
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 1

Smart Greybox Fuzzing
Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa,

Alexandru Răzvan Căciulescu, and Abhik Roychoudhury

Abstract—Coverage-based greybox fuzzing (CGF) is one of the most successful approaches for automated vulnerability detection.
Given a seed file (as a sequence of bits), a CGF randomly flips, deletes or copies some bits to generate new files. CGF iteratively
constructs (and fuzzes) a seed corpus by retaining those generated files which enhance coverage. However, random bitflips are
unlikely to produce valid files (or valid chunks in files), for applications processing complex file formats. In this work, we introduce smart
greybox fuzzing (SGF) which leverages a high-level structural representation of the seed file to generate new files. We define
innovative mutation operators that work on the virtual file structure rather than on the bit level which allows SGF to explore completely
new input domains while maintaining file validity. We introduce a novel validity-based power schedule that enables SGF to spend more
time generating files that are more likely to pass the parsing stage of the program, which can expose vulnerabilities much deeper in the
processing logic. Our evaluation demonstrates the effectiveness of SGF. On several libraries that parse complex chunk-based files, our
tool AFLSMART achieves substantially more branch coverage (up to 87% improvement) and exposes more vulnerabilities than baseline
AFL. Our tool AFLSMART discovered 42 zero-day vulnerabilities in widely-used, well-tested tools and libraries; 22 CVEs were assigned.

Index Terms—vulnerability detection, smart fuzzing, automated testing, file format, grammar, input structure

F

1 INTRODUCTION

COVERAGE-BASED greybox fuzzing (CGF) is a popular
and effective approach for vulnerability discovery. As

opposed to blackbox approaches which suffer from a lack of
knowledge about the application, and whitebox approaches
which incur high overheads due to program analysis and
constraint solving, greybox approaches use lightweight code
instrumentation. American Fuzzy Lop (AFL) [39], its vari-
ants [3], [4], [11], [20], [21], [28], [34], as well as Libfuzzer [46]
constitute the most widely-used implementations of CGF.

CGF technology proceeds by input space exploration
via mutation. Starting with seed inputs, it mutates them
using a pre-defined set of generic mutation operators (such
as bitflips). Control flows exercised by the mutated inputs
are then examined to determine whether they are suffi-
ciently “interesting”. The lightweight program instrumenta-
tion helps the fuzzer make this judgment on the novelty of
the control flows. Subsequently, the mutated inputs which
are deemed sufficiently new are submitted for further inves-
tigation, at which point they are mutated further to explore
more inputs. The aim is to enhance behavioral coverage, and
to expose more vulnerabilities in a limited time budget.

One of the most significant and well-known limitations
of CGF is its lack of input structure awareness. The mutation
operators of CGF work on the bit-level representation of
the seed file. Random bits are flipped, deleted, added, or
copied from the same or from a different seed file. Yet,
many security-critical applications and libraries will pro-
cess highly structured inputs, such as image, audio, video,
database, document, or spreadsheet files. Finding vulner-
abilities effectively in applications processing such widely
used formats is of imminent need. Mutations of the bit-
level file representation are unlikely to effect any structural
changes on the file that are necessary to effectively explore
the vast yet sparse domain of valid program inputs. More
likely than not arbitrary bit-level mutations of a valid file re-
sult in invalid files that are rejected by the program’s parser
before reaching the data processing portion of the program.

To tackle this problem, two main approaches have been
proposed that are based on dictionaries [38] and dynamic
taint analysis [32]. Michał Zalewski, the creator of AFL,
introduced the dictionary, a lightweight technique to inject
interesting byte sequences or tokens into the seed file during
mutation at random locations. Zalewski’s main concern [43]
was that a full support of input awareness might come at a
cost of efficiency or usability, both of which are AFL’s secret
to success. AFL benefits tremendously from a dictionary
when it needs to come up with magic numbers or chunk
identifiers to explore new paths. Rawat et al. [32] leverage
dynamic taint analysis [33] and control flow analysis to infer
the locations and the types of the input data based on which
their tool (VUZZER) knows where and how to mutate the
input effectively. However, both the dictionary and taint-
based approaches do not solve our primary problem: to
mutate the high-level structural representation of the file
rather than its bit-level representation. For instance, neither
a dictionary nor an inferred program feature help in adding
or deleting complete chunks from a file.

In contrast to CGF, smart blackbox fuzzers [19], [47]
are already input-structure aware and leverage a model of
the file format to construct new valid files from existing
valid files. For instance, Peach [47] uses an input model
to disassemble valid files and to reassemble them to new
valid files, to delete chunks, and to modify important data
values. LangFuzz [19] leverages a context-free grammar for
JavaScript (JS) to extract code fragments from JS files and to
reassemble them to new JS files. However, awareness of in-
put structure alone is insufficient and the coverage-feedback
of a greybox fuzzer is urgently needed – as shown by our
experiments with Peach. In our experiments Peach performs
much worse even than AFL, our baseline greybox fuzzer.
Our detailed investigation revealed that Peach does not
reuse the generated inputs that improve coverage for further
test input generation. For instance, if Peach generated a
WAV-file with a different (interesting) number of channels,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 2

that file could not be used to generate further WAV-files
with the newly discovered program behaviour. Without
coverage-feedback interesting files will not be retained for
further fuzzing. On the other hand, retaining all generated
files would hardly be economical.

In this paper, we introduce smart greybox fuzzing (SGF)—
which leverages a high-level structural representation of the
seed file to generate new files—and investigate the impact
on fuzzer efficiency and usability. We define innovative
mutation operators that work on the virtual structure of the
file rather than on the bit level. These structural mutation op-
erators allow SGF to explore completely new input domains
while maintaining the validity of the generated files. We
address the challenge of enabling structural mutation for
partially valid seed inputs, i.e., files that do not fully adhere
to the provided grammar. We introduce a novel validity-
based power schedule that assigns more energy to seeds with
a higher degree of validity. This schedule enables SGF to
spend more time generating files that are more likely to pass
the parsing stage of the program to discover vulnerabilities
deep in the processing logic of the program.

We implement AFLSMART, a robust yet efficient and
easy-to-use smart greybox fuzzer based on AFL, a popular
and very successful CGF. AFLSMART integrates the input-
structure component of Peach with the coverage-feedback
component of AFL. AFLSMART works for all complex
file formats that follow a tree structure where individual
nodes are called data chunks. Such chunk-based formats are
prevalent, i.e., most common file formats are chunk-based1

and important, i.e., because chunk-based file formats are
used as the most popular means to exchange data between
machines, they form a common attack vector to compromise
software systems.

Our evaluation demonstrates that AFLSMART, within
a given time limit of 24 hours, can double the zero-day
bugs found. AFLSMART discovers 33 bugs (13 CVEs as-
signed) while the baseline (AFL and its extension AFLFAST
[4]) can detect only 16 bugs, in large, widely-used, and
well-fuzzed open-source software projects, such as FFm-
peg, LibAV, LibPNG, WavPack, OpenJPEG and Binutils.
AFLSMART also significantly improves the branch cover-
age up to 87% compared to the baseline. AFLSMART also
outperforms VUZZER [32] on its benchmarks; AFLSMART
discovers seven (7) bugs which VUZZER could not find
in another set of popular open-source programs, such as
tcpdump, tcptrace and gif2png. Moreover, in a 1-week bug
hunting campaign for FFmpeg, AFLSMART discovers nine
(9) more zero-day bugs (9 CVEs assigned). Its effectiveness
comes with negligible overhead – with our optimization
of deferred cracking AFLSMART achieves execution speeds
which are similar to AFL.

In our experience with AFLSMART, the time spent writ-
ing a file format specification is outweighed by the tremen-
dous improvement in behavioral coverage and the number
of bugs exposed. One of us spent five working days to
develop 10 file format specifications (as Peach Pits [47])
which were used to fuzz all 16 subject programs. Hence,
once developed, file format specifications can be reused

1. https://fileinfo.com/filetypes/common

across programs as well as for different versions of the same
program.

In summary, the main contribution of our work is to
make greybox fuzzing input format-aware. Given an in-
put format specification (e.g., a Peach Pit [47]), our smart
greybox fuzzer derives a structural representation of the seed
file, called virtual structure, and leverages our novel smart
mutation operators to modify the virtual file structure in
addition to the file’s bit sequence during the generation
of new input files. We propose smart mutation operators,
which are likely to preserve the satisfaction w.r.t. a file
format specification. During the greybox fuzzing search,
our tool AFLSMART measures the degree of validity of the
inputs produced with respect to the file format specification.
It prioritizes valid inputs over invalid ones, by enabling the
fuzzer to explore more mutations of a valid file as opposed
to an invalid one. As a result, our smart fuzzer largely
explores the restricted space of inputs which are valid as per
the file format specification, and attempts to locate vulnera-
bilities in the file processing logic by running inputs in this
restricted space. We conduct extensive evaluation on well-
tested subjects processing complex chunk-based file formats
such as AVI and WAV. Our experiments demonstrate that
the smart mutation operators and the validity-based power
schedule introduced by us, increases the effectiveness of
fuzzing both in terms of path coverage and vulnerabilities
found within a time limit of 24 hours. These results also
demonstrate that the additional effectiveness in our smart
fuzzer AFLSMART is not achieved by sacrificing the effi-
ciency of greybox fuzzing and AFL.

2 MOTIVATING EXAMPLE

2.1 The WAVE File Format

Most file systems store information as a long string of zeros
and ones—a file. It is the task of the program to make
sense of this sequence of bits, i.e., to parse the file, and to
extract the relevant information. This information is often
structured in a hierarchical manner which requires the file
to contain additional structural information. The structure of
files of the same type is defined in a file format. Adherence
to the file format allows the same file to be processed by
different programs.

WAVE files (*.wav) contain audio information and can
be processed by various media players and editors. A WAVE
file consists of chunks (see Figure 1). Each chunk consists of
chunk identifier, chunk length and chunk data. Chunks are
structured in a hierarchical manner. The root chunk requires
the first four bytes of the file to spell (in unicode) RIFF
followed by four bytes specifying the total size n of the
children chunks plus four. The next four bytes must spell
(in unicode) WAVE. The remainder of a WAVE file contains
the children chunks, the mandatory fmt chunk, several
optional chunks, and the data chunk. The data chunk itself
is subject to further structural constraints.

We can clearly see that a WAVE file embeds audio
information and meta-data in a hierarchical chunk structure.
The WAVE file format governs all WAVE files and allows for
efficient and systematic parsing of the audio information.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 3

Chunk Type Field Length Contents

RIFF

ckID 4 Chunk ID: RIFF
cksize 4 Chunk size: 4+n
WAVEID 4 WAVE id: WAVE
chunks n Chunks containing for-

mat information and
sampled data

fmt

ckID 4 Chunk ID: fmt
cksize 4 Chunk size: 16, 18 or 40
wFormatTag 2 Format code
nChannels 2 Number of interleaved

channels
nSamplesPerSec 4 Sampling rate (blocks

per second)
. . .

Optional chunks (fact chunk, cue chunk, playlist chunk, . . . )

data

ckID 4 Chunk ID: data
cksize 4 Chunk size: n
sampled data n Samples
pad byte 0 or 1 Padding byte if n is

odd

Fig. 1: An excerpt of the WAVE file format (from Ref. [42])

2.2 The Anatomy of a Vulnerability in a Popular Audio
Compression Library

In the following, we discuss a vulnerability that our smart
greybox fuzzer AFLSMART found in WavPack [49], a pop-
ular audio compression library that is used by many well-
known media players and editors such as Winamp, VLC
Media Player, and Adobe Audition. In our experiments,
the same vulnerability could not be found by traditional
greybox fuzzers such as AFL [39] or AFLFAST [4].

The discovered vulnerability (CVE-2018-10536) is a buffer
overwrite in the WAVE-parser component of WavPack. To
construct an exploit, a WAVE file with more than one
format chunks needs to be crafted that satisfies several
complex structural conditions. The WAVE file contains the
mandatory RIFF, fmt, and data chunks, plus an addi-
tional fmt chunk placed right after the first fmt chunk. The
first fmt chunk specifies IEEE 754 32-bits (single-precision)
floating point (IEEE float) as the waveform data format
(i.e., fmt.wFormatTag= 3) and passes all sanity checks.
The second fmt chunk specifies PCM as the waveform
data format, one channel, one bit per sample, and one
block align (i.e., fmt.wFormatTag= 1, fmt.nChannels= 1,
fmt.nBlockAlign=1, and fmt.wBitsPerSample= 1).

1 else if (!strncmp (chunk_header.ckID, "fmt ", 4)){
2 DoReadFile (infile, &WaveHeader, ...)
3 format = WaveHeader.FormatTag;
4 config->bits_per_sample = WaveHeader.BitsPerSample;

5 // Sanity checks
6 if (format == 3 && config->bits_per_sample != 32)
7 supported = FALSE;
8 if (WaveHeader.BlockAlign / WaveHeader.NumChannels

< (config->bits_per_sample + 7) / 8)
9 supported = FALSE;

10 if (!supported) exit();

11 if (format==3) config->float_norm_exp=CONFIG_FLOAT;
12 ...

Fig. 2: Sketching cli/riff.c @ revision 0a72951

The first fmt chunk configures WavPack to read the
data in IEEE float format, which requires certain constraints

to be satisfied, e.g., on the number of bits per sample
(Lines 6–10 in Figure 2). The second fmt chunk allows to
override certain values, e.g., the number of bits per sample,
while maintaining the IEEE float format configuration. More
specifically, the fmt-handling code is shown in Figure 2.
The first fmt chunk is parsed as format 3 (IEEE float), 32
bits per sample, 1 channel, and 4 block align (Lines 2–
4). The configuration passes all sanity checks for an IEEE
float format (Lines 6–10), and sets the global configuration
accordingly (Line 11). The second fmt chunk is parsed as
format 1 (PCM), 1 bits per sample, 1 channel, and 1 block
align (Lines 2–4). The new configuration would be valid if
WavPack had not maintained IEEE float as the waveform
data and had reset float_norm_exp. However, it does
maintain IEEE float and thus allows an invalid configuration
that would otherwise not pass the sanity checks which
finally leads to a buffer overwrite that can be controlled by
the attacker.

The vulnerability was patched by aborting when the
*.wav file contains more than one fmt chunk. A similar
vulnerability (CVE-2018-10537) was discovered and patched
for *.w64 (WAVE64) files.

2.3 Difficulties of Traditional Greybox Fuzzing

Algorithm 1 Coverage-based Greybox Fuzzing

Input: Seed Corpus S
1: repeat
2: s = CHOOSENEXT(S) // Search Strategy
3: p = ASSIGNENERGY(s) // Power Schedule
4: for i from 1 to p do
5: s′ = MUTATE INPUT(s)

6: if s′ crashes then
7: add s′ to S7

8: else if ISINTERESTING(s′) then
9: add s′ to S

10: end if
11: end for
12: until timeout reached or abort-signal
Output: Crashing Inputs S7

We use these vulnerabilities to illustrate the shortcom-
ings of traditional greybox fuzzing. Algorithm 1, which
is extracted from [4], shows the general greybox fuzzing
loop. The fuzzer is provided with an initial set of program
inputs, called seed corpus. In our example, this could be a
set of WAVE files that we know to be valid. The greybox
fuzzer mutates these seed inputs in a continuous loop to
generate new inputs. Any new input that increases the
coverage is added to the seed corpus. A well-known and
very successful coverage-based greybox fuzzer is American
Fuzzy Lop (AFL) [39].

Guidance. A coverage-based greybox fuzzer is guided by
a search strategy and a power schedule. The search strategy
decides the order in which seeds are chosen from the seed
corpus, and is implemented in CHOOSENEXT (Line 2). The
power schedule decides a seed’s energy, i.e., how many inputs
are generated by fuzzing the seed, and is implemented in
ASSIGNENERGY (Line 3). For instance, AFL spends more
energy fuzzing seeds that are small and execute quickly.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 4

Stored Bits Information Description
52 49 46 46 R I F F RIFF.ckID
24 08 00 00 2084 RIFF.cksize
57 41 56 45 W A V E RIFF.WAVEID
66 6d 74 20 f m t fmt.ckID
10 00 00 00 16 fmt.cksize
01 00 02 00 1 2 fmt.wFormatTag (1=PCM) &

fmt.nChannels
22 56 00 00 22050 fmt.nSamplesPerSec
88 58 01 00 88200 fmt.nAvgBytesPerSec
04 00 10 00 4 16 fmt.nBlockAlign &

fmt.wBitsPerSample
64 61 74 61 d a t a data.ckID
00 08 00 00 2048 data.cksize
00 00 00 00 sound data 1 left and right channel
24 17 1e f3 sound data 2 left and right channel
3c 13 3c 14 sound data 3 left and right channel
16 f9 18 f9 sound data 4 left and right channel
34 e7 23 a6 sound data 5 left and right channel
3c f2 24 f2 sound data 6 left and right channel
11 ce 1a 0d sound data 7 left and right channel
. . .

Fig. 3: Canonical WAVE file (from Ref. [42])

Bit-level mutation. Traditional greybox fuzzers are un-
aware of the input structure. In order to generate new
inputs, a seed is modified according to pre-defined mutation
operators. A mutation operator is a transformation rule. For
instance, a bit-flip operator turns a zero into a one, and
vice versa. Given a seed input, a mutation site is randomly
chosen in the seed input and a mutation operator applied
to generate a new test input. In Algorithm 1, the method
MUTATE INPUT implements the input generation by seed
mutation. These mutation operators are specified on the bit-
level. For instance, AFL has several deletion operators, all
of which delete a contiguous, fixed-length sequence of bits
in the seed file. AFL also has several addition operators,
for instance to add a sequence of only zero’s or one’s, a
random sequence of bits, or to copy a sequence of bits within
the file. For our motivating example, Figure 3 shows the
first 72 bytes of a canonical WAVE file. To expose CVE-
2018-10536, a second valid fmt chunk must be added in-
between the existing fmt and data chunks. Clearly, it is
extremely unlikely for AFL to apply a sequence of bit-level
mutation operators to the file that result in the insertion of
such additional, valid chunks.

Dictionary. To better facilitate the fuzzing of structured
files, many greybox fuzzers, including AFL, allow to specify
a list of interesting byte sequences, called dictionary. In our
motivating example, such byte sequences could be words,
such as RIFF, fmt, and data in unicode, or common
values, such as 22050 and 88200 in hexadecimal. However,
a dictionary will not contribute much to the complex task of
constructing a valid chunk that is inserted right at the joint
boundary of two other chunks.

3 SMART GREYBOX FUZZING

Smart greybox fuzzing (SGF) is more effective than both,
smart blackbox fuzzing and traditional greybox fuzzing.
Unlike traditional greybox fuzzing, SGF allows to pene-
trate deeply into a program that takes highly-structured
inputs without getting stuck in the program’s parser code.
Unlike smart blackbox fuzzing, SGF leverages coverage-
information and a power schedule to explore the program’s
behavior more efficiently.

3.1 Virtual Structure

The effectiveness of SGF comes from the careful design of
its smart mutation operators. First, these operators should
fully leverage the structural information extracted from the
seed inputs to apply higher-order manipulations at both the
chunk level and the bit level. Second, they should be unified
operators to support all chunk-based file formats (e.g., MP3,
ELF, PNG, JPEG, WAV, AVI, PCAP). Last but not the least,
all these operators must be lightweight so that we can retain
the efficiency of greybox fuzzing.

Fig. 4: Virtual structure used by AFLSMART

To implement these three design principles, we intro-
duce a new lightweight yet generic data structure namely
virtual structure which can facilitate the structural mutation
operators. Each input file can be represented as a (parse)
tree. The nodes of this tree are called chunks or attributes,
with the chunks being the internal nodes of the tree and the
attributes being the leaf nodes of the tree.

A chunk is a contiguous sequence of bytes in the file.
There is a root chunk spanning the entire file. As visualized in
Fig. 4, each chunk has a start- and an end-index representing
the start and end of the byte sequence in the file, and a
type representing the distinction to other chunks (e.g., an
fmt chunk is different from a data chunk in the WAVE
file format). Each chunk can have zero or more chunks as
children and zero or more attributes. An attribute represents
important data in the file that is not structurally relevant,
for instance wFormatTag in the fmt chunk of a WAVE file.� �
<DataModel name="Chunk">
<String name="ckID" length="4"/>
<Number name="cksize" size="32" >
<Relation type="size" of="Data"/>

</Number>
<Blob name="Data"/>
<Padding alignment="16"/>

</DataModel>
<DataModel name="ChunkFmt" ref="Chunk">

<String name="ckID" value="fmt "/>
<Block name="Data">

<Number name="wFormatTag" size="16"/>
<Number name="nChannels" size="16"/>
<Number name="nSampleRate" size="32"/>
<Number name="nAvgBytesPerSec" size="32"/>
<Number name="nBlockAlign" size="16" />
<Number name="nBitsPerSample" size="16"/>

</Block>
</DataModel>
...
<DataModel name="Wav" ref="Chunk">
<String name="ckID" value="RIFF"/>
<String name="WAVE" value="WAVE"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="FmtChunk" ref="ChunkFmt"/>
...
<Block name="DataChunk" ref="ChunkData"/>

</Choice>
</DataModel>� �

Listing 1: WAVE Peach Pit File Format Specification



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 5

As an example, the canonical WAVE file in Fig-
ure 3 has the following virtual structure. The root chunk
has start and end index {0, 2083}. The root chunk
(riff) has three attributes, namely ckID, cksize, and
WAVEID, and two children with indices {12, 35} and
{36, 2083}, respectively. The first child fmt has eight at-
tributes namely ckID, cksize, wFormatTag, nChannels,
nSamplesPerSec, nAvgBytesPerSec, nBlockAlign,
and wBitsPerSample.

To construct the virtual structure, a file format specifi-
cation and a parser is required. Given the specification and
the file, the parser constructs the virtual structure. For ex-
ample, Peach [47] has a robust parser component called File
Cracker. Given an input file and the file format specification,
called Peach Pit, our extension of the File Cracker precisely
parses and decomposes the file into chunks and attributes
and provides the boundary indices and type information.
Listing 1 shows a snippet of the Peach Pit for the WAV
file format. In this specification, we can specify the order,
type, and structure of chunks and attributes in a valid WAV
file. In Section 4 we explain how this specification can be
constructed.

3.2 Smart Mutation Operators
Based on this virtual input structure, we define three generic
structural mutation operators – smart deletion, smart addition
and smart splicing.

c

c.start c.end

Seed s

New
Seed

Smart Deletion. Given a seed file s, choose an arbitrary
chunk c and delete it. The SGF copies the bytes following
the end-index of the chosen chunk c to the start-index of c,
revises the indices of all affected chunks accordingly. For in-
stance, to delete the fmt-chunk in our canonical WAVE file,
the stored bits in the index range [36, 2083] are memcpy’d
to index 12. The indices in the virtual structure of the new
WAVE file are revised. For instance, the riff-chunk’s end
index is revised to 2048.

c

c .start1 c .end1

1
Seed s1

c

c .start2 c .end2

2
Seed s2

c1 c2

New
Seed

Smart Addition. Given a seed file s1, choose an arbitrary
second seed file s2, choose an arbitrary chunk c2 in s2,
and add it after an arbitrary existing chunk c1 in s1 that
has a parent of the same type as c2 (i.e., c1.parent.type ==
c2.parent.type). The SGF copies the bytes following the end-
index of c1 to a new index where the length of the new
chunk c2 is added to the current end-index of the c1 in the
given seed file s1. Then, the SGF copies the bytes between
start- and end-index of c2 in the second seed file s2 to the
end-index of the existing chunk c1 in the given seed file
s1. Finally, all affected indices are revised in the virtual
structure representing the generated input.

c

c .start1 c .end1

1
Seed s1

c

c .start2 c .end2

2
Seed s2

New
Seed c2

Smart Splicing. Given a seed file s1, choose an arbitrary
chunk c1 in s1, choose an arbitrary second seed file s2,
choose an arbitrary chunk c2 in s2 such that c1 and c2 have
the same type, and substitute c1 with c2. The SGF copies the
bytes following the end-index of c1 to a new index where
the length of the new chunk c2 is added to the current end-
index of the c1 in the given seed file s1. Then, the SGF copies
the bytes between start- and end-index of c2 in the second
seed file s2 to the end-index of the existing chunk c1 in the
given seed file s1. Finally, all affected indices are revised in
the virtual structure representing the generated input.

Maintaining structural integrity. A key challenge of
existing bit-level mutation operators is to maintain the
structural integrity of the generated inputs. This is primarily
addressed by structural mutation operators. However, there
is no guarantee that our structural mutation operators main-
tain structural integrity. For instance, in our motivating ex-
ample the Peach Pit format specification may allow to add or
delete fmt chunks while strictly speaking the formal WAVE
format specification allows only exactly one fmt chunk.
Nevertheless, it was our relaxed specification which allowed
finding the vulnerability in the first place (it requires two
fmt chunks to be present). Moreover, the specification of
immutable attributes allows the smart greybox fuzzer to apply
bit-level mutation operators only to indices of attributes
that are mutatable. Strictly enforcing the structural integrity
is not always desirable while a high degree of validity is
necessary to reach beyond the parser code. Our case study
demonstrates that this relaxation is a critical advantage of
our lightweight virtual structure design.

Maintaining semantic integrity. A second key challenge
of any mutational fuzzer is to maintain implicity constraints
across data fields. Modifying the bytes in one data field
might require an intelligent modification of the bytes in
another field, such as the checksum computed over the
data field. Smart greybox fuzzing can address this in several
ways. Firstly, such implicit contraints are maintained within
fragments that are inserted. A similar observation was made
by Holler et al. [19], [55] while developing LangFuzz, a
smart, mutational blackbox fuzzer. Secondly, some con-
straints such as checksum can be repaired a-posteriori (e.g.,
using the Peach fixups [51]). However, there is no general
solution to repair generated files that are corrupted because
of unknown or broken implicit constraints across data fields.

3.3 Region-based Smart Mutation

During smart mutation, new inputs are generated by ap-
plying structural as well as simple mutation operators to
the chosen seed file (cf. MUTATE INPUT in Alg. 1). In the
following, we discuss the challenges and opportunities of
smart mutation.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 6

3.3.1 Stacking Mutations
To generate interesting test inputs, it might be worthwhile to
apply several structural (high level) and bit-level (low level)
mutation operators together. In mutation-based fuzzing, this
is called stacking. Bit-level mutation operators can easily
be stacked in arbitrary order, knowing only the start- and
end-index of the file. When data of length x is deleted, we
subtract x from the end-index. When new data of length x
is added, we add x to the new file’s end-index.

However, it is not trivial to stack structural mutation op-
erators. For each structural mutation, both the file itself and
the virtual structure representing the file must be updated
consistently. For instance, the deletion of a chunk will affect
the end-indices of all its parent chunks, and the indices
of every chunk “to the right” of the deleted chunk (i.e.,
chunks with a start-index that is greater than the deleted
chunk’s end-index). Our implementation AFLSMART makes
a copy of the seed’s virtual structure and stacks mutation
operators by applying them consistently to both, the virtual
structure and the file itself. This allows us to stack structural
(high-level) mutation operators. Furthermore, if a bit-level
(low-level) mutation would cross chunk-boundaries, the
mutation is not applied.2

3.3.2 Fragment- and Region-based Mutation
After implementing stacking mutations, we observed that
many inputs were added to the seed corpus which are
invalid w.r.t. the format specification. AFLSMART used the
specification to disassemble a valid file into fragments. A
fragment is a subtree in the parse tree of a file. These frag-
ments could be added, deleted, and substituted as described
in Section 3.2. However, most newly added seeds could
not be parsed successfully. Without a successful parsing,
there was no parse tree. Our fragment-based smart greybox
fuzzing quickly degenerated to a dumb greybox fuzzer.

We addressed this challenge using regions returned via
the parser’s parse table. A region is contiguous sequence
of bytes in the file that are associated with a data chunk
or an attribute in the specification. If the file is corrupted,
the parser will fail at some point. Until this point, regions
can be derived that adhere to the specification. To populate
our virtual structure, AFLSMART uses the parse table within
the Peach Cracker component to derive for each chunk and
attribute the start and end index as well as the type.

3.3.3 Deferred Parsing
In our experiments, we observed that constructing the vir-
tual structure for a seed input incurs substantial costs. The
appeal of coverage-based greybox fuzzing (CGF) and the
source of its success is its efficiency [4]. Generating and
executing an input is in the order of a few milliseconds.
However, we observed that parsing an input takes generally
in the order of seconds. For instance, the construction of the
virtual structure for a 218-byte PNG file takes between two
and three seconds. If SGF constructs the virtual structure
for every seed input that is discovered, SGF may quickly
fall behind traditional greybox fuzzing despite all of its
”smartness”.

2. The benefit of stacking simple and structural mutations is explored
further in the Fuzzing Book [55].

To overcome this scalability challenge, we developed
a scheme that we call deferred parsing, which contributed
substantially to the scalability of our tool AFLSMART. We
construct the virtual structure of a seed input with a certain
probability p that depends on the current time to discover a
new path. Let t be the time since the last discovery of a new
path. Let s be the current seed chosen by CHOOSENEXT in
Line 2 of greybox fuzzing Algorithm 1 and assume that the
virtual structure for s has not been constructed, yet. Given
a threshold ε, we compute the probability probvirtual(s) to
construct the virtual structure of s as

probvirtual(s) = min

(
t

ε
, 1

)

In other words, the probability probvirtual(s) to construct
the virtual structure for the seed s increases as the time
t since the last discovery increases. Once t ≥ ε, we have
probvirtual(s) = 100%.

Our deferred parsing optimization is inspired by the fol-
lowing intuition. Without input aware greybox fuzzing as in
AFLSMART, AFL may generate many invalid inputs which
repeatedly traverse a few short paths in an application
(typically program paths which lead to rejection of the input
due to certain parse error). If more of such invalid inputs are
generated, the value of t, the time since last discovery of a
new path, is slated to increase. Once t increases beyond a
threshold ε, we allow AFLSMART to construct the virtual
structure. If however, normal AFL is managing to generate
inputs which still traverse new paths, t will remain small,
and we will not incur the overhead of creating a virtual
structure. The deferred parsing optimization thus allows
AFLSMART to achieve input format-awareness without sac-
rificing the efficiency of AFL.

3.4 Validity-based Power Schedule

A power schedule determines how much energy is assigned
to a given seed during coverage-based greybox fuzzing [4].
The energy for a seed determines how much time is spent
fuzzing that seed when it is chosen next (cf. ASSIGNENERGY
in Alg. 1). In the literature, several power schedules have
been introduced. The original power schedule of AFL [39]
assigns more energy to smaller seeds with a lower execution
time that have been discovered later. The gradient descent-
based power schedule of AFLFAST [4] assigns more energy
to seeds exercising low-frequency paths.

In the following, we define a simple validity-based
power schedule. Conventionally, validity is considered as a
boolean variable: Either a seed is valid, or it is not. However,
we suggest to consider validity as a ratio: A file can be valid
to a certain degree. The degree of validity v(s) of a seed
s is determined by the parser that constructs the virtual
structure. If all of the file can be parsed successfully, the
degree of validity v(s) = 100%. If only 65% of s can be
parsed successfully, its validity v(s) = 65%. The virtual
structure for a file that is partially valid is also only partially
constructed. To this partial structure, one chunk is added
that spans the unparsable remainder of the file.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 7

Given the seed s, the validity-based power schedule pv(s)
assigns energy as follows

pv(s) =


2p(s) if v(s) ≥ 50% and p(s) ≤ U

2

p(s) if v(s) < 50%

U otherwise
(1)

where p(s) is the energy assigned to s by the traditional
greybox fuzzer’s (specifically AFL’s) original power sched-
ule and U is a maximum energy that can be assigned by
AFL. This power schedule implements a hill climbing meta-
heuristic that always assigns twice the energy to a seed that
is at least 50% valid and has an original energy p(s) that is
at most half the maximum energy U .

The validity-based power schedule assigns more energy
to seeds with a higher degree of validity. First, the utility of
the structural mutation operators increases with the degree
of validity. Secondly, the hope is that more valid inputs can
be generated from already valid inputs. The validity-based
power schedule implements a hill climbing meta-heuristic
where the search follows a gradient descent. A seed with
a higher degree of validity will always be assigned higher
energy than a seed with a lower degree of validity.

4 FILE FORMAT SPECIFICATION

The quality of file format specifications is crucial to the
effectiveness and efficiency of smart greybox fuzzing. How-
ever, manually constructing such high-quality specifications
of highly-structured and complicated file formats is time-
consuming and error-prone. In this work, we analyzed
180 most common file types3 with a focus on document,
video, audio, image, executable and network packet files.
We read their specification if available or used parsing tools
to identify the structures of these files and found the key
insights based on which users can write specifications in
a systematic way. These key insights explain the common
structures of file formats. On the other hand, they also show
the correlations between the completeness and precision of
the data models and the success of smart greybox fuzzing.

4.1 Insight-1. Chunk inheritance
Most file formats are composed of data chunks which
normally share a common structure. Like an abstract class
in Java and other object-oriented programming languagues
(e.g., C++ and C#), to write an input specification we start
by modelling a generic chunk containing attributes that
are shared across all chunks in the file format. Then, we
model the concrete chunks which inherit the attributes from
the generic chunk. Hence, we only need to insert/modify
chunk-specific attributes.� �
<DataModel name="Chunk">
<String name="ckID" length="4" padCharacter=" "/>
<Number name="cksize" size="32">
<Relation type="size" of="Data"/>
</Number>
<Blob name="Data"/>
<Padding alignment="16"/>
</DataModel>� �

Listing 2: Generic Chunk Model

3. https://fileinfo.com/filetypes/common

� �
<DataModel name="ChunkFmt" ref="Chunk">

<String name="ckID" value="fmt " token="true"/>
<Block name="Data">

<Number name="wFormatTag" size="16"/>
<Number name="nChannels" size="16"/>
<Number name="nSampleRate" size="32"/>
<Number name="nAvgBytesPerSec" size="32"/>
<Number name="nBlockAlign" size="16" />
<Number name="nBitsPerSample" size="16"/>

</Block>
</DataModel>� �

Listing 3: Format Chunk Model

Listing 2 and Listing 3 show an example of how the
chunk inheritance can be applied to the input specification
of the WAVE audio file format. The generic chunk model
in Listing 2 specifies that each chunk has its chunk iden-
tifier, chunk size and chunk data in which the chunk size
constraints the actual length of the chunk data. Moreover,
each chunk could have padded bytes at the end to make
it word (2 bytes) aligned. Listing 3 shows the model of a
format chunk, a specific data chunk in WAVE file, which
inherits the chunk size and padding attributes from the
generic chunk. It only models chunk-specific attributes like
its string identifier and what are stored inside its data.

People normally have a big concern that they need to
spend lots of time reading the standard specification of a file
format (which can be hundreds of pages long) to understand
this high-level hierarchical chunks structure. However, we
find that there exist Hex editor tools like 010Editor [36]
which can detect the file format and quickly decompose a
sample input file into chunks with all attributes. The tool
currently supports 114 most common file formats (e.g., PDF,
MPEG4, AVI, ZIP, JPEG) [37].

Fig. 5: Analyzing file structure using 010Editor

Figure 5 is a screenshot of 010Editor displaying a WAVE
file. The top part of the screen shows the raw data in both
Hexadecimal and ASCII modes. The bottom part is the
decomposed components including chunks’ headers, and
chunks’ data.

4.2 Insight-2. Specification completeness
As explained in Section 3, smart greybox fuzzing supports
structural mutation operators that work at chunk level. So
we are not required to specify all attributes inside a chunk.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 8

We can start with a coarse-grained specification and grad-
ually make it more complete. Listing 4 shows a simplified
definition of the format chunk in which we only specify the
chunk identifier and we do not define what are the children
attributtes in its data. The chunk data is considered as a
“blob” which can contain anything as long as its size is
consistent with the chunk size.� �
<DataModel name="ChunkFmt" ref="Chunk">

<String name="ckID" value="fmt " token="true"/>
</DataModel>� �

Listing 4: Simplified Format Chunk Model

Based on the this key insight and the Insight-1, one can
quickly write a short yet precise file format specification.
As shown in Section 5, the specification for the WAVE file
format can be written in 82 lines while the specification
for the PCAP network traffic file format can be written in
just 24 lines. These two specifications helped smart greybox
fuzzing discover many vulnerabilities which could not be
found by other baseline techniques.

4.3 Insight-3. Relaxed constraints
There could be many constraints in a chunk (e.g., the chunk
identifier must be a constant string, the chunk size attribute
must match with the actual size or chunks must be in
order). However, since the main goal of fuzzing or stress
testing in general is to explore corner cases, we should relax
some constraints as long as these relaxed constraints do
not prevent the parser from decomposing the file. Listing 5
shows the definition of a WAVE file format. As we use
the Choice element4 to specify the list of potential chunks
(including both mandatory and optional ones), many con-
straints have been relaxed. Firstly, the chunks can appear
in any order. Secondly, some chunk (including mandatory
chunk) can be absent. Thirdly, some unknown chunk can
appear. Lastly, some chunk can appear more than once. In
fact, becaused this relaxed model, vulnerabilities like the
one in our motivating example in our paper (Section 2) can
be exposed.� �
<DataModel name="Wav">
<String name="ckID" value="RIFF" token="true"/>
<Number name="cksize" size="32" />
<String name="WAVE" value="WAVE" token="true"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="FmtChunk" ref="ChunkFmt"/>
<Block name="DataChunk" ref="ChunkData"/>
<Block name="FactChunk" ref="ChunkFact"/>
<Block name="SintChunk" ref="ChunkSint"/>
<Block name="WavlChunk" ref="ChunkWavl"/>
<Block name="CueChunk" ref="ChunkCue"/>
<Block name="PlstChunk" ref="ChunkPlst"/>
<Block name="LtxtChunk" ref="ChunkLtxt"/>
<Block name="SmplChunk" ref="ChunkSmpl"/>
<Block name="InstChunk" ref="ChunkInst"/>
<Block name="OtherChunk" ref="Chunk"/>

</Choice>
</DataModel>� �

Listing 5: WAVE File Format Specification

4. In a Peach pit, Choice elements are used to indicate any of the sub-
elements are valid but only one should be selected at a time. Reference:
http://community.peachfuzzer.com/v3/Choice.html

4.4 Insight-4. Reusability
Unlike specifications of program behaviours which are pro-
gram specific and hardly reusable, a file format specification
can be used to fuzz all programs taking the same file format.
We believe the benefit of finding new vulnerabilities far out-
weighs the cost of writing input specifications. In Section 5
and Section 6, we show that our smart greybox fuzzing tool
have used specifications of 10 popular file formats (PDF,
AVI, MP3, WAV, JPEG, JPEG2000, PNG, GIF, PCAP, ELF) to
discover more than 40 vulnerabilities in heavily-fuzzed real-
world software packages. Notably, based on the key insights
we have presented, it took one of us only five (5) working
days to complete these 10 specifications.

5 EXPERIMENTAL SETUP

To evaluate the effectiveness and efficiency of smart grey-
box fuzzing, we conducted several experiments. We imple-
mented our technique by extending the existing greybox
fuzzer AFL and call our smart greybox fuzzer AFLSMART.
To investigate whether input-structure-awareness indeed
improves the vulnerability finding capability of a grey-
box fuzzer, we compare AFLSMART with two traditional
greybox fuzzers AFL [39] and AFLFAST [4]. To investi-
gate whether smart blackbox fuzzer (given the same input
model) could achieve a similar vulnerability finding capabil-
ity, we compare AFLSMART with the smart blackbox fuzzer
Peach [47]. We also compare AFLSMART with VUZZER [32].
The objective of VUZZER is similar to AFLSMART, it seeks
to tackle the challenges of structured file formats for greybox
fuzzing, yet without input specifications, using taint analy-
sis and control flow analysis.

5.1 Research Questions
RQ-1. Is smart greybox fuzzing more effective and efficient than

traditional greybox fuzzing? Specifically, we investigate
whether AFLSMART discovers more unique bugs
than AFL/AFLFAST in 24 hours, and in the absence
of bugs whether AFLSMART achieves higher branch
coverage than AFL/AFLFAST in the given time.

RQ-2. Is smart greybox fuzzing more effective and efficient than
smart blackbox fuzzing? Specifically, we investigate
whether AFLSMART discovers more unique bugs
than Peach in 24 hours, and in the absence of bugs
whether AFLSMART achieves higher branch cover-
age than Peach in the given time budget.

RQ-3. Does mutation stacking contribute to the effectiveness
of smart greybox fuzzing? Specifically, we compare
the branch coverage achieved by AFLSMART in two
settings—with and without stack mutations.

RQ-4. Is smart greybox fuzzing more effective than taint
analysis-based greybox fuzzing? Specifically, we inves-
tigate the number of unique bugs found by Vuzzer
and AFLSMART individually and together.

5.2 Implementation: AFLSMART

AFLSMART extends AFL by adding and modifying four
components, the File Cracker, the Structure Collector, the
Energy Calculator and the Fuzzer itself. The overall archi-
tecture is shown in Figure 6.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 9

TABLE 1: Subject Programs (18) and File Formats (10). VUZZER subject programs (6) are at the bottom. At runtime,
AFL-based fuzzers replace “@@” by a path to the file containing the mutated data.

Program Description Size (LOC) Test driver Format Option
Binutils Binary analysis utilities 3700 K readelf ELF -agteSdcWw --dyn-syms -D @@
Binutils Binary analysis utilities 3700 K nm-new ELF -a -C -l --synthetic @@
LibPNG Image processing 111 K pngimage PNG @@
ImageMagick Image processing 385 K magick PNG @@ /dev/null
LibJPEG-turbo Image processing 87 K djpeg JPEG @@
LibJasper Image processing 33 K imginfo JPEG -f @@
FFmpeg Video/Audio/Image processing 1100 K ffmpeg AVI -y -i @@ -c:v mpeg4 -c:a out.mp4
LibAV Video/Audio/Image processing 670 K avconv AVI -y -i @@ -f null -
LibAV Video/Audio/Image processing 670 K avconv WAV -y -i @@ -f null -
WavPack Lossless Wave file compressor 47 K wavpack WAV -y @@ -o out_dir
OpenJPEG Image processing 115 K decompress JP2 -i @@ -o out.png
LibJasper Image processing 33 K jasper JP2 -f @@ -t jp2 -F /dev/null

mpg321 Command line MP3 player 5 K mpg321 MP3 --stdout @@
gif2png+libpng Image converter 36 K gif2png GIF @@
pdf2svg+libpoppler PDF to SVG converter 92 K pdf2svg PDF @@ out.svg
tcpdump+libpcap Network traffic analysis 102 K tcpdump PCAP -nr @@
tcptrace+libpcap TCP connection analysis 55 K tcptrace PCAP @@
djpeg+libjpeg Image processing 37 K djpeg JPEG @@

seed

AFLSmart 
Fuzzer

File 
Cracker

root

chunk1 chunk2

... ... ... ...

Structure
Collector

Validity (%)

f1 f2 fn...

Seed Selector

AFLSmart 
Engery Calculator

Input Queue

specification

Fig. 6: Architecture of AFLSMART

AFLSMART File Cracker parses an input file and de-
composes it into data chunks and data attributes. It also
calculates the validity of the input file based on how much
of the file can be parsed. In this prototype, we implement
the File Cracker by modifying the Cracker component of
the smart blackbox fuzzer Peach (Community version) [47]
which fully supports highly-structured file formats such as
PNG, JPEG, GIF, MP3, WAV and AVI. It is worth noting
that we only use and modify the File Cracker component
of Peach for parsing (i.e., cracking) the seed corpus. AFL-
SMART does not integrate Peach’s fuzzing logic or its muta-
tion operators. Our smart mutation operators are designed
and implemented on top of AFL.

AFLSMART Structure Collector connects the core AFL-
SMART Fuzzer and the File Cracker component. When the
Fuzzer requests structure information of the current input
to support its operations (e.g., smart mutations), it passes
the input to the Structure Collector for collecting the validity
and the decomposed chunks and attributes. This component
provides a generic interface to support all File Crackers
– our current Peach-based File Cracker and new ones. It
is also worth noting that AFLSMART Fuzzer only collects
these information once and saves them for future uses.

AFLSMART Energy Calculator implements the validity-
based power schedule as discussed in Section 3. Hence,
AFLSMART assigns more energy to inputs which are more
syntactically valid. Specifically, we apply a new formula to
the calculate score function of AFLSMART.

AFLSMART Fuzzer contains the most critical changes to
make AFLSMART effective. In this component, we design

and implement the virtual structure which can represent
input formats in a hierarchical structure. Based on this core
data structure, all AFLSMART mutation operations which
work at chunk levels are implemented. We also modify
the fuzz one function of AFL to support our important
optimizations – deferred parsing and stacking mutations
(Section 3).

Note that our changes do not impact the instrumentation
component of AFL. As a result, we can use AFLSMART to
fuzz program binaries provided the binary is instrumented
using a tool like DynamoRio [8] and the instrumented code
can be processed by AFL. Such a binary fuzzing approach
has been achieved in the WinAFL tool5 for Windows bina-
ries. AFLSMART works well with such binary fuzzing tools.

5.3 Subject Programs

We did a rigorous search for suitable benchmarks to test
AFLSMART and the chosen baselines. We evaluated the
techniques using both large real-world software packages
and a benchmark previously used in VUZZER paper. We
did not use the popular LAVA benchmarks [14] because the
LAVA-M subjects (uniq, base64, md5sum, who) do not process
structured files while the small file utility in LAVA-1 takes
any file, regardless of its file format, and determines the file
type.

In the comparison with AFL, AFLFAST and Peach
(RQ-1 and RQ-2), we selected the newest versions (at
the time of our experiments) of 11 experimental subjects
from well-known open source programs which take six
(6) chunk-based file formats – executable binary file (ELF),
image files (PNG, JPEG, JP2 (JPEG2000)), audio/video files
(WAV, AVI). All of them have been well tested for many
years. Notably, five (5) media processing libraries (FFmpeg6,
LibPNG7, LibJpeg-Turbo8, ImageMagick9, and OpenJPEG10)

5. https://github.com/ivanfratric/winafl
6. https://github.com/FFmpeg/FFmpeg
7. https://github.com/glennrp/libpng
8. https://github.com/libjpeg-turbo
9. https://github.com/ImageMagick/ImageMagick
10. https://github.com/uclouvain/openjpeg



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 10

have joined the Google OSS-Fuzz project11 and they are con-
tinuously tested using the state-of-the-art fuzzers including
AFL and LibFuzzer. LibAV12, WavPack 13 and Libjasper14

are widely-used libraries and tools for image, audio and
video files processing and streaming. Binutils15 is a set of
utilities for analyzing binary executable files. It is installed
on almost all Linux-based machines.

To compare with VUZZER (RQ-4), we chose the same
benchmark used in the paper. The benchmark includes old
versions of six (6) popular programs on Ubuntu 14.04 32-bit:
mpg321 (v0.3.2), gif2png (v2.5.8), pdf2svg (v0.2.2), tcpdump
(v4.5.1), tcptrace (v6.6.7), and djpeg (v1.3.0). These subjects
take MP3, GIF, PDF, PCAP and JPEG files as inputs. At
the time we conducted our experiments, VUZZER had not
supported 64-bit environment.

Table 1 shows the full list of programs and their informa-
tion. Note that the sizes of subject programs are calculated
by sloccount16. Moreover, to increase the reproducibility
of our experiments, in the fifth column we also provide the
exact commands we used to run the subject programs. In
the experiments to answer RQ-1 and RQ-2, we tested two
programs for each file format to mitigate subject bias.

5.4 Corpora, Dictionaries, and Specifications

Format specification. AFLSMART leverages file format spec-
ifications to construct the virtual structure of a file. These
specifications are developed as Peach Pits.17 In our exper-
iment, we used ten file format specifications (see Table 2).
While the specification of the WAV format is a modification
of a free Peach sample18, we developed other Peach pits
from scratch. AFLSMART and Peach are provided with the
same file format specifications (i.e., Peach pits).

Seed corpus. In order to construct the initial seed files,
we leveraged several sources. For PNG and JPEG images,
we used the image files that are available as test files in
their respective code repositories. For ELF files, we collected
program binaries from the bin and /user/bin folders on the
host machine. For other file formats, we downloaded seed
inputs from websites keeping sample files (WAV19, AVI20,
JP221, PCAP22, MP323, GIF24 and PDF25). Table 2 shows the
size of the input corpus we used for each file format. All
fuzzers are provided with the same initial seed corpus.

Dictionary. We developed dictionaries for four (4) file
formats (ELF, WAV, AVI, and JP2); AFL (and AFLSMART)
already provides dictionaries for PNG and JPEG image
formats. The dictionaries were written by simply crafting

11. https://github.com/google/oss-fuzz
12. https://github.com/libav/libav
13. https://github.com/dbry/WavPack
14. https://github.com/mdadams/jasper
15. https://www.gnu.org/software/binutils/
16. https://www.dwheeler.com/sloccount/
17. http://community.peachfuzzer.com/v3/PeachPit.html
18. http://community.peachfuzzer.com/v3/TutorialFileFuzzing/
19. https://freewavesamples.com/source/roland-jv-2080
20. http://www.engr.colostate.edu/me/facil/dynamics/avis.htm
21. http://samples.ffmpeg.org/
22. https://wiki.wireshark.org/SampleCaptures
23. https://www.magnac.com/sounds.shtml
24. https://people.sc.fsu.edu/ jburkardt/data/gif/gif.html
25. https://www.pdfa.org/isartor-test-suite/

TABLE 2: File Format Specifications and Seed Corpora

File Format Specification Seed Corpus
Format Length (#Lines) Time spent #Files Avg. size
ELF 90 lines 4 hours 21 100 KB
PNG 128 lines 4 hours 51 4 KB
JPEG 92 lines 4 hours 8 5.5 KB
WAV 82 lines 1 hour 11 500 KB
AVI 124 lines 4 hours 10 430 KB
JP2 144 lines 4 hours 10 35 KB
PDF 84 lines 4 hours 10 140 KB
GIF 108 lines 4 hours 10 12 KB
PCAP 24 lines 4 hours 5 11 KB
MP3 90 lines 4 hours 10 201 KB

the tokens (e.g., signatures, chunk types) from the same
specifications/documents based on which we developed the
Peach Pit file format specifications. AFLSMART, AFL, and
AFLFAST were run with the same dictionaries.

5.5 Infrastructure

Computational Resources. We have different setups for two
sets of experiments. In the first set of experiments to com-
pare AFLSMART with AFL, AFLFAST, and Peach, we used
machines with an Intel Xeon CPU E5-2660v3 processor that
has 56 logical cores running at 2.4GhZ. Each machine runs
Ubuntu 16.04 (64 bit) and has access to 64GB of main
memory. All fuzzers had the same time budget (24 hours),
the same computational resources, and were started with
the same seed corpus with the same dictionaries. Peach and
AFLSMART also used the same Peach Pits (i.e., grammars).
In the comparison with VUZZER, we set up a virtual ma-
chine (VM) having the same settings reported in the paper
– a Ubuntu 14.04 LTS system equipped with a 32-bit 2-
core Intel CPU and 4 GB RAM. In this environment, both
VUZZER and AFLSMART were started with the same seed
corpus.

Experiment repetition. To mitigate the impact of random-
ness, for each subject program we ran 20 isolated instances
of each of AFL, AFLFAST, AFLSMART, and Peach. We em-
phasize that none of the instances shared the same queue.26

Specifically, Peach does not support such a shared queue
architecture.

Settings for AFL and AFLFAST. We ran AFL with option
“-d” to enable its Fidgety mode which significantly boosts
its efficiency (as explained by the creator of AFL).27 The
FidgetyAFL was a result of investigating the power sched-
ules designed in AFLFAST. For AFLFAST, we ran its default
setting which uses the COE power schedule.

Measuring branch coverage. To calculate branch coverage,
we used the gcov-tool. Unlike AFL-based fuzzers, Peach
does not keep any generated test cases. It only stores bug-
triggering inputs. So we modified Peach such that it stores
all test cases which Peach generates during a 24-hour run.

Measuring #unique bugs. To calculate the number of
unique bugs found by a technique, we started with an
automatic call-stack-based bucketing approach [13]: Crashes
that have the same call stack are in the same group. We then
manually analyzed the resulting groups, and selected one
representative from each group for bug reporting purposes.

26. https://github.com/mirrorer/afl/blob/master/docs/parallel fuzzing.txt
27. https://groups.google.com/forum/#!topic/afl-users/1PmKJC-EKZ0



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 11

TABLE 3: Average branch coverage, coverage factor w.r.t.
AFL, Vargha-Delaney effect size A12 w.r.t. AFL (statistically
significant effect sizes in bold; using Wilcoxon signed-rank
test), and number of unique bugs discovered in 20 runs with
a 24 hours time budget. Each unique bug has its own bug-id.

Binary Fuzzer Coverage Factor A12 #Bugs
readelf AFL 49.51% 100% - 3
ELF AFLFAST 46.82% 95% 0.16 3

Peach 25.57% 52% 0.00 0
AFLSMART 48.07% 97% 0.26 3

nm-new AFL 14.04% 100% - 1
ELF AFLFAST 13.68% 97% 0.42 1

Peach 8.02% 57% 0.00 0
AFLSMART 14.30% 102% 0.60 2

pngimage AFL 40.02% 100% - 0
PNG AFLFAST 39.80% 99% 0.37 0

Peach 26.86% 67% 0.00 0
AFLSMART 40.39% 101% 0.70 1

magick AFL 3.34% 100% - 0
PNG AFLFAST 3.16% 95% 0.27 0

Peach 2.80% 84% 0.00 0
AFLSMART 3.27% 98% 0.41 0

djpeg AFL 19.83% 100% - 0
JPEG AFLFAST 19.97% 101% 0.50 0

Peach 10.55% 53% 0.00 0
AFLSMART 19.96% 101% 0.48 0

imginfo AFL 14.81% 100% - 2
JPEG AFLFAST 14.77% 100% 0.50 2

Peach 1.44% 10% 0.00 0
AFLSMART 14.43% 97% 0.39 2

ffmpeg AFL 3.94% 100% - 0
AVI AFLFAST 3.91% 99% 0.41 0

Peach 4.22% 107% 0.98 0
AFLSMART 5.96% 151% 1.00 1

avconv AFL 4.58% 100% - 3
AVI AFLFAST 4.68% 102% 0.62 3

Peach 4.05% 88% 0.00 0
AFLSMART 8.56% 187% 1.00 3

avconv AFL 5.97% 100% - 0
WAV AFLFAST 5.93% 99% 0.48 0

Peach 5.24% 88% 0.06 0
AFLSMART 7.08% 119% 0.84 3

wavpack AFL 14.40% 100% - 1
WAV AFLFAST 14.72% 103% 0.57 1

Peach 14.62% 102% 0.27 1
AFLSMART 16.36% 114% 1.00 5

decompress AFL 47.84% 100% - 0
JPEG2000 AFLFAST 47.79% 100% 0.54 0

Peach 25.02% 52% 0.00 0
AFLSMART 47.91% 100% 0.50 3

jasper AFL 27.45% 100% - 6
JPEG2000 AFLFAST 27.32% 99% 0.47 7

Peach 19.80% 72% 0.00 0
AFLSMART 29.22% 106% 0.89 10

6 EXPERIMENTAL RESULTS

RQ.1 SGF Versus Traditional Greybox Fuzzing

In terms of branch coverage, AFLSMART clearly outperforms
both AFL and AFLFAST (Table 3). On average, AFLSMART
achieved 14.40% more branch coverage than AFL which
is the second best fuzzer in our experiments. Specifically,
AFLSMART covered more branches in nine (9) out of twelve
(12) subjects. AFLSMART performed particularly well for
the complex file formats (video and audio files) of the two
larger subjects, ffmpeg and avconv; AFLSMART explored

TABLE 4: Statistics on bugs found in 20 runs. 7 - no bug
found. N/20 - the bug was discovered in N out of 20 runs.

Subject Bug-ID AFL AFLFAST Peach AFLSMART
WavPack CVE-2018-10536 7 7 7 20/20

CVE-2018-10537 7 7 7 12/20
CVE-2018-10538 7 7 7 20/20
CVE-2018-10539 7 7 7 15/20
CVE-2018-10540 10/20 15/20 11/20 12/20

Binutils Bugzilla-23062 10/20 11/20 7 11/20
Bugzilla-23063 13/20 12/20 7 10/20
CVE-2018-10372 16/20 18/20 7 16/20
CVE-2018-10373 11/20 12/20 7 14/20
Bugzilla-23177 7 7 7 13/20

LibPNG CVE-2018-13785 7 7 7 6/20
Libjasper Issue-174 8/20 9/20 7 9/20

Issue-175 12/20 14/20 7 12/20
CVE-2018-19539 7 7 7 15/20
CVE-2018-19540 7 7 7 7/20
CVE-2018-19541 7 7 7 6/20
CVE-2018-19542 7 7/20 7 9/20
CVE-2018-19543 8/20 12/20 7 13/20
Issue-182-6 19/20 20/20 7 18/20
Issue-182-7 16/20 18/20 7 19/20
Issue-182-8 12/20 13/20 7 16/20
Issue-182-9 12/20 14/20 7 11/20
Issue-182-10 14/20 11/20 7 15/20

OpenJPEG Email-Report-1 7 7 7 8/20
Email-Report-2 7 7 7 13/20
Issue-1125 7 7 7 15/20

LibAV Bugzilla-1121 7 7 7 5/20
Bugzilla-1122 7 7 7 6/20
Bugzilla-1123 18/20 18/20 7 18/20
Bugzilla-1124 15/20 18/20 7 16/20
Bugzilla-1125 7 7 7 8/20
Bugzilla-1127 13/20 15/20 7 18/20

FFmpeg Email-Report-3 7 7 7 3/20

51.02% and 86.90% more branches, respectively. Figure 7
explains this significant improvement using an important
internal statistic of all AFL-based fuzzers – the number of
paths28 discovered over time. In ffmpeg, avconv-avi, and
avconv-wav AFLSMART discovered 250%, 293% and 100%
more paths than AFL. AFLSMART performed slightly worse
than AFL in a ELF-parsing subject in Binutils (readelf) and
the results are on par on magick (ImageMagick utilities) and
imginfo (Jasper library). We believe there are two reasons.
First, AFL is already known to perform well for binary for-
mats, such as ELF. Secondly, these format require semantic
constraints to be satisfied over the input that span more than
one data chunk, such as offset-definitions.

Table 3 reports two measures of effect size and one
measure of statistical significance (marked in bold) as rec-
ommended by Arcuri et al. [1]. Factor gives the coverage of
the competing technique as a factor of the coverage of AFL
(higher is better). Vargha-Delaney A12 gives the probability
that one run of the competing technique is better than
one run of AFL. Values below 0.5 indicate that AFL is
better while values above 0.5 indicate that the competing
technique is better. The Wilcoxon signed rank test is used to
test whether the effect size is statistically significant.

In terms of bug finding, AFLSMART discovered bugs in 10
subjects while AFL and AFLFAST could not detect bug in four
of them (Tables 3 & 4). After analyzing the crashes, we re-
ported 33 zero-day bugs found by AFLSMART out of which

28. In AFL and other fuzzers built on top of it, number of paths is
number of interesting seeds retained in the queue



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 12

nm−new pngimage readelf wavpack

ffmpeg imginfo jasper magick

avconv−avi avconv−wav decompress djpeg

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

1000

2000

3000

0

2000

4000

6000

0

1000

2000

0

2000

4000

6000

0

1000

2000

3000

5000

10000

15000

0

2000

4000

6000

400

800

1200

2000

4000

6000

0

5000

10000

0

2500

5000

7500

2500

5000

7500

Time (in hours)

N
um

be
r 

of
 P

at
hs

fuzzer afl aflfast aflsmart

Fig. 7: Number of paths discovered over time for AFL, AFLFAST, and AFLSMART (average of 20 runs).

only 17 bugs were also found by AFL and AFLFAST. Vice
versa, all zero-day bugs that AFL and AFLFAST found were
also found by AFLSMART. Hence, AFLSMART discovered
almost twice as many bugs as AFL/AFLFAST. Table 4 shows
the detailed bugs found by AFLSMART and the baseline. 17
bugs are heap & stack buffer overflows (many of them are
buffer overwrites) which are known to be easily exploitable.
The maintainers of these programs have fixed 17 bugs we
reported. The MITRE corporation29 has assigned 13 CVEs to
the most critical vulnerabilities. In Table 4, for each unique
bug we also report the number of runs (out of 20 runs) a
technique had discovered the bug.

The main reason why AFL and AFLFAST could not
find many bugs, meanwhile AFLSMART did, in subjects
like FFmpeg, LibAV, WavPack, and OpenJPEG is that these
programs take in highly structured media files (e.g., image,
audio, video) in which the data chunks must be placed
in order at correct locations. This is very challenging for
traditional greybox fuzzing tools like AFL and AFLSMART.
In addition to the motivating example (CVE-2018-10536 and
CVE-2018-10537), we analyze in depth few more critical vul-
nerabilities found by AFLSMART to explain the challenges.

CVE-2018-10538: Heap Buffer Overwrite. The buffer
overwrite is caused by two integer overflows and insufficient
memory allocation. To construct an exploit, we need to craft
a valid WAVE file that contains the mandatory riff, fmt,
and data chunks. Between the fmt and data chunk, we

29. https://cve.mitre.org/

add an additional unknown chunk (i.e., that is neither fmt,
data, ..) with cksize ≥ 0x80000000.

286 else { // just copy unknown chunks to output file
287

288 int bytes_to_copy=(chunk_header.ckSize+1) & 1L;
289 char *buff=malloc(bytes_to_copy);
. . .
296 if (!DoReadFile(infile,buff,bytes_to_copy,..)) {

Fig. 8: Showing cli/riff.c @ revision 0a72951

During parsing the file, WavPack enters the “unknown
chunk” handling code shown in Figure 8. It reads the
specified chunk size from the chunk_header struct and
stores it as a 32-bit signed integer. Since ckSize ≥
231, the assignment in riff.c:288 overflows, such that
bytes_to_copy contains a negative value. The memory
allocation function malloc takes only unsigned values
causing a second overflow to a smaller positive number.
When DoReadFile attempts to read more information from
the WAVE file, there is not enough memory being allocated,
resulting in a memory overwrite that can be controlled
by the attacker. This vulnerability (CVE-2018-10538) was
patched by aborting when bytes_to_copy is negative.

OpenJPEG (Email-Report-1): Heap Buffer Overread &
Overwrite. The buffer overread (lines 617-619) and over-
write (lines 629-631) (see Figure 9) are caused by a missing
check of the actual size (width and height) of the three color
streams (red, green, and blue). Without this check, the code
assumes that all the three streams have the same size and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 13

it uses the same bound value (max) to access the buffers. To
construct an exploit, we need to craft a valid JP2 (JPEG2000)
file that contains three color streams having different sizes
by “swapping” the whole stream(s) from one valid JP2
file and place it/them in the correct position(s) in another
valid JP2 file. Without the structural information, traditional
greybox fuzzing is unlikely to do such a precise swapping.

612 r = image->comps[0].data;
613 g = image->comps[1].data;
614 b = image->comps[2].data;
. . .
616 for (i = 0U; i < max; ++i) {
617 *in++ = (unsigned char) * r++;
618 *in++ = (unsigned char) * g++;
619 *in++ = (unsigned char) * b++;
620 }
. . .
622 cmsDoTransform(transform, inbuf, outbuf, ...);
. . .
624 r = image->comps[0].data;
625 g = image->comps[1].data;
626 b = image->comps[2].data;
. . .
628 for (i = 0U; i < max; ++i) {
629 *r++ = (unsigned char) * out++;
630 *g++ = (unsigned char) * out++;
631 *b++ = (unsigned char) * out++;
632 }

Fig. 9: Showing common/color.c @ revision d2205ba

RQ.2 SGF Versus Smart Blackbox Fuzzing
Given the same input format specifications, AFLSMART clearly
outperforms Peach in all twelve (12) subjects (see Tables 3 & 4).
AFLSMART improved the branch coverage by 133.95% on
average and discovered 33 zero-day bugs while Peach could
find only one vulnerability in the WavPack library.

Apart from the difficulty to discover zero-day bugs in
the heavily-fuzzed benchmarks, we explain these results
by the lack of coverage feedback mechanism in Peach.
The smart blackbox fuzzer treats all test cases at all stages
equally. There is no evolution of a seed corpus. Instead,
there is a simple enumeration of files that are valid w.r.t.
the provided specification. This is a well-kown limitation
of Peach. Recently Lian et. al [22] have tried to tackle
this problem by applying LLVM passes and designing a
feedback mechanism for Peach. The tool is not available for
further comparison and analysis.

A second explanation is the completeness of the file
format specification. The performance of Peach substantially
depends on the precision and completeness of the file format
specification. Peach might need more detailed input models
in which (almost) all chunks and attributes are specified
with exact data types to generate more interesting files.
In contrast, AFLSMART does not require very detailed file
format specifications to derive the virtual structure of a file
and apply our structural mutation operators.

RQ.3 Contribution of Stack Mutations
In 9 out of 12 subjects, AFLSMART with stacking optimiza-
tion outperforms AFLSMART without stacking optimization
(AFLSMART*) (Table 5). To determine the contribution of the
stacking optimization (Sec. 3.3.1), we ran AFLSMART with

VUZZER — 1 8 7 — AFLSMART

Fig. 10: Venn diagram. Number of bugs that VUZZER and
AFLSMART discover individually and together.

two settings, one where stacking is enabled (AFLSMART)
and one where it is disabled (AFLSMART*). Table 5 shows
the average branch coverage (in 20 runs). The results indi-
cate that stacking mutations does contribute to the effective-
ness of AFLSMART.

RQ.4 SGF Versus Taint-Based Greybox Fuzzing
AFLSMART outperforms VUZZER [32] on VUZZER’s bench-
mark programs. AFLSMART found 15 bugs in all subject
programs in the benchmark in which seven (7) bugs could
not be found by VUZZER in tcpdump, tcptrace and gif2png
(see Table 6). It is worth noting that all these bugs are
not zero-day ones because the VUZZER benchmark contains
old versions of software packages on the out-dated Ubuntu
14.04 32-bit; all the bugs have been fixed. We explain these
results by the limited information VUZZER can infer using
taint analysis – it cannot infer the high-level structural
representation of the input so it cannot do mutations at the
chunk level.

We also investigate the intersection of the results. As
shown in Figure 10, VUZZER and AFLSMART discovered
16 bugs all together. Even though the intersection is large
(AFLSMART discovered almost all bugs found by VUZZER),
we believe AFLSMART and VUZZER are two potentially
supplementary approaches. While AFLSMART can leverage
the input structure information to systematically do mu-
tations at the chunk level and explore new search space
(which is unlikely to be done by bit-level mutations),
VUZZER can leverage its taint analysis to infer features of
attributes inside the newly generated inputs and mutate
them effectively.

7 CASE STUDY: BUG FINDING WITH AFLSMART

We conducted an extra experiment to evaluate the effec-
tiveness of AFLSMART in a bug hunting campaign for a
large and popular software package. We chose FFmpeg as
our target program because this is an extremely popular
and heavily-fuzzed library. Every day when we use our
computers/smartphones in working time or in our leisure
time, we would use at least one software powered by the
FFmpeg library like a web browser (e.g., Google Chrome),
a sharing video page (e.g., YouTube), or a media player
(e.g., VLC). FFmpeg is heavily fuzzed; as a part of OSS-
Fuzz project, it has been continuously fuzzed for years. Due
to its popularity, any serious vulnerability in FFmpeg could
compromise millions of systems and expose critical security
risk(s).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 14

TABLE 5: Average branch coverage (in 20 runs) achieved by AFLSMART with stack mutations optimization (AFLSMART)
and AFLSMART without the optimization (AFLSMART*)

readelf nm-new pngimage magick djpeg imginfo ffmpeg avconv-avi avconv-wav wavpack decompress jasper
AFLSMART* 47.61% 14.11% 37.49% 3.29% 19.73% 14.60% 6.18% 6.68% 8.06% 14.98% 46.28% 28.61%
AFLSMART 48.07% 14.30% 40.39% 3.27% 19.96% 14.42% 5.95% 7.08% 8.56% 16.35% 47.91% 29.22%

TABLE 6: VUZZER vs AFLSMART on VUZZER’s benchmark

Application VUZZER AFLSMART
mpg321 2 2

gif2png+libpng 1 2
pdf2svg+libpoppler 3 2
tcpdump+libpcap 1 6
tcptrace+libpcap 1 2

djpeg+libjpeg 1 1

TABLE 7: CVEs of bugs found in FFmpeg

Subject Bug-ID Description Severity
FFmpeg CVE-2018-13301 Null pointer dereference MEDIUM

CVE-2018-13305 Heap buffer overwrite HIGH
CVE-2018-13300 Heap buffer overread HIGH
CVE-2018-13303 Null pointer dereference MEDIUM
CVE-2018-13302 Heap buffer overwrite HIGH
CVE-2018-12459 Assertion failure MEDIUM
CVE-2018-12458 Assertion failure MEDIUM
CVE-2018-13304 Assertion failure MEDIUM
CVE-2018-12460 Null pointer dereference MEDIUM

We run five (5) instances of AFLSMART in parallel
mode30 in one week using the AVI input specification to test
its functionality of converting an AVI file to a MPEG4 file
(see Table 1 for the exact command). In this fuzzing cam-
paign, AFLSMART discovered nine (9) zero-day crashing
bugs including buffer overflows, null pointer dereferences
and assertion failures. All the bugs have been fixed and
nine (9) CVE IDs have been assigned to them. Table 7 shows
the CVEs and their severity levels based on the Common
Vulnerability Scoring System version 3.0 [40]; all these nine
vulnerabilities are rated from medium to high severity.

The results confirm the practical impact of smart greybox
fuzzing in testing programs taking highly-structured input
files like FFmpeg. It shows that the benefit of finding new
vulnerabilities outweighs the one-time effort of writing in-
put specifications.

8 RELATED WORK

Fuzzing is a fast-growing research topic, and making grey-
box fuzzing grammar-aware has been a natural next step.
Since submitting the first draft of the present article, we have
become aware of several concurrent research efforts. In the
following, we discuss this stream of concurrent works and
how smart greybox fuzzing as implemented in AFLSMART
is different from those. If the reader is keen to try out the
various approaches to grammar-based greybox fuzzing, we
refer to the chapter “Greybox Fuzzing with Grammars” in
the Fuzzingbook [55], a hands-on, tutorial-style textbook on
fuzzing with executable examples. For a more general dis-
cussion, we refer to the excellent survey of recent advances
in fuzzing from Manés et al. [24].

30. https://github.com/mirrorer/afl/blob/master/docs/parallel
fuzzing.txt

LangFuzz [19] is a fragment-based mutational blackbox
fuzzer. Given a context-free grammar and a seed corpus,
LangFuzz would first disassemble each seed input into
fragments. A fragment is a subtree in a seed’s parse tree. It
is typed by the grammar symbol of subtree’s root node. The
fragment pool is the set of derived fragments. Now, LangFuzz
generates new inputs by manipulating existing fragments in
a given seed: A fragment may be deleted or substituted by
another fragment of the same type. The main advantage
is that implicit constraints, such as checksums, are main-
tained within “real-world” fragments. Other smart blackbox
fuzzers include Peach [47], Spike [48], and Domato [41].

Superion [35] conceptually extends LangFuzz with
coverage-feedback: Structurally mutated seeds that increase
coverage are retained for further fuzzing. While Superion
works well for highly structured inputs, like XML and
JavaScript, AFLSMART’s mutation operators better support
chunk-based file formats, such as those for image and audio
files. In contrast to AFLSMART, Superion does not imple-
ment deferred parsing or leverage byte-level mutation. The
constrained nature of the mutation operators in Superion
constrains the set of inputs that can be generated (as com-
pared to AFLSMART which works with a bigger search
space). In other words, AFLSMART generates (slightly) in-
valid inputs to discover bugs in the parser and to achieve
more coverage faster [55].

Nautilus [2] integrates fragment-based and byte-level
mutational greybox fuzzing. It maintains the parse tree
for all seeds and (unlike AFLSMART) for all generated in-
puts. To allow AFL-style byte-level mutations, it “collapses”
subtrees back to byte-level representations. This has the
advantage that generated seeds do not need to be re-parsed.
However, we believe that over time Nautilus de-generates
to structure-unaware greybox fuzzing. Collapsed subtrees
are never re-parsed. So, there is a chance that parse-trees
of seeds, which are added in a late stage of the fuzzing
campaign, are collapsed entirely. In contrast, AFLSMART re-
parses each generated input that is added to the queue. To
keep the parsing overhead at bay, we introduce deferred
parsing. In contrast to Nautilus, AFLSMART also features
region-based fuzzing and a validity-based power schedule
when the seed input is valid only to some degree.

ProFuzzer [53], SLF [54], and PDF [25] implement
region-based fuzzing without a grammar. They identify
contiguious regions by incrementally mutating input bytes
and observing the changes in coverage.31 Once the input
fields are identified and classified, ProFuzzer applies field-
aware mutations such as mutating the whole field instead
of individual bytes (e.g., for magic numbers) and updating
input data accordingly to satisfy the fields’ constraints (e.g.,
size-of, offset-of). Moreover, ProFuzzer ignores the raw data

31. ProFuzzer and SLF took inspiration from afl-analyze, a tool in
the AFL toolset that identifies contiguous regions in a similar fashion.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 15

which could not lead to any new code coverage improve-
ment. While ProFuzzer requires a valid seed corpus, SLF
and PDF go one step further by generating valid seeds
“out of thin air”. They incrementally identify data fields
by detecting and satisfying input checks in the parser. In
contrast, AFLSMART understands the high-level structure
of seed files. ProFuzzer, SLF, and PDF can indeed identify
contiguous regions in a file, but they cannot determine the
type of these regions (e.g., IHDR in a PNG file) or coarser
structures of regions (i.e., fragments).

LibProtobuf-mutator (LPM) [50] and Zest [26], [27] intro-
duce smart greybox fuzzing to the unit level, i.e., for specific
program methods. LPM compiles a grammar-specification
into a fuzzer driver stub for the coverage-based greybox
fuzzer, LibFuzzer [46]. This fuzzer driver translates byte-
level mutations of LibFuzzer into structural mutations of
the fuzzer target. However, the fuzzer driver still needs
to be manually wired to the fuzzer target (e.g., the XML-
parser function of LibXML). Now, Zest integrates coverage-
and property-based testing and implements a coverage-
guided parameter search over the input variables of a
fuzzed method. This allows Zest to map mutations in the
untyped parameter domain to structural mutations in the
input domain. However, while Zest and LPM focus on the
unit level, AFLSMART tackles smart system-level fuzzing.

Smart whitebox fuzzing. Another related stream of works
is that of smart whitebox fuzzing which leverages both
program structure and input structure to explore the pro-
gram most effectively. Whitebox fuzzers are often based on
symbolic execution engines such as KLEE [9] or S2E [12].
Grammar-based whitebox fuzzers [16] can generate files
that are valid w.r.t. a context-free grammar. Model-based
whitebox fuzzing [30] enforces semantic constraints over the
input structure that cannot be expressed in a context-free
grammar, such as length-of relationships. In contrast to our
approach, smart whitebox fuzzers require heavy machinery
of symbolic execution and constraint solving.

Coverage-based greybox fuzzing. Our work builds on
coverage-based greybox fuzzing (CGF) [39], [46], which is
a popular and effective approach for software vulnerability
detection. The AFL fuzzer [39] and its extensions [3], [4],
[11], [15], [20], [21], [28], [34] constitute the most widely
used embodiment of CGF. CGF is a promising middle
ground between blackbox and whitebox fuzzing. Compared
to blackbox approaches, CGF uses light-weight instrumen-
tation to guide the fuzzer to new regions of the code, and
compared to whitebox approaches, CGF does not suffer
from high overheads of constraint solving.

Boosted greybox fuzzing. AFLFAST [4] uses Markov chain
modeling to target regions that are still not generally cov-
ered by AFL. The approach discovers known bugs faster
compared to standard AFL, as well as finding new bugs.
AFLGO [3] performs reachability analysis to a given location
or target by prioritizing seeds which are estimated to have
a lower distance to the target. Angora [11] is an extension of
AFL to improve its coverage that performs search based on
gradient descent to solve path condition without symbolic
execution. SlowFuzz [29] prioritizes inputs with a higher
resource usage count for further mutation, with the objective
of discovering vulnerabilities to complexity attacks. These
works improve the effectiveness of greybox fuzzing along

other dimensions (not input format awareness), and are
largely orthogonal to our approach

Restricted mutations. Other works in the CGF area employ
specific optimizations to restrict the mutations. VUzzer [32]
uses data- and control-flow analysis of the test subject to
detect the locations and the type of the input data to mutate
or to keep constant. Steelix [21] focuses on developing
customized mutation operations of magic bytes, e.g., the
special words RIFF, fmt, or data in a WAVE file (see 2).
SymFuzz [10] learns the dependencies in the bits in the
seed input using symbolic execution in order to compute
an optimal mutation ratio given a program under test and
the seed input; the mutation ratio is the number of seed
bits that are flipped in mutation-based fuzzing. These works
encompass specific optimizations to restrict mutations. They
do not inject input format awareness for generating valid
inputs as is achieved by our file format aware mutation
operators, or validity-based power schedules.

Greybox fuzzing and symbolic execution. While greybox
fuzzing can generate tens of thousands of inputs per second
symbolic execution can systematically explore the behaviors
of the system. How to integrate both techniques effectively
is an active research topic [7]. T-Fuzz [28] removes san-
ity checks in the code that blocks the fuzzers (AFL or
honggfuzz [44]) from progressing further. This, however,
introduces false positives, which are then detected using
symbolic execution. Driller [34] is a combination of fuzzing
and symbolic execution to allow for deep exploration of pro-
gram paths. In our work, we avoid any symbolic execution,
and enhance the effectiveness of grey-box fuzzing without
sacrificing the efficiency of AFL.

Format specification inference. Several works study file for-
mat inferencing. Lin and Zhang [23] present an approach to
derive the file’s input tree from the dynamic execution trace.
Learn&Fuzz [18] uses neural-network-based statistical ma-
chine learning to generate files satisfying a complex format.
The approach is used to fuzz Microsoft Edge browser PDF
handler, and found a bug not previously found by previous
approaches such as SAGE [17]. Inference can potentially
help input-aware fuzzers such as AFLSMART.

9 DISCUSSION

Smart fuzzers needed. Greybox fuzzing has been the technol-
ogy of choice for practical, automated detection of software
vulnerabilities. The current embodiment of greybox fuzzing
in the form of the AFL fuzzer is agnostic to the input format
specification. This leads to lot of time in a fuzzing campaign
being wasted in generation of syntactically invalid inputs. In
this work, we have brought in the input format awareness
of commercial blackbox fuzzers into the domain of greybox
fuzzing. This is achieved via file format aware mutations,
validity-based power schedules, and several optimizations
(most notably the deferred parsing optimization) which
allows our AFLSMART tool to retain the efficiency of AFL.
Detailed evaluation of our tool AFLSMART with respect to
AFL on applications processing popular file formats (such
as AVI, MP3, WAV) demonstrate that AFLSMART achieves
substantially (up to 87%) higher branch coverage and finds
more bugs as compared to AFL. The manual effort of spec-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 16

ifying an input format is a one-time effort, and was limited
to 4 hours for each of the input formats we examined.

Real-world impact. Our work on file-format aware grey-
box fuzzing has generated significant interest both from
industry and media. After our work was made available
openly via Arxiv [31], we were reached out to by the
libprotobuf-mutator (LPM) team [50] at Google–for explor-
ing the industrial use of our smart fuzzing technologies.
Subsequent to these discussions between us and the LPM
team, the LPM team has also shared some reflections on
smart fuzzing in a blog [52]. Furthermore, as an ongoing
collaboration, we are also making our smart fuzzing tech-
nology available to the LPM team by providing conversion
between our file format specifications and LPM descrip-
tions. Last but not the least, our work has been featured
in technology oriented media reports [45] subsequent to our
making it available in the public domain via Arxiv [31].

Reproducibility. To ensure the reproducibility of our ex-
periments, we have made AFLSMART open source at

https://github.com/aflsmart/aflsmart

The Github respository contains the source code of AFL-
SMART, as well as the seed corpora, dictionaries, and Peach
Pits (i.e., grammars) that we used in our experiments. More-
over, we ported the underlying algorithms and optimiza-
tions to Python for everyone to try and experiment with.
The executable Python code is presented and explained in a
tutorial-style book chapter in the Fuzzing Book [55].

Future work. In future, we can extend the input file-
format fuzzing of AFLSMART to input protocol fuzzing by
taking into account input protocol specifications, along the
lines of the state model already supported by the Peach
fuzzer. This will allow us to extend AFLSMART for fuzzing
of reactive systems. Moreover, the recent work of Godefroid
et al. [18] has shown the promise of learning input formats
automatically, albeit for a specific format namely PDF. We
plan to study this direction to further alleviate the one-
time manual effort of specifying an input format. Another
research direction is the provision of assurances about the
automated vulnerability discovery process [5], [6].

ACKNOWLEDGMENTS

This research was partially supported by a grant from
the National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, No. NRF2014NCRNCR001-21) and ad-
ministered by the National Cybersecurity R&D Directorate.
This research was partially funded by the Australian Gov-
ernment through an Australian Research Council Discovery
Early Career Researcher Award (DE190100046).

REFERENCES

[1] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Test. Verif. Reliab., vol. 24, no. 3, pp. 219–250, May 2014.

[2] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A. Sadeghi, and
D. Teuchert, “NAUTILUS: fishing for deep bugs with grammars,”
in 26th Annual Network and Distributed System Security Symposium
(NDSS), 2019.

[3] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[4] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2016, pp. 1032–1043.

[5] M. Böhme, “STADS: Software testing as species discovery,” ACM
Transactions on Software Engineering and Methodology, vol. 27, no. 2,
pp. 7:1–7:52, Jun. 2018.

[6] M. Böhme, “Assurances in software testing: A roadmap,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ser. ICSE 2019, 2019, pp. 1–4.

[7] M. Böhme and S. Paul, “A probabilistic analysis of the efficiency
of automated software testing,” IEEE Transactions on Software En-
gineering, vol. 42, no. 4, pp. 345–360, April 2016.

[8] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure
for adaptive dynamic optimization,” in Proceedings of International
Symposium on Code Generation and Optimization (CGO), 2003.

[9] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in 8th USENIX Symposium on Operating Systems Design
and Implementation, (OSDI), 2008.

[10] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in IEEE Symposium on Security and Privacy (S&P), 2015.

[11] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in IEEE Symposium on Security and Privacy (S&P), 2018.

[12] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for
in-vivo multi-path analysis of software systems,” in Proceedings
of the 16th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2011.

[13] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket:
A method for clustering duplicate crash reports based on call
stack similarity,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE), 2012.

[14] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. K.
Robertson, F. Ulrich, and R. Whelan, “LAVA: large-scale auto-
mated vulnerability addition,” in IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2016, pp. 110–121.

[15] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), vol. 00, pp. 660–677.

[16] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based white-
box fuzzing,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2008.

[17] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: whitebox
fuzzing for security testing,” Communications of the ACM, vol. 55,
no. 3, pp. 40–44, 2012.

[18] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learn-
ing for input fuzzing,” in 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017.

[19] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code frag-
ments,” in Proceedings of the 21st USENIX Security Symposium, 2012.

[20] C. Lemieux and K. Sen, “Fairfuzz: Targeting rare branches to
rapidly increase greybox fuzz testing coverage,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2018.

[21] Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of
the 11th Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE), 2017.

[22] Y. Lian and Z. Hu, “Smarter peach: Add eyes to peach fuzzer,” in
RootedCon, 2017.

[23] Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), 2008.

[24] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A
survey,” 2018.

[25] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele,
and A. Zeller, “Parser-directed fuzzing,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019, 2019, pp. 548–560.

[26] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon,
“Semantic fuzzing with zest,” in ACM Symposium on Software
Testing and Analysis (ISSTA), 2019.

[27] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon,
“Validity fuzzing and parametric generators for effective random
testing,” in 41st International Conference on Software Engineering:
Companion Proceedings, ser. ICSE ’19, 2019, pp. 266–267.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST 2019 17

[28] H. Peng, Y. Shositaishvili, and M. Payer, “T-Fuzz: Fuzzing by pro-
gram transformation,” in IEEE Symposium on Security and Privacy
(S&P), 2018.

[29] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Auto-
mated domain-independent detection of algorithmic complexity
vulnerabilities,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017.

[30] V. Pham, M. Böhme, and A. Roychoudhury, “Model-based white-
box fuzzing for program binaries,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2016.

[31] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and
A. Roychoudhury, “Smart greybox fuzzing,” 2018.

[32] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proceedings
of 24th Annual Network and Distributed System Security Symposium
(NDSS), 2017.

[33] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask),” in Proceedings
of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 317–331.
[Online]. Available: http://dx.doi.org/10.1109/SP.2010.26

[34] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Proceedings of
23rd Annual Network and Distributed System Security Symposium
(NDSS), 2016.

[35] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in Proceedings of the 41st International Conference
on Software Engineering, ser. ICSE ’19, 2019, pp. 724–735.

[36] Website, “010editor - hex editor,” https://www.sweetscape.com/
010editor/, 2018.

[37] Website, “010editor templates,” https://www.sweetscape.com/
010editor/repository/templates/, 2018.

[38] Website, “Afl dictionary,” https://lcamtuf.blogspot.com.au/
2015/01/afl-fuzz-making-up-grammar-with.html, 2018.

[39] Website, “american fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2018.

[40] Website, “Common vulnerability scoring system v3.0:
Specification document,” https://www.first.org/cvss/
specification-document, 2018.

[41] Website, “Domato: A DOM fuzzer,” https://github.com/google/
domato, 2018.

[42] Website, “Explanation of the wave file format specification,”
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/
WAVE/WAVE.html, 2018.

[43] Website, “Hackernews on afl-fuzz,” https://news.ycombinator.
com/item?id=9489441, 2018.

[44] Website, “honggfuzz,” https://github.com/google/honggfuzz,
2018.

[45] Website, “Hot fuzz: Bug detectives whip up smarter version of
classic afl fuzzer to hunt code vulnerabilities,” https://www.
theregister.co.uk/2018/11/28/better fuzzer aflsmart/, 2018.

[46] Website, “libFuzzer: A library for coverage-guided fuzz testing,”
http://llvm.org/docs/LibFuzzer.html, 2018.

[47] Website, “Peach Fuzzer: Discover unknown vulnerabilities,” https:
//www.peach.tech/, 2018.

[48] Website, “SPIKE,” http://www.immunitysec.com/downloads/
SPIKE2.9.tgz, 2018.

[49] Website, “WavPack: A hybrid lossless audio compression library,”
http://www.wavpack.com/, 2018.

[50] Website, “libprotobuf-mutator,” https://github.com/google/
libprotobuf-mutator, 2019.

[51] Website, “Peach fuzzer: Fixup,” https://community.peachfuzzer.
com/v3/Fixup.html, 2019.

[52] Website, “Structure-aware fuzzing with libfuzzer,”
https://github.com/google/fuzzer-test-suite/blob/master/
tutorial/structure-aware-fuzzing.md, 2019.

[53] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “Profuzzer: On-the-fly input type probing for better
zero-day vulnerability discovery,” in 2019 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 882–899.

[54] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, “Slf:
Fuzzing without valid seed inputs,” in Proceedings of the 41st
International Conference on Software Engineering, ser. ICSE ’19, 2019,
pp. 712–723.

[55] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“Greybox fuzzing with grammars,” in Generating Software Tests.
Saarland University, 2019, retrieved 2019-05-21 20:58:06+02:00.
[Online]. Available: https://www.fuzzingbook.org/

Van-Thuan Pham is a postdoctoral research
fellow at Monash University, Australia. During
his PhD studies at NUS, under the super-
vision of Prof Abhik Roychoudhury he con-
ducted research on fuzz testing techniques (in-
cluding black-box, coverage-based grey-box and
symbolic-execution based white-box fuzzing)
and applied these techniques to vulnerability de-
tection, crash reproduction and debugging.

Marcel Böhme is a 2019 ARC DECRA Fellow
and lecturer at Monash University, Australia. He
was research fellow at CISPA, Saarland Univer-
sity, Germany from 2014 to 2015 and completed
his PhD at National University of Singapore in
2014. Marcel’s research is focussed on auto-
mated vulnerability discovery, analysis, testing,
debugging, and repair of large software sys-
tems. His tools discovered 100+ bugs in widely-
used software systems, more than 60 of which
are security-critical vulnerabilities registered as

CVEs at the US National Vulnerability Database.

Andrew E. Santosa obtained his B.Eng. and
M.Eng. degrees from the University of Electro-
Communications in 1997 and 1999, respectively.
He obtained his Ph.D. degree from the Na-
tional University of Singapore. He is interested
in software analysis and engineering, and he has
served in both academia and industry.

Alexandru Răzvan Căciulescu is a Linux and
security enthusiast who spends most of his time
in Sublime and vim when he isn’t slaying ’fea-
tures’ in GDB. He completed his Masters degree
at University Politehnica of Bucharest, Romania.

Abhik Roychoudhury is a Professor of Com-
puter Science at National University of Singa-
pore. His research focuses on software testing
and analysis, trust-worthy software construction
and software security. He is currently leading the
Singapore Cyber-security Consortium. He has
served as an Associate Editor of IEEE Trans-
actions on Software Engineering (TSE)during
2014-18, and is serving as an Associate Editor
of IEEE Transactions on Dependable and Se-
cure Computing (TDSC) during 2019-21. Abhik

received his Ph.D. in Computer Science from the State University of
New York at Stony Brook in 2000.


