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EnergyPatch: Repairing Resource Leaks to
Improve Energy-efficiency of Android Apps

Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of mobile
apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive hardware
components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We refer to such
kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit poor energy
consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains, therefore exhaustive
exploration is often impractical. We believe that there is a need for a framework that can systematically detect and fix energy bugs in
mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a combination of static
and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-weight, static analysis
technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs may occur. Subsequent
exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of the reported bugs and
to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs. Evaluation with real-life apps
from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce results in reasonable amount of
time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring down the energy consumption on
tested apps up to 60%.

Index Terms—Mobile Apps; energy bugs; non-functional testing; energy-aware test generation
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1 INTRODUCTION

Over the recent years there has been an increased usage of
complex applications on battery powered mobile devices, such as
smartphones and tablets. Such mobile applications or apps exploit
a wide variety of sensors and other hardware components available
on modern smartphones to provide a diverse set of functionalities.
There is however one factor that greatly limits the usage of such
apps. Battery power on mobile devices is often a constrained
resource. Therefore, it is worthwhile to test and remove energy-
inefficiencies in mobile apps before deployment.

In this paper, we shall present our framework (and tool) Ener-
gyPatch, that can help app-developers to detect, validate and repair
a specific class of energy-inefficiencies in mobile apps, which we
refer to as energy bugs. Executing an application containing an
energy bug may cause the mobile device to consume excessive
amounts of battery power even after the buggy application has
completed execution and there is no user-activity. Such excessive
energy consumption can drastically reduce the battery life of a mo-
bile device in a relatively short period of time1. In our recent work
[1], we observed that inappropriate usage of energy-intensive,
hardware components (such as Wifi, GPS) or power management
utilities (such as Android Wakelocks) may give rise to energy
bugs. We also observed that such hardware components/power
management utilities can only be accessed by an app through a
predefined set of system call APIs. These observations indicate
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that inappropriate usage of system call APIs that provides access
to such hardware resources/power management utilities leads to
energy bugs, resulting in energy-inefficient apps and shortened
battery life. Hence, there is a need for a framework that can
provide an end-to-end solution to address the challenges associ-
ated with detection, validation and repair of energy-inefficiencies
related to energy bugs. In particular, such a framework should be
able to address the following questions:

i. How to determine if an app contains an energy bug in a
scalable fashion?

ii. How to generate test-cases that can demonstrate the presence
of energy bugs in an automated fashion ?

ii. How to generate repair expressions that can fix the reported
energy bugs?

iv. How to bring this (detection — test generation — repair)
functionality to commonly used mobile-app development
platforms such as Eclipse ADT?

Our framework, EnergyPatch, is the culmination of our effort
to answer these questions. EnergyPatch extracts a model of the
app (under test), using automated analysis. It then analyses this
model using a light-weight, static analysis technique to detect
program paths that may potentially lead to an energy bug. These
potentially buggy program paths are then explored using a dy-
namic analysis technique to validate the presence of energy bugs.
During exploration, if the presence of an energy bug is validated,
EnergyPatch generates test-cases that bear witness to the presence
of the reported energy bug. Finally, EnergyPatch, generates repair
expressions for the reported energy bugs.

1. One of the buggy applications we evaluated - Sensor Tester, drained a
fully charged battery on a LG Optimus E400 smartphone in less than 8 hours
whereas the standby time for the smartphone is approximately 600 hours [2]
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Fig. 1: System Overview

Figure 1 shows the three key phases in EnergyPatch: detec-
tion, validation and repair. More specifically, the detection phase
is based on an abstract interpretation technique, the validation
phase is based on a symbolic execution technique and the repair
phase uses template based repair. It is worthwhile to know that
using symbolic execution alone to explore non-trivial programs
may lead to the problem of state-space-explosion. To ensure the
scalability of our framework we use a multi-staged approach that
is introduced in the following paragraphs.

To begin with, in the detection phase, our framework conser-
vatively computes the set of program paths along which energy
bugs may occur. If no such program paths can be found in the
detection phase, we conclude that no energy bugs are indeed
present in the app. It is worthwhile to know that results of the
detection phase are always sound (i.e. if there is an energy bug
in the tested app the detection phase will always report it). On
the other hand, if the detection phase reports presence of program
paths along which energy bugs may occur, we proceed to the
validation phase. However, before executing the potentially buggy
program paths using symbolic execution, we employ a couple of
search-space reduction techniques to reduce the time required for
exploration. These search-space reduction techniques are based
on transitive closure computation and program slicing. Transitive
closure computation (conservatively) determines which events
(and corresponding event-handlers) in the app will never occur
on potentially buggy program paths (as reported by the detection
phase). Program slicing is used to (conservatively) estimate the
subset of program inputs that do not influence the execution of the
potentially buggy program paths. Finally, in the repair stage we
use the information obtained from the previous phases to generate
repair expressions for validated energy bugs.

We have implemented our framework as an Eclipse Plugin,
named EnergyPatch. It is freely available from BitBucket [3].
Since a large number of Android app developers use Eclipse
ADT Toolset for Android app development, we believe that our
framework will be most useful in this form. Additionally, our
tool provides an intuitive user interface that helps the developer
in visualizing the potential energy bugs in the app. For the
evaluation of our framework and tool we created a test-suite using
thirty five real-life Android apps. Our framework was able to
detect real energy bugs for twelve out of these thirty five tested
apps. The test cases generated by our framework were manually
executed on a mobile device and resultant power consumption
measured by a power meter to confirm the presence of energy
bugs. On measuring the energy consumption of the buggy apps
post-repair we observed a reduction in energy consumption up
to 60%. Finally, we conclude the evaluation of our framework
by comparing it with existing research works on detection and/or
test-generation for resource leaks in mobile-apps.

2 BACKGROUND

Android is a widely-used operating system designed for mobile
devices such as smartphones and tablets. Android is open-source,
additionally there exist a number of freely available development
tools (such as Eclipse ADT) and debugging utilities (such as
Android Debug Bridge) for Android app development. All these
factors motivated us to use Android apps as test subjects for our
framework. In the following subsections we shall briefly describe
some of the key aspects of execution model in Android and
energy-inefficiencies observed in Android apps.

2.1 Execution Model in Android
Android apps, in general, are composed of four key components:
Activities, Services, Broadcast Receivers and Content Providers.
Communication between the various components happens by
means of messaging objects that are commonly referred to as
Intents. Figure 3 shows an oversimplified representation of the
execution model for Android apps.
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Fig. 3: Oversimplified representation of execution model in Android

An activity can be described as an entity which encapsulates
the user interface (UI) through which the user interacts with the
app. Services, unlike activities, do not have any UI elements
associated with them. Services are run in the background and are
often used for performing lengthy tasks. Broadcast receivers, as
the name suggests, are used to receive broadcasted messages (such
as arrival of call or SMS etc). Content providers provide access to
various data sources. All components of an app have well-defined
life-cycles. For instance, the life-cycles of an activity is shown in
Figure 2(a).

An activity goes through seven distinct stages of life-cycle
throughout its execution (cf. Figure 2(a)). The life-cycle stages
shown in the left-arm of Figure 2(a) i.e. onCreate, onStart and
onResume are invoked when an activity begins execution. There-
fore, all tasks related to initialization and resource acquisition are
usually performed in these stages. Likewise, the stages on the
right-arm of the Figure 2)(a) i.e. onDestroy, onStop and onPause
are invoked when an activity stops execution. In addition, the
onRestart stage is invoked when a previously stopped activity is
restarted. To implement a custom functionality to an activity, app-
developers simply need to override the above mentioned methods
(i.e. onCreate, onStart, onResume, onDestroy, onStop, onPause
and onRestart).
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Fig. 2: (a) Lifecycle of an Android activity (b) a simple example showing how inputs are provided to Android apps

2.2 Inputs to an Android App

As shown in Figure 4, there are two possible ways of providing
inputs to Android apps (i) through events and (ii) through return
value from Android API calls. Events can be user-generated (such
as by pressing buttons) or system-generated (such as broadcast
of change in battery state). Figure 2(b) shows an example of
input through an event as well as through return value. In the
example of Figure 2(b), when the user clicks the button (event),
the onClickListener (event handler) for the button is invoked(Line
18). Subsequently, the user inputs from the text field are read
(input through return value), by means of another Android system
call getText (Line 21). Observe that the else part of the example
code is executed only if the return value from getText does not
contain the string hello (Line 22).

ANDROID FRAMEWORK
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APPLICATION

Call Site Event Handler

return 

value
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invocation

Fig. 4: Inputs to an Android app

This example goes on to show that only exploring the event
of the app is not sufficient to exercise all the functionalities in an
app. Based on this understanding we define an input to an Android
app as follows:

Definition 1. Inputs to an Android app are a combination of events
and return values from system call APIs.

2.3 Energy Consumption of Android System-call APIs

As is the case with any other non-functional property, energy
consumption behaviour of a program is seldom explicitly encoded
in its source-code. Therefore, in a generic scenario program
analysis alone would be insufficient to determine the energy
consumption behaviour of a program. However, in the specific
case of Android apps we have identified a set of system call APIs
that can substantially impact the energy consumption behaviour of

the mobile device. In Android for instance, all power management
utilities and I/O components must be accessed through predefined
system call APIs. It is also worthwhile to know that these power
management utilities and I/O components have significant impact
on the power consumption of the device. Figure 5 shows the
power profile graph of our test device LG L3 E400. The data
for Figure 5 is obtained from the power_profile.xml file
which is created by the original equipment manufacturer (OEM)
and shipped along with the mobile device. This file contains the
average power consumption ratings for hardware components in
the device, at different power states (such as for screen, power
states are screen on and screen full). The data contained in this
XML file is provided by the device manufacturer and therefore
is reliable. Moreover, the Android framework uses this data to
show battery related statistics. However, note that the data in this
XML file is only an indicator of average power consumption of
the hardware components of the device and does not correspond
to any particular application being run on the device.

We found that in a typical Android distribution, the system call
APIs that significantly impact the energy consumption behaviour
are a very small subset of all available system call APIs. For in-
stance, in Android Gingerbread, which was one of the most widely
used distributions at the time of writing, less than hundred of the
total nine thousand or so public system call APIs significantly
affect the energy consumption behaviour. Some of these high-
energy-consuming system call APIs are listed in Table 2.

3 OUR PREVIOUS WORK

In our previous work [1], we investigated various reasons for
energy-inefficient behaviour in mobile apps. As a result of
these investigations we were able to classify mobile-app related
energy-inefficiencies into two categories: energy bugs and energy
hotspots. The key difference between the two being that energy
hotspots cause excessive power consumption while the (ineffi-
cient) app is under execution whereas energy bugs cause excessive
power consumption even after the (inefficient) app has finished
execution. As a result, in general, energy bugs cause more wastage
of energy than energy hotspots. In the subsequent paragraphs,
we recapitulate some of important aspects of our previous work.
Finally, we end this section by highlighting the key differences
between our current work and previous work [1].
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Fig. 5: Power profile for LG Optimus L3 E400 smartphone

TABLE 1: Various types of energy bugs that can occur in Android apps, as listed in our previous work [1]

# Category Type of Energy Bug
a Hardware Resources Resource Leak: Resources (such as the WiFi) that are acquired by an application

during execution must be released before exiting or else they continue to be in a
high-power state [4]

b Sleep-state Transition Heuristics Wakelock Bug: Wakelock is a power management mechanism in Android through
which applications can indicate that the device needs to stay awake. However,
improper usage of Wakelocks can cause the device to be stuck in a high-power
state even after the application has finished execution. This situation is referred to
as a Wakelock bug [5]

c Background Services Vacuous Background Services: In the scenario where an application initiates a
service such as location updates or sensor updates but doesn’t removes the service
explicitly before exiting, the service will keep on reporting data even though no
application needs it [6]

d Defective Functionality Immortality Bug: Buggy applications may re-spawn when they have been closed
by the user, thereby continuing to consume energy [7]

TABLE 2: Some of the Android system call APIs that have major influence on energy consumption

Resources System Call APIs Hardware Resource

PowerManager (Wakelock) acquire/release CPU + Screen + Keypad

WifiManager setWifiEnabled Wifi Hardwareacquire/release

Camera open/close CamerastartPreview/stopPreview

SensorManager registerListener/unregisterListener Sensors

LocationManager requestLocationUpdates/removeUpdates GPS receiveraddProximityAlert/removeProximityAlert

LocationClient requestLocationUpdates/removeLocationUpdates GPS receiveraddGeofences/removeGeofences

MediaRecorder start/stop Video Hardware

AudioRecord startRecording/stop Audio Hardware

BluetoothAdapter enable/disable Bluetooth Hardware
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3.1 Energy Bug, Cause and Effect
An energy bug is a type of non-functional defect (i.e. it does
not affect the functionality of the app), however, it may cause
the device to consume excessive power, even when no useful
computation is being performed (cf. Definition 2). It is worthwhile
to know that energy bugs are often a manifestation of improper
usage of I/O components and power management utilities. There
are two possible ways in which the effect of energy bugs can be
handled.

1) Naı̈ve Solution: It is possible to construct a naı̈ve solution
(say using system-level mechanisms), that aggressively
releases I/O components and power management utilities at
all exit points of the app.

2) Testing and patching: It is possible to construct a systematic
analysis framework that reveals scenarios (test-cases) where
I/O components and power management utilities are not
released on exit. The framework also suggests patches for
each of this defect revealing scenarios.

It is worthwhile to know that the naı̈ve solution would be
relatively simple to implement however such a solution might
make the system (the platform on which the app executes),
inflexible. This is because in certain cases it is possible that the
app’s functionality may necessitate that resources are not released
as soon as the app exits. For instance, consider a location-tracking
app that wants to log the user’s whereabouts throughout the
day. In such a scenario, the app may want to keep working in
background using GPS while the user interacts with other apps in
the foreground. For such apps, forceful system-level mechanisms
that aggressively release resources whenever an app exits (i.e. the
naı̈ve solution), may make the system inflexible. In comparison,
a case-by-case analysis using a testing and patching framework,
such as the one presented in this work can help the developer
in making judicious changes to the app source-code, wherever
needed.

Definition 2. An energy bug can be defined as an energy-
inefficiency that occurs when a mobile app does not release all
energy-intensive components/resources acquired by it during
execution, before it stops execution.

Figure 6(a) shows the energy-consumption data from a real-
world Android app, Aripuca, while an energy bug is triggered.
Figure 6(b) shows the energy-consumption behaviour of the same
app, for the same input but when the energy-bug has been repaired.
The portion of the energy-consumption trace marked with label
PRE indicates the period of time when the device is idle (no apps
running). Label EXC indicates the period of time where the app
is executed on the device, whereas label REC indicates the period
of time the device takes to return to its idle state. Finally, the label
POST indicates the period of time when the device has returned
to its idle state, post execution. In an ideal scenario, where there
are no energy bugs involved, the energy-consumption behaviour in
the PRE stage and the POST stage should be statistically similar.
However, in the case of an app that has an energy bug (such
as in Figure 6(a)), there will be significant dissimilarities in the
energy-consumption data when comparing between the PRE and
the POST stages.

(a) Energy trace with an energy bug

(b) Energy trace with the energy bug fixed

Fig. 6: Energy trace for Aripuca GPS Tracker (a) with an energy bug
(b) repaired energy bug. The additional energy consumption can be
observed in the recovery (REC) and the post (POST) stages

3.2 Classification of Energy-bugs
Table 1 lists the categorization of energy bugs that was described
in [1]. The causes of energy bugs can vary from mismanaged
resources, services, faulty sleep-state transition heuristics or de-
fective functionalities. Such mismanagement can be attributed to
developer carelessness (developer forgot to release resource after
use) or unexpected execution flows (such as exceptions). Even if
the app-developer were to somehow check all possible exit points
of the app for the release of acquired resources, it would not
be sufficient to ensure the absence of energy-bugs in the app.
Consider the code snippet shown in Figure 7. This simple code is
supposed to start a location-update background service (Line 10) in
the onCreate method. Subsequently, it executes some unrelated
functionality in (Line 14). When the user navigates away from
the application the event handler onPause is executed. In the
method onPause location-update service is removed (Line 22).
However, if there is an exception before Line 22 (for instance, in
this example, due to Line 21), the location update service is never
stopped and execution can result in an energy bug scenario. This
example demonstrates that even if developer encodes the code to
release resource at the exit point energy bugs may occur.

1 LocationManager locationManager;

2 long Min_Update_Time = 10, Min_Distance = 1000 * 60 * 1;

3  

4 @Override

5 public void onCreate(Bundle savedInstanceState){

6    super.onCreate(savedInstanceState);

7 setContentView(R.layout.main);

8 locationManager = (LocationManager)getSystemService

9      (LOCATION_SERVICE);

10 locationManager.requestLocationUpdates

12 (LocationManager.GPS_PROVIDER,Min_Update_Time, 

13     Min_Distance, this);

14 someOtherFunctionality();

15 }

16

17 @Override

18 public void onPause(){

19 super.onPause();

20 try{

21  functionMayThrowsException();  <---------

22  locationManager.removeUpdates(this);

23 }catch(Exception ex){

24  Log.v(”test”,”exception occured”);

25 }

26 }

Fig. 7: Code fragment with a potential energy bug
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3.3 Differences Between Present and Previous Work

The key contributions of our previous work [1] were the introduc-
tion of a fault-model for energy-inefficient behaviour in mobile
apps and a guided, search-based test-generation framework. The
energy-inefficiency detection in [1] was done using a hardware-
software, hybrid approach. Like our current work, it used an au-
tomated technique [8] to generate the event-flow graph of the app
(under test). However, unlike our present work, it uses a guided,
search-based algorithm to select the test-inputs to execute the app
on the target mobile device. While the app is being executed on the
test device (with the selected test-input) the framework simultane-
ously measured the power consumption using a power meter. The
acquired power trace is then analyzed using statistical and anomaly
detection techniques to uncover energy-inefficient behaviour. In
contrast, in our current work, we use a combination of a static and
dynamic analysis techniques to ascertain the presence of energy
bugs and to generate test-cases. The use of measurement setup
(cf. Figure 22), in our present framework, is simply to measure
the resultant energy savings. Another key difference is in the
way of exploration itself. In the previous work, the exploration
algorithm generates events traces, by walking through the event
flow graph. However, if an UI screen needed inputs through an
input-container (such as text-fields), random data was used. As
a result, the exploration algorithm may not have been able to
explore all feasible paths inside an event-handler. In contrast,
in our present work, due to the use of symbolic execution our
framework can explore all feasible paths inside the event handler.
To summarize, the key differences between the two work arise
due to (i) the way energy bugs are detected (power measurement
vs static analysis) (ii) the way test-cases are generated (search
heuristics vs guided symbolic execution) and (iii.) automatic repair
expressions generation (only in the current framework).

4 OVERVIEW BY EXAMPLE

In this section, we shall describe the workings of our framework
by means of a simple example. In particular, we shall focus on
(i) use of abstract interpretation to detect energy bugs and (ii)
use of symbolic execution to generate test cases that leads to the
reported energy bugs. In our framework, we also use an event-
flow graph (EFG) generation phase as a pre-processing phase.
However, for the purposes of simplicity, we shall omit the EFG
generation phase in this example. We shall base our discussion on
the simple code fragment shown in Figure 8(a). It has a simple
input-dependent, do-while-loop, in which, a source line acquires
a reference-counted resource R at Line 4 and another source line
releases the acquired resource at Line 6. The only input to the
program is N , which determines the number of loop iterations.
Figure 8(b) shows the control flow graph (CFG) of the code shown
in Figure 8(a). It can be observed that the resource R is never
released for all inputs satisfying the formula N > 3. Using this
example, we shall first describe how static analysis is used in our
framework to detect that the resource R may not be released at
the end of the program (i.e. exit node E4). Subsequently, we will
describe the use of dynamic analysis to generate test cases that
witness the scenarios where the R hasn’t been released.

4.1 Detection Using Abstract Interpretation

The detection phase tracks an (over)estimate of the state of
resource R, at each program point. Assume that the state of

resource R is denoted by a tuple <R, k> at each node of the
graph (cf. Figure 8(c)). The input (in) and output (out) state of
resource R are shown using a tuple <R, k> at each node of the
graph in Figure 8(c), where k ≤ 0 implies R is not acquired
and k ≥ 1 implies R is acquired. Every time the system call
Acquire(R) is encountered the resource state is updated as shown
in Equation 1, Acquire(R). Similarly, whenever the system call
Release(R) is encountered the resource state is updated as shown
in Equation 1, Release(R). It is worthwhile to know that resource
state update operation is object-insensitive.

Update(<R,k>) =

{
<R,k + 1>, Acquire(R)
<R,k − 1>, Release(R)

(1)

In the scenario where there are multiple incoming resource
states (from different branches) we perform a Join operation to
merge multiple resource states into one as shown in Equation
2. For instance, in the example of Figure 8(c), at the node
marked Join the incoming resource states from both the branches
(<R, 0> from i < 3 branch and <R, 1> from i ≥ 3 branch)
are joined to create an over-approximated state (<R, 1>). By
performing such path-insensitive joining of states, we can avoid
the problems associated with state-space explosion.

Join(<R,k1>,<R,k2>) =

{
<R,k1>, If k1 > k2
<R,k2>, Otherwise

(2)

The Update and Join operations that are described here, are
applied until the in and the out states of each node in the graph
do not change over an entire iteration (i.e. fixpoint is achieved).
At the end of detection phase (once the fixpoint is reached), we
check the out state of exit nodes to see if any resource is still
in the acquired (i.e. k ≥ 1) state. If so, presence of potential
resource leak is reported by the detection phase. In our example
(cf. Figure 8(c)), observe that at the exit node, the resource state is
indeed <R, 1>, indicating the presence of a resource leak. This
leak will manifest for all inputs satisfying the condition N ≥ 3.

It is worthwhile to know that the detection phase has the
property of scalability due to its path-insensitive nature. More
specifically, the resource states (<R, k>) themselves do not carry
any path specific information. Such as in Figure 8(c), no path-
specific information (such as i < 3 or i ≥ 3) is carried within
the resource states along the if/else branch. Also the Update and
Join operations (as shown in Equations 1 and 2) do not take any
path-specific inputs. Such path-insensitivity in the detection phase
does provide scalability, but may lead to overestimation. In partic-
ular, the detection phase is more likely to produce overestimated
results in scenarios where the control flow of the program contains
infeasible paths. For instance, if the path satisfying the condition
i ≥ 3 in Figure 8 had been infeasible, the results of the detection
phase would have had a false positive. Therefore, to rule out any
possibility of false positives, we subsequently use a path-sensitive
dynamic exploration technique to validate the results generated
by the detection phase. Essentially, we wish to validate that the
property (Prop: resource R is not acquired) at all exit nodes. To
facilitate this, our framework automatically instruments two new
variables acq r and rel r in the program. Specifically, wherever
Acquire(R) is called variable acq r is incremented and wherever
Release(R) is called variable rel r is incremented. Additionally,
at the exit node the assertion acq r − rel r ≤ 0 is instrumented
that represents the property resource R is not in the acquired state.
The resultant CFG is shown in Figure 8(d).
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Fig. 8: Overview by example (a) example code with a potential resource leak (b) CFG othe example code (c) static analysis of the code. Input
and output abstract states are shown for each node in the graph (d) assertion added to the exit node of the graph (e) symbolic exploration and
test case generation (f) limitation while using bounded symbolic execution
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4.2 Test Generation Using Symbolic Execution

The instrumented program is then explored symbolically. That
is to say that the program is executed with symbolic inputs. In
our example symbolic input being N . In our framework, we
also perform a couple of search-space-reduction techniques to
make symbolic execution phase faster. However, for the sake of
simplicity we shall not describe them in this example.

The objective of symbolic execution of the instrumented
program is to see if any of the instrumented assertions (
acq r − rel r ≤ 0, in this example), are violated for any
feasible execution. For instance, in Figure 8(d) if N = 1, a
feasible execution would involve going through basic blocks E0,
E1, E2, E4 and E5 (in that particular order). Another example
of feasible execution for N = 3 is shown in Figure 8(e). It is
interesting to note that in this particular example, Figure 8(e)
shows a possible execution path along which the instrumented
assertion is violated. It is also worthwhile to know that if we had
used bounded symbolic execution instead of unbounded symbolic
execution for exploration, we may not have been able to find
such an assertion violation (as shown in Figure 8(f)). Assertion
violation demonstrates a feasible scenario where a resource leak
happens in this example. The symbolic execution also provides
us with the test-cases that witness the failure of assertion. These
test-cases can be used by the developer to re-create the reported
bugs manually.

5 EFG GENERATION

Mobile applications, such as Android apps, are event-driven
applications. Even though many Android apps are developed
using JAVA they do not contain a main method like conventional
JAVA programs. Instead, such apps usually consist of several
disconnected pieces of code called event handlers. Each event
handler is responsible for processing of a specific event. Ordering
between two instructions of an event handler is represented by
means of a control flow graph (CFG). The CFG however does not
provide any information regarding the ordering between any two
event handlers. To represent the ordering between any two event
handlers in the application we use an event flow graph (EFG). The
EFG we use in our work is an extension of the EFG proposed
in [9]. The key difference being that in our EFG the nodes also
contain the CFG of the event handler. Figure 9 shows a pictorial
depiction of an EFG. The key purpose of the EFG is to provide a
model for the inter-component communication in the app.

Definition 3. An Event Flow Graph (EFG) is a directed graph,
capturing all possible event sequences that might be executed
for an event-driven application. Nodes of an EFG represent
events and contain the control flow graph (CFG) of the
respective event handler. A directed edge between two EFG
nodes X and Y represents that event Y can follow event X .

Given the class files for an app, our framework can generate
the CFGs for all event handlers (and other methods) within the
app. To generate the EFG of an app we use a modified version
of Dynodroid [8] to automatically explore the GUI of the app
and generate its EFG. Dynodroid itself relies on the Android tool
Hierarchy viewer to obtain information about the user interface
layout of the app. It uses this information to crawl through the
graphical user interface of the app. We further modified Dynodroid
to progressively generate the EFG of an app. The EFG generation
process is illustrated in Figure 10. Additionally, we need to

CFG E1

CFG E2 CFG E3

CFG E4 CFG E5

CFG E6

CFG E3 Expanded

N1

N2 N3

N4

N5 N6

N7

Branch depends 

on syscall1()

Branch depends

on syscall2()

Fig. 9: An example event flow graph (EFG) with events E1 through
E6. Each event has an attached control flow graph (CFG). Here
the CFG for event node E3 has been expanded. Nodes N1 through
N7 represent the control flow nodes for the event handler that is
represented by E3

associate the event-handlers (CFGs) to the events (EFG nodes).
To do so, we instrument all event-handlers in the app before
exploration such that all invocation of event-handlers are recorded
to a log file. Additionally, all invocation of events (by Dynodroid)
are also recorded to the same log file. Since all entries in the log
file are accompanied by their timestamps, we can easily associate
each event to its event-handler.

E1

E2 E3

E1

E2 E3

E4 E5

E6

E1

E2 E3

E4 E5

E6

(a) (b) (c)

Fig. 10: An illustrative example for EFG generation. The dashed
lines/boxes represent the EFG edges/nodes that have been discovered
but not yet explored, while the solid lines/boxes represent the EFG
edges/nodes that have been discovered. The EFG edge/node infor-
mation is obtained through Android Hierarchy Viewer whereas the
exploration is done using Dynodroid

It is worthwhile to know that the EFG generated by Dynodroid
may be incomplete. However, our tool allows the developer to
manually augment the EFG. Since our tool is specifically targeted
at the developer, who has the best knowledge of the GUI model
of the application, it can be assumed that the GUI model of app
obtained after the EFG Generation phase would be adequate.

6 DETECTION

In this section, we shall provide a detailed description of the
detection phase. As mentioned in Section 4, the static analysis
technique used in the detection phase is an instantiation of the
abstract interpretation based approach proposed in [10]. Therefore,
before describing the details of our approach we shall provide a
very brief introduction to abstract interpretation itself.

6.1 Abstract Interpretation
To implement an abstract interpretation based program analysis
framework, one needs to define the abstract semantics, in particu-
lar, (a) an abstract domain and (b) a set of abstract operations. At
each program point (P ) an abstract state captures the state of the
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program. The set of all abstract states is referred to as the abstract
domain (D). The abstract operations, namely update and Join,
can be used to manipulate the abstract state to reflect the effect of
execution (on the property of interest) along a program path. More
specifically, the update operation reflects the effect of executing an
instruction over the abstract state and has the type of Equation 3.

U : D × P → D (3)

The abstract join operation (J ), on the other hand, is used
to combine two abstract states into one. In our implementation,
the join operation computes the least upper bound on the abstract
domain (D). Whenever there are multiple abstract states coming
from different control flows into a program point, we use the ab-
stract join operation to combine them. The abstract join operation
has the type of Equation 4.

J : D ×D → D (4)

6.2 Instantiation of Abstract Interpretation for our
Framework
The property of interest in our framework is shown in Property 1.
A resource can be present in either of these two states : acquired
or not acquired. Furthermore, if a resource is reference-counted,
it is associated with an integer that is incremented whenever the
resource is acquired, and decremented whenever the resource is
released. If there are one or more resources that are in the acquired
state at the end of the detection phase we report the potential for
an energy bug.
Property 1. All energy-intensive, hardware resources and power-

management utilities should be in the released state at all exit
nodes of the (analyzed) app.

Resources in the Android applications are represented by Java
objects. Therefore, we shall first define the semantics for Java
object tracking in subsection 6.3. Subsequently, we shall extend
this representation for resource tracking in subsection 6.4.

6.3 Java Object Tracking
To reliably track Java objects, we need to have a domain D, that
abstracts the various memory structures containing objects. We
will need to represent (1) the set of object references (O), (2) the
Java stack (s) and (3) the variables (v).

1. Let O = J∪{>} be the set of abstract object references. The
set J represents the set of concrete Java object references.
Element o ∈ O either represents a concrete Java object, or is
equal to {>} (any Java object).

2. Let s : N → O be a function representing an abstract
stack state, and let S be the set of abstract stack states.
For any stack state s, the value s(0) represents the top-most
(most recently pushed) element, the value s(1) represents the
element pushed before s(0) and so on.

3. Let v : E → O be a function representing the abstract
variable states, and let V be the set of such states. The set E
represents the set of possible Java variable expressions. An
element in E can refer to a local variable, a member field, or
a static field.

The abstract domain (D) for tracking Java objects is of type
as shown in Equation 5, where P(O) represents the power set of
all abstract object references, S represents the abstract stack state
and V represents the abstract variable states.

D = P(O)× S × V (5)

6.4 Resource Tracking
In order to track a resource object we need to extend the domain
of D with the state of the resource and the set of possible acquire
locations. The resultant abstract domain D′ is shown in Equation
6, where K represents all possible states for a resource and P
represents the set of all program points. A resource can either
be in acquired or not acquired state. If the resource is reference
counted, its state is equal to the upper bound on the acquire count,
or to the value +∞, if it cannot be statically bounded. Therefore,
the resource state K equals the set N ∪+∞.

D′ = D ×K × P (6)

Now since our abstract domain has been defined we can
further elaborate on the nature of the abstract operations for
resource tracking. The update operation (U ′) at a program point
P , can be represented by Equations 7 and 8. Here d′ ∈ D′ and
d′ = 〈d, k, p〉, where d ∈ D, k ∈ K represents the state of the
resource and p is the set of acquire locations.

U ′ : D′ × P → D′ (7)

U ′(d′, P ) =


U • Ures(d

′, P ) , if instruction at P is an acquire

or release instruction

(U(d, P ), k, P ) , otherwise

(8)

U denotes the abstract update operation for an instruction that
is not related to resource acquire or release. The symbol • denotes
function composition. The operation Ures in Equation 8 is invoked
whenever a resource acquire or release instruction is encountered.
The function of Ures is as follows. Whenever we encounter an
instruction for acquiring a resource r, we add P to the set of
acquire locations for r. Additionally, if the resource r is reference
counted we increase kr(∈ k) by one, otherwise we set kr to 1.
On encountering a release instruction, we reduce kr(∈ k) by one,
if kr > 0.

The Join operation (J ) can be represented by Equations 9 and
10, where we join resources from two sets (D1, D2 ∈ D′). If
both sets contain the same resource (i.e. associated with the same
Java object), we take the maximum of the reference counts (Max
operation in Equation 10), and we merge the acquire-location sets.
For all other cases (i.e. when d1 6= d2) we abstract the Java object
to top (> represents the largest element) and add to the resultant
set.

J : D′ ×D′ → D′ (9)

Let D1 = 〈d1, k1, p1〉 and D2 = 〈d2, k2, p2〉.

J(D1, D2) =

{
〈d,Max(k1, k2), p1 ∪ p2〉 if d1 = d2;
〈>, k1, p1〉 ∪ 〈>, k2, p2〉 otherwise.

(10)

6.5 Detecting Potential Energy Bugs, Instrumenting
Assertions
As a result of the abstract interpretation based analysis we can get
the abstract state at each program point. To detect the presence of
energy bugs we are particularly interested in the abstract state at
the end of the program. An Android app can have many activities;
the user can exit the app at any activity. However, whenever the
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user exits the app the activity lifecycle stage (and event handler)
onPause is invoked. Therefore, all onPause event handlers within
the activities contained in an app can potentially be the end of the
program. To simplify our analysis, we construct an hypothetical
EFG node END (denoting the end of the program) and connect
it to all those EFG nodes that are associated with onPause event
handler with a uni-directional edge (the direction of the edge being
onPause EFG nodes to END node).

Let 〈d, k, p〉 ∈ D′ be the abstract state at the end of the
program. Then k represents the state of resources at the end of
the program. An abstract state at the end of the program with
∃(kr ∈ k), kr > 0 denotes that resource r that may have been
acquired but not released on some path in the program. In other
words Property 1. is violated. Such a scenario implies the presence
of a potential energy bug.

To detect resource leaks, our framework automatically in-
struments Property 1. as assertions at the exit node of the
(analyzed) app. The exact instrumentation slightly differs for
reference counted and non-reference counted resources. However,
in the both cases we first instrument two new counter variables
acq r and rel r for each (potentially) unreleased resource r.
The instrumentation is such that the variable acq r is increased
every time resource r is acquired and variable rel r is increased
every time resource r is released. For a reference counted re-
source, the assertions is such that it checks the value for formula
acq r − rel r ≤ 0 i.e. there are at least as many releases as
acquires for the resource r. Whereas for a non-reference counted
resource the assertions checks the value for formula (acq r 6= 0)
⇒ rel r > 0 i.e. if a resource is acquired, there are at least one or
more releases for the resource. Once instrumented these assertion
are tested for violations in the validation phase.

A note on implementation of instrumentation in the framework:
It is worthwhile to know that in the framework implementation,
the instrumentation of counter variables acq r and rel r is done
in the library (instead of the app code) where the Acquire(R) and
Release(R) are defined respectively.

A note on detecting resources leaks in components of an app:
As shown in Figure 3, an Android app can be composed of com-
ponents such as activity, services, receivers and content providers.
In Section 6.5 we have discussed resource leak detection only in
context of an activity. However, the technique described in Section
6.5 can be extended to other (non-activity) components of an app,
provided the end stage event-handler for these components are
known. This information is readily available from the Android
Developers website. For instance, the end stage event-handler for
a service component would be onDestroy [11].

7 VALIDATION

The potential energy bugs detected in the previous phase are
validated in this phase. In this phase, we use a symbolic execution
based technique to test the assertions instrumented in the previous
phase. It is worthwhile to know that symbolically executing the
entire application may often be impractical due to the issue of
state-space explosion. Therefore, before symbolically exploring a
potentially buggy application we apply a couple of search space
reduction techniques to reduce the number of program states
that need to be explored (in ordered to validate or invalidate the
instrumented assertions). The search-space reduction techniques,
namely (a) transitive closure computation of EFG and (b) symbolic
input reduction, are discussed in Section 7.1. Subsequently, test

input generation process is detailed in Section 7.2. The complete
flow of the validation phase is shown in Figure 11.

Fig. 11: Overview of the validation process

7.1 Search Space Reduction
Transitive closure computation of EFG: The event flow graph
(EFG) of an application captures all events in an application.
However, some of the events (represented by nodes in the EFG)
may not influence the acquiring of a resource in any feasible
execution. Therefore, such events (EFG nodes) can be excluded
during exploration. The nodes that need to be explored are grouped
into two sets. The first set (S1) consists of all nodes that fall on
a path from an entry node to the resource acquiring node. The
second set (S2) consists of all nodes that fall on a path from the
resource acquiring node to an exit node. All nodes that are not
contained in these two sets (i.e. S1

⋃
S2) need not be explored

symbolically. This computation is repeated for all resources that
may lead to potential energy bugs (as reported in detection phase).
Figure 12 shows an example of transitive closure computation. In
Figure 12(a) there are three paths from entry node (E1) to exit
node (E6), however only the path E1 − E3 − E6 is of interest
for checking the validity of Property 1.

E1

E2 E3

E4 E5

E6

resource 

acqurie 

location

E1

E2 E3

E4 E5

E6

resource 

acqurie 

location

(a) (b)

Fig. 12: Example of transitive closure computation. EFG node E3
is resource acquire location. Transitive closure computation gives the
list of nodes shown in shaded in (b)

Symbolic input reduction: Techniques based on symbolic explo-
ration often face the issue of scalability whenever there are a large
number of symbolic program states to be explored. The number of
symbolic states to be explored is directly influenced by the number
of symbolic inputs to the program. Since Android applications are
event-driven, inputs to an application may arrive during execution.
As shown in Figure 4, the two potential inputs for an Android
application are (i) the return value of an Android API call, and
(ii) the arguments supplied to an application-level event handler
when the Android system invokes the callback routine (due to an
event trigger). A typical Android application may receive many
such inputs (e.g. the application may frequently invoke Android
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Algorithm 1 Slicing for relevant inputs in a program
1: Input:
2: R: resource that may be involved in an energy bug
3: Output:
4: V : the set of input variables to be made symbolic
5:
6: T ← {}
7: for all acquire sites of resource R, Iacq do
8: S ← compute backward slice w.r.t. instruction Iacq
9: T ← T ∪ S

10: end for
11: for all release sites of resource R, Irel do
12: S ← compute backward slice w.r.t. instruction Irel
13: T ← T ∪ S
14: end for
15: V ← PARSESLICE(T )
16:
17: function PARSESLICE(slice)
18: return set of all input variables that are used in any instruction contained

in slice
19: end function

1 if (i1 == 0) {

2  if (i2 == 0) {

3   v1 = 0;

4  }

5  if (i3 == 0) {

6   v2 = 0 ;

7  }

8  acquire(R);

9  if (v1 == 0) {

10   release(R);

11  }

12 }

13 else {

14  if(i4 == 0) {

15   release(R) ;

16  } else {

17   v1 = 0 ;

18  }

19 }

      Set of relevant inputs: i1, i2

Fig. 13: An example showing how our slicing algorithm (Algorithm 1) works. The bold lines (figure on the right) shows the slice after
application of Algorithm 1. The inputs to this example program are i1, i2, i3 and i4 while v1 and v2 are local variables. For the resource
to be acquired and not released, only input variables i1 and i2 ( source code lines numbers 1, 2, 3, 8, 9 and 10 ) are relevant. It is worthwhile
to note that the entire else branch (lines 13 - 19) is irrelevant as no resource is ever acquired if the execution comes to the else branch.

APIs and read the return values). As the values of the inputs
are not known statically, we have to treat the input values as
symbolic during exploration. However, exploring the program
with all input variables made symbolic may be very expensive
(or even impractical). To alleviate this issue we selectively make
an input variable symbolic only if that input-variable may affect
the execution of program paths where the potential resource leaks
are reported.

To implement this, we use an existing static program slicing
technique to capture the set of instructions in a program that may
influence the execution of the program towards an energy bug,
due to a resource R. Specifically, for each acquire(release) site of
resource R, we statically compute a backward slice with respect
to the instruction that acquires(releases) R. Subsequently, only the
input variables that are used by any instruction captured in any of
the computed slice have to be made symbolic. Figure 13 shows a
simple example of slicing algorithm shown in Algorithm 1.

7.2 Test Input Generation

The final step in the validation phase is the generation of test
inputs that expose assertion violation (and hence energy bugs)
in the analyzed app. For this purpose we use the tool JPF-SE
[12], which is a symbolic execution extension for the tool Java
PathFinder (JPF). It is worthwhile to know that Android apps,
unlike conventional Java programs do not have a main method as
the starting point of execution. Instead the execution of an Android
application starts from a root UI screen. JPF-SE however works
for conventional JAVA programs only, therefore our framework
automatically generates a driver file that represents the structure
of the analyzed app’s EFG. The generation of the driver code
is a straightforward process. The first event handler to be called
in the driver is that of the root UI screen, followed by its child
nodes (event handlers). In the scenario where an EFG node E
contains multiple child nodes c1, c2, . . . , ci, we create conditional
branch statements for each child node ci. The execution of a

conditional branch statement is decided based on a newly added
variable ctrl E. Essentially, the variable ctrl E represents the
event (or user input) that decides the execution of a child node
at E. While executing the application symbolically, we make the
variable ctrl E symbolic. This allows us to explore all possible
event sequences at a given EFG node in the application. Figure 14
shows an example for driver code generation.

(a) (b)

Fig. 14: An example for driver code generation

As described in Section 6.5, for all potential energy bugs
reported by the detection phase, we instrument assertions at
the exit points in the EFG. Symbolically executing through the
application via the driver code allows us to check the validity of
the instrumented assertions. Each assertion violation is recorded
and the corresponding failure revealing test-cases is presented to
the developer as a witness for the reported bug.

Following sequence provides an example of a bug-revealing
test sequence generated by our framework for the app Tachome-
ter. The bug-revealing test sequence contains all the informa-
tion that the developer needs to replicate the reported bug. For
instance, in the following example the bug-revealing scenar-
ios tells about the UI events and their relative ordering that
needs to be triggered to observe the reported bug. In addi-
tion, the framework also reports the event-handler signatures
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(shows in square brackets in the following example), to further
assist the developer. It is worthwhile to know that a single
user event can trigger multiple event-handlers, such as in the
following example, event id/button1/TAPSCREEN_120_93
triggers event-handler WahlActivity$1_onClick followed
by PositionActivity_onCreate.

Buggy Sequence:
entryNode/KEYPRESS_82 [WahlActivity_onCreate]
-> id/button1/TAPSCREEN_120_93 [WahlActivity$1_onClick]
-> [PositionActivity_onCreate]
-> MenuButton/KEYPRESS_82/
-> BackButton/KEYPRESS_4/
-> [PositionActivity_onPause]

Fig. 15: Test sequence generated for app Tachometer

It is worthwhile to know that all the bug revealing test cases
generated by our framework are valid. This is due to use of a
dynamic exploration technique for test-generation.

8 AUTOMATED REPAIR

In the final phase, our framework automatically generates repair
expressions for the validated energy bugs. Figure 17 shows the
work-flow of this final phase. To generate a repair expression,
we need to determine (i) the repair expression and (ii) the repair
location. The repair expression is affected by the choice of repair
location and hence we first discuss how the repair location is
obtained.

Get Resource

Acquire Activity

Get Exiting

Activity

Acquire Activity 

= Exiting Activity? 

Get Resource Variable, 

Argument Names

Put Release Expression in 

Exiting Activity

Generate Resource 

Release Expression 

Generate New 

Global File

Share Variable, 

Argument Names 

Using Global File

Yes

No

Fig. 17: Work flow for automated repair in our framework

It is worthwhile to mention that the objective of the repair
phase is primarily to fix the reported energy bug (i.e. to modify
the source code such that the bug-revealing test-case no longer
triggers a bug). However, in some scenarios, there might be
multiple locations at which the repair expression can be added.
For example, in the simplistic scenario shown in Figure 18,
the repair code can be either put at RepairLocation1 or at
RepairLocation2, depending on whether or not Activity 2
needs the resource acquired in Activity 1.

To be energy-efficient an acquired resource should be released
as soon as it is not required any more. However, determining
whether an acquired resource is still needed may not be feasible
just by analysing the instructions in the application bytecode.
This is because for certain resources, such as Wakelocks, last-
use information is not explicitly found in the application code (a
Wakelock prevents the CPU from going into sleep-state as long as
it is acquired). Therefore in our framework, the repair expression is
always put in the last method (onPause) of the exiting activity in
the bug-revealing test case (generated during the validation phase).
Here exiting activity refers to the (sequentially) last activity in
the bug-revealing test-case. Our strategy is always guaranteed to
fix the energy bug as witnessed by the bug-revealing test case,
however the automatically generated repair may not be optimal
under all circumstances.

<resource expr> . <release system call> (11)

The repair expression automatically generated by our frame-
work has the format shown in Equation 11. The resource expr part
in Equation 11 represents the expression to access the resource
object at the repair location and release system call represents
the system call API to release the resource object. To form
a syntactically correct repair expression we need to obtain the
variable name for the resource object and the arguments to the
release system call. These information are obtained from the result
of the detection phase (described in Section 6).

Activity 1 Activity 2

Resource Acquired

onCreate() onCreate()onPause() onPause()

Resource Location 1 Resource Location 2

Fig. 18: An example scenario
In the scenario where resource acquiring activity and exiting

activity are different (such as in the example of Figure 18), our
framework adds additional pieces of code to ensure syntactic
correctness. In particular, a new global file is automatically added
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Fig. 16: Work flow inside EnergyPatch
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(a) (b)

Fig. 19: Screenshot of the tool. (a) shows how developer can manually augment EFG information. (b) visualization inside tool showing
information such as the structure of the EFG, buggy nodes, etc

by our framework. This global file is used to share the resource
variable name and parameters to release system call from the
resource acquiring activity to the exiting activity. This work-flow
is also shown in Figure 17.

9 ECLIPSE PLUGIN ENERGYPATCH

Our framework has been implemented into an Eclipse plugin
named EnergyPatch. The source code for the plugin is available
under the BSD 3-Clause license [13] from BitBucket [3]. In
this section we shall briefly describe the structure and working
of the tool. An interested reader can find the instructions for
installation and usage at http://www.comp.nus.edu.sg/∼rpembed/
epatch/home.html.

Figure 16 shows the work flow for EnergyPatch. In the plugin,
the EFG generation can be done by using an automatic GUI
exploration tool Dynodroid [8] or by parsing the GUI-related
XML files from the app (In Android, it is common practice to
specify the GUI layout of the app by means of XML files). We
have also added an option (cf. Figure 19 (a)) that allows the
developer to manually augment any additional flow dependencies
(intra or inter event) within the EFG. This can be an useful feature
in the cases where the automatic GUI exploration misses any event
in the EFG during exploration.

For the detection phase, we have implemented an abstract
interpretor for Java bytecode (for app class files). The abstract
interpretation based analysis also requires the set of resources and

associated system call APIs that need to be tracked with in the app.
This information is also provided through an XML file and can be
modified/replaced by the user as required. In case the abstract
interpretor does not find any energy bugs, the analysis stops.
However, in the case where potential energy bugs are found, the
framework alerts the developer of same. This potential energy bug
information is mapped to the EFG of analysed app and displayed
in the graph view of the tool (Figure 19(b) shows an example).
Such a pictorial representation may further assist the developer in
understanding the debugging process.

In case a potential energy bug is found, the validation phase
generates the driver code as described in Section 7.2. Also the
required class files (from the analyzed app) are instrumented using
ASM [14], as described in Section 6.5. Subsequently, the app
(after search space reduction has been applied as described in
Section 7.1) is executed symbolically. For Symbolic execution,
our tool relies on Java Pathfinder (JPF), more specifically three
components of JPF, JPF-core [15] , JPF-SE [16] and JPF-Android
[17], are used. JPF-core provides the base JPF classes, JPF-SE pro-
vides the symbolic execution support and JPF-Android provides
the model of Android framework. During symbolic execution, all
assertion violations are reported to the developer. All reports are
accompanied by a witness test-case that can be used to replicate
the said energy bug using a mobile device and a power meter.
Subsequently, the repair expressions are generated and presented
to the developer as described in section 8.

Fig. 20: Subject Apps; Resources used in the subject apps (Primary Y-axis) and Lines of Code (Secondary Y-axis, logarithmic)
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TABLE 3: Subject apps for which energy bugs have been reported through bug-reports and/or previous publications [1], [18]–[20]
App Name App LoC Event Handler Defect

version / code Description Apk Size(KB) Classes Description
Aripuca [21] Recording tracks 8093 14 Moving from MainActivity to WaypointActivity causes

1.3.4 / 24 [22] and saves waypoints 660 location updates to stay on even after the app is paused
2 Omnidroid Automated event/action 12425 28 Location updates started by the app are not
0.2.1 / 6 [23] manager for Android 258 stopped after app is paused or phone is restarted
Tachometer App to measure 793 9 Selecting PositionActivity from main screen of the app
1.0 / 1 [24] location and speed 540 causes location updates to be acquired but not released

4,2 Babblesink An app to help 521 1 An exception may cause the app to
1.0 / 1 [25] locate lost phones 21 have a potential wakelock bug

Sensor Tester Sensor monitoring 1719 6 App acquires location and sensor services
1.0 / 1 [26] and logging app 400 without releasing them on app pause
Aagtl [27] Geocaching based 20572 4 Pressing Home button during cache download
1.0.31 / 31 app for Android 307 causes the wakelock to remain acquired by the app
2 DroidAR An augmented-reality 18177 6 Going to the ArActivity then switching back to another
1.0 / 1 [28] app for Android 398 activity cause the GPS to stay on even after closing app
Benchmark Benchmarking app 9739 23 Navigating from Benchmark activity to show results

1.1.5 / 9 for Android 1020 causes the wakelock to be not released by the app
♦,2 Osmdroid Provides replacement 8107 10 Selecting the sample loader followed by first sample

3.0.1 / 2 [29] for Android’s MapView 276 causes the app to not release the location updates
2 Recycle-locator Area-specific restroom, 717 3 Location services are not disabled when the map module

1.0 / 1 [30] mailbox finding app 116 is paused as a result GPS is constantly looking for a signal
2 SP Transport Android app that 1766 3 Defective behaviour observed in the LocationView
1.17 / 18 [31] assists in bus-travel 161 class, GPS is never turned off when the activity is paused
4,2 Ushaidi App for Collection, 10621 22 CheckinMap keeps the GPS on, even
v2.2 / 13 [32] visualization for crisis data 713 after the user has navigated away from the activity
2 Zmanim List of halachic/ 72977 4 GPS signal acquisition from the ZmanimActivity

3.3.84.296 / 84 [33] halakhic times 842 is never stopped even after the app is paused
2: app used in [18] 4 : app used in [19] ♦ : app used in [20]

10 EXPERIMENTAL EVALUATION

Experiments for the evaluation of framework answer the follow-
ing research questions: (i) Efficacy of our framework i.e. how
effective is our framework in uncovering test cases that lead to
real energy bugs (ii) Importance of the detection phase in our
framework (iii) Effectiveness of the automated repair i.e. does the
repair expression generated by our framework actually makes the
application more energy efficient? and finally (iv) Comparison of
our framework with existing works on resource leak detection in
mobile apps. We shall discuss these research questions in Sections
10.2 - 10.5. However, first we shall discuss the experimental setup
and choice of subject apps in Section 10.1.

10.1 Experimental Setup
Subject Apps: We created a suite of 35 subject apps from online
sources such as F-droid app repository, Github, Google Code
and Google Play, to be used in our experiments. These apps
are diverse in terms of functionality, complexity and application
size. In particular, the apps used in our experiments have at least
500 lines-of-code (LoC) and use one or more of energy-intensive
resource(s). Figure 20 provides an overview of all the subject apps
used in our experiments. These subject apps also include apps used
in our previous works such as [1] and other related works such as
[18], [19] and [20]. This will help us to compare our framework
with existing related works. Table 3 lists down a few details of
the subject apps for energy bugs were found/reported in previous
works [1], [18]–[20]. These details include the app description,
apk size and LoC, number of event-handlers and defect description
for each of these apps. In Table 3, apps used in [18] are marked
using the symbol 2, apps used in [19] are marked using the
symbol 4 and apps from [20] are marked using the symbol ♦.

Setup: Our test-generation and repair framework was imple-
mented in Java. It was run on a Desktop-PC with an Intel Core

i7-2600 CPU with 8GB of RAM and Ubuntu 14.04 OS. The
mobile device used to run the subject apps was an off-the-shelf LG
Optimus E400 smartphone. The device has a 800 MHz Qualcomm
processor, Adreno 200 GPU and features I/O components such
as 3.2 inch TFT screen, GPS, Sensors, Wifi, 3G and Camera.
This mobile device was running Android Gingerbread(v2.3.6)
operating system(OS), which was the most widely used OS at
the time of these experiments. It is worthwhile to know that newer
versions of Android such as Android Jelly Bean and Ice Cream
Sandwich have similar system call APIs (for resource usage) to
that of Android Gingerbread (v2.3.6), therefore our framework
should work equally well for apps intended for these platforms
as well. Finally, for measuring energy savings in the patched apps
we used a Yokogawa WT210 digital power meter using the a setup
shown in Figure 22.

10.2 Efficacy of our Framework
The most important research question in the evaluation is deter-
mining the efficacy of our framework in finding and reporting
energy bugs in real-life Android apps. To answer this we ran our
framework for all subject apps (including the apps listed in Table
3) to observe, (i) if our framework could detect energy bugs and
(ii) whether the test-cases generated our framework can be used to
replicate these reported bugs on a real mobile-device.

In our experiments, our framework reported real energy bugs
(with test-cases) for 12 out of these 35 apps. Among these 12 apps,
8 had energy bugs involving GPS (not all apps use the same APIs
for accessing the GPS), 2 apps had energy bugs involving both
the GPS and Sensors and 2 apps had energy bugs due to improper
usage of Wakelocks. A summary of the key results can also be
found in Table 4. It is important to know that our framework
reports the presence of energy bugs in an app only after both the
detection (static analysis) and the validation (symbolic execution)
phases have been completed. It is also worthwhile to know that our
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TABLE 4: Results of Detection/Validation phase for app listed in Table 3

App name Resources Not Released Detection Phase Validation Phase
Time (s) Scenario Time (s) No of Event-handlers Invoked in Test-case

Aripuca GPS 21 Activity Switching 53 17
Omnidroid GPS 3 Activity Switching 44 3

Tachometer Sensor
<1 Resource Acquire Loop 12 6GPS

Babblesink Power Manager (Wakelock) <1 Uncaught Exception 2 n/a (app crashes)

Sensor Tester Sensor 4 Resource Acquire Loop 32 7GPS Activity Switching
Aagtl Power Manager (Wakelock) 4 Activity Switching 28 4

DroidAR GPS 6 Activity Switching 51 5
Benchmark Power Manager (Wakelock) 4 Activity Switching 3 3
Osmdroid GPS 5 Activity Switching 14 6

Recycle-locator GPS 1 Activity Switching 3 4
SP Transport GPS 2 Activity Switching 3 5

Ushaidi GPS 4 Activity Switching 4 6
Zmanim GPS 7 Activity Switching 34 5

framework has a relatively less performance overhead as both the
computationally intensives phases i.e. the detection and validation
phases, were completed in approximately a minute even though
some of the application were significantly large with thousands
of lines-of-code. This goes on to show that our framework can
be applied to energy bug detection in real-life apps. On manual
inspection of the apps for which potential energy bugs were
detected, we observed following three scenarios:

i. Activity Switching: a resource is acquired in an activity, how-
ever the app navigates to another activity or stops execution
without releasing the acquired resource.

ii. Resource Acquire Loop: a resource is repeatedly acquired
within a loop however it is not released a sufficient number
of times before exiting the application.

iii. Uncaught Exception: unexpected execution flow due to un-
caught exceptions may leave resource(s) in the acquired state.

To check the usefulness of the generated test-cases we manually
replayed these test-inputs on our test device and compared the
resource status using the debugging tool Android debug bridge.
By doing this additional step we were able to confirm that the test
cases do indeed lead to buggy scenarios. Additionally, for some
apps such as DroidAR, Osmdroid, Recycle-locator, SP Trans-
port and Ushaidi there exists user reports (on code repositories)
that describes the energy-related defect(s) to the developer. For
these apps, we were able to compare the test cases generated
by our framework to the test-scenarios reported/constructed by
the user/developer. We observed significant similarities in these
comparisons as well.

10.3 Importance of Detection Phase in the Framework

We have emphasized in previous sections (see Section 4), that the
use of static analysis in the detection phase makes our framework
scalable and also helps in reducing the overall analysis time.
Here we shall present some observations to support these claims.
We compare the (Symbolic Execution) SE only approach to the
(Abstract Interpretation + Symbolic Execution) AI+SE approach
for uncovering energy bugs, where

• SE only approach implies only symbolic execution is used to
uncover energy bug(s) without the preceding static analysis
• AI+SE approach (our approach) implies that we perform

static analysis (Abstract Interpretation or AI) followed by
validation (Symbolic Execution or SE)

Specifically, we conducted experiments for two scenarios: (i)
analysis time for both approaches in the absence of energy bugs,
and (ii) analysis time for both approaches if energy bugs do exist.
For the scenario where no energy bugs exist, static analysis termi-
nates relatively fast (less than 15 seconds) when using the AI+SE
approach (the one implemented in our framework). Additionally,
since the results of the detection phase are always sound, we can
be assured that no energy bug indeed exists at least for the portion
of app represented by its EFG. However, to come to the same
conclusion using SE only approach, all feasible program paths
must be explored. Since there can be an unbounded number of
event sequences in an app (because UI elements in an app can be
navigated over a circular path), the SE only approach can potential
take forever to conclude.

For the second scenario (where at least one energy bug exists
in the analyzed app), the AI+SE approach can produce results
in up to one-third of the time of SE only approach for certain
apps. For instance, validation time for Omnidroid [34] was 117
seconds for SE only as compared to 44 seconds for the AI+SE
approach, cf Table 5. This difference in evaluation time happens
because the detection phase of our framework helps in search
space reduction. The magnitude of search space reduction is
directly influenced by the program location at which the (energy-
bug-causing) resource/utility is acquired. The farther the (energy-
bug-causing) program location is from the root UI node, the more
the gains by using our search space reduction technique.

TABLE 5: Comparing execution time of SE-only approach Vs AI+SE
(our) approach. Observed (geometric) mean improvement of 38.67%

App Name Execution Time (s) Improvement (%)
SE-Only AI+SE SE-Only Vs AI+SE

Aripuca 109 53 51.3
Omnidroid 117 44 62.3
Tachometer 15 12 20.0

Sensor Tester 50 32 36.0
Aagtl 33 28 15.1

Benchmark 6 3 50.0
DroidAR 122 51 58.1
Osmdroid 17 14 17.6

Recycle-locator 5 3 40.0
SP Transport 7 3 57.1

Ushaidi 8 4 50.0
Zmanim 76 34 55.2
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10.4 Effectiveness of Automated Repair

Our framework uses the test-cases generated by the validation
phase to generate the repair expressions (described in Section
8). For instance, the test case for the app Tachometer that is
shown in Figure 15, is used to generate the repair for class
PositionActivity.java as shown in Figure 21.

Fig. 21: Repair expression for app Tachometer

To evaluate the effectiveness of the repair, we compared the
energy consumption of the original app to that of the repaired
app, for the buggy test-input. The setup for energy-measurement
used a test device (LG Optimus E400 smartphone running Android
v2.3.6) and a power meter (Yokogawa WT210) as shown in Figure
22. Energy-consumption of the device is measured for a period of
300 seconds after the bug revealing test-case has been executed.
This is done to measure the impact of the buggy app code on the
energy-consumption behaviour of the device. The test-cases were
executed manually. Also no other apps were being executed on the
test-device while the power-measurement experiments were being
conducted. Power measurements were conducted thrice for each
experiment and the average value for the readings were computed.
Additionally, during these experiments the screen timeout duration
of the device was set to 15 seconds. Table 6 shows the increase
in energy-efficiency of the buggy apps before and after the repair
code had been applied.

Battery

Mobile Device
Power

MeterMeasure Voltage

Measure Current

Fig. 22: Block diagram for measurement setup

TABLE 6: Improvement in energy consumption of all apps with
validated energy bugs after the automatic repair

App Name Energy Consumption (J) Avg. Improvement
Before Repair After Repair %

Aripuca 155.2 65.6 57.8
Omnidroid 71.2 66.4 6.7
Tachometer 159.5 66.7 58.2

Sensor Tester 155.8 66.5 57.3
Aagtl 68.3 64.4 5.7

Benchmark 91.1 64.2 29.5
DroidAR 156.9 66.5 57.6
Osmdroid 148.8 68.0 54.3

Recycle-locator 156.3 63.6 59.3
SP Transport 150.7 65.0 57.1

Ushaidi 154.8 65.3 57.8
Zmanim 158.1 65.4 58.7

10.5 Comparison with Existing Works on Resource
Leak Detection in Mobile Apps
The works of [19], [20] and [18], are most related to our current
work as they all present techniques for detecting and/or character-
izing resource leaks in mobile apps. Therefore, in this subsection
we shall discuss how our technique compares to these techniques
in terms of (i) efficacy of defect detection and (ii) performance.

Efficacy of defect detection: The works of [19], [20] use static
analysis to detect resource leaks in Android apps. In particular,
[19] proposes a resource-leak detection technique based on data-
flow analysis, whereas, the technique presented in [20] is based on
function call graph traversal. Both of these works have observed
that their techniques may produce some false positives. This is be-
cause unlike our framework, the techniques used in these works do
not have a dynamic analysis or a test-generation phase, as a result
there is no mechanism to generate test-cases or to automatically
prune out the false positives that may be introduced due to the
over-approximations of the static analysis phase. Unfortunately,
we could only obtain the source-code for three apps from [19] and
[20] (some of the apps from [20] were closed source whereas
some programs used in [19] were individual class files from
older versions of the Android framework). Those apps for which
we could obtain the source-code, our framework was able to
successfully find bugs in two of them (Osmdroid and Ushaidi)
while for the third app Babblesink our framework reported that
no feasible test-cases was present to trigger a resource leak. In
particular for the Babblesink app, the detection phase of our
framework reported a potential Wakelock related energy bug.
However, analysis during the validation phase failed to produce
a feasible test case that triggers the reported bug. Looking at the
source code of the Babblesink app, we observed that a Wakelock
object is acquired to ensure the interruption-free initialization of
an IntentService. Ideally, this Wakelock should have been released
after the initialization of the IntentService is completed. However,
there exists a path in the application that will bypass the release
instruction. This path is executed when an exception occurs after
the acquire instruction for the Wakelock object has been executed
but before the execution of the release instruction. This bug was
initially reported by [19]. We manually inspected this app to find
out the reason due to which the validation phase did not generate
any valid test-case. We observed that the exception that caused
the release code to be skipped actually crashes the app because it
is uncaught up to the top level function of the application. Since
all acquired Wakelocks are automatically released in the event
of an app crash, no actual energy bug can occur in any feasible
execution scenario. This is the reason why the validation phase in
our framework (correctly) does not generate a feasible test-case
for this app.

The work in [18] proposes a dynamic analysis based technique
for resource leak detection. In particular, it uses bounded symbolic
execution for finding test-cases that leads to resource leaks. In
general, bounded symbolic execution implies that the depth at
which symbolic exploration takes place is bounded. Bounding
the depth of symbolic exploration may create limitations of its
own. For instance, if in the example of Figure 8(f), the (loop)
bound for exploration is set to 2 iterations, symbolic exploration
would be unable to find any resource leaks. In general, knowing
the adequate bound (such that all bugs can be revealed) can be
quite challenging. Therefore, using only symbolic execution may
not be optimal strategy for exploration. On the contrary, in our
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framework we first use static analysis to conservatively, detect the
presence of resource leak, after which we use symbolic execution
to generate test-cases. From the work of [18] we were able to
obtain eight apps, seven out of which we were able to analyse
successfully with our framework. For the eighth app, Babblesink,
our framework did not produce test-cases for reasons mentioned
in previous paragraph.

Performance: In this paragraph, we shall compare the perfor-
mance of [19], [20] and [18] with our technique. We observed
that the static analysis based techniques that were described in the
works of [19] and [20] have similar performance to that of the
static analysis based detection phase that was used in our frame-
work. In particular, the results reported in [19] stated a minimum
analysis time of 3 seconds (for 0.3KLoC) to a maximum anal-
ysis time of 408 Seconds (for 93.5KLoC). Whereas, the results
reported in [20] stated a minimum analysis time of 6 seconds (for
345 Classes, 1447 Methods) to a maximum analysis time of 61
seconds (for 420 Classes, 3804 Methods) (LoC is not reported for
the apps used in [20]). In contrast, the performance of the bounded
symbolic exploration based dynamic exploration technique used
in [18], heavily depends on the depth of exploration. This means
that the bound set on bounded symbolic exploration technique
will influence the number of symbolic states that need to be
explored and therefore the performance of the technique itself. In
particular, the results reported in [18] stated that when the bound
(for this particular technique, bound is number of user interactions)
was set to 6, the analysis time varied between 11 seconds (for
0.8KLoC) to 284 seconds (for 18KLoC). However, when the
exploration bound is increased to 8, the technique of [18] takes
over an hour to analyze several of the subject applications. Such a
result is intuitive as exploration of more symbolic states requires
more execution time. In comparison, our framework uses a static
analysis based detection phase to detect potential energy bugs,
whereas the use of symbolic exploration in our framework is only
to validate the potential energy bugs by executing small portions
of the app. As a result the validation phase in our framework is
able to terminate in a relatively short amount of time (observed
timings less than a minute, see Table 3).

11 THREATS TO VALIDITY

One of the major threats to the validity of the results produced
by our framework is due to the incompleteness of the EFGs
used in our analysis. As described in Section 5, the EFG for
an app is generated using a dynamic analysis technique. Since
we cannot guarantee the completeness of the EFG, therefore,
we cannot provide any completeness guarantee for the generated
results as well. As a consequence of this limitation, in case of
incomplete EFG our framework may leave portions of the app
code unanalyzed that have not been represented in the EFG.

Another threat to the validity of the results produced by our
framework is due to the use of Android framework model. In our
framework we use an Android framework model in order to ensure
the correct execution of an app. Our Android framework model is
based on an existing model proposed in [17]. It is worthwhile to
mention that defects in the Android framework model can affect
the results of our framework, therefore we invest additional effort
to ensure that the model closely mimics the behaviour of the
Android framework.

12 RELATED WORK

Techniques based on profiling: Recent profiling based works
[35]–[37] have demonstrated the presence of energy-inefficiencies
in several popular real-life mobile applications. The key idea in
such works is to execute the application for several test inputs,
while monitoring the energy consumption of the mobile device.
One of these works, Eprof [35], for instance instruments the
application code such that all invocations of system-call APIs
can be recorded during profiling. Instrumented apps are then
run on a real mobile device and invocation of system call APIs
are recorded. These recorded system-call API invocation traces
are then used in combination with a FSM power model of the
mobile device to estimate the energy-consumption behaviour of
the app. Subsequent works, such as eLens [36] and vLens [37]
have presented more fine-grained profiling techniques for mobile
apps. In particular, eLens and vLens provide an estimated energy-
consumption for each line of source-code in an app. This is unlike
Eprof which provides the energy-consumption estimation for an
app on a system-call API level of abstraction. A key difference
between the works of eLens and vLens is that the technique of
eLens uses an power-model (based on the work of [38]) to provide
a per-line energy-estimation of an app whereas the technique
of vLens uses actual power measurements to provide the same
information. It is worthwhile to know that like any other profiling
techniques, the techniques mentioned in this paragraph are heavily
dependent on test inputs to obtain the profile. Obtaining (or
randomly guessing) test inputs that lead to energy bugs would be
difficult, in the general case. However, we feel that such profiling
based techniques can benefit from our work as they can use the test
cases generated by EnergyPatch to obtain the energy profile of the
application under test. In addition, some of these works [35], [36]
require power-models in order to generate energy-consumption
estimates. Therefore, in the following paragraph we discuss some
of the existing works that have been proposed for the purposes of
power-model generation.

Techniques for power-modeling: [39] presents one of the earliest
works on the topic of instruction level power-modeling. Other
works such as [38] have proposed the use of dynamic analysis
technique to generate power-models. Essentially such techniques
present mechanisms to associates each instruction with an energy
consumption cost. The technique of [38] in particular, has been
extended to work for mobile-devices in the work of [36]. One
obvious complexity with such techniques is that the power-model
generated by these works is hardware-specific, therefore it must
be re-generated every time the hardware changes. Additional
complexities may arise (in creating the power-model), due to
program-specific behaviour such as cache misses, branch mis-
predictions, etc. A number of subsequent works, such as [40]–
[42], propose techniques for automated or semi-automated means
of power-model generation and may potentially reduce the com-
plexity of developing power-models. The work of [40] proposes
a tool PowerBooter for constructing power-model for a mobile
device using built-in battery voltage sensors. The work of [41]
has an objective similar to that of the work presented in [40],
however the power-model generated using the technique of [41]
is capable of producing a much finer-grained power-model than
[40]. The work of [42] presents a tool WattsOn that can be used
for emulating energy-consumption characteristics of a mobile-
device. Such automated power-model generation techniques may
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be quite useful for profiling-based technique presented in previous
paragraph, however, the objective of our work is quite different
from such power-model based works. In our work we are primarily
interested in finding scenarios (test-cases) that lead to energy-
inefficient behaviour such as energy bugs, instead of finding the
energy-consumption behaviour of the entire app.

Techniques for detecting resource leaks, memory leaks: There
exists a number of works that present techniques for detecting
memory leaks [43]–[49], as well as resource leaks (such as
file handlers, semaphores, etc) [50], [51]. These works address
different aspects of detecting leaks in programs. For instance, the
work of [43] proposes a sampling based technique that specifically
targets memory-leaks that are present in the in-frequently executed
portions of the program source-code. Another profiling work
[46] proposes a memory leak detection technique specifically
targeted at object-oriented programs. Static analysis has also been
used to detect memory leaks [44], [45] and resource leaks [50].
Combination of static and dynamic analysis techniques have also
been used to detect memory leaks in the work of [49]. Several
other approaches have been proposed for the purpose of leak
detection. For instance, [48] proposes a learning based technique,
[47] proposes a tainting based technique and [51] proposes a
resource usage pattern based leak detection technique.
It is worthwhile to know that memory leaks and resource leaks
affect the behaviour of a program in different ways than en-
ergy bugs. Presence of memory leaks can be detrimental to the
performance of program (adverse for time-critical applications);
presence of resource leaks may cause deadlocks or delays that may
influence the functionality of the program. Whereas the presence
of energy bugs does not affect the execution of the program in any
way. Instead the presence of energy bugs in mobile applications
indirectly affects the battery life of the mobile device and the user
experience (by reducing the amount of time the mobile device
can stay functional). Hence, the problems posed by energy bugs
have different characteristics to that of memory/resource leaks and
should be studied separately.

Techniques using program analysis to detect energy-
inefficiencies: Existing works have proposed a number of compli-
mentary ways to make apps more energy-efficient. For instance the
work of [52] proposes a technique to identify resource-intensive
pieces of code at runtime and execute them at remote servers. This
provides an indirect way of increasing the battery life of the mobile
device. Another category of work exists that uses program analysis
techniques to uncover energy-inefficient behaviour in apps so that
the developer can identify and fix problem with the app before
deployment. In this paragraph we shall primarily discuss the works
in this category as it is more relevant to our current work. Recent
works such as [19], [20] propose static analysis based techniques
for detecting resource leaks in Android apps. The work of [19] in
particular is one of the earliest works in this domain however the
technique proposed by this work does not focus on systematic rep-
resentation and exploration of event-sequences in the app. As a re-
sult, some manual effort may be required to generate and validate
energy-inefficiencies that have been detected by this technique.
In addition, since such techniques solely rely on static analysis
and so their results may contain false positives (in the presence of
infeasible paths). There exists a number of research works, such as
[38], [53], that have proposed dynamic analysis based techniques
for energy-inefficient behaviour detection in mobile-apps. The

work of [38] in particular uses symbolic execution to explore paths
in an app and subsequently highlight the CPU energy consumption
for each path. Whereas the work of [53] explores states in the GUI
model of an app to detect resource leaks. There are a number of
potential limitations to such techniques. For instance the technique
of [38] only considers the energy consumption due to the CPU,
however most modern mobile devices have a number of hardware
components that have power consumption comparable to that of
the CPU. A more serious drawback with such techniques is that
they rely on exploring all paths in the program, which may not be
scalable for many real-life programs.

Techniques for test generation in mobile-apps: Works related
to test generation in mobile apps have mostly been confined to the
domain of functionality testing. Testing mobile application such
as Android apps can be challenging as they do not have common
entry point (or main method), unlike Java programs. Instead such
apps are composed of several disconnected pieces of code called
event-handlers that are responsible for handing events (such as
user taps or touches). As a result, automated exploration of these
apps is usually non-trivial. Research works such as [8], [54] have
proposed a number of automated techniques to explore mobile-
apps that can be used for functionality testing purposes. [8] in
particular uses a biased-random testing technique to explore the
various GUI states of an app. The technique proposed in [54] uses
symbolic execution to achieve the same goal. It is worthwhile
to know that even though these techniques by themselves cannot
be used to test non-functional properties like energy-consumption
but they do provide insights that can be useful for developing
automated non-functionality testing tools for mobile-apps.

Techniques for energy-aware test generation mobile-apps: At
the time of writing, there were two different approaches, [1] and
[18], on the topic of energy-aware test-generation for mobile-
apps. One of the approaches is our previous work [1] which uses
a hardware-software hybrid approach to systematically generate
test inputs that leads to energy-inefficient scenarios. As the sec-
tion 3.3 mentions, the technique of [1] differs from our current
work in three key aspects (i) the way energy bugs are detected
(power measurement vs static analysis) (ii) the way test-cases are
generated (search heuristics vs guided symbolic execution) and
(iii.) automatic repair expressions generation (present only in the
current framework).

The other related work, Greendroid [18], has a number of
conceptual and technical differences from our current work. The
technique in Greendroid primarily relies on bounded symbolic
execution to detect resource leaks in mobile apps. As described
in section 10.5, bounded symbolic execution may be unable to
detect feasible resource leaks, if the bounds (for the bounded ex-
plorations) are set too cautiously. In contrast, our framework uses
static analysis to conservatively, detect the presence of resource
leaks in mobile apps. In our framework, symbolic execution is
used to validate the presence of these potential resource leaks and
to generate test-cases. In addition, our framework is also capable
of generating repair expression automatically, whereas the repair
part in Greendroid requires manual effort.

Another more subtle technical difference between our current
work and Greendroid is the granularity at which symbolic ex-
ploration is conducted. Greendroid defines inputs as a sequence
of events. However, as demonstrated by means of an example in
section 2.2, such a definition may lead to insufficient exploration
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(of program paths). This is because execution of certain program-
paths inside the event handler may depend on the return value of
Android system call APIs (such as the path N1 − N2 − N4 . . .

in event handler E3 in Figure 9, depends on the return value of
syscall1()). In our framework, we define an input as a combination
of events (either user-generated or system-generated) and return
value from system call APIs (cf. Definition 1). Our framework
can not only explore the event-handlers of an app but also the
program-paths inside these event-handlers. For example, in the
event handler E3 of Figure 9, the return values of system calls
syscall1() and syscall2() are made symbolic, such that paths inside
event handler E3 can be explored.

Techniques for green software engineering: Another line of
work [55]–[58] exists that does not rely on energy-aware test-
generation to optimize energy-efficiency of programs. The work
of [55] for instance introduces a new program construct (energy
types) that allows the developer to annotate energy-consumption
information within the app source-code. This annotated energy-
consumption information, along with power-management features
such as dynamic voltage & frequency scaling, can be used to
develop software-hardware interaction based energy-management
techniques. Another set of work [56], [57] focuses on optimizing
energy-consumption behaviour of a program by utilizing different
implementations of same functionality. The different implementa-
tion for a given functionality can be obtained semi-automatically
[56] or automatically [57]. For instance, the work of [56] provides
program constructs that can be used by the developer to indicate
energy-intensive functionalities (such as functions, loops) and
to provide alternative implementations for these energy-intensive
functionalities. The decision to choose an implementation is influ-
enced by monitoring the runtime energy-consumption behaviour
of the program for a given workload. Along the same lines, the
work of [57] proposes a framework that can optimize energy-
efficiency of Java applications by choosing the most energy-
efficient library implementation for Java Collection API. Finally,
recent works such as [58] have proposed automated techniques to
reduce energy-efficiency of program by targeting specific energy-
intensive functionalities such as sending HTTP requests.

13 CONCLUSION

In this paper, we presented a framework that can provide an end-
to-end solution for detecting, validating and repairing energy bugs
in real-life mobile apps. The use of light-weight static analysis
technique in the detection phase allows us to quickly narrow
down the potential program paths along which energy bugs may
occur. Subsequent exploration of these potentially-buggy program
paths using dynamic analysis technique helps us in validating
these potential energy bugs. Our framework also generates test-
cases for all validated energy-bugs which can be used by the
app-developer to manually recreate the buggy scenarios. Finally,
our framework generates repair expression to fix the validated
energy bugs. We implemented our framework as an Eclipse plugin
so that it can be easily installed and used by app-developers
during app-development. We conducted experiments to evaluate
the effectiveness and efficacy of our framework by testing real-life
Android apps. During these experiments our framework reported
real energy bugs in twelve out of thirty-five tested apps. Also
the test-cases generated by our framework were able to trigger
the reported energy bugs on a real mobile-device. Finally, we

compared the energy-consumption of the buggy apps post repair
on our test-device. In these experiments we observed that the
repair code generated by our framework can improve the energy-
efficiency of the buggy apps significantly.
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