efficiency (i.e., #paths explored per unit
time), not its effectiveness (i.e., #paths explored on average).
Since we do not modify the mutation operatorsthat are
being used for fuzzing, the probability pij to discover path j
by fuzzing the input exercising path i does not change
from AFL to AFLFAST. In other words, AFLFAST effectively
exposes exactly the same vulnerabilities as AFL – only
significantly faster.

In summary, we argue that the effectivness of symbolic
execution stems from the systematic enumeration of paths in
the program. This allows to expose vulnerabilities that hide
deep in the program. Unfortunately, most fuzzers trade this
systematic path coverage for scalability. However, coverage-
based greybox fuzzers maintain some of this effectiveness
by retaining fuzz that exercises paths that have previously
not been exercised. Each new seed results in progress
towards generating even more seeds that exercise even
“deeper” paths. Still, even coverage-based fuzzers tend to
visit certain paths with high frequency, generating too much
fuzz that exercises the same few paths.

To understand the difference in practice, we compared
KLEE [7] and AFLFAST in terms of vulnerability detection
and coverage achieved using the same subjects and settings
that were used in the original KLEE-paper. KLEE exposes six
of the nine KLEE-benchmark errors quicker than AFLFAST.
However, AFLFAST discovered five new bugs that KLEE did
not expose. This indicates that KLEE is able to detect certain
types of errors quickly while it is unable to detect some
other types of errors in the 1-hour time frame. Investigating
the reason, we found that KLEE requires a constraint-based
vulnerability detection mechanism and presumes the com-
pleteness of the constraint-encoding as well as the complete-
ness of the environment modelling. In contrast, AFLFAST
merely executes the program and reports any crashes, e.g.,
via runtime checking. In terms of code coverage, we found
that AFLFAST performs slightly better than KLEE, covering
an average of 82% of executable lines of code in 50 programs
versus 78% for KLEE. However, we believe that a combina-
tion of both techniques is even more powerful, using their
individual strengths to mitigate each others weaknesses.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 3

Our main conceptual contribution is to smartly control
the amount of fuzz generated from a seed, thereby veer-
ing the search towards paths that are exercised with low
frequency, towards paths where vulnerabilities may lurk.
Technically, we achieve this enhanced path coverage using
power schedules and search strategies that do not require
program analysis.

Specifically, our paper makes the following contributions:
• Markov Chain Model. We model coverage-based grey-

box fuzzing as a systematic exploration of the state
space of a Markov chain. We provide insight about the
machinery that drives AFL, which is arguably the most
successful vulnerability detection tool to date. We uti-
lize the model to explain the challenges of AFL and the
remarkable performance gains of our tool AFLFAST.

• Power Schedules. We introduce and evaluate several
strategies to control the number of inputs generated
from a seed, with the objective to exercise a larger
number of low-frequency paths in the same time.

• Search Strategies. We devise and evaluate several
strategies to control the order in which seeds are chosen
for fuzzing, with the same objective.

• Comparison to Symbolic Execution. We empirically
compare the popular symbolic execution engine KLEE
with our implementation of coverage-based greybox
fuzzing, both in terms of vulnerability detection as well
as in code coverage achieved.

• Tool. We published AFLFAST as a fork of AFL. Since
the first release, AFLFAST has had considerable impact
in software security practice, being featured in several
blog posts and hundreds of tweets. AFLFAST was used
by Team Codejitsu who came in 2nd in terms of number
of bugs found2 at the DARPA Cyber Grand Challenge:
https://github.com/mboehme/aflfast

The remainder of this article is structured as follows. After
the introduction in Section 1, we introduce some back-
ground in Section 2. The Markov chain model is introduced
in Section 3 and used to discuss opportunities to boost the
efficiency of CGF in Section 4. We compare our implementa-
tion of boosted CGF (i.e., AFLFAST) with vanilla CGF (i.e.,
AFL) Section 5 and with a symbolic execution engine (KLEE)
in Section 6. After a discussion of related work in Section 8,
we conclude in Section 9.

2 BACKGROUND

2.1 Coverage-based Greybox Fuzzing
FUZZ – an automated random testing tool was first devel-
oped by Miller et al. [8] in early 1990s to understand the
reliability of UNIX tools. Since then, fuzzing has evolved
substantially, becomes widely adopted into practice, and
exposed serious vulnerabilities in many important software
programs [9], [10], [11], [12]. There are three major categories
depending on the degree of leverage of internal program
structure: black-box fuzzing only requires the program to
execute [9], [10], [13] while white-box fuzzing [7], [14], [15],
[16] requires binary lifting and program analysis, for in-
stance, to construct the control-flow graph. Greybox fuzzing

2. See red result bar for Galactica at http://bit.do/cgcresult.

is situated inbetween and uses only lightweight binary
instrumentation to glean some program structure. Without
program analysis, greybox fuzzing may be more efficient
than whitebox fuzzing. With more information about in-
ternal structure, it may be more effective than blackbox
fuzzing.

Coverage-based greybox fuzzers (CGF) [12] use lightweight
instrumentation to gain coverage information. For instance,
AFL’s instrumentation captures basic block transitions,
along with coarse branch-taken hit counts. A sketch of the
code that is injected at each branch point in the program is
shown in Figure 1.

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ˆ prev_location]++;
prev_location = cur_location >> 1;

Fig. 1. AFL’s instrumentation.

The variable cur_location identifies the current basic
block. Its random identifier is generated at compile time.
Variable shared_mem[] is a 64 kB shared memory region.
Every byte that is set in the array marks a hit for a particular
tuple (A,B) in the instrumented code where basic block B
is executed after basic block A. The shift operation in Line 3
preserves the directionality [(A,B) versus (B,A)]. A hash
over shared_mem[] is used as the path identifier.

Algorithm 1 Coverage-based Greybox Fuzzing
Input: Seed Inputs S

1: T7 = ∅
2: T = S
3: if T = ∅ then
4: add empty file to T
5: end if
6: repeat
7: t = CHOOSENEXT(T)
8: p = ASSIGNENERGY(t)
9: for i from 1 to p do

10: t′ = MUTATE INPUT(t)
11: if t′ crashes then
12: add t′ to T7

13: else if ISINTERESTING(t′) then
14: add t′ to T
15: end if
16: end for
17: until timeout reached or abort-signal
Output: Crashing Inputs T7

A CGF uses the coverage information to decide which
generated inputs to retain for fuzzing, which input to fuzz
next and for how long. Algorithm 1 and Figure 2 provides
a general overview of the process and is illustrated in the
following by means of AFL’s implementation. If the CGF
is provided with seeds S, they are added to the queue T ;
otherwise an empty file is generated as a starting point
(lines 1–5). The seeds are choosen in a continuous loop
until a timeout is reached or the fuzzing is aborted (line 7).
AFL classifies a seed as a favorite if it is the fastest and
smallest input for any of the control-flow edges it exercises.
AFL’s implementation of CHOOSENEXT mostly ignores non-
favorite seeds.

https://github.com/mboehme/aflfast
http://bit.do/cgcresult

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 4

For each seed input t, the CGF determines the number
of inputs that are generated by fuzzing t (i.e., #fuzz for t;
line 8). AFL’s implementation of ASSIGNENERGY uses the
execution time, block transition coverage, and creation time
of t. Then, the fuzzer generates p new inputs by mutating
t according to defined mutation operators (line 10). AFL’s
implementation of MUTATE INPUT uses bit flips, simple
arithmetics, boundary values, and block deletion and inser-
tion strategies to generate new inputs.3

Seed
Inputs

S Queue T

CHOOSENEXT &
ASSIGNENERGY

MUTATE
INPUTt t’

ISINTER-
ESTING

✓

✗

Discard

Enqueue

Fig. 2. Architecture of Coverage-based Greybox Fuzzing (CGF)

If the generated input t′ is considered to be “interest-
ing”, it is added to the circular queue (line 14). AFL’s
implementation of ISINTERESTING returns true depending
on the number of times the basic block transitions, that
are executed by t′, have been executed by other seeds in
the queue. More specifically, t′ is interesting if t′ executes
a path where transition b is exercised n times and for all
other seeds t′′ ∈ T that exercise b for m times, we have
that blog2 nc 6= blog2mc where b·c is the floor function.
AFL uses this “bucketing” to address path explosion [3].
Intuitively, AFL retains inputs as new seeds that execute
a new block transition or a path where a block transition
is exercised twice when it is normally exercised only once.
At the same time, AFL discards inputs that execute a path
where some transition is exercised 102 times when it has
previously been exercised 101 times. If the generated input
t′ crashes the program, it is added to the set T7 of crashing
inputs (line 12). A crashing input that is also interesting is
marked as unique crash.

Fuzzing stages. When new seeds are added, AFL runs
a calibration and a deterministic stage. In the calibration
stage, the new seed is executed multiple times to determine
average execution time and whether the associated path
identifier changes across executions. Normally, AFL would
fuzz the seed by randomly choosing a sequence of mutation
operators and apply them to random locations in the seed
file. However, in the deterministic stage AFL applies a
specific set of mutation operators to each input byte of the
seed. We can say that AFL assigns very high energy to a
seed that is chosen for the first time (Line 8).

Binary instrumentation. AFL supports both source code
instrumentation and binary instrumentation via QEMU [17].
While QEMU does the instrumentation during interpreta-
tion at runtime, AFLDynInst [18] injects the instrumentation
shown in Figure 1 directly into the binary.

Modifications. On this high level, our changes of AFL
concern only the functions CHOOSENEXT which implements
the search strategy and ASSIGNENERGY which implements
the power schedules.

3. https://lcamtuf.blogspot.sg/2014/08/
binary-fuzzing-strategies-what-works.html

2.2 Markov Chain
A Markov chain is a stochastic process that transitions from
one state to another [19]. At any time, the chain can be in
only one state. The set of all states is called the chain’s state
space. The process transitions from one state to another with
a certain probability that is called the transition probability.
This probability depends only upon the current state rather
than upon the path to the present state.

More formally, a Markov chain is a sequence of random
variables {X0, X1, . . . , Xn} where Xi describes the state of
the process at time i. Given a set of states S = {1, 2, . . . , N}
for some N ∈ N, the value of the random variables Xi are
taken from S. The probability that the Markov chain starts
out in state i is given by the initial distribution P(X0 = i).

The probability matrix PPP = (pij) specifies the transition
rules. If |S| = N , then PPP is a N ×N stochastic matrix where
each entry is non-negative and the sum of each row is 1.
The conditional probability pij defines the probability that
the chain transitions to state j at time t + 1, given that it is
in state i at time t,

pij = P(Xt+1 = j | Xt = i)

A Markov chain is called time-homogeneous if the proba-
bility matrix (pij) does not depend on the time n. In other
words, every time the chain is in state i, the probability of
jumping to state j is the same.

If a Markov chain is time homogeneous, then the vector
πππ is called a stationary distribution of the Markov chain if for
all j ∈ S it satisfies

0 ≤ πj ≤ 1

1 =
∑
i∈S

πi

πj =
∑
i∈S

πipij

Informally, a Markov chain {X0, X1, . . . , Xn} is called
rapidly mixing if Xn is “close” to the stationary distribution
for a sufficiently low number of steps n. In other words,
rapidly mixing chains approach the stationary distribution
within reasonable time—independent of the initial state.

Random walkers sample the distribution that is described
by a Markov chain. A walker starts at a state according to the
initial distribution and transitions from one state to the next
according to the transition probabilities. The state at which
the walker arrives after n steps is considered a sample of
the distribution. There may be an ensemble of walkers that
move around randomly.

For instance, the crawling of web pages can be modelled
as Markov chain. Pages are the states while the links are the
transitions. Given page i with qi links where one link goes
to page j, the probability pij that a random surfer reaches j
from i in one click is pij = 1/qi. A crawler, like Google,
seeks to index the important pages of the internet. Brin
and Page [20] developed an algorithm, called PAGERANK
that assigns an importance score to each page. Intuitively,
the PAGERANK value of a page measures the chance that
a random surfer will land on that page after a sequence
of clicks. More formally, the PAGERANK approximates the
density of the stationary distribution of the Markov chain
where important pages are located in high-density regions.

https://lcamtuf.blogspot.sg/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.sg/2014/08/binary-fuzzing-strategies-what-works.html

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 5

3 MARKOV CHAIN MODEL

In this paper, we model the probability that fuzzing a seed
which exercises program path i generates a seed which
exercises path j as transition probability pij in a Markov
chain. This allows us to discuss the objective of greybox
fuzzing as the efficient exploration of the chain’s state space
and to explain the challenges and opportunities of CGF and
of AFL specifically. We argue that a coverage-based greybox
fuzzer exercises more distinct paths per unit time if it does
focus on inputs in low-density regions of the Markov chain.
Hence, we devise several strategies to bias the traversal
towards visiting more states in low-density regions and less
states in high-density regions of the stationary distribution.
Before discussing these strategies, we introduce the Markov
chain model.

3.1 Coverage-based Fuzzing as Markov Chain

Time-inhomogeneous model. Suppose, after providing the
fuzzer with an initial seed input t0 that exercises path 0,
the fuzzer immediately explores path i + 1 by randomly
mutating the previous input ti which exercises path i. Every
input that is generated is directly chosen as next seed. The
sequence of paths that the fuzzer exercises is described by
a Markov chain. The transition probability pij is defined as
the probability to generate an input that exercises path j
by randomly mutating the previous input ti that exercises
path i. Clearly, this Markov chain is not time-homogeneous.
The transition probability pij depends on the path in the
Markov chain by which the state i was reached. Say, a
different input t′i is fuzzed that also exercises path i, the
probability pij to generate an input that exercises path j
might be very different. While this is still a Markov chain,
it is not time-homogeneous. The analysis is difficult and the
existence of a stationary distribution is not guaranteed.

Time-homogeneous model. A stationary distribution does
exist for the following model of coverage-based fuzzing. The
state space of the Markov chain is defined by the discovered
paths and their immediate neighbors. Given seeds T , let
S+ be the set of (discovered) paths that are exercised by
T and S− 6⊆ S+ be the set of (undiscovered) paths that
are exercised by inputs generated by the fuzzer fuzzing any
t ∈ T .4 Then the set of states S of the Markov chain is given
as

S = S+ ∪ S−

The probability matrix P = (pij) of the Markov chain is
defined as follows. If path i is a discovered path exercised by
ti ∈ T (i.e., i ∈ S+), then pij is the probability that randomly
mutating seed ti generates an input that exercises the path j.
Else if path i is an undiscovered path that is not exercised
by some t ∈ T (i.e., i ∈ S−), then pii = 1 −

∑
tj∈T pji

and pij = pji for all tj ∈ T . In other words, we make the
following two assumptions. We assume that generating an
input that exercises path j from (undiscovered) seed ti is
as likely as generating from seed tj an input that exercises
(undiscovered) path i. We also assume that i ∈ S− has no
other undiscovered neighbors.

4. An input ti is randomly mutated using mutate_input on ti in
Algorithm 1.

The stationary distribution πππ of the Markov chain gives
the probability that a random walker that takes N steps
spends roughly Nπi time periods in state i. In other words,
the proportion of time spent in state i converges to πi
as N goes to infinity. We call a high-density region of πππ a
neighborhood of paths I where µi∈I(πi) > µtj∈T (πj) and µ
is the arithmetic mean. Similarly, we call a low-density region
of πππ a neighborhood of paths I where µi∈I(πi) < µtj∈T (πj).
Two paths i and j are in the same neighborhood if pij+pji ≥ ε
where ε is an arbitrary constant. It is not difficult to see
that a greybox fuzzer is more likely to exercise paths in a
high-density region of πππ than in a low-density region. Note
that we get a new Markov chain once an undiscovered path
i ∈ S− is discovered.

Sequence of chains. A fuzzing campaign is a sequence
of Markov chains where a transition from one chain to
the next occurs as a new and interesting path is discov-
ered. However, we argue informally that asymptotically there
is only one stationary distribution. First, we clarify what
changes from one Markov chain to the next. Let Tn be a
set of seeds, S+

n be the set of paths exercised by Tn, and
ti be a generated test input, such that ti exercises a path
i 6∈ S+

n . Let Tn+1 = Tn
⋃
{ti}, S+

n+1 be the set of paths
exercised by Tn+1. Let Pn = (pij) be the probability matrix
for the Markov chain specified by Tn and Pn+1 = (qij) the
probability matrix for the Markov chain specified by Tn+1.
For all j, k ∈ S+

n and for all l 6= i s.t. l 6∈ S+
n , we have that

(pjk = qjk)∧(pjl = qjl)∧(plj = qlj)∧(pji = qji)∧(pij 6= qij)

In other words, only the probability of generating an input
exercising path j ∈ S+ or l 6∈ S+ changes when fuzzing
the newly discovered seed ti. The stationary distribution of
the Markov chain specified by Tn+1 is not very different
from the stationary distribution of the chain specified by
Tn. In fact, the similarity increases over time. As more test
inputs are generated, less paths are considered as new and
interesting. So, path discovery decelerates monotonically,
approaching an asymptote. As the number of discovered
paths approaches the asymptotic total number of paths,
the stationary distribution of the current Markov chain
approaches the stationary distribution of the Markov chain
specified by the set of seeds exercising the asymptotic total
number of paths.

Energy & power schedules. We let each state s ∈ S+ have
an energy. The energy of state i determines the number of
inputs that should be generated by fuzzing the seed ti when
ti is next chosen from the queue T . The energy of a state is
controlled by a pre-defined power schedule. Note that energy
is a local property specific to a state (unlike temperature in
simmulated annealing). In Algorithm 1, the power schedule
is implemented by the function ASSIGNENERGY.

Long tails. In our experiments, we observe several no-
table properties of the Markov chain model of coverage-
based greybox fuzzing. For one, the stationary distribution
has a large number of very-low-density regions and a small
number of very-high-density regions. As shown in Figure 3,
30% of the paths are exercised by just a single generated test
input while 10% of the paths are exercised by 1k to 100k
generated test inputs. In other words, most inputs exercise
a few high-frequency paths. Often, these inputs are invalid
while the few inputs exercising the low-frequency paths

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 6

●●
●

●
●●

●●●●●●●●●●
●●

mean = 1288

100

101

102

103

104

105

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Path Index

N
um

be
r

of
 T

es
t C

as
es

Fig. 3. #Fuzz exercising a path (on a log-scale) after running AFL for 10
minutes on the nm-tool.

are valid and interesting. Basically, almost each valid input
would exercise different behavior. Hence, in this paper we
devise strategies to explore such low-density regions more
efficiently.

Rapid mixing. Moreover, such Markov chains are mostly
rapidly mixing. Given our exploration objective, this is most
unfortunate. It takes only a few transitions to “forget” the
initial state and arrive in a high-density region that is visited
by most walkers. After a few transitions, the probability
that the current state corresponds to a high-frequency path
is high, no matter whether the walker started with an initial
seed that exercises a low-frequency path or not, or whether
the walker started with a valid or an invalid input.

Benefits. The Markov chain model of coverage-based
greybox fuzzing has several benefits. For example, it opens
fuzzing for the efficient approximation of numerical pro-
gram properties, such as the worst-case or average exe-
cution time or energy consumption. There exist several
Markov Chain Monte Carlo (MCMC) methods, like Simu-
lated Annealing [21] that offer guarantees on the conver-
gence to the actual value. In the context of vulnerabilty
research, the Markov chain model allows to explain the chal-
lenges and opportunities of existing coverage-based fuzzers,
such as AFL.

3.2 Running Example

On a high level, we model the probability that fuzzing a
test input t ∈ T which exercises some path i generates an
input which exercises path j as transition probabilities pij
in a Markov chain. We illustrate this model using the simple
program in Figure 4 which takes as input a 4-character word
and crashes for the input “bad!”.

void crashme (char* s) {
if (s[0] == ’b’)
if (s[1] == ’a’)
if (s[2] == ’d’)
if (s[3] == ’!’)
abort();

}

Fig. 4. Motivating example

The program has five execution paths. Path 0 (****) is
executed by all strings that do not start with the letter ’b’.
Path 1 (b***) is executed by all strings starting with “b” that
do not continue with the letter ’a’. Path 2 (ba**) is executed
by all strings starting with “ba” that do not continue with

the letter ’d’. Path 3 (bad*) is executed by all strings starting
with “bad” that do not continue with the letter ’!’. Finally,
Path 4 is executed only by the input “bad!”.

Now, let us specify the implementation of MU-
TATE INPUT (MI) in Algorithm 1 to modify a seed input
s = 〈c0, c1, c2, c3〉 to generate new inputs. MI chooses with
equal probability a character c from s and substitutes it by a
character that is randomly chosen from the set of 28 ASCII
characters. For example, the word “bill” exercises Path 1.
With probability 1/4, MI chooses the second character c1
and with probability 1/28 it chooses the letter ’a’ for the
substitution. With a total probability of 210, MI generates
the word “ball” from “bill” as the next test input which
exercises Path 2.

b***

ba**

bad*

bad!

1− 2−10

2−10

3
4

2−10

1
2 + 2−10

2−10

1
4 + 2−9

2−10

2−8

1
4 − 2−10

Fig. 5. Markov chain for motivating example

Figure 5 represents the simplified transition matrix pij
as a state diagram.5 For example, if the current input is the
word “bill”, the Markov Chain is in the state b***. The
likelihood to transition to the state ba** is 2−10 as explained
earlier. In other words, on average it takes 210 = 1024
executions of MI on the word “bill” to exercise Path 3 and
reach state ba**. Given the word “bill”, the likelihood to
transition to the same state b*** is 0.75 because MI may
choose the first letter and ’b’ as substitute or the second
letter and any letter except ’a’ as substitute with a total
probability of 0.25 and it may choose the third or fourth
letter with a total probability of 0.5. The probability to
transition to state **** is

(
1/4− 2−10

)
because MI may

choose the first of four letters and substitute it with any
letter except ’b’.

Notice that there is a very high probability density in
state ****. Most 4-character words do not start with ’b’
such that the initial distribution is heavily biased towards
that state. The random walker can transition to the next state
only with probability 2−10, stays in b*** with probability
3/4 and comes back to the state **** with the approximate
probability 1/4. Many inputs will be generated until the
walker reaches the state bad!.

5. For simplicity, we ignore some low probability transitions, e.g.,
from state **** to state bad!.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 7

3.3 Challenges of Coverage-based Fuzzers
A coverage-based greybox fuzzer is an ensemble of random
walkers in the Markov chain. There is one walker for each
seed t ∈ T . The objective is to discover an interesting path
s ∈ S− that is not exercised by any t ∈ T while generating
a minimal number of inputs. Conceptually, all walkers can
move simultaneously. Technically, resources are limited and
we need to choose which walker can move and how often.
In a sequential setting, the fuzzer chooses the next input
to fuzz t ∈ T according to CHOOSENEXT and generates as
many inputs as determined by p = ASSIGNENERGY(t) in
Alg. 1. Usually, p < M where M ∈ N gives an upper bound
on the number of generated inputs. In AFL, M ≈ 160k.

More Energy Than Needed. AFL implements a schedule
that assigns energy that is constant in the number of times
the corresponding seed has been chosen from the queue.
Let i be a path such that i ∈ S+ and let ti be the seed input
that execises i. Let Xij be a random variable describing the
number fuzz generated from ti before discovering the path
j ∈ S−. We solve for the expected value of Xij using a
recursive argument: The probability of discovering j with
the first fuzz that is generated from ti is pij . The probability
of not discovering j and requiring at least one more fuzz is
(1− pij). Formally,

E[Xij] = pij + (E[Xij] + 1)(1− pij)

=
1

pij

In other words, in expectation the minimum energy that
should be assigned to state i ∈ S+ so that the fuzzer dis-
covers the new state j ∈ S− is 1/pij . Now, AFL’s constant
schedule might assign significantly more or significantly
less energy than is actually required.

Example. Let AFL’s power schedule assign an energy of
p(i) = 216 = 64k to a state i every time ti is chosen.
Since most 4-character words do not start with ’b’, the first
input t0 likely exercises Path 0. After 216 inputs have been
generated by fuzzing t0, several inputs are expected to begin
with the letter ’b’. One input that exercises Path 1 is retained
as seed t1. After another 216 inputs have been generated by
fuzzing t1, at least one input is expected to exercise Path 2
and is retained as t2. Figure 6 shows how the procedure
continues. After a total of 256k inputs were generated from
the four seeds that were retained for each path, the crashing
input is found. A more efficient fuzzer would need to
generate no more than E[X01]+E[X12]+E[X23]+E[X34] =
4 · 210 = 4k inputs to expose the same vulnerability.

#Total Tests State Explored States
1 **** ****

216 + 1 b*** ****, b***
2 · 216 + 1 ba** ****, b***, ba**
3 · 216 + 1 bad* ****, b***, ba**, bad*
4 · 216 + 1 bad! ****, b***, ba**, bad*, bad!

Fig. 6. The crash is found after 218 = 256k inputs were generated by
fuzzing when p = 216 is constant.

Excessive Energy for High-Density Regions. AFL’s power
schedule also assigns constantly high energy: Fuzzing a seed
input often takes about a minute on our machine. This
addresses the problem of rapid mixing. Initial seeds are

often provided such that they exercise interesting paths in
a low-density region in the stationary distribution of the
Markov chain. Assigning high energy to the inital seeds
and the seeds in the immediate neighborhood allows to
discover many more neighbors in the same low-density
region. However, as the retained inputs exercise paths in
high-density regions – and there is a natural tendency –
too much energy is assigned to these states. By definition,
the higher the density of the stationary distribution of the
Markov chain for the given state i, the higher the proportion
of inputs generated by fuzzing ti that will exercise high-
frequency paths.

State **** b*** ba** bad* bad!
1 ba** 1 · 27 1 · 27 2 · 27 0 0
2 **** 5 · 27 1 · 27 2 · 27 0 0
3 b*** 6 · 27 4 · 27 2 · 27 0 0
4 ba** 7 · 27 5 · 27 4 · 27 1 0
5 **** 11 · 27 5 · 27 4 · 27 1 0
6 b*** 12 · 27 8 · 27 4 · 27 1 0
7 bad* 13 · 27 9 · 27 5 · 27 1 · 27 0
8 ba** 14 · 27 10 · 27 7 · 27 1 · 27 0
9 **** 18 · 27 10 · 27 7 · 27 1 · 27 0

10 b*** 19 · 27 13 · 27 7 · 27 1 · 27 0
11 bad* 20 · 27 14 · 27 8 · 27 2 · 27 1

Fig. 7. Total #fuzz exercising the corresponding path when fuzzing the
given state. Too much energy assigned to state **** and not enough
to state bad* once it is discovered. Lines indicate new cycles.

Example. Let the initial seed input be the word ball
and let AFL’s power schedule assign an energy of p(i) =
29 = 512 to a state i every time ti is chosen. This allows
us to discuss the case where the next state is not found
in a single fuzzing iteration and several cycles through the
circular queue might be required. Recall that AFL chooses
the seeds in the order they are added. Figure 7 elaborates
the example. After fuzzing the initial seed input for 29 times,
two new seeds are discovered. About one quarter of the fuzz
(i.e., 27 inputs) exercises paths **** and b***, respectively
(see Fig. 5 and Fig. 7, Row 1). Fuzzing the first discovered
seed (Row 2), all fuzz exercises the same path. Fuzzing
the second discovered seed (Row 3), a quarter of the fuzz
exercises path **** and three quarters exercises path b***.
Since no new seeds are discovered, a new cycle begins with
the initial seed (Row 4). This procedure continues until the
vulnerability is exposed (Row 11). In each row we see that
most fuzz exercises path ****. Evidently, the fuzzer spends
way too much time exercising this high-frequency path. The
same time would be better spent fuzzing the seed exercising
the low-frequency path bad*.

In summary, two challenges of existing coverage-based
greybox fuzzers are: Their power schedules

1) may assign more energy than is required in expectation to
discover a new and interesting path and

2) may assign too much energy to states in high-density
regions of the chain’s stationary distribution and not
enough energy to states in low-density regions.

4 BOOSTING GREYBOX FUZZING

A more efficient coverage-based greybox fuzzer discovers
an undiscovered state in a low-density region while assigning
the least amount of total energy. More specifically,

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 8

1) Search Strategy. The fuzzer chooses i ∈ S+ such that
∃j ∈ S− where πj is low and E[Xij] is minimal.

2) Power Schedule. The fuzzer assigns the energy p(i) =
E[Xij] to the chosen state i in order to limit the fuzzing
time to the minimum that is required to be expected to
discover a path in a low-density region.

In this paper, we propose monotonous power schedules
that first assign low energy which monotonously increases
every time the corresponding seed is chosen from the queue.
This allows to rapidly approach E[Xij]. Moreover, our
power schedules assign energy that is inversely proportional
to the density of the stationary distribution of the Markov
chain. Intuitively, as soon as a new path is discovered, we
want to swiftly explore its general neighborhood expending
only low energy. This allows us to get a first estimate of
whether i lives in a high-density region. Every time i is
chosen thereafter, it is assigned more energy. Intuitively,
after the neighborhood is explored and it is established
that i lives in a low-density region, the fuzzer can in-
vest significantly more energy trying to find paths in the
low-density neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state is
in a low-density region, we prioritize such t ∈ T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
A power schedule regulates the energy p(i) of a state. More
specifically, a power schedule decides how many inputs
are generated by fuzzing the seed ti ∈ T which exercises
path i when ti is selected next. In general, p(i) is a function
of a) the number of times s(i) that ti has previously been
choosen from the queue T and b) the number of generated
inputs f(i) that exercise i. In fact, f(i)/n is the maximum-
likelihood estimator of the CGF’s probability to generate
an input that exercises i and thus approximates the dis-
tribution’s density. We discuss and evaluate several power
schedules.

The exploitation-based constant schedule (EXPLOIT) is
implemented by most greybox fuzzers. After some burn-
in, the assigned energy is fairly constant every time s(i) that
ti is being chosen from the circular queue. The energy p(i)
for state i is computed as

p(i) = α(i) e.g., for AFL (1)

where α(i) is the CGF’s present implementation of
assignEnergy in Algorithm 1 and remains constant as s(i)
or f(i) varies. For instance, AFL computes α(i) depending
on the execution time, block transition coverage, and cre-
ation time of ti. The example in Figure 6 is derived using a
constant schedule.

The exploration-based constant schedule (EXPLORE) is a
schedule that assigns constant but also fairly low energy.
The energy p(i) for state i is computed as

p(i) =
α(i)

β
(2)

where α(i)/β maintains the fuzzer’s original judgement
α(i) of the quality of ti and where β > 1 is a constant.

Cut-Off Exponential (COE) is an exponential schedule that
prevents high-frequency paths to be fuzzed until they be-
come low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

{
0 if f(i) > µ

min
(
α(i)
β · 2

s(i),M
)

otherwise.
(3)

where α(i) maintaints the fuzzer’s original judgement and
β > 1 is a constant that puts the fuzzer in exploration mode
for ti that have only recently been discovered (i.e., s(i) is
low), and where µ is the mean number of fuzz exercising a
discovered path

µ =

∑
i∈S+ f(i)

|S+|
where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz
even from fuzzing other seeds are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Fig. 8. The crash is found after 212 = 4k inputs were generated by
fuzzing with a power schedule.

Example. Figure 8 depicts the states that a greybox fuzzer
explores with the COE power schedule with α(i)/β = 1.
The first test input is chosen at random from the program’s
input space. Since most 4-character words do not start
with ’b’, the first input t0 likely exercises path 0 which
corresponds to state ****. The first time that t0 is fuzzed,
s(0) = 0 and f(0) = µ = 1 so that α(0) = 20. Next time,
s(0) = 1 and f(0) = µ = 2 so that α(0) = 21. When
s(0) = 9 and α(0) = 29, 210 test inputs will be generated
so that one generated test input t1 is expected to start with
the letter ’b’ and the state b*** is discovered (see Fig. 5).
Now, the newly discovered state is assigned low energy
α(1) = 20. However, f(0) > µ so that soley t1 will be fuzzed
in a similar fashion as t0 until s(1) = 9, α(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**
is discovered. Figure 8 shows how the procedure continues.
After 4k test inputs were generated from the four inputs that
were retained for each path, the crashing input is found.
The random generation of the same string would require
five orders of magnitude more inputs on average (4 · 106k
random inputs) while the constant schedule in Figure 6
would require one order of magnitude more test inputs on
average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 9

schedule induces to fuzz ti inversely proportional to the
amount of fuzz f(i) that exercises path i. The energy p(i)
that this schedule assigns to state i is computed as

p(i) = min

(
α(i)

β
· 2

s(i)

f(i)
,M

)
(4)

Intuitively, f(i) in the denominator allows to exploit ti
that have not received a high number of fuzz in the past
and is thus more likely to be in a low-density region. The
exponential increase with s(i) allows more and more energy
for paths were we are more and more confident that they
live in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i) that
ti has been chosen from T , yet is also inversely proportional
to the amount of fuzz f(i) that exercises path i.

p(i) = min

(
α(i)

β
· s(i)
f(i)

,M

)
(5)

The quadratic schedule (QUAD) increases the energy of a
state i in a quadratic manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i. The energy
p(i) for state i is computed as

p(i) = min

(
α(i)

β
· s(i)

2

f(i)
,M

)
(6)

4.2 Search Strategies
While a power schedule regulates the time spent fuzzing a
seed, a search strategy decide which seed is chosen next. The
decision is purely based on the number of times a seed has
been fuzzed before and the amount of fuzz exercising the
same path as the seed. An efficient coverage-based greybox
fuzzer prioritizes inputs that have not been fuzzed very
often and inputs that exercise low-frequency paths.

Prioritize small s(i)s(i)s(i). This strategy chooses ti ∈ T such
that the number of times s(i) that ti has been fuzzed is
minimal. However, the fuzzer may still decide to skip the
choosen test input, for instance if it is not a designated
favourite. In that case, the search strategy is applied again
until the fuzzer does not skip the input. Effectively, the
queue is reordered using the search strategy. Intuitively, the
fuzzer can establish early whether or not path i is a low-
frequency path and whether it should invest more energy
into fuzzing ti.

Prioritize small f(i)f(i)f(i). This strategy chooses ti ∈ T
such that the number f(i) of generated inputs that exercise
path i is minimal. The fuzzer may skip the chosen test
input, for instance if it is not a designated favourite, until
finally an input is chosen according to the search strategy
and accepted for fuzzing. Intuitively, fuzzing an input that
exercises a low-frequency path might generate more inputs
exercising low-frequency paths.

5 EVALUATION: VANILLA VERSUS BOOSTED CGF
We compare AFLFAST our implementation of the presented
monotonous power schedules with AFL 1.94b the baseline
implementation featuring a constant schedule.

5.1 Implementation: AFLFAST 1.94b

AFL is a coverage-based greybox fuzzer that collects in-
formation on the basic block transitions that are exercised
by an input. AFL’s binary instrumentation is discussed in
Section 2.1. In our experiments, we extended version 1.94b.
AFL implements certain strategies to select “interesting”
inputs from the fuzz to add to the queue. We did not
change this functionality. AFL addresses path explosion
by “bucketing” – the grouping of paths according to the
number of times all executed basic block transitions are
exercised. We did not change this functionality either. All
changes were made to ASSIGNENERGY and CHOOSENEXT
in Algorithm 1.

Changes for Power Schedule. We changed the computation
of the amount of fuzz p(i) that is generated for an input
ti. Firstly, AFL computes p(i) depending on execution time,
transition coverage, and creation time of ti. Essentially, if
it executes more quickly, covers more, and is generated
later, then the number of fuzz is greater. We maintain this
evaluation in the various power schedules discussed above.
Secondly, AFL executes the deterministic stage the first time
ti is fuzzed. Since our power schedules assign significantly
less energy for the first stage, our extension executes the
deterministic stage later when the assigned energy is equal
to the energy spent by deterministic fuzzing. Lastly, AFL
might initially compute a low value for p(i) and then
dynamically increase p(i) in the same run if “interesting”
inputs are generated. Since our implementation controls p(i)
via a power schedule, we disabled this dynamic increase.

Changes for Search Strategy. We changed the order in
which AFL chooses the inputs from the queue and how
AFL designates “favourite” inputs that are effectively ex-
clusively chosen from the queue. Firstly, for all executed
basic block transitions b, AFL chooses as favourite the fastest
and smallest inputs executing b. AFLFAST first chooses the
input exercising b with the smallest number of time s(i)
that it has been chosen from the queue, and if there are
several, then the input that exercises a path exercised by the
least amount of fuzz f(i), and if there are still several, then
the fastest and smallest input. Secondly, AFL chooses the
next favourite input which follows the current input in the
queue. AFLFAST chooses the next favourite input with the
smallest number of time s(i) that it has been chosen from
the queue and if there are several, it chooses that which
exercises a path exercised by the least amount of fuzz f(i).

While AFLFAST has since been improved, the version
we used for the experiments is still available at https://
github.com/mboehme/aflfast/tree/AFLFast.old.

5.2 Vulnerabilities

We chose GNU binutils v2.26 as subject because it is non-
trivial and widely used for the analysis of program bi-
naries. It consists of several tools including nm, objdump,
strings, size, and c++filt. We zoom into some results
by discussing the results for nm in more detail. Binutils is a
difficult subject because the fuzzer needs to generate some
approximation of a program binary in order to exercise
interesting behaviors of the programs. We found a large
number of serious vulnerabilities and several bugs (listed
in Table 1).

https://github.com/mboehme/aflfast/tree/AFLFast.old
https://github.com/mboehme/aflfast/tree/AFLFast.old

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 10

TABLE 1
CVE-IDs and Exploitation Type

Vulnerability Type
CVE-2016-2226 Exploitable Buffer Overflow
CVE-2016-4487 Invalid Write due to a Use-After-Free
CVE-2016-4488 Invalid Write due to a Use-After-Free
CVE-2016-4489 Invalid Write due to Integer Overflow
CVE-2016-4490 Write Access Violation
CVE-2016-4491 Various Stack Corruptions
CVE-2016-4492 Write Access Violation
CVE-2016-4493 Write Access Violation
CVE-2016-6131 Stack Corruption
Bug 1 Buffer Overflow (Invalid Read)
Bug 2 Buffer Overflow (Invalid Read)
Bug 3 Buffer Overflow (Invalid Read)

All vulnerabilities were previously unreported and rated
as medium security risk. We informed the maintainers,
submitted patches, and informed the security community
via the ossecurity mailing list.6 Mitre assigned nine (9) CVEs.
At the time of writing, all patches have been accepted. These
vulnerabilities affect most available binary analysis tools
including valgrind, gdb, binutils, gcov and other libbfd-
based tools. An attacker might modify a program binary
such that it executes malicious code upon analysis, e.g., an
analysis to identify whether the binary is malicious in the
first place or when trying to reverse-engineer the binary.

TABLE 2
Subjects from Binutils

Utility Parameters File Size
c++filt @@ 27kB
nm -C @@ 41kB
objdump -d @@ 36kB
readelf -a @@ 49kB
size @@ 32kB
strings @@ 28kB

Subjects. The specific utilities and command line parame-
ters are shown in Table 2. The parameter @@ is a placeholder
for the file that the fuzzer generates as input.

Measure of #paths. AFL maintains a unique path inden-
tifier cksum for each input in the queue that is computed
as a hash over the shared memory region that has a bit
set for each basic block transition that is exercised by t. We
implemented a map {(cksum(i), f(i)) | ti ∈ T} that keeps
track of the number of generated (and potentially discarded)
inputs for each exercised path.

Measure of #crashes. AFL defines unique crash as follows.
If two crashing inputs exercise a path in the same “bucket”,
then both inputs effectively expose the same unique crash.

Experimental Infrastructure. We ran our experiments on a
64-bit machine with 40 cores (2.6 GHz Intel R© Xeon R© E5-
2600), 64GB of main memory, and Ubuntu 14.04 as host
OS. We ran each experiment eight times for six hours,
except for nm which was run eight times for 24 hours. We
ran 40 experiments simultaneously, that is, one experiment
was run on one core. All 40 experiments were also started
and stopped simultaneously. So, there is no advantage for
experiments that run longer. For each experiment, only one
seed input is provided — the empty file. Time is measured
using unix time stamps.

6. http://www.openwall.com/lists/oss-security/2016/05/05/3

5.3 General Results

c++filt nm objdump

readelf size strings

10

1000

10

1000

0 2 4 6 0 2 4 6 0 2 4 6
Time (in hours)

N
um

be
r

of
 U

ni
qu

e
C

ra
sh

es

Fig. 9. Average #crashes over time (on a log-scale) for AFLFAST (solid
line) vs. AFL (dashed line) computed as mean over all runs in five minute
intervals.

Crashes over time. After 6h, AFLFAST found one and
two orders of magnitude more unique crashes than AFL in
c++filt and nm, respectively.7 AFLFAST found 30 unique
crashes in objdump where AFL found no crash at all. None
of the fuzzers found a crashing input for the remaining three
studied tools in any of eight runs of six hours. For each
tool, the number of crashes found over time is shown in
Figure 9. In what follows, we investigate the unique crashes
generated for nm with a 24 hour budget in more details.

TABLE 3
Time to expose the vulnerability.

Vulnerability AFL AFL-Fast Factor
CVE-2016-2226 > 24.00 h 3.85 h N/A
CVE-2016-4487 2.63 h 0.46 h 5.8
CVE-2016-4488 6.92 h 0.98 h 7.0
CVE-2016-4489 10.68 h 2.78 h 3.8
CVE-2016-4490 3.68 h 0.41 h 9.1
CVE-2016-4491 > 24.00 h 4.74 h N/A
CVE-2016-4492 12.18 h 0.87 h 14.1
CVE-2016-4493 4.48 h 1.00 h 4.5
CVE-2016-6131 > 24.00 h 5.48 h N/A
Bug 1 20.43 h 3.38 h 6.0
Bug 2 20.91 h 2.89 h 7.2
Bug 3 > 24.00 h 5.07 h N/A

Vulnerabilities in nm. On average, AFLFAST exposes
the CVEs seven (7) times faster than AFL and exposes three
(3) CVEs that are not exposed by AFL in any of eight runs
in 24 hours. AFLFAST exposes all found vulnerabilities in
2h17m, on average while AFL would require more than
12h30m. The first three rows of Figure 10 show the results
for the vulnerabilities in the nm tool in more details. Each
facet compares AFLFAST on the left hand-side and AFL on
the right hand side using a box plot with a jitter overlay.
In all of eight runs, AFLFAST consistently and significantly
outperforms classic AFL. The average time to first exposure
is shown in Table 3. All vulnerabilities are exposed within
the first six hours. The exponential power schedule and
improved search strategies clearly boost the efficiency of the
state-of-the-art coverage-based greybox fuzzer.

7. Notice the logarithmic scale in Figure 9.

http://www.openwall.com/lists/oss-security/2016/05/05/3

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 11

●

●

●

●

● ● ●● ●●● ●
●

●

●●
●●

●
● ●

●

●

●● ●

●

●●● ●

●

●

●

●
●

● ●

●

●●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●

●● ●● ● ●●●

●
●

●

●
●

●●●

●
●

●

●

●

●
●● ●● ●●

●

●

●

●

●

●
●

●

●

● ●
●●● ●●

●
●

●
●●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

CVE−2016−2226 CVE−2016−4487 CVE−2016−4488

CVE−2016−4489 CVE−2016−4490 CVE−2016−4491

CVE−2016−4492 CVE−2016−4493 CVE−2016−6131

Bug 1 Bug 2 Bug 3

0

4

8

12

16

20

24

0

4

8

12

16

20

24

0

4

8

12

16

20

24

0

4

8

12

16

20

24

AFL−FAST AFL AFL−FAST AFL AFL−FAST AFL

T
im

e
(in

 h
ou

rs
)

Fig. 10. Time to expose the vulnerability.

Bugs in nm. AFLFAST finds two buffer overflows seven
(7) times faster than AFL. AFLFAST also exposes a third
bug which is not exposed by AFL at all. The three overflows
are invalid reads and unlikely to be exploitable. The last
row of Table 1 shows more details. Again, our extension
consistently outperforms the classic version of AFL.

Independent Evaluation. We note that our collaborators,
Team Codejitsu at DARPA Cyber Grand Challenge (CGC),
evaluated both AFL and AFLFAST on all 150 benchmark
programs that are provided as part of the CGC. On these
binaries, AFLFAST exposes errors 19x faster than AFL, on
average. In one run, AFL exposed four errors that are not
exposed by our extension. However, AFLFAST exposed
seven errors that are not exposed by AFL. Team Codejitsu
integrated AFLFAST in their bot Galatica to prove vulnera-
bilities in the other teams’ binaries. Galactica went on to take
2nd place in the CGC finals in terms of number of bugs found.
A thorough discussion and reflection of the CGC experience
will not be covered in this article. However, we think that
Codejitsu’s success demonstrates the potential of AFLFAST.

Low-frequency Paths. In this paper, we argue that the
fuzzing time is better spent exploring low-frequency paths.
Firstly, we believe that low-frequency paths are more likely
to be exercised by valid inputs that stress different behaviors
of the program. Secondly, less time is wasted fuzzing high-

●●
●
●
●●●●
●●●●
●●●●
●●

●●●●●●●●●●●●●
●●●

AFL−FAST

mean = 382

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r

of
 T

es
t C

as
es

●●
●

●
●●

●●●●●●●●●●
●●

mean = 1288

AFL

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r

of
 T

es
t C

as
es

Fig. 11. #Fuzz exercising a path (on a log-scale) after running AFL for
10 minutes on the nm-tool.

frequency paths that are exercised by most fuzz anyways.
Finally, it allows the coverage-based greybox fuzzer to effi-
ciently discover more paths per generated input. As we can
see in Figure 11, indeed our heuristics generate more fuzz
for low-frequency paths and less fuzz for high-frequency
paths. In 10 minutes, AFLFAST discovered twice as many
paths as AFL. For AFLFAST only 10% of the discovered
(low-frequency) paths are exercised by just one input while
for AFL, 30% are exercised by just one input. The mean
amount of generated test inputs per path is about three
times higher for AFLFAST. This clearly demonstrates the ef-
fectiveness of our heuristics in exploring a maximal number
of (low-frequency) paths while expending minimum energy.

5.4 Comparison of Power Schedules

Earlier, we introduced two constant and four monotonous
power schedules. AFL adopts a constant power schedule
and assigns a fairly high amount of energy. Basically, the
same input will get the same performance score the next
time it is fuzzed. This is the exploitation-based constant
schedule (exploit). To understand the impact of our choice
to start with a reduced fuzzing time per input, we also
investigate an exploration-based constant schedule (explore)
that assigns a fairly low and constant amount of energy. The
monotonous schedules increase the fuzzing time in a linear,
quadratic, or exponential manner. Specifically, AFLFAST
implements an exponential schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r

of
 U

ni
qu

e
C

ra
sh

es Schedule

afl−fast

coe

exploit (afl)

explore

linear

quad

Fig. 12. #Crashes over Time (Schedules).

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 12

Results. The exponential schedule that is implemented
in AFLFAST outperforms all other schedules. The cut-off
exponential schedule (coe) performs only slightly worse
than AFLFAST. After 24 hours, both schedules (fast and
coe) exposed 50% more unique crashes than the other three
(linear, quad, and explore). Interestingly, the exploration-
based constant schedule (explore) starts off by discovering
a larger number of crashes than any of the other schedules;
it fuzzes each input quickly and swiftly moves on to the
next. However, this strategy does not pay off in the longer
run. After 24 hours, it performs worse than any of the
other schedules (except AFL’s exploitation-based constant
schedule). The quadratic schedule (quad) starts off revealing
a similar number of unique crashes as AFLFAST but at the
end of the 24 hour budget it performs comparably to the
other two (linear and explore).

5.5 Comparison of Search Strategies
Our search strategies prioritize inputs that have not been
fuzzed very often (small s(i)) and inputs that exercise low-
frequency paths (small f(i)). In the following, we inves-
tigate two strategies targeting the implementation of AS-
SIGNENERGY and CHOOSENEXT in Algorithm 1. Strategy 1
designates as favourites ti ∈ T where s(i) and f(i) are
small, and then where execution time, transition cover-
age, and creation time are minimal.8 Without Strategy 1,
AFLFAST (like AFL) designates as favorites ti ∈ T where
execution time, transition coverage, and creation time are
minimal. Strategy 2 chooses the next input ti from the queue
where s(i) and f(i) are minimal and ti is a favourite. With-
out Strategy 2 AFLFAST (like AFL) chooses the next input
from the queue that is marked as favourite. All strategies
are run with the exponential power schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r

of
 U

ni
qu

e
C

ra
sh

es

Schedule

Both Strategies

No Strategy

Strategy 1

Strategy 2

Fig. 13. #Crashes over Time (Search Strategies).

Results. The combination of both strategies is signifi-
cantly more effective than any of the strategies individually
(Figure 13). Until about 12 hours the other strategies per-
form very similarly. After 24 hours as individual strategy,
strategy 1 which changes how AFL designates the favourite
is more effective than strategy 2 and no strategy in the long
run. As individual strategy, the strategy 2 which changes the
order in which test inputs are chosen from the queue seems
to be not effective at all. It performs similarly compared
to running AFLFAST without any strategies (comparable
to AFL but with exponential power schedule). However,
after 24 hours, AFLFAST with both strategies exposes almost
twice as many unique crashes as AFLFAST with no strategy
or with only strategy 1.

8. For more details see Section 5.1.

5.6 Result Summary
We evaluated AFLFAST and several schedules plus search
strategies on the GNU binutils v2.26. The exponential sched-
ule outperforms all other schedules while our search strate-
gies turn out to be effective. In eight runs of six hours,
AFLFAST with an exponential schedule found an average
of more than one order of magnitude more unique crashes
than AFL for the tools nm and c++filt; it found crash-
ing inputs for objdump where AFL did not expose any
crashes at all. In eight runs of 24 hours, AFLFAST found
6 vulnerabilities in nm 7x faster than AFL and exposed 3
vulnerabilities that were not exposed by AFL. AFLFAST
also exposes two bugs in nm (that are unlikely exploitable)
about seven times faster than AFL and exposed one bug
that is not exposed by AFL. An independent evaluation
of Team Codejitsu on all 150 binaries that are provided in
the benchmark for the Cyber Grand Challenge establishes
similar results. On average, AFLFAST exposes an error 19
times faster than AFL and also exposes 7 errors that are not
found by AFL, at all.

6 SYMBOLIC-EXECUTION-BASED WHITEBOX
FUZZING VS COVERAGE-BASED GREYBOX FUZZING

We compare AFLFAST our boosted coverage-based greybox
fuzzer implementing the exponential schedule with the
most recent version of KLEE v1.2-094a2183 [7] a widely-
used state-of-the-art symbolic-execution-based whitebox
fuzzer—both in terms of vulnerability detection and in
terms of code coverage. For the comparison in terms of vul-
nerability detection, we use the same subjects as the authors
of KLEE when it was originally introduced, GNU Coreutils
v6.10-1440ca24. Having exposed previously unreported
errors that still existed in the most recent version, we were
motivated to repeat this experiment on the most recent
version, Coreutils v8.25-f1799198. For the comparison
in terms of code coverage, we use the most recent version of
Coreutils v8.25-f1799198.

6.1 Conceptual Comparison
Symbolic execution is designed for efficient path exploration,
the systematic enumeration of the paths in a program.
For each path in the control-flow graph of a program, the
symbolic execution engine can construct a path constraint, a
quantifier-free first-order logic formula that is satisfied by
all inputs exercising this path. The path constraint is con-
structed as the conjunction of branch constraints. One branch
constraint is added to the path constraint for each conditional
instruction along the control-flow-path, deciding whether
the true or false branch should be exercised next. The
resulting path constraint is passed to a Satisifiability Modulo
Theorem (SMT) solver to provide an input that satisfies the
path constraint and thus exercises the path. KLEE [7] is a
symbolic-execution engine that implements several search
heuristics to explore paths particularly that yield a high
degree of code coverage quickly.

In contrast, blackbox fuzzers are not at all designed for
path exploration. They treat the program as a blackbox
whence there is no notion of program path. However, black-
box fuzzers can generate an enourmous amount of inputs in

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 13

a very short time. In earlier work, we showed that even the
most effective fuzzer is less efficient than blackbox fuzzing
if generating a test input takes relatively too long [4]. Since
the blackbox fuzzer generates so many inputs (compared to
a symbolic execution engine), many paths will be explored
quickly in a collateral, incidental manner. However, the
blackbox fuzzer’s ability to discover new paths quickly
decelarates while the symbolic execution engine keeps on
discovering new paths steadily. So, the symbolic execution
engine outperforms the blackbox fuzzer when more time is
available.

Now, a coverage-based greybox fuzzer (CGF) is much
better at path exploration than a blackbox fuzzer. The ob-
jective of a CGF is explicitly to discover as many new and
interesting paths as possible. A CGF leverages lightweight
instrumentation to identify which path is exercised by an
input. It uses the inputs that were retained because they
exercised new and interesting paths to explore their neigh-
borhood and discover further new and interesting paths
that were otherwise difficult to reach from the original
seed inputs. While symbolic execution uses program analy-
sis, tainting, and constraint solving, a CGF still uses only
random mutations of the seed inputs, retaining much of
the efficiency of blackbox fuzzers. Our power schedules
improve on the capability to explore a maximal number of
paths per unit time.

Hence, we compare KLEE and AFLFAST head to head
to determine which one is better at path exploration, code
coverage, and exposing errors. We leverage the same bench-
marks as the original KLEE paper. However, we note that
such tool comparisons should always be taken with a grain
of salt. An empirical evaluation is always comparing only
the implementations of two concepts rather than the con-
cepts themselves. Improving the efficiency or extending the
search space may only be engineering effort unrelated to
the concept [22]. We make a conscious effort to explain
the observed phenomena and distinguish conceptual from
technical origins.

6.2 Fuzzing Command Line Utilities using AFLARGV

The GNU Coreutils [23] is a collection of more than 50
widely used command-line tools, including cp to copy files
and mkdir to create new directories. An overview of the
utilities for a more recent version is shown in Table 4.
Most utilities have mandatory and optional command line
parameters and process one or more files. Given lower and
upper bounds on the number and size of options and files,
KLEE is able to synthesis both options and files during the
symbolic execution. However, AFLFAST (just like AFL) can
only generate a single file as program input.

To facilitate the proper testing of the Coreutils command-
line utilities, we implemented AFLARGV a simple tool that
takes (i) lower and upper bounds on the number and
size of command-line options and files and (ii) an input
file, and disassambles the given file into command-line op-
tions and the required number of files. AFLARGV allows
to specify the upper and lower bounds using the same
format as KLEE.9 The AFLARGV arguments -sym-args
<MIN> <MAX> <N> would specify between MIN and MAX

9. https://klee.github.io/docs/options/#klee-usage

number of command-line options of maximum length N
characters. The AFLARGV arguments -sym-files <MIN>
<MAX> <N> would specify between MIN and MAX number
of files of maximum N bytes. There can be one argument
-file that specifies a file of arbitrary length. For instance,
to use AFLFAST with AFLARGV to fuzz the utility md5sum
with up to one argument of maximum length four and a file
of arbitrary length, we would execute:
$ afl-fuzz -i in -o out \

aflargv -sym-args 0 1 4 -file md5sum

The file format leverages fixed-length data chunks to acco-
modate the actual values and size for the specified options
and files. For instance, AFLFAST generates the following
fuzz as input to AFLARGV:

1 2 3

0xFF 0x02 0x2D 0x66 0x00 0x00 0x09 ...
A file is a sequence of bytes split into chunks.

Via the AFLARGV arguments, we specified up to one
command-line option of maximum four characters. The first
two bytes 1 specify that this optional parameter is indeed
used and that the parameter is two characters long. The
following four bytes 2 specify the ASCII code of the actual
argument. Only two bytes are interpreted (’0x2D 0x66’
is ASCII code for "-f"). The remaining two bytes are
ignored. Via the AFLARGV arguments, we specified a file
of arbitrary length. Hence, everything beyond the sixth byte

3 is interpreted as file content.
AFLFAST is oblivious to AFLARGV. As far as the fuzzer

is concerned, it generates inputs with the objective to dis-
cover a maximum number of paths per unit time. Given the
generated fuzz, AFLARGV synthesizes the files and passes
the corresponding command-line parameters to the tool
under test which (as per normal) provides feedback on the
discovered paths. In our example, AFLARGV generates a file
t1.txt and calls md5sum -f t1.txt.

6.3 Experimental Setup
We used the same subjects and experimental parameters10

as provided in the original KLEE paper [7] in order to
mitigate experimenter bias and allow for a fair comparison.
We run each fuzzing campaign for one (1) hour using the
same experimental infrastructure that was discussed earlier
(Sec. 5.2). We start KLEE and AFLFAST with the following
command-line options (as provided by the authors):

-sym-args 0 1 10 -sym-args 0 2 2 -sym-files 1 8

We start AFLFAST with no options and an empty file.
Technically, we assembled a single, “empty” seed file rep-
resenting the minimum number of options, all of length
zero characters, and the minimum number of files, all of
size zero bytes. AFLARGV also allows to assemble such a
file from a provided set of arguments and files according to
the required file format. This would be important when we
needed to seed the fuzzer using test cases from an existing
regression test suite. However, we do not actually utilize
that functionality in our experiments.

We measure effectiveness by executing the generated
inputs on the utilities compiled with AddressSanitizer [24].

10. Tutorial at https://klee.github.io/tutorials/testing-coreutils.

https://klee.github.io/docs/options/#klee-usage
https://klee.github.io/tutorials/testing-coreutils

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 14

6.4 Vulnerability Detection
In this experiment, we compare the symbolic execution-
based whitebox fuzzer KLEE and our boosted greybox
fuzzer AFLFAST in terms of vulnerability detection. We use
the KLEE benchmark, a collection of bugs that were reported
in the original KLEE paper [7].

First, we measure the time it takes to expose these errors
(efficiency). Second, we discuss bugs found only by AFLFAST
but not by KLEE (effectivenness). Finally, encouraged by our
findings, we conducted an experiment using the most recent
version of Coreutils where we compare AFLFAST and KLEE
in terms of previously unreported bugs found (effectiveness).

KLEE AFLFAST How to Reproduce
09:48 > 1h md5sum -c t1.txt
18:49 00:20 mkdir -Z a b
09:30 00:20 mkfifo -Z a b
00:02 00:24 mknod -Z a b p
00:16 01:53 paste -d\\ abcdefghijklmnopqrstuvwxyz
16:17 21:56 pr -e t2.txt
00:04 07:14 ptx -F\\ abcdefghijklmnopqrstuvwxyz
00:03 01:31 seq -f %0 1
> 1h 05:00 tac -r t3.txt t3.txt
where files t1.txt: "\t \tMD5 ("

t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"

Fig. 14. Time to expose the KLEE benchmark bugs. KLEE is fairly deter-
ministic. So, we report the results for one run (as min:sec). AFLFAST
is a random approach. Hence, we report the mean over ten runs.

Results (Efficiency). On the KLEE benchmark, KLEE is
more efficient than AFLFAST for six out of nine bugs (Figure 14).
However, on average AFLFAST requires much less time to
expose an error than KLEE. Specifically, the mean time-to-
exposure is 4:49 for AFLFAST and 6:51 for KLEE. Moreover,
we note that the KLEE benchmark consists of bugs that
were explicitly discovered and reported by the authors of
KLEE, which introduces a selection bias: KLEE might be best
in discovering those errors that it did discover (but not in
discovering those that it did not discover).

KLEE outperforms AFLFAST in terms of efficiency on the
KLEE benchmark bugs.

How to reproduce Crash Location Symptom
pr -l55555555 -5 pr.c:1918 Memory exhausted
echo ""| ptx -Wˆ.* -O regexec.c:2354 Buf. Overflow (W)
echo ""| ptx -fW ˆ regex internal.c:940 Buf. Overflow (R)
echo ""| ptx -W.++* A regexec.c:3780 Buf. Overflow (R)
echo ""| ptx "-W\\|" A regexec.c:2312 Buf. Overflow (R)
where file A: "\n"

Fig. 15. Bugs found only by AFLFast in the same subjects using in [7]
for Coreutils v6.10. These bugs are not fixed in v6.11. The bug in Row 1
is an integer overflow that leads to memory exhaustion and still exists
in the most recent version (v8.25-f1799198). The remaining bugs are
heap-based buffer overflows in the regular expression component of
GNULIB that is used by Coreutils.

Results (Effectiveness). On the benchmark, AFLFAST and
KLEE fail to discover one bug in the KLEE benchmark. Moreover,
AFLFAST discovered five bugs that KLEE did not find, one
of which still existed in the most recent version of Coreutils
(Figure 15). The four buffer overflows in ptx that only
AFLFAST could detect should be within the search space
of KLEE. However, we are unsure whether KLEE has even
the capability to detect that pr tries to allocate a negative

amount of memory, which together with an integer overflow
leads to memory exhaustion. We investigated the failure to
detect the bugs within the one hour time budget. For KLEE,
we attribute the failure to discover the bug in tac to recent
changes in KLEE. For AFLFAST, we attribute the failure to
discover the bug in md5sum to the difficulty to synthesize
the specific sequence of characters required to expose the
bug (see Figure 14). AFLFAST must generate a file contain-
ing a specific sequence of eight bytes and the option -c to
expose the bug. We note, however, that AFLFAST can detect
the bug with a two hour time budget.

AFLFAST outperforms KLEE in terms of effectiveness
within the 1-hour time frame.

A
FL

FA
ST

K
L

E
E

How to reproduce / Error type Bug Report
pr -l55555555 -5

4 8 Allocating negative #memory http://bugs.gnu.org/24996
split -n2/3 /dev/null

4 8 Buffer Underflow (Heap, Write) http://bugs.gnu.org/25003
printf "abcde\x00\x00\x00a " \| od -tazfL -

4 8 Segmentation Fault http://bugs.gnu.org/25004
echo a > $PWD/a; ptx -w1 -A $PWD/a

4 8 Buffer Overflow (Heap, Read) http://bugs.gnu.org/25011
echo a > a; pr "-S$(printf "\t\t\t")" a -m a

4 8 Buffer Overflow (Global, Read) http://bugs.gnu.org/25023
echo 0>a; printf "%0.s0" 1..58 >> a; sort -R a

4 8 Misaligned Address http://bugs.gnu.org/25024
tail -f <&-

4 8 Use-After-Free http://bugs.gnu.org/25041
tac - - <&-

4 4 Loading-of-Invalid-Value http://bugs.gnu.org/25041

Fig. 16. Bugs found in the recent version v8.25-f1799198 of Coreutils.

Results (Coreutils v8.25). On Coreutils v8.25, AFLFAST
discovers eight previously unreported bugs while KLEE discov-
ers only one (Figure 16). We attribute much of this advan-
tage to AFLFAST’s runtime checking while KLEE requires
a constraint-based error detection mechanism. KLEE symbol-
ically executes (i.e., interprets) the program’s LLVM in-
termediate representation and uses constraint solving to
determine whether an error could have occured. Most
symbolic-execution-based whitebox fuzzers integrate the
error detection directly into the constraint solving process.
This embedding restricts the detection to such errors that
can be encoded as constraint violations. For instance, it
might be difficult to encode (and thus detect) the misaligned
address bug that AFLFAST could find. The error detection
is further impaired by the incompleteness of the environment
model that underlies the symbolic interpreter. In contrast,
AFLFAST as greybox fuzzer executes the compiled binary
concretely and reports any generated input that crashes.
Runtime checkers, such as ASAN [24], crash the program for
executions where the program would not normally crash.

To detect vulnerabilities, KLEE requires a constraint-
based vulnerability detection mechanism and presumes
completeness of constraint encoding and environment
modelling while AFLFAST merely executes the program
reporting any crashes, e.g., using runtime checking.

http://bugs.gnu.org/24996
http://bugs.gnu.org/25003
http://bugs.gnu.org/25004
http://bugs.gnu.org/25011
http://bugs.gnu.org/25023
http://bugs.gnu.org/25024
http://bugs.gnu.org/25041
http://bugs.gnu.org/25041

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 15

TABLE 4
Statement coverage achieved in Coreutils v8.25-f1799198 of Coreutils and Executable Lines of Code (ELOC) for each subject.

Utility ELOC AFLFAST KLEE Utility ELOC AFLFAST KLEE Utility ELOC AFLFAST KLEE Utility ELOC AFLFAST KLEE Utility ELOC AFLFAST KLEE
base64 104 90.0 92.0 echo 97 64.0 81.0 logname 25 96.0 96.0 pwd 129 33.0 33.0 tty 32 96.0 100.0
basename 55 100.0 100.0 expand 72 94.0 94.0 ls 1547 61.7 33.0 seq 282 89.6 71.0 uname 85 82.0 91.0
cat 219 83.8 78.0 expr 334 76.0 70.0 md5sum 297 53.4 69.0 shuf 223 86.0 60.0 unexpand 104 93.9 92.0
cksum 61 86.0 91.0 factor 510 52.8 23.0 nl 194 84.6 94.0 sort 1702 68.1 48.0 uniq 195 89.6 89.0
comm 146 95.0 94.0 fmt 315 90.0 88.0 od 637 89.1 87.0 split 641 76.3 30.0 uptime 70 92.0 92.0
csplit 521 79.3 77.0 fold 104 94.0 96.0 paste 189 91.0 93.0 stat 555 68.1 61.0 users 53 97.1 90.0
cut 188 87.3 93.0 head 382 68.0 70.0 pr 854 95.0 67.0 tac 238 70.1 71.0 wc 308 72.9 76.0
df 664 74.3 49.0 hostid 23 100.0 100.0 printenv 41 100.0 100.0 tail 841 55.1 52.0 who 279 83.0 86.0
dirname 35 100.0 100.0 id 160 85.0 83.0 printf 224 88.7 95.0 tr 620 74.8 75.0 whoami 28 96.0 96.0
du 347 65.3 68.0 join 430 90.5 85.0 ptx 657 93.6 64.0 tsort 193 69.3 96.0 Average 327 82.1 78.3

6.5 Code Coverage
We compare KLEE and AFLFAST in terms of coverage
achieved. Leveraging our earlier experimental infrastruc-
ture, we choose the most recent version of GNU Core-
utils (v8.25-f1799198) as subjects. The experimental setup
as discussed in Section 6.3 remains. We measure statement
coverage achieved after one hour of fuzzing by re-executing
the generated inputs on the utilities compiled for GCOV.

Results. On average, AFLFAST achieves slightly more code
coverage than KLEE (Table 4). While KLEE covers circa 78%
of executable lines of code in the average utility, AFLFAST
covers about 82%. In total, there are 16k executable state-
ments, out of which AFLFAST covers slightly more than 12k
(76%) and KLEE slightly more than 10k (64%). This means
that AFLFAST scales better than KLEE and is more effective
when covering statements in the larger utilities. However,
in our experience (i.e., by checking the statements in some
utilities that were covered by one fuzzer or the other) KLEE
and AFLFAST have individual strengths and perform best
in different circumstances. For instance, KLEE could easily
synthesize complex command-line options (e.g., --help)
that would be out of reach for AFLFAST running without
a dictionary. The results might have looked very different
if the majority of options were not just two characters long
(e.g., -h).

AFLFAST performs slightly better than KLEE in terms of
code coverage. However, a combination might be even
more powerful, using their strengths to mitigate each
other’s weaknesses.

7 DEPLOYMENT IN AFL 2.33B

Together with the publication of the shorter version of this
paper [1], we made AFLFAST available to the public at

https://github.com/mboehme/aflfast

The release of AFLFAST as Github repository created
considerable interest among practicing cyber-security re-
searchers. Links to the paper as well as to the repository
were shared and re-tweeted hundreds of times on Twitter.
Members of the security community downloaded our tool
and evaluated it on their own, finding a large number
of bugs that were previously out of reach. The blogposts
they wrote were featured for several hours as TOP-1 entry
on Hackernews, a popular forum for tech-savvy readers.
Google security awarded USD 2,000 in bug bounties for
the bugs found by AFLFAST (and reported in this paper).

Only eight months after its release, the Github repository of
AFLFAST received 172 stars and was forked 89 times. Even
though the changes to the source code were relatively small,
the impact on the security community was immense.

Michał Zalewski, the main developer of AFL, read our
paper, studied our implementation, improved AFL accord-
ing to several observations, and conducted experiments of
his own.11 We report on his observations about AFLFAST,
the resulting improvements to AFL and the outcome of his
experiments. Zalewski observed the following about our
implementation

1) Rather than spending time in the deterministic stage,
AFLFAST spends a greater proportion of time on “non-
deterministic” fuzzing early in the campaign. In other
words, AFLFAST assigns substantially less energy in
the beginning of the fuzzing campaign.

2) Most of the cycles that AFLFAST carries out, are in
fact very short. This causes the queue to be cycled
very rapidly, which in turn causes new retained inputs
to be fuzzed almost immediately. In other words, be-
cause AFLFAST assigns less energy, it can process the
complete queue substantially faster. We say it starts by
exploration rather than by exploitation.

Based on these observations, Zalewski implemented into
mainline AFL what we call the explore-schedule. Concretely,
he reduced the time a seed is being fuzzed by a factor of 20.
For the experiments, he calls this new version FidgetyAFL
(version 2.33b) – not to be confused with the older versions
which implement the exploit-schedule (up to version 2.32b).
For the experiments, Zalewski compared AFL, FidgetyAFL,
and AFLFAST on four subjects. Instead of the number of
paths or number of crashes, Zalewski measures the map
density. The map density correlates with the number of edges
that have been exercised in the subject’s control-flow graph.
All fuzzers are started with the same parameters.

• libpng (2 runs of 6h). AFL was consistently but slightly
ahead of AFLFAST (∼1%). FidgetyAFL outperformed
both AFL and AFLFAST by about 10% at the one (1)
hour mark but slightly trailed behind at the six (6) hour
mark. This is consistent with our observation that the
explore-schedule is quite efficient only for the first few
hours—but is later outperformed by other schedules
(see Figure 12).

• libjpeg-turbo (2 runs of 6h). AFLFAST outperformed
AFL by 15% at the one hour mark and by 5% at the

11. The discussion can be found here: https://groups.google.com/
forum/#!topic/afl-users/fOPeb62FZUg

https://github.com/mboehme/aflfast
https://groups.google.com/forum/#!topic/afl-users/fOPeb62FZUg
https://groups.google.com/forum/#!topic/afl-users/fOPeb62FZUg

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 16

six hour mark. FidgetyAFL outperformed AFL by 13%
at the one hour mark and by 4% at the six hour mark.

• zlib (3 runs of 1h). AFLFAST and AFL perform similarly
in the beginning but AFLFAST takes a solid lead of 20%
later on. FidgetyAFL and AFLFAST perform similarly
throughout.

• patch (3 runs of 1h). AFLFAST outperforms AFL very
decisively by 50% while FidgetyAFL and AFLFAST
perform similarly.

We note that the experiments may not be statistically sound
(i.e., only results for two to three fuzzing campaigns of
relatively short time are reported). Specifically, it may take
some more time for the exponential schedule implemented
in AFLFAST to gain traction and outperform the explore
schedule implemented in FidgetyAFL (see Figure 12).

Since version 2.33b, AFL implements the explore-
schedule. This does not require to record the number of
fuzz exercising a certain path, and in our experiments the
explore-schedule outperforms all other schedules for the
first few hours (see Figure 12). This revised version of AFL
was shown to be significantly more efficient than its prede-
cessors. While AFLFAST still compares favourably against
the improved version of AFL, the performance difference
to AFL 2.33b and newer versions is smaller than we have
shown in our experiments.

libxml2 openssl

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

0.0k

0.5k

1.0k

1.5k

2.0k

0.0k

2.0k

4.0k

6.0k

Time (in hours)

#S
ee

ds
 d

is
co

ve
re

d

FidgetyAFL
AFLFast

Fig. 17. Average #paths discovered in LibXML2 and OpenSSL in 10 runs
of 24 hours using FidgetyAFL and AFLFAST.

We also conducted a small experiment where we com-
pared FidgetyAFL and AFLFAST in terms of number of
paths discovered on two security-critical programs: Openssl
[25], a library for secure communication over the internet
and LibXML2 [26], a popular XML parser library for C.
For OpenSSL, we fuzzed the asn1 utility and for LibXML2
the xmllint utility. Both were fuzzed without additional
command line parameters, without the deterministic stage
(i.e., using AFL option -d), for 24 hours, and using only
the empty file as initial seed. We conducted ten runs for
FidgetyAFL and 10 runs for AFLFAST.

The results are shown in Figure 17. Overall, AFLFAST is
more efficient than FidgetyAFL. For LibXML2, FidgetyAFL
takes 24 hours to discover the same number of paths that
AFLFAST discovers in 9 hours (i.e., about 3× longer). For
OpenSSL, FidgetyAFL takes 24 hours to discover the same
number of paths that AFLFAST discovers in 19.5 hours.

8 RELATED WORK

Several techniques [12], [27], [28], [29] have been proposed
to increase the efficiency of fuzzing. An important opti-
mization pertains to selecting the seed inputs wisely from
a wealth of inputs [28]. Our work makes no assumptions
about the existance seed inputs; we seeded our experiments
with the empty file. However, Coverage-based Greybox
Fuzzing (CGF) would clearly benefit from a smart seed
selection if many seed files are available. Others suggest to
use program analysis to detect dependencies among the bit
positions of an input [29]. For instance, the image width
occupies four bytes in the PNG image file format which
are best modified together. The dependency analysis allows
to fuzz such dependent bytes as a group. In our work,
we do not change the mutation operators or ratio. Woo
et al. [27] recognize the exploration-exploitation trade-off
between fuzzing an input for a shorter versus a longer
amount of time. They proceed to model blackbox fuzzing as
a multi-armed bandit problem where the seed’s “energy” is
computed based on whether or not it has exposed a (unique)
crash in any previous fuzzing iteration. So, the fuzzer is
biased towards generating more crashing inputs for already
known errors. In our work, there is no such bias. Instead,
we direct the search towards low-frequency paths in order
to stress more of the program’s behavior in the same time.

Symbolic execution-based fuzzers can generate files that
stress low-frequency paths. Probabilistic symbolic execution
[30] uses model counting to compute the probability that a
random input exercises a given path. Symbolic execution is
very effective because it enumerates paths essentially inde-
pendent of their “frequency” and because it can be directed
towards “dangerous” program locations [7], [14], [15], [31].
It can generate the specific values that are needed in order
to negate an if-condition and exercise the alternative branch.
Taint-based fuzzing [16], [32] is a directed whitebox fuzzing
technique. It exploits classical taint analysis to localize parts
of the input which should be marked symbolic. For instance,
it marks portions of the input file as symbolic that control
arguments of executed and critical system calls. Model-
based Whitebox Fuzzing [33] leverages an input model
to synthesize and “transplant” complete data chunks to
exercise so called critical branches that are only exercised if a
certain chunk is present in the input file. However, symbolic
execution-based techniques rely on program analysis and
constraint solving which hampers their scalability. Impreci-
sions during lifting of the program binary and during the
encoding of the path constraints hamper their applicability.
In contrast, CGF completely relinquishes program analysis
for the sake of scalability with tremendous success in the
vulnerability detection practice [2].

Colleagues have combined lightweight black- or greybox
fuzzers with symbolic execution-based whitebox fuzzers to
get the best of both worlds [3], [34]. For instance, Hybrid-
Fuzz [34] first runs symbolic execution to generate inputs
leading to “frontier nodes” and then passes these inputs to a
blackbox fuzzer. In contrast, Driller [3] begins with AFL and
seeks help from symbolic execution when it “gets stuck”,
for instance, to generate a magic number. Our monotonous
power schedules allow to employ expensive symbolic exe-
cution for seeds/states with a sufficiently high energy.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 17

Markov chains can model a variety of random processes
in fuzz testing. Markov Chain Monte Carlo Random Testing
(MCMC-RT) uses a Markov Chain Monte Carlo (MCMC)
method to leverage knowledge about an input’s probability
to reveal an error. However, MCMC-RT is not entirely scal-
able because it maintains this probability for every input in
the program’s input space. While CGF can be well explained
as Markov chain, it does not actually maintain the chain
or any probabilities in-memory. While MCMC-RT is biased
towards revealing suspected or known errors, CGF can
expose unknown errors that hide deep in the program. The
bias of boosted CGF is towards low-frequency paths. Chen
et al. [35] utilize MCMC to leverage knowledge about a
mutation operator’s effectiveness. Operators that have been
shown to be more effective in previous fuzzing iterations
are chosen with greater probability during fuzzing. Sparks
et al. [36] model program control-flow as Markov chain to
prioritize seeds that exercise less explored paths. In contrast,
we use Markov chains to explain why it is more efficient to
smartly control the time spent fuzzing a seed and which
seed to fuzz next without program analysis.

Markov chains are often used by meta-heuristic search
algorithms to solve optimization problems. A demonstra-
tion of the utility of the Markov chain model of CGF is our
recent work. Directed greybox fuzzing [37]uses a novel set of
power schedules that implement the Simulated Annealing
meta-heuristic to minimize the distance to a given set of
target locations in the program. This is important for patch
testing or directed vulnerability detection where dangerous
locations are known. These power schedules assign more
energy to seeds that are “closer” to the targets. At compile-
time, the control-flow graph is analyzed and the program
instrumented, such that at runtime the seed distance can
be efficiently computed. Using the Markov chain model of
CGF, we cast the reaching of target locations as optimization
problem. Other fuzzing objectives may also be encoded.

9 CONCLUSION

While symbolic execution-based techniques have gained
prominence, their scalability has not approached those of
blackbox or greybox fuzzers. While blackbox and greybox
techniques have shown effectiveness, the limited semantic
oversight of these techniques do not allow us to explain the
working of these techniques even when they are effective.

In this work, we took a state-of-the-art greybox fuzzer
AFL which keeps track of path identifiers. We enhanced the
effectiveness and efficiency of AFL in producing crashes, as
evidenced by our experiments and those of our collabora-
tors. AFLFAST, our extension of AFL exposes an order of
magnitude more unique crashes than AFL in the same time
budget. Moreover, AFLFAST can expose several bugs and
vulnerabilities that AFL cannot find. Other vulnerabilities
AFLFAST exposes substantially earlier than AFL.

More importantly, we provide an explanation of the
enhanced effectiveness by visualizing CGF as the explo-
ration of the state space of a Markov chain. We observe
that existing CGF tools much too often visit states in high-
density regions. We have devised and investigated several
strategies to force the CGF tool to visit more states that are
otherwise hidden in a low-density region and to generate
less inputs for states in a high-density region.

ACKNOWLEDGMENTS

We thank Michał Zalewski, all members of the AFL commu-
nity, and the members of Team Codejitsu for the interesting
discussions about our research and the independent eval-
uation of AFLFAST. This research was partially supported
by a grant from the National Research Foundation, Prime
Minister’s Office, Singapore under its National Cybersecu-
rity R&D Program (TSUNAMi project, No. NRF2014NCR-
NCR001-21) and administered by the National Cybersecu-
rity R&D Directorate.

REFERENCES

[1] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security, ser. CCS, 2016,
pp. 1032–1043.

[2] Website, “Symbolic execution in vulnerability
research,” https://lcamtuf.blogspot.sg/2015/02/
symbolic-execution-in-vuln-research.html, 2017, accessed: 2017-
06-13.

[3] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS ’16, 2016,
pp. 1–16.

[4] M. Böhme and S. Paul, “A probabilistic analysis of the efficiency
of automated software testing,” IEEE Transactions on Software En-
gineering, vol. 42, no. 4, pp. 345–360, April 2016.

[5] Website, “Afl vulnerability trophy case,” http://lcamtuf.
coredump.cx/afl/#bugs, 2017, accessed: 2017-06-13.

[6] ——, “Pulling jpegs out of thin air,” https://lcamtuf.blogspot.
com/2014/11/pulling-jpegs-out-of-thin-air.html, 2017, accessed:
2017-06-13.

[7] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08, 2008, pp. 209–224.

[8] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp.
32–44, Dec. 1990.

[9] Website, “Peach Fuzzer Platform,” http://www.peachfuzzer.
com/products/peach-platform/, 2017, accessed: 2017-06-13.

[10] ——, “SPIKE Fuzzer Platform,” http://www.immunitysec.com,
2017, accessed: 2017-06-13.

[11] ——, “Suley Fuzzer,” https://github.com/OpenRCE/sulley,
2017, accessed: 2017-06-13.

[12] ——, “American fuzzy lop (afl) fuzzer,” http://lcamtuf.
coredump.cx/afl/technical details.txt, 2017, accessed: 2017-06-13.

[13] ——, “Zzuf: multi-purpose fuzzer,” http://caca.zoy.org/wiki/
zzuf, 2017, accessed: 2017-06-13.

[14] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, pp. 20:20–20:27, Jan.
2012.

[15] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in ASPLOS XVI,
2011, pp. 265–278.

[16] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed white-
box fuzzing,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09, 2009, pp. 474–484.

[17] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05, 2005, pp. 41–41.

[18] Website, “Afl binary instrumentation,” https://github.com/
vrtadmin/moflow/tree/master/afl-dyninst, 2017, accessed: 2017-
06-13.

[19] J. R. Norris, Markov Chains (Cambridge Series in Statistical and
Probabilistic Mathematics). Cambridge University Press, Jul. 1998.

[20] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in Proceedings of the Seventh International
Conference on World Wide Web 7, ser. WWW7, 1998, pp. 107–117.

[21] S. Kirkpatrick, C. Jr. Gelatt, and M. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

https://lcamtuf.blogspot.sg/2015/02/symbolic-execution-in-vuln-research.html
https://lcamtuf.blogspot.sg/2015/02/symbolic-execution-in-vuln-research.html
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
http://www.immunitysec.com
https://github.com/OpenRCE/sulley
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, DECEMBER 2017 18

[22] E. F. Rizzi, S. Elbaum, and M. B. Dwyer, “On the techniques we
create, the tools we build, and their misalignments: A study of
klee,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16, 2016, pp. 132–143.

[23] Website, “GNU Coreutils,” https://www.gnu.org/software/
coreutils/coreutils.html, 2017, accessed: 2017-06-13.

[24] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, ser.
USENIX ATC’12, 2012, pp. 28–28.

[25] Website, “OpenSSL: Secure communication library,” https://
www.openssl.org/, 2017, accessed: 2017-06-13.

[26] ——, “LibXML2: XML parser library for C,” xmlsoft.org/, 2017,
accessed: 2017-06-13.

[27] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-
box mutational fuzzing,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13,
2013, pp. 511–522.

[28] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing,” in Pro-
ceedings of the 23rd USENIX Conference on Security Symposium, ser.
SEC’14, 2014, pp. 861–875.

[29] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP ’15, 2015, pp. 725–741.

[30] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic
execution,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ser. ISSTA 2012, 2012, pp. 166–176.

[31] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury, “Regression
tests to expose change interaction errors,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013, 2013, pp. 334–344.

[32] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” in Proceedings of the 2010 IEEE Symposium on Security
and Privacy, ser. SP ’10, 2010, pp. 497–512.

[33] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based
whitebox fuzzing for program binaries,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE, 2016, pp. 552–562.

[34] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via
fuzzing and symbolic execution,” in Master’s thesis, School of Com-
puter Science, Carnegie Mellon University, 2012.

[35] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in PLDI’ 16, 2016, pp.
85–99.

[36] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated
Vulnerability Analysis: Leveraging Control Flow for Evolutionary
Input Crafting,” in 23d Annual Computer Security Applications Con-
ference (ACSAC), 2007, pp. 477–486.

[37] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security, ser. CCS, 2017, pp. 1–16.

Marcel Böhme is senior research fellow at the
TSUNAMi Security Research Centre at NUS in
Singapore. He was research fellow at CISPA,
Saarland University, Germany from 2014 to 2015
and completed his PhD at National University
of Singapore in 2014. Marcel’s research is fo-
cussed on automated vulnerability detection,
analysis, testing, debugging, and repair of large
software systems, where he investigates prac-
tical topics such as efficiency, scalability, and
reliability of automated techniques via theoretical

and empirical analysis. His tools discovered 100+ bugs in widely-used
software systems, more than 40 of which are security-critical vulnerabil-
ities registered as CVEs at the US National Vulnerability Database.

Van-Thuan Pham is a postdoctoral research
fellow at NUS, and he is also the Technology
Lead of Test1080, a spinoff from NUS which
provides an intelligent mobile app testing service
based on a patent-pending technology. He is
passionate about doing R&D on automated test-
ing technologies to improve the reliability of soft-
ware systems running on all types of computing
devices such as embedded systems, mobile de-
vices, personal computers and servers. During
his PhD studies at NUS, under the supervision of

Prof Abhik Roychoudhury he conducted research on fuzz testing tech-
niques (including black-box, coverage-based grey-box and symbolic-
execution based white-box fuzzing) and applied these techniques to
vulnerability detection, crash reproduction and debugging.

Abhik Roychoudhury is a Professor of Com-
puter Science at National University of Singa-
pore. His research focuses on software testing
and analysis, trust-worthy software construction
and software security. He has been an ACM
Distinguished Speaker (2013-19). He is currently
leading the TSUNAMi center, a large five-year
long targeted research effort funded by National
Research Foundation in the domain of trust-
worthy software. He is also the Lead Princi-
pal Investigator of the Singapore Cyber-security

Consortium. His research has been funded by various agencies and
companies, including the National Research Foundation (NRF), Min-
istry of Education (MoE), A*STAR, Defense Research and Technology
Office (DRTech), DSO National Laboratories, Microsoft and IBM. He
has authored a book on ”Embedded Systems and Software Validation”
published by Elsevier (Morgan Kaufmann) Systems-on-Silicon series in
2009, which has also been officially translated to Chinese by Tsinghua
University Press. He has served in various capacities in the program
committees and organizing committees of various conferences on soft-
ware engineering, specifically serving as Program Chair of ACM Inter-
national Symposium on Software Testing and Analysis (ISSTA) 2016.
He has served as an Editorial Board member of IEEE Transactions on
Software Engineering (TSE) from 2014-18. Abhik received his Ph.D. in
Computer Science from the State University of New York at Stony Brook
in 2000.

https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/coreutils/coreutils.html
https://www.openssl.org/
https://www.openssl.org/
xmlsoft.org/

	Introduction
	Background
	Coverage-based Greybox Fuzzing
	Markov Chain

	Markov Chain Model
	Coverage-based Fuzzing as Markov Chain
	Running Example
	Challenges of Coverage-based Fuzzers

	Boosting Greybox Fuzzing
	Power Schedules
	Search Strategies

	Evaluation: Vanilla versus Boosted CGF
	Implementation: AFLFast 1.94b
	Vulnerabilities
	General Results
	Comparison of Power Schedules
	Comparison of Search Strategies
	Result Summary

	Symbolic-Execution-based Whitebox Fuzzing vs Coverage-based Greybox Fuzzing
	Conceptual Comparison
	Fuzzing Command Line Utilities using AFLargv
	Experimental Setup
	Vulnerability Detection
	Code Coverage

	Deployment in AFL 2.33b
	Related Work
	Conclusion
	References
	Biographies
	Marcel Böhme
	Van-Thuan Pham
	Abhik Roychoudhury

