
Past Expression: Encapsulating Pre-states at
Post-conditions by Means of AOP

Jooyong Yi
†

Robby
‡

Xianghua Deng
‡,∗

Abhik Roychoudhury
†

†School of Computing, National University of Singapore ‡Kansas State University
†{jooyong,abhik}@comp.nus.edu.sg, ‡{robby,deng}@ksu.edu

ABSTRACT
Providing a pair of pre and post-condition for a method or

a procedure is a typical way of program specification. When
specifying a post-condition, it is often necessary to compare
the post-state value of a variable with its pre-state value.
To access a pre-sate value at a post-condition, most contract
languages such as Eiffel and JML provide an old expression;
old(x) returns a pre-state value of variable x. However, old

expressions pose several problems, most notably the lack of
encapsulation; old(x) does not encapsulate an object graph
rooted from the pre-state value of x. Thus, method-call ex-
pressions like x.equals(old(x)) should generally not be used,
and instead each field of x should be compared individually
as in x.f1==old(x.f1) && x.f2==old(x.f2). In this paper, we
first describe this lack of encapsulation and other problems
of old expressions in more detail. Then, to address those
problems, we propose our novel past expression along with
its formal semantics. We also describe how our past expres-
sion can be supported during runtime assertion checking.
We explain the involved problems, and show how we solve
them. We implement our solution by means of AOP where
we exploit various primitive pointcuts including our custom
branch pointcut.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions

and Theory—Semantics, Syntax ; D.2.4 [Software Engi-
neering]: Software/Program Verification—Programming by
contract

Keywords
Contract; Encapsulation; Old Expression; Past Expres-

sion; Branch Pointcut; Runtime Assertion Checking (RAC)

1 INTRODUCTION
Modern programming languages and tools are not only

able to construct and run a program, they can also specify

∗This author moved to Google Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13,March 24–29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

and check what programmers really intend to do with a pro-
gram. One promising way of doing such program-level spec-
ification is to use general assertions such as pre-conditions
and post-conditions. Programming languages supporting
such general assertions include Eiffel [14], JML [5], Spec# [3]
and SPARK [2], to name but a few. Those languages are of-
ten called design-by-contract languages (contract languages
in short). Those contract languages extend base languages,
such as Java, C# and a subset of Ada, with specification-
related features such as pre-conditions, post-conditions, and
specification-purpose expressions.

The specification-purpose expression that is most com-
monly used is an old expression. An old expression is used
at a post-condition to compare a post-state value (i.e., the
value at the end of a method or a procedure) with a pre-state
value (i.e., the value at the entry of a method or a proce-
dure). More specifically, an old expression, old(E), returns
a pre-state value of expression E. In fact, an old expres-
sion is the only means of retrieving pre-state values in most
contract languages.

However, old expressions of contract languages pose sev-
eral problems, most notably the lack of encapsulation; old(x)
does not encapsulate an object graph rooted from the pre-
state value of x. For this reason, non-destructive method-call
expressions such as x.equals(old(x)) in general should not be
used, and instead each field of x should be compared one
by one as in x.f1==old(x.f1) && x.f2==old(x.f2). In the next
section, we describe this and other problems in more detail
before proposing our solution.

Our major contributions of this paper are as follows:

1. We identify three problems of old expressions that have
been largely neglected, most notably the lack of encap-
sulation.

2. To address the identified problems, we suggest a past

expression as an alternative to an old expression, and
provide its formal semantics.

3. We identify the obstacles in supporting past expres-
sions for runtime assertion checking, and show how
they can be overcome through various aspect-oriented
techniques.

2 OVERVIEW
In this section, we identify the three problems of existing

old expressions of contract languages before proposing our
solution by a past expression. We also compare our solution
with more traditional formal specification languages such
as Z [19] and VDM [9]. Lastly, we provide an overview of
the obstacles in supporting our past expression in a runtime

public class PatientSet {
private Patient[] patients; private int size;
//@ invariant (\exists int i; 0 <= i && i < size; patients[i] != null);

//@ requires contains(p);
//@ ensures size == \old(size) && (\forall int i; 0 <= i && i < size; (\exists int j; 0 <= j && j < size;
//@ patients[i].name.equals(\old(patients[j].name)) && patients[i].height == \old(patients[j].height) &&
//@ patients[i].weight == \old(patients[j].weight) && patients[i].birthDate.year == \old(patients[j].birthDate.year) &&
//@ patients[i].birthDate.day == \old(patients[j].birthDate.day) && patients[i].birthDate.year == \old(patients[j].birthDate.year)));
//@ also
//@ requires !contains(p);
//@ ensures size == \old(size)+1 && contains(p) && (\forall int i; 0 <= i && i < \old(size); (\exists int j; 0 <= j && j < \old(size);
//@ patients[i].name.equals(\old(patients[j].name)) && patients[i].height == \old(patients[j].height) &&
//@ patients[i].weight == \old(patients[j].weight) && patients[i].birthDate.year == \old(patients[j].birthDate.year) &&
//@ patients[i].birthDate.day == \old(patients[j].birthDate.day) && patients[i].birthDate.year == \old(patients[j].birthDate.year)));
public void add(/*@ non_null @*/ Patient p) { /* omitted */ }

public /*@ pure @*/ boolean contains(Patient p) { for (int i = 0; i < size; i++) {if (patients[i].equals(p)) return true;} return false; }
public /*@ pure @*/ boolean containsAll(/*@ non_null @*/ PatientSet set)
{ for (int i = 0; i < set.size(); i++) {if (!contain(set.get(i))) return false;} return true; }
public /*@ pure @*/ int size() { return size; } public /*@ pure @*/ Patient get(int i) { return patients[i]; }

}

(a) A PatientSet Java-class stub annotated with JML specifications

public class Patient {
/*@ non_null @*/ String name; float height, weight;
/*@ non_null @*/ Date birthDate;

public boolean equals(Object o) {
return (o instanceof Patient) && ((Patient) o).name.equals(name)
&& ((Patient) o).height == height && ((Patient) o).weight==weight
&& ((Patient) o).birthDate.equals(birthDate); }

}

public class Date {
short year, month, day;

public boolean equals(Object o) {
return (o instanceof Date) &&
((Date) o).year == year && ((Date) o).month == month
&& ((Date) o).day == day; }

}

(b) Java classes Patient and Date

public class Set<T> {
private T[] arr; private int size;

public void add(T p) { /* omitted */ }
public boolean contains(T p) { /* omitted */ }
public boolean containsAll(Set<T> set) { /* omitted */ }

}

(c) A Set stub with a type variable T

public class Set {
private ISetElem[] arr; private int size;

public void add(ISetElem p) { /* omitted */ }
public boolean contains(ISetElem p) { /* omitted */ }
public boolean containsAll(Set set) { /* omitted */ }

}

(d) A Set stub with an interface ISetElem

Figure 1: PatientSet example (above the line) and generalized set examples (below the line)

assertion checker. Later sections explain how those obstacles
are addressed (§ 4) and implemented through AOP (§ 5)
after providing formal semantics of a past expression (§ 3).
In § 6, we provide related work.

2.1 Three problems of an old expression
Problem I. To see the first problem, consider a Java class
PatientSet of Figure 1(a). An instance of class PatientSet

stores patient information in its array, patients. To add new
patient information, PatientSet has a method add, and its
specification is provided above the method. The specifica-
tion says in a nutshell: (i) if array patients already contains a
Patient instance equivalent to the one given through param-
eter p, then after exiting add, the patients array should only
contain all the Patient information that existed before the
add method is called, and (ii) otherwise, not only that but
also the new patient information should be added to patients.
The first problem of an old expression is that it tends to

cause a specification to be lengthy. Notice the long ensures

clauses of method add. To compare i-th patient informa-
tion, patients[i], to its pre-state value, each of the final fields
reachable from patients[i] is compared to its corresponding
pre-state value obtained using an old expression. These long
ensures clauses are in contrast to the short requires clauses of

the same method that use method contains for the contain-
ment check.

While it is tempting to use method containsAll in the ensures

clauses, using containsAll(\old(this)) will result in a mislead-
ing specification due to the semantics of an old expression
that can be described informally as follows. Given an old

expression, old(x), the value of x is stored in a fresh vari-
able y before executing a method. When old(x) appears in
a post-condition, say through old(x).f, old(x) is replaced by y

resulting in y.f. It is important to notice that the resulting
y.f is executed at the post-state because this expression is
inside a post-condition. Thus, going back to the aforemen-
tioned tempting solution, i.e., containsAll(\old(this)), even if
some fields of a Patient instance accessible through this are
modified by method add, the call to containsAll returns, to
the surprise of those who are not familiar with contract lan-
guages, true. In general, it is risky to pass to a method a
reference value returned from an old expression unless the
object pointed to by that reference is immutable as is the
case of Java’s String.

The described problem reflects the lack of encapsulation of
an old expression; \old(this) does not represent the PatientSet

object that existed at the time when method add is entered;
it only represents the reference to that object. This is the

Figure 2: A possible pair of pre/post-states of the add

method of class PatientSet

high-level reason why expressions like containsAll(\old(this))
cannot be used in the way one would wish. As a result, one
has to end up writing a long specification such as the one in
Figure 1(a) where all the fields are revealed. It is unfortunate
that the built-in encapsulation capability of the underlying
OOP language is lost when using an old expression.

Problem II. The second problem of an old expression is
even more serious in terms of expressibility. To see it, con-
sider the two styles of generalized class Set shown in the
bottom part of Figure 1. Notice how different add meth-
ods are from before. The first one takes as its parameter
a generic-type value, and the second one an interface-type
value. For these kinds of modern programs, the previous
verbose approach is not even applicable because the data
structure of the passed parameter cannot be known a priori.

One possible workaround is to confine the type of a set
element to a specific one. For example, method add of Fig-
ure 1(c) can be specified as follows assuming the Patient type
for set elements. In the below, \typeof(p) returns the runtime
type of p.

//@ requires \typeof(p) <: Patient && contains(p);
//@ ensures size==\old(size) && (\forall int i; 0 <= i && i < size;
//@ (\exists int j; 0 <= j && j < size;
//@ ((Patient) arr[i]).name.equals(\old(((Patient) arr[j]).name))
//@ && ((Patient) arr[i]).height==\old(arr[j].height)
//@ /* rest of them omitted */
public void add(T p) { /* omitted */ }

The above approach, however, not only makes the speci-
fication even lengthier (because similar specification should
be given to each potential type of set elements), but it also
does not match the nature of generic programs. Similarly,
programs using interfaces (e.g., Figure 1(d)) suffer from the
same problem. Overall, conventional old expressions are
not expressive enough to handle modern programming lan-
guages.

Problem III. Lastly, we also point out that the old expres-
sion’s copy-based semantics is not memory efficient. Each
instance of an old expression takes up an additional vari-
able. Note that one old expression can cause many instances
of it if it appears in a quantified expression. Figure 1(a)’s
old-expression-based specification in effect deep-clones the
patients array. Such semantics of old expressions causes ex-
ponential increase in memory usage as the size of PatientSet

increases as will be shown in § 5.2.

public class PatientSet {
private Patient[] patients; private int size;
//@ invariant (\exists int i; 0 <= i && i < size; patients[i] != null);

//@ requires contains(p);
//@ ensures size == \past(size) && containsAll(\past(this));
//@ also
//@ requires !contains(p);
//@ ensures size==\past(size)+1 && contains(p) && containsAll(\past(this));
public void add(Patient p) { /* omitted */ }

public /*@ pure @*/ boolean contains(Patient p) { /* omitted */ }
public /*@ pure @*/ boolean containsAll(PatientSet set) { /* omitted */ }
}

Figure 3: A PatientSet stub specified with past expressions

2.2 Our solution with a past expression
The root cause of the identified problems is that only

a single object of the pre-state is accessible from one old

expression instance. In order to use an expression like pa-

tient.equals(old(patient))with proper meaning, an object graph
of the pre-state rooted from patient should be available to
equals. To achieve this, we suggest in this paper an al-
ternative to an existing old expression, i.e., a past expres-
sion. The central goal of our past expression is to provide
a user means to make an access to not only a single ob-
ject but also an object graph so that an expression such
as patient.equals(past(patient)) can be used with proper mean-
ing. In more general terms, we want to make encapsulated
accesses to pre-state objects; one clear benefit of it is the
ability to apply a non-destructive (i.e., pure [13]) method 1

to pre-state objects at post-conditions.
Before providing the formal semantics of a past expres-

sion in the next section, let us first explain the overall idea
of a past expression with Figure 2. The two panes of the
figure show one possible pair of pre-state and post-state of
method add shown earlier. The left pane shows that before
entering add, the current instance of PatientSet points to lo-
cation L1; its patients field points to an array-type location
L2; its first two array elements are location L3 of type Patient

and null, respectively; lastly, L3 points to L4 through field
birthDate. Similarly, the right pane shows the post-state of
method add. Most of the locations of the pre-state remain
the same as depicted through a set of two parallel dashed
lines. For expositional purposes, however, we assume that
patients[0].birthDate is modified to a fresh location L5.

Notice in the figure that \old(patients[0]).birthDate refers
to L5 while \past(patients[0]).birthDate refers to L4. Below,
we explain the reason for that difference. Since the loca-
tion of patients[0] is not modified over the method execution,
\old(patients[0]) returns the value of patients[0], i.e., L3. The
same is true for \past(patients[0]). Meanwhile, \old(patients[0]).
birthDate accesses field birthDate at the post-state as explained
earlier, and returns the modified field value L5. In contrast,
\past(patients[0]).birthDate accesses the same field at the pre-
state, and returns the pre-state value L4. This is because
\past(patients[0]) represents not only the pre-state value of
patients[0] but also the object graph rooted from patients[0].

Being equipped with a past expression, it becomes easier to
compare values of the post-state with their pre-state coun-
terparts. Compare the specification shown in Figure 3 to the
original specification using old expressions; the new specifica-

1I.e., a method that always terminates and whose execution
does not change the program state of its caller.

tion is shorter and more comprehensible; the previously used
long quantified expression is now replaced with a simpler and
more understandable expression, containsAll(\past(this)).
The same benefit of a past expression also goes to generic

programs and interface-oriented programs. For example, the
add methods of Figure 1(c) and Figure 1(d) can be specified
identically to Figure 3. Without having to reveal the details
of the Set class which may be unknown a priori, a specifi-
cation can be written only with method calls and abstract
data including those provided by past expressions.

Our past expressions can be supported in a memory effi-
cient way. However, before moving into tool issues, let us
first finish the issue of expressibility by comparing our past

expression to old expressions of traditional formal specifica-
tion languages.

2.3 Traditional formal specification languages
Contract languages such as Eiffel and JML were greatly

influenced by more traditional formal specification languages
such as Z [19] and VDM [9]. A number of specification ex-
pressions of contract languages, including an old expression,
were originated from those formal specification languages.

For example, Figure 4 shows a PatientSet expressed in
VDM notations. Special attention needs to be paid to the
post clause where two implies clauses are listed; those two
clauses correspond to the two pre/post-condition pairs of the
previous PatientSet examples.2 Notations size˜ and patients˜

refer to the pre-state values of size and patients, respectively.
Notice that the patients variable is defined as a mathematical
sequence (i.e., patients: seq of Patient). Thus, patients˜ means
the sequence of patients that existed at the pre-state, not
the memory address that pointed to that sequence at the
pre-state. Thus, patients˜(n) refers to the n-th element of the
pre-state patients sequence. In the same regard, patients =

patients˜ means the mathematical equality of two sequences,
patients and patients˜. Similarly, patients = patients˜ˆ[p] means
the equality of the patients sequence and the pre-state patients

sequence extended with a Patient p at its tail.
As can be seen in this example, traditional formal speci-

fication languages in general do not suffer from the lack of
encapsulation seen in modern contract languages. This dif-
ference between the old expressions of modern contract lan-
guages and traditional formal specification languages stems
from the the fact that the latter treats mathematical data
types such as a sequence atomically as encapsulated data
types. Meanwhile, programming languages like Java provide
such mathematical data types in a form of classes. While
those classes themselves can be nicely encapsulated, the ac-
cesses to their pre-state instances through old expressions
are not encapsulated. Our past expression fills this missing
gap. But of course, there is no reason to restrict the use of
a past expression to only the classes for mathematical data
types. Our past expression can be used with instances of any
classes.

2.4 Tool support
Contract languages are usually shipped with tools to check

specifications that are performed through either static check-
ing or runtime assertion checking (RAC). According to the
Chalin’s survey of over 200 programmers in industry [6],
97% of respondents use specifications for RAC. Meanwhile,
only 20% of respondents use specifications for static check-

2VDM does not allow multiple pre/post-condition pairs.

class PatientSet
types
Date:: year: nat1 month: nat1 day: nat1;
Patient:: name: seq of char height: real weight: real birthDate: Date

instance variables
private patients: seq of Patient; private size: nat

operations
add : Patient ==> ()
add(p) == /* body omitted */
post (exists n : nat1 & n <= size~ and patients~(n) = p)

=> (size = size~ and patients = patients~)
and
(not (exists n : nat1 & n <= size~ and patients~(n) = p))
=> (size = size~ + 1 and patients = patients~ ^ [p])

end PatientSet

Figure 4: PatientSet in VDM notations

ing. Thus, it seems logical to conclude from that survey
result that support for RAC is practically more urgent than
support for static checking. In this paper, we show how past

expressions can be supported for RAC of Java programs.
Our approaches should be applicable to other similar lan-
guages.

In fact, it is quite challenging to support past expressions
for RAC. This is because the language’s standard execu-
tion semantics should be respected during RAC unless a
custom execution environment is available. RAC is usually
performed by instrumenting the original source code with
assertion code and then running that instrumented code on
a standard execution environment such as the HotSpot JVM
(Java Virtual Machine) in the case of Java.

The first problem encountered when supporting RAC of
Java programs is that a standard JVM does not use two
separate heaps while one of the key elements of the formal
semantics of a past expression is to maintain and manipu-
late two separate heaps independent of each other. A naive
workaround would be to use cloning. However, not only is
cloning resource-consuming but also its naive uses cause a
serious semantic flaw. The reference to a cloned object is
always different from the reference to the original object.
Thus, if cloning was used, expressions such as \past(x) ==

x would wrongly return false even if x points to the same
object before and after a method execution. Although such
a flaw can be avoided by relating cloned objects with their
original objects at the expense of more memory, problems
still remain because not every Java class is cloneable.

There is a more challenging obstacle caused by Java’s call-
by-value semantics. When using an expression like x.equals

(\past(x)), we need to inform the body of equals that its pa-
rameter is passed as a past expression. This is because, de-
pending on whether the parameter of equals is past-ed at a
call site, a field of that parameter should be accessed either
in the pre-state or the post-state. Java’s call-by-value se-
mantics, however, makes it difficult to distinguish whether
or not a parameter value is returned from a past expression.

In the latter part of this paper, we show how the above
obstacles in supporting RAC can be tackled. We will also
show how our solution is implemented through AOP.

3 FORMAL SEMANTICS
In this section, we provide formal semantics of our past

expression. For efficiency of discussion, we define formal
semantics on a minimal language. A past expression can be
added to any contract languages that can accommodate our
minimal language.

3.1 Programming language
We use a typical imperative procedural language shown

in Figure 5(a) that can manipulate integers, booleans, and
records. To manipulate records, our language has field-
access expressions E.f and field-update commands E.f := E.
We omit arrays because they can be dealt with similarly to
records by treating array indices as if they are record fields.
A past expression, like an old expression, can be used

only in a post-condition. In our minimal language, a post-
condition appears as an assert command at the end of a pro-
cedure. We assume that every procedure ends with a single
assert command. We do not consider a pre-condition because
a past expression cannot be used there.
An assert command takes as its argument a boolean ex-

pression Eb such as E==E and E>E. Note that E>E can
be used only with integer-type expressions. Record-type ex-
pressions can be compared only with ==. Although our
minimal language does not allow a call to a boolean func-
tion such as equals, extension towards it is straightforward.
Only the boolean expressions used in an assert command

can have past expressions \past(E) as their sub-expressions.
The commands of a procedure preceding its only assert com-
mand cannot use a past expression.
A past expression cannot be nested inside another past

expression. For example, we disallow \past(\past(x)) and
\past(\past(x).f). This coincides with the fact that the con-
ventional specification does not consider the pre-state of a
pre-state at a post-condition.
For simplicity, procedures of our minimal language do not

take a parameter. We assume that every variable of a pro-
gram is declared global. We also assume that every variable
is initialized to a certain value. An extension to a more so-
phisticated language supporting multiple scopes is straight-
forward.

3.2 Semantic rules
Figure 6 shows the operational semantic rules for the criti-

cal expressions in a big-step style. As mentioned, we restrict
past expressions to be used only in the single assert command
located at the end of a procedure. Such restriction is de-
noted with the assertion-context notation “assert �” in the
rules. Semantic reductions described behind this notation
should occur in an assertion context, i.e., inside an assert

command. We only describe the semantics under an asser-
tion context while assuming the standard semantics under a
non-assertion context.
An assertion context is introduced when a boolean ex-

pression of an assert command starts to be evaluated. And
it exits when that boolean expression is finished to be evalu-
ated. Figure 6(a) shows the rules that introduce an assertion
context. Note that a past expression, \past(E), is as a whole
considered a base expression in an assertion context. There-
fore, when encountered with assert \past(x) > 0, an assertion
context should be introduced by \past(x), not by x .3

In an assertion context, an expression is evaluated in an
extended state (σ1, h1, σ2, h2). Its first two components, a
store σ1 and a heap h1, constitute the pre-state, and sim-
ilarly, σ2 and h2 the post-state. Such meanings of those
symbols are assigned through 〈C, (σ1, h1)〉 ⇓c (σ2, h2) in the
premises of the rules. This command-reduction relation ⇓c

3Although the rules allow to enter an assertion context
through x , there is no rule to interpret the remaining \past
afterwards.

z ∈ Z x ∈ Variable f ∈ Field E ∈ Expression

C ∈ Command P ∈ Procedure D ∈ Declaration

T ∈ Type Prg ∈ Program

E ::= \past(E) | z | nil | x | E.f | Eb

Eb ::= true | false | E==E | E>E | !Eb | Eb && Eb | Eb || Eb

C ::= x :=E | E.f :=E | new(x : T) | C;C | if Eb then C else C

| while Eb do C | call P
P ::= begin C; assert Eb end

Prg ::= begin D in C end

(a) Our minimal programming language

v ∈ Value
def
= Z ∪ B ∪ Loc ∪ {nil} Z

def
= {. . . ,−1, 0, 1, . . .}

B
def
= {true, false} σ ∈ Store

def
= Variable → Value

h ∈ Heap
def
= Loc → (Field → Value)

(b) Semantic domains

Figure 5: Programming language and its semantic domains

between configuration 〈C, (σ1, h1)〉 and state (σ2, h2) captures
the fact that the program state changes from (σ1, h1) to
(σ2, h2) by executing command C. Since C represents the
whole command preceding the sole assertion at the end of
a procedure, (σ1, h1) and (σ2, h2) are interpreted as the pre-
state and the post-state of a procedure, respectively.

Our past expressions, \past(E), are evaluated using the two
rules in the upper row of Figure 6(a). Its sub-expression E

should be evaluated with the pre-state, (σ1, h1), for an obvi-
ous reason. Thus, those rules have in common an expression-
reduction relation, 〈E, (σ1, h1)〉 ⇓e v , in their premises.

The uniqueness of a past expression is revealed in the con-
sequent part of the left-hand-side rule of the upper row;
\past(E) reduces to not a value v but a pair (v , h1). As will
be described in detail shortly, the second component h1 in-
dicates the heap in which fields of the record represented by
v are accessed. Since h1 is the heap of the pre-state, field
accesses such as \past(E).f will be made in the pre-state as
desired. On the contrary, when reducing non-past base ex-
pressions x , the value of x is paired with h2, i.e., the heap of
the post-state. Such semantics is described in the left-hand-
side rule of the lower row of Figure 6(a).

However, not every base expression should be reduced to a
pair. If a base-expression value v represents not a record but
an integer or a boolean value, there is no need to pair that
value v with a heap because no further field access from v is
possible. Such a semantic difference is captured in the two
right-hand-side rules of Figure 6(a). In case where v is nil,
we still pair v with a heap despite that a further field access
from nil is impossible too. As will be shown shortly, this
slight compromise reduces the number of necessary semantic
rules for equality expressions.

As mentioned, such paired heaps are looked up when a
field is accessed subsequently. The two upper-row rules of
Figure 6(b) show such a usage of a paired heap. Given an
expression E.f , the owner expression E is first reduced to
a pair (v , h). The subsequent access to the field f is made

When P ::= begin C; assert Eb end,

〈C, (σ1, h1)〉⇓c (σ2, h2) 〈E, (σ1, h1)〉⇓e v v ∈ Loc ∪ {nil}
assert � 〈\past(E), (σ1, h1, σ2, h2)〉 ⇓e (v , h1)

〈C, (σ1, h1)〉⇓c (σ2, h2) 〈E, (σ1, h1)〉⇓e v v ∈ Z ∪ B

assert � 〈\past(E), (σ1, h1, σ2, h2)〉 ⇓e v

〈C, (σ1, h1)〉⇓c (σ2, h2) 〈x , (σ2, h2)〉⇓e v v ∈ Loc ∪ {nil}
assert � 〈x , (σ1, h1, σ2, h2)〉 ⇓e (v , h2)

〈C, (σ1, h1)〉 ⇓c (σ2, h2) 〈x , (σ2, h2)〉 ⇓e v v ∈ Z ∪ B

assert � 〈x , (σ1, h1, σ2, h2)〉 ⇓e v

(a) Semantic rules for base expressions (i.e., \past(E) and x) under an assertion context

When S = (σ1, h1, σ2, h2),

assert � 〈E,S〉⇓e (v , h) h(v)(f)=v ′ v ′ ∈ Loc ∪ {nil}
assert � 〈E.f ,S〉 ⇓e (v ′, h)

assert � 〈E,S〉⇓e (v , h) h(v)(f)=v ′ v ′ ∈ Z ∪ B

assert � 〈E.f ,S〉 ⇓e v ′

assert � 〈E1,S〉⇓e (v , h) assert � 〈E2,S〉⇓e (v , h
′)

assert � 〈E1==E2,S〉 ⇓e true

assert � 〈E1,S〉⇓e (v1 , h) assert � 〈E2,S〉⇓e (v2 , h
′) v1 	= v2

assert � 〈E1==E2,S〉 ⇓e false

(b) Semantic rules for field access expressions and equality expressions under an assertion context

When P ::= begin C; assert Eb end,

〈C, (σ1, h1)〉⇓c (σ2, h2) 〈E, (σ1, h1)〉⇓e v v ∈ Loc ∪ {nil}
assert � 〈\old(E), (σ1, h1, σ2, h2)〉 ⇓e (v , h2)

〈C, (σ1, h1)〉⇓c (σ2, h2) 〈E, (σ1, h1)〉⇓e v v ∈ Z ∪ B

assert � 〈\old(E), (σ1, h1, σ2, h2)〉 ⇓e v

(c) Semantic rules for \old expressions under an assertion context (shown for comparison with \past expressions)

Figure 6: Semantic rules for past and other critical expressions under an assertion context

using this pair. That is, the value of the field f is obtained
by h(v)(f). Recall that the previous rules of Figure 6(a) pass
the pre-state heap when evaluating a past expression, and the
post-state heap when evaluating a non-past expression. By
the combination of the rules in Figure 6(a) and Figure 6(b),
only a field access followed by a past expression is looked up
in the pre-state as desired.

Once the value of E.f is obtained using a passed heap h,
the rules for E.f continuously pass the same heap h by pair-
ing it with the obtained field value. This way, subsequent
field accesses can be made in the same heap. Of course, there
is no need to continue to pass the heap when the obtained
field value is an integer or a boolean.

Although our semantic rules reduce a field access expres-
sion E.f to a pair (v , h), only v should be considered a value.
Thus, when comparing (v , h) with (v ′, h ′), the actual com-
parison is made only between v and v ′ while ignoring h and
h ′. Such semantics of comparison is described in the two
lower-row rules of Figure 6(b). Recall that we earlier chose
to pair nil with a heap. Thank to that choice, we do not
need additional rules to handle the comparison involving nil.

Our semantic rules are sound in the sense of the following.
The proof is trivial and omitted.

Theorem 1. Given a procedure “ begin C; assert Eb end”
and a legitimate reduction relation 〈C, (σ1, h1)〉 ⇓c (σ2, h2),
let us define an extended state S as (σ1, h1, σ2, h2). Then the
following holds true: If assert � 〈Eb,S〉 ⇓e true, then it holds
that S |= Eb, which means that Eb is true at extended state
S . Also conversely, if assert � 〈Eb,S〉 ⇓e false, then S |= ¬Eb.

Comparison to old expressions. While the conven-
tional old expression, \old(E), is not part of our language,
we describe in Figure 6(c) its semantics for the compari-
son with our past expression. While the sub-expression E is
evaluated in the pre-state as in a past expression, its reduc-
tion result is paired with h2, i.e., the heap of the post-state,
unlike in a past expression, if E represents a record.

4 SUPPORT FOR RAC
As been alluded to earlier, the semantic rules of Figure 6

cannot be naturally extended for runtime assertion check-
ing (RAC) for Java programs. The problems are twofold.
First, the conventional Java virtual machine does not pro-
vide pre-states. Second, Java’s call-by-value semantics does
not pass heap information used extensively in the seman-
tic rules. That is, only v instead of (v , h) is passed around.
Recall that the second component, h, indicates the heap to
consult when accessing the fields of v . We address each
of the problems by the techniques we call difference heap
and proxy, respectively. We describe our solutions with the
same minimal language we used before, and refine the orig-
inal semantics to the one in Figure 9. It is straightforward
to extend the given solutions to Java language as empiri-
cally evidenced by our prototype. We describe Java-specific
issues we found interesting in the last part of this section.

4.1 Difference heap
Given a procedure, “begin C; assert Eb end”, only a small

portion of the program state is likely to be modified while
executing C. Recall that we consider the state before and

after executing C as the pre-state and the post-state of a
given procedure, respectively. If those differences between
the pre-state and the post-state are known, the pre-state
can be retrieved from the post-state and can be used to
evaluate past expressions. While a conventional execution
environment does not make pre-states readily available, it is
relatively easy to maintain difference heaps at run time by
instrumenting the original code.

To maintain such state differences, we use a difference
heap for each procedure call. As its name indicates, a differ-
ence heap maintains differences occurring to the heap. Note
that there is no need to do the same for the store σ because
for an arbitrary variable, its pre-state value can be stored in
an extra fresh variable without too much cost. Meanwhile,
it is impractical to use the same technique for the heap given
the complexity and the size of the heap.

Whenever a procedure is called, a fresh empty difference
heap is associated with that procedure call. Being equipped
with difference heaps, we reformulate a program state to
a tuple of a store σ, a heap h, and a stack of difference
heaps δ. The top of the difference-heap stack is the differ-
ence heap of the current procedure. In the semantic rules,
we denote a state with triple (σ, h, δ) for store σ, heap h,
and the difference heap δ of the current procedure. Unlike
before, we do not distinguish an assertion context, and use
this triple throughout the all semantic rules. Recall that in
our first formal semantics, we use a state (σ1, h1) under a
non-assertion context, and an extended state (σ1, h1, σ2, h2)

under an assertion context.

We mentioned that a fresh empty difference heap is asso-
ciated with each procedure call. An empty difference heap
satisfies the following property: for every location l ∈ Loc

and field f ∈ Field, δ(l)(f) = ⊥. The difference heap may
be updated during the execution of C given a procedure,
“begin C; assert Eb end”. More specifically, whenever a field f

of a location l that was already in use in the pre-state is
modified for the first time during the execution of C, the
original field value is stored in the difference heap of the
procedure.

In our minimal language, such a field update can be made
only through field update commands, E1.f := E2. The cor-
responding semantic rules are shown in Figure 7(a). Note
that in the above semantic rules, 〈E, (σ, h, δ)〉 reduces to its
value v regardless of difference heap δ because a past expres-
sion cannot appear in E. Notice in the first rule that the
regular heap h and the difference heap δ are updated differ-
ently. Given an owner location v1 and a field f , h(v1)(f) is
updated to an assigning value v2; i.e., h[(v1, f) �→ v2]. Mean-
while, δ(v1)(f) is updated to the original value of the field,
vf ; i.e., δ[(v1, f) �→ vf].

Such an update of the difference heap can take place only
if the three conditions listed in the second line of the first
rule hold. These three conditions are that (i) the owner lo-
cation v1 of the field f is already in use in the pre-state – in
other words, v1 is not freshly allocated during the current
procedure, i.e., v1 /∈ Fresh where Fresh represents a set of
locations allocated during the current procedure, (ii) the as-
signing field value v2 is different from the original field value
vf , and (iii) the field f of v1 has not been updated before
at this instance of procedure call. Such a first-time-update
condition can be checked by looking at the value of δ(v1)(f)
before updating the difference heap. Only if δ(v1)(f) remains
undefined (i.e., δ(v1)(f) = ⊥), the field update is consid-

〈E1, (σ, h, δ)〉⇓ev1 〈E2, (σ, h, δ)〉⇓ev2 〈E1.f , (σ, h, δ)〉⇓evf
(v1 /∈ Fresh) ∧ (v2 	=vf) ∧ (δ(v1)(f)=⊥)

〈E1.f :=E2, (σ, h, δ)〉 ⇓c 〈σ, h[(v1, f) �→ v2], δ[(v1, f) �→ vf]〉

〈E1, (σ, h, δ)〉⇓ev1 〈E2, (σ, h, δ)〉⇓ev2 〈E1.f , (σ, h, δ)〉⇓evf
(v1 ∈ Fresh) ∨ (v2=vf) ∨ (δ(v1)(f) 	=⊥)

〈E1.f :=E2, (σ, h, δ)〉 ⇓c 〈σ, h[(v1, f) �→ v2], δ〉

(a) A semantic rule for field update commands; Fresh represents
a set of locations allocated during the current procedure.

For every location l ∈ Loc, and every field f ∈ Field,

(h � δ)(l)(f) =

{
δ(l)(f) if δ(l)(f) 	= ⊥
h(l)(f) if δ(l)(f) = ⊥

(b) Override operator �; essentially, the difference heap δ over-
rides the regular heap h when possible.

Figure 7: Update and use of a difference heap δ

ered the first-time update. The third condition is necessary
because we are interested only in the pre-state value, and
mid-state values are unnecessary for our purposes. If one of
those three conditions is not met, the difference heap δ is
not modified as shown in the second rule of Figure 7(a).

When a procedure is about to exit, items in the differ-
ence heap of the exiting procedure are transferred into the
difference heap of the caller. When this happens, it is un-
necessary to move all items; we move only the items (l , f , v)4

whose location elements l are in use in the pre-state of the
caller and δ(l)(f) is not ⊥. Recall that the first condition
can be checked by looking up l in the Fresh set of the caller.
In addition to migrating difference heaps, we also move all
locations contained in the Fresh set of the exiting procedure
into the Fresh set of the caller to ignore subsequent updates
made on the fields of those locations during the remaining
execution of the caller.

The semantic rules of Figure 7(a) guarantee the following
property. The proof is trivial and omitted.

Property 1. Given a procedure, “ begin C; assert Eb end”,
suppose that for an arbitrary location l and field f , it holds
that h1(l)(f) = v before executing C for the then heap h1.
Then, the following holds true after executing C. In the be-
low, δ and h2 represent, respectively, the difference heap and
the regular heap existing after executing C.

h1(l)(f) = v ⇒ (δ(l)(f) = v ∨ (δ(l)(f) = ⊥ ∧ h2(l)(f) = v))

Now it is possible to retrieve pre-state values from the dif-
ference heap and the post-state heap. The difference heap
can be used to retrieve the pre-state values when those val-
ues are overwritten while executing a procedure. If the dif-
ference heap returns ⊥ for a location l and a field f , that
means that that value was not overwritten with a different
value while executing the procedure. Thus, the post-state
heap can be used to retrieve the original value. Formally,
we define an override operator � as in Figure 7(b), and use
it in the new semantic rules that will be shown shortly.

4Recall that Heap
def
= Loc → (Field → Value).

4.2 Proxy record
While pre-state values can be retrieved using the differ-

ence heap, the difference heap alone is not enough to support
past expressions at run time. It is in addition necessary to
be able to decide when a pre-state value should be retrieved.
For example, given a field access expression E.f , it is nec-
essary to be able to distinguish the case where E is \past(x)
from the case where E is x.
To make such a distinction, we in our first formal seman-

tics paired a value with a heap that should be used subse-
quently. However, call-by-value semantics used in languages
like Java generally cannot accommodate such pairing unless
the language itself is modified to allow such pairs of a loca-
tion and a heap as part of program values. For this reason,
the previous pairing-based semantics is not suitable for run-
time assertion checking that uses the execution environment
of a language as it is.
To see the problem caused by call-by-value semantics, con-

sider x.equals(\past(x)). Following the call-by-value seman-
tics, \past(x) is first evaluated before method equals receives
that evaluated value as its parameter. Thus, from the per-
spective of equals, it cannot distinguish whether its parame-
ter was evaluated from a past expression or a non-past expres-
sion. This causes a problem when accessing a field through
that parameter. There is no clue about in which heap a field
should be accessed.
To address the above problem, we use a proxy record (a

proxy in the sequel), i.e., a proxy for a non-scalar pre-state
value such as a pre-state location. As the name indicates,
every non-scalar pre-state value is accessed through a proxy.
In the above example of x.equals(\past(x)), equals receives as
its parameter a proxy for the pre-state value of x. Thus,
when encountered with E.f , we can decide the heap in which
the field should be accessed depending on whether or not
the evaluation result of an owner expression E is a proxy.
Only if an owner expression returns a proxy, we look up
a subsequent field in the pre-state heap restored using the
difference heap and the post-state heap.
Let us take a concrete example. Figure 8 shows a post-

state (σ, h, δ) for a store σ, a heap h, and a difference heap δ

of the current method. This post-state satisfies the following
three conditions: σ(x old) = l2, h(l2)(f) = l4, and δ(l2)(f) = l3.
A special variable x old has location l2 as its value equivalent
to the pre-state value of the original program variable x.
A field f of l2 points to location l4 at the given post-state
(i.e., h(l2)(f) = l4). However, at the pre-state, the same field
pointed to another location l3 as shown with the difference
heap δ (i.e., δ(l2)(f) = l3). To distinguish those two distinct

field accesses between h and δ, notations l2
f−→h l4 and l2

f−→δ l3
are used in the figure.
Notice in the figure that \past(x) does not directly refer to

x’s pre-state value l2. Instead, it refers to l1, the proxy for l2.
Every proxy record has a special field, actual, through which
the “actual” value of a proxy can be accessed.
Now that \past(x) returns a proxy, we can choose the pre-

state heap when accessing a subsequent field. To get the
value of \past(x).f, the actual value of \past(x) is first re-
trieved and then the difference heap is consulted to obtain
the pre-state field value l3. However, l3 is not directly re-
turned. Its proxy l5 is created at runtime while being linked
to l3 through the actual field, and returned. This way, sub-
sequent field accesses occurring after \past(x).f can still be
looked up in the pre-state heap.

Figure 8: A post-state where the locations for proxy records
are in dashed boxes; at this post state, it holds that
σ(x old) = l2, h(l2)(f) = l4, and δ(l2)(f) = l3.

Non past-expressions are evaluated ordinarily without us-
ing a proxy. For example, consider the case where it holds
that σ(x) = l2 in the above figure. The evaluation result of
x is directly l2. Similarly, the evaluation result of x.f is l4.

Note that using proxies barely increases memory usage in
general. Although multiple proxies can be generated while
evaluating expressions such as \past(x).f1.f2.f3, most of them
soon become garbages. Also, the fact that proxies are gen-
erated on-demand basis has a positive impact on memory
maintenance.

4.3 Refined semantics
Now that we explained a difference heap and a proxy

record, we can show in Figure 9 the refined semantics of
the original one. Unlike in the original semantics, we do
not distinguish an assertion context. Notice that notation
assert � is not used in the refined semantics. This is because
we uniformly use the same state configuration (σ, h, δ) across
a whole program.

As shown in the left-hand-side rule of Figure 9(a), \past(E)

now reduces to a fresh proxy vp for the pre-state value v of
E if v is non-scalar, i.e., v ∈ Loc ∪ {nil}. We use a predicate
notation“vp : Proxy”to denote that vp is a proxy. Notice that
after applying the rule, the current heap h2 is updated to
reflect that vp’s actual field points to a pre-state value v . The
store and the difference heap are not modified. Meanwhile,
if the pre-state value of E is a scalar value v (i.e., v ∈ Z∪B),
then v is directly returned as the right-hand-side rule shows.

Figure 9(b) shows how to evaluate a field access expres-
sion E.f when its owner expression E reduces to a proxy. As
informally explained earlier, in such cases, the actual value
va of the proxy vp is first retrieved from the current heap h ′.
See h ′(vp)(actual) = va. Then, the field value vf is obtained
from the restored pre-state heap. See (h ′ � δ)(va)(f) = vf . If
vf is non-scalar, a fresh proxy v ′

p that points to vf through
the actual field is returned (the left-hand-side rule). Other-
wise, vf is directly returned (the right-hand-side rule). We
omit to show the rules for the rest of the cases where an
owner expression reduces to a non-proxy value. They are
handled in a standard way.

Lastly, Figure 9(c) shows some of the rules for equality ex-
pressions E1==E2 while the rest of the cases can be handled
similarly. As usual, we assume that E1 is evaluated first be-
fore E2. The rules show that if a sub-expression reduces to a
proxy, then its actual value should be used for comparison.

The semantics presented in this section is a refinement of
the original semantics of § 3 in the following sense. The
proofs for them are not difficult and omitted for the lack of
space.

When P ::= begin C; assert Eb end,

〈C, (σ1, h1, δ1)〉 ⇓c (σ2, h2, δ2) 〈E, (σ1, h1, δ1)〉 ⇓e v
v ∈ Loc ∪ {nil} vp : Proxy vp 	∈ dom h2

〈\past(E), (σ2, h2, δ2)〉 ⇓e 〈vp, (σ2, h2[(vp, actual) �→ v], δ2)〉

〈C, (σ1, h1, δ1)〉⇓c (σ2, h2, δ2) 〈E, (σ1, h1, δ1)〉 ⇓e v
v ∈ Z ∪ B

〈\past(E), (σ2, h2, δ2)〉⇓e 〈v , (σ2, h2, δ2)〉

(a) Semantic rules for \past(E)

〈E, (σ, h, δ)〉 ⇓e 〈vp, (σ, h ′, δ)〉 vp : Proxy
h ′(vp)(actual) = va (h ′ � δ)(va)(f) = vf

vf ∈ Loc ∪ {nil} v ′
p : Proxy v ′

p 	∈ dom h ′

〈E.f , (σ, h, δ)〉 ⇓e 〈v ′
p, (σ, h

′[(v ′
p, actual) �→ vf], δ)〉

〈E, (σ, h, δ)〉 ⇓e 〈vp, (σ, h ′, δ)〉 vp : Proxy
h ′(vp)(actual) = va (h ′� δ)(va)(f) = vf vf ∈ Z ∪ B

〈E.f , (σ, h, δ)〉 ⇓e 〈vf , (σ, h ′, δ)〉

(b) Semantic rules for field access expressions (partial)

〈E1, (σ, h, δ)〉 ⇓e 〈vp, (σ, h ′, δ)〉 vp : Proxy h ′(vp)(actual) = va
〈E2, (σ, h

′, δ)〉 ⇓e 〈v ′
p, (σ, h

′′, δ)〉 v ′
p : Proxy h ′′(v ′

p)(actual) = va

〈E1 == E2, (σ, h, δ)〉⇓e true

〈E1, (σ, h, δ)〉 ⇓e 〈v , (σ, h, δ)〉 ¬(v : Proxy)
〈E2, (σ, h, δ)〉 ⇓e 〈vp, (σ, h ′, δ)〉
vp : Proxy h ′(vp)(actual) = v

〈E1 == E2, (σ, h, δ)〉⇓e true

(c) Semantic rules for equality expressions (partial)

Figure 9: Refined semantic rules friendly to runtime assertion checking (RAC)

Theorem 2. Given a procedure “ begin C; assert Eb end”,
if one can obtain 〈C, (σ1, h1, δ1)〉 ⇓c (σ2, h2, δ2) using the re-
fined semantics, then 〈C, (σ1, h1)〉 ⇓c (σ2, h2) can be obtained
in the original semantics. And also subsequently, if one can
obtain 〈Eb, (σ2, h2, δ2)〉 ⇓e true using the refined semantics,
then assert � 〈Eb, (σ1, h1, σ2, h2)〉 ⇓e true can be obtained in
the original semantics. A similar implication also holds for
the false case.

4.4 Java-specific issues
Arrays. While our minimal language does not have ar-
rays, our prototype tool supports arrays. We treat arrays
similarly to records. For example, \past(a[0]) returns a proxy
for the pre-state value of a[0]. Similarly, \past(a) refers to a
proxy array for a pre-state array a. The length of such a
proxy array is set to zero to minimize memory usage. When
the length of a pre-state array is queried through a proxy
array, the actual array of the given proxy array is first re-
trieved and its length is returned.
However, a proxy array cannot have an actual field unlike

a proxy record. To address this issue, we maintain a global
map that associates proxy arrays with their actual arrays.

Equality with this. Semantic rules for equality expres-
sions shown in Figure 9(c) enforce equality between values
regardless of whether they belong to the pre- or the post-
state. Thus, an expression such as \past(o) == o for a refer-
ence variable o returns true if o points to the same object in
the pre and the post-state. Such equality across the time is
usually desirable because comparison methods such as equals
often compare between two references of some fields.
However, there is an important exception to consider. A

number of Java classes have equals methods that in common
start with the following if-statement for an efficiency reason:

public boolean equals(Object o) {if (this == o) return true;

Thus, an expression such as o.equals(\past(o)) would return
true even if some fields of o are modified during method exe-
cution and the equals method of o is defined to compare those
modified fields between the receiver and the parameter.

A solution for this problem is debatable. Currently, our
prototype, when faced with expressions such as this == o or
o == this, returns false if o represents a pre-state value. If
this and o point to the same object, a warning is issued. Dis-
equality expressions are handled similarly; true is returned
from this != o if o represents a pre-state value, and a warning
is issued if this and o point to the same object.

Type of proxies. Consider x.equals(\past(x)) again. Typi-
cal equals method returns false if its parameter is not a sub-
type of the enclosing class C. Substituting a proxy for the
parameter of equals should not deceive equals into return-
ing false despite that the type of the actual value the proxy
represents is a subtype of C. More generally speaking, sub-
stituting a proxy for its actual value should not fool the
type system. To achieve that, we assign a proxy the type
of its actual value. This can be done by dynamically gen-
erating a proxy class as a subtype of the runtime type of
its actual value. Simple set of bytecode engineering of non-
proxy classes, which includes inserting absent default con-
structors and removing final modifiers, is necessary to instan-
tiate proxy classes. Such a proxy class also implements the
IProxy interface to manifest itself as a proxy.

Dynamic dispatch. Not only x.equals(\past(x)) but also
\past(x).equals(x) is valid while resulting in the same result.
This is because \past(x) is assigned the type as specific as
the dynamic type of x.

5 IMPLEMENTATION THROUGH AOP
In implementing our prototype of an OpenJML [16]-based

RAC system for Java programs that supports past expres-
sions, we exploited AOP. Figure 10 shows the part of the
aspect that captures our RAC solution for past expressions.
In the figure, we list the critical pointcuts and advices used
to implement our prototype.5 Auxiliary parts and the part
to handle the migration of difference heaps and fresh sets at
method boundaries are omitted.

5Slight simplification is done for the presentation.

pointcut fieldWrite(Object obj): set(* *.*) && target(obj) && ... ;

pointcut fieldRead(Object obj): get(* *.*) && target(obj) && ... ;

pointcut arrElemWrite(Object[] arr, int idx):
arrayset() && target(arr) && args(idx) && ... ;

pointcut arrElemRead(Object[] arr, int idx):
arrayget() && target(arr) && args(idx) && ... ;

pointcut eq(Object thiz, Object o1, Object o2):
this(thiz) && branch(Object == Object) && args(o1,o2) && ... ;

pointcut diseq(Object thiz,Object o1, Object o2):
this(thiz) && branch(Object != Object) && args(o1,o2) && ... ;

(a) Pointcuts (partial); omissions are indicated by ellipses

// 1.updates of difference heap due to field writes
before(Object obj) : fieldWrite(obj) {
updateDiffHeap(obj,(FieldSignature) thisJoinPoint.getSignature());

}

// 2.updates of difference heap due to array element writes
before(Object[] arr, int idx) : arrElemWrite(arr, idx)
{ updateDiffHeap(arr, idx); }

// 3.field accesses
Object around(Object obj) : fieldRead(obj) {
if (obj instanceof IProxy) {
try { return fieldVal(actual(obj),

(FieldSignature) thisJoinPoint.getSignature());
} catch (NoFieldCase e) { return proxy(proceed(actual(obj))); }

} else { return proceed(obj); }
}

//4. array element accesses
Object around(Object[] arr,int idx): arrElemRead(arr,idx) {
if (isProxyArray(arr)) {
try { return arrElem(actual(arr), idx);
} catch (NoArrayElemCase e) {
return proxy(proceed(actual(arr), idx));

}
} else { return proceed(arr,idx); }

}

//5. equality evaluation
boolean around(Object thiz,Object o1,Object o2):eq(thiz,o1,o2) {
if ((o1 == thiz && o2 instanceof IProxy) ||

(o2 == thiz && o1 instanceof IProxy)) {
println("Warning"); return false;

}
return proceed(thiz,actual(o1),actual(o2));

}

//6. disequality evaluation
boolean around(Object thiz,Object o1,Object o2):diseq(thiz,o1,o2) {
if ((o1 == thiz && o2 instanceof IProxy) ||

(o2 == thiz && o1 instanceof IProxy)) {
println("Warning"); return true;

}
return proceed(thiz, actual(o1), actual(o2));

}

(b) Advices (partial)

Figure 10: An aspect to support RAC of past expressions

In defining pointcuts of Figure 10(a), various primitive
pointcuts are used. In addition to some standard primitive
pointcuts of AspectJ [10] such as set and get, we also used
non-AspectJ pointcuts provided by abc [1] such as arrayset

and arrayget. In addition, we extended abc with our custom
primitive pointcut branch to accommodate our special needs.

In the sequel, we explain how each of advices of Fig-
ure 10(b) matches a specific need of RAC. The first advice
updates the difference heap when a field-write takes place in

the target program. The body of this advice calls updateD-

iffHeap with two parameters, i.e., (i) the target object of the
current field update and (ii) the field information.

The second advice similarly updates the difference heap
when an array-element-write takes place. To make neces-
sary interventions, we use abc’s custom pointcut, arrayset, in
defining the pointcut of the advice.

The third advice looks up the proper value of the field that
is currently being read in either the pre-state or the post-
state of the currently running method. If the target object
obj is a proxy, the pre-state field value is first looked up in
the difference heap by calling fieldVal along with the actual
object of the proxy (obtained by actual(obj)) and the field
information. This difference-heap-lookup-method fieldVal re-
turns a proxy for the pre-state field value of the given object
at its normal termination. If the field under consideration
was not modified during method execution, fieldVal raises a
NoFieldCase exception because the pre-state field value is not
in the difference heap; instead, it is in the current heap. In
this case, proceed is called to obtain the unmodified pre-state
field value from the current heap, and subsequently method
proxy is called to return a fresh proxy for the obtained pre-
state value.

The fourth advice is a synonym of the previous one that
deals with array element accesses. Instead of an object and
field information, an array and an index are used. We use
abc’s custom pointcut, arrayget, for this advice.

The last two advices handle (dis)equality expressions. To
handle those expressions, we need to intervene when two
values are compared to each other with operator == or !=.
We, however, could not find an appropriate pointcut for our
need neither in AspectJ nor abc, and extended abc with our
custom branch pointcut.

5.1 Branch pointcut
Our branch pointcut reveals as join points the binary com-

parison expressions satisfying the comparison pattern given
as the parameter of this pointcut. The grammar of the branch

pointcut is “branch(Type1 op Type2)” where op represents a
binary comparison operator such as == and !=. A compari-
son pattern is deemed met if the comparison expression of a
program consists of the matching comparison operator in the
middle, the left-hand-side sub-expression that is an instance
of Type1, and the right-hand-side sub-expression that is an
instance of Type2. As usual, the compared values can be
exposed to an advice through an additional accompanying
args pointcut.

The last two advices of Figure 10(b) use branch pointcuts
so that actual values of proxies can be first retrieved before
performing comparison by calling proceed. Notice that the
call to proceed located at the last line of each advice takes as
its parameters actual(o1) and actual(o2) to pass actual values
of proxies. We define actual(o) to return o itself if o is not a
proxy.

We explained in §4.4 that we treat (dis)equalities with
this conservatively; e.g., for the equality case, we consider
this and \past(this) to be different from each other. Such
conservatism is programmed in the last two advices as an if-
statement before the proceed call. The conditional expression
checks if one of comparison operands is the same as this

and the other operand is a proxy. If that is a case, the
same conservative boolean value is returned regardless of
the actual value of the proxy.

Figure 11: Comparison of memory usage

We originally developed the branch pointcut to support
symbolic execution [11]. The path condition of symbolic ex-
ecution is determined depending on the execution result of
the comparison expression of an encountered branch state-
ment. Our branch pointcut can be used to construct the
path condition on the fly.
A similar pointcut to our branch pointcut was used in [17]

to define the criteria for measuring code coverage such as
branch coverage of C# programs. We point out three sub-
tle differences from our branch pointcut, which are mainly
caused by different needs. First, not comparison expressions
but branch statements are revealed as join points. Second,
types of comparison operands are not exposed as if the us-
age of the pointcut is “branch()”. Third, various kinds of
branch statements such as if-statements, switch-statements
and while-statements are distinguished from one another.
A more recent AOP language such as LogicAJ2 [18] can

flexibly define a number of pointcuts including our branch

pointcut only with a few primitive pointcuts. However, it
does not yet support dynamic information available in As-
pectJ through this and target pointcuts, and cannot be used
for our needs.

5.2 Evaluation
Use of past expressions improves not only comprehensibil-

ity and expressiveness of specifications, but also memory us-
age during RAC as compared to when using old expressions.
To compare the memory usage, we measured the memory
used when executing the add method of class PatientSet in-
troduced in § 2. Recall that an instance of PatientSet repre-
sents a set of Patient instances. We observed how memory
usage increased as we added Patient instances one by one
to increase the set size. To make the changes of memory
usage more easily visible, we padded out Patient with an ex-
tra array of bytes. We observed memory usage increase in
three cases where method add is either (i) specified using old

expressions similarly to Figure 1(a), (ii) specified using past

expressions similarly to Figure 3, or (iii) not specified at all.
Figure 11 shows the result of our experiment. The graph

shows that memory usage increases in different rates depend-
ing on whether past or old expressions are used. While mem-

//@ model import org.jmlspecs.models.JML_Elem_Set;
public class PatientSet {
private Patient[] patients; private int size;
//@ public model JML_Elem_Set set;

//@ private represents set <- abs();
/*@ private model pure JML_Elem_Set abs() {
@ JML_Elem_Set ret = new JML_Elem_Set();
@ for (Patient p : patients) ret = ret.insert(p.clone());
@ return ret; }
@*/

//@ requires set.has(p);
//@ ensures size == \old(size) && \old(set).isSubset(set);
//@ also
//@ requires !set.has(p);
//@ ensures size==\old(size)+1 && set.has(p) && \old(set).isSubset(set);
public void add(Patient p) { /* omitted */ }
}

Figure 12: A PatientSet stub described using a modeling type

ory usage increased exponentially when old expressions were
used for the reason we explained in § 2, only linear growth
was observed when past expressions were used. When no
specification was used, a similar linear growth was observed
as expected.

The reason why past expressions do not cause exponential
memory usage growth should be evident by now; unlike an
old expression, a past expression does not make a copy of the
pre-state value.

In the figure, observe the two parallel lines representing
respectively the memory usage when past expressions were
used and when no specification was used. The gap between
these two parallel lines corresponds to the memory over-
head of using past expressions. For our prototype, we did
not employ optimized collection data structures and simply
used Java’s standard collections to implement the difference
heap. Replacing Java’s standard collections with more mem-
ory efficient collections will shrink the gap between the two
lines.

6 RELATEDWORK
We mentioned in § 2 that benefits of our past expressions

include encapsulated accesses to pre-state values represent-
ing mathematical data types. There is another approach
that provides similar benefit by using a library of modeling
types [7]. Each modeling type of this library corresponds to
a mathematical data type such as a sequence and a set.

For example, Figure 12 shows a PatientSet that uses a mod-
eling type JML Elem Set for its specification. The set field of
this modeling type is used to specify method add unlike in
Figure 1(a) where the patients field was directly used. The
fact that set is a specification-only field is indicated with
modifier model. The relation between the two fields, set and
patients, needs to be made, and this is done through a model
method abs and a represents clause in the example; the nota-
tion“represents set <- abs()”of the figure means that the value
of set is assigned by calling abs. Notice in the definition of abs
that a fresh set of a modeling type JML Elem Set is returned
as a result whose set elements are the clones of the patients-
array elements. 6 Note that set and \old(set) of add’s ensures

clause point to two different instances of JML Elem Set be-
cause their values are assigned through two different calls of

6We assume that class Patient implements interface Cloneable
with an appropriate clone method being provided.

abs at the pre-state and the post-state of add, respectively.
Also, those two sets contain the elements that are not shared
between the sets because of the aforementioned cloning. In
this special case, the subset relation, \old(set) ⊆ set, can be
validly checked through a method call \old(set).isSubset(set).
The main potential benefit of using the modeling types

is that program data such as an array (e.g., patients) can
be treated in a specification as a mathematical data such
as a set (e.g., set). However, the use of modeling types
often entails extra effort to relate modeling-type data to
programming-type data. Our past expressions can be used as
an alternative that is simpler and arguably more programmer-
friendly; programmers of an object-oriented language are al-
ready familiar with the concept of encapsulation.
While formal semantics of past expressions is the novelty

of this paper, informal descriptions of similar concepts, that
are all based on cloning unlike in past expressions, can be
found in the literature. Jass [4], another contract language
for Java, requires its old expression Old(E) to be used only
with expressions E of interface Cloneable. This is because
the value of Old(E) is obtained by calling the clone method
of E. We pointed out in § 2 the problems of cloning such
as performance penalty and semantic flaws. In addition, it
seems too intrusive to require a class to be a Cloneable one
whenever a variable of that class needs to be used in an old

expression.
In our experience in building a prototype, AOP proved

to be handy for supporting past expressions during RAC.
Similarly, AspectJ was used to support OCL (Object Con-
straint Language) [15]’s pre expression by Kosiuczenko [12].
While OCL is originally a specification language for a mod-
eling language (i.e., UML), and thus independent of a spe-
cific programming language, tools such as ocl2j [8] use OCL
to monitor behaviors of Java programs. The semantics of
OCL’s pre expressions is generally identical to the one of old

expressions. Kosiuczenko used AspectJ to store pre-state
field values at their modification sites. While being similar
to our difference heap, his approach is distributed unlike our
centralized difference heap; for each field f of class C whose
pre-state value needs to be stored, a fresh field fHIST is in-
serted into C to keep track of the history of f. Also, a fresh
method fATPre() is added to C to be used when getting the
pre-state value of f. Our implementation of the difference
heap is less intrusive; we do not add extra fields and methods
to the original program. In addition, we used AOP not only
to implement the difference heap but also to access fields in
desired time contexts and compare objects that may reside
in different time contexts.

7 CONCLUSION AND DISCUSSION
In this paper, we have (i) pointed out the problems of

existing old expressions of contract languages, most notably
the lack of encapsulation, (ii) suggested a past expression as
an alternative, and (iii) showed how past expressions can be
supported during RAC through AOP in a memory-efficient
way.
While we focused on RAC in this paper in terms of tool

support, this does not mean that static checking with past

expressions is impossible. In fact, it seems, as compared to
RAC, straightforward to implement static checking follow-
ing the formal semantics we provide in this paper. Indeed,
our prototype tool can also support static checking at the
rudimentary level. However, static checking poses its own

challenges. For example, it is not yet clear to us how the add

method of a generic class Set<T> can be statically checked
against a specification where past expressions are used. We
leave static-checking support for past expressions as future
work.

Acknowledgements
We thank Bruno Oliveira for his valuable comments. This

work was partially supported by a Ministry of Education
research grant MOE2010-T2-2-073 (R-252- 000-456-112 and
R-252-100-456-112) from Singapore, a National Science Foun-
dation grant (# 0709169 and # 0644288), and a US Air
Force Office of Scientific Research grant (contract FA9550-
09-1-0138).

References
[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

J. Lhoták, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: an extensible AspectJ
compiler. In AOSD, pages 87–98, 2005.

[2] J. Barnes. High Integrity Software: The SPARK Approach
to Safety and Security. Addison-Wesley, 2003.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In CASSIS, pages
49–69, 2004.

[4] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim.
Jass - Java with assertions. ENTCS, 55(2):103–117,
October 2001.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. STTT, 7(3):212–232, 2005.

[6] P. Chalin. Logical foundations of program assertions: what
do practitioners want? In SEFM, pages 383–392, 2005.

[7] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards.
Model variables: cleanly supporting abstraction in design
by contract. SPE, 35(6):583–599, May 2005.

[8] W. J. Dzidek, L. C. Briand, and Y. Labiche. Lessons
learned from developing a dynamic OCL constraint
enforcement tool for Java. In MoDELS, pages 10–19, 2006.

[9] C. B. Jones. Systematic Software Development using
VDM. Prentice-Hall, 1990.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In J. Knudsen,
editor, ECOOP, pages 327–354, 2001.

[11] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[12] P. Kosiuczenko. On the implementation of @pre. In FASE,
pages 246–261, 2009.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: a behavioral interface specification language
for Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, May 2006.

[14] B. Meyer. EIFFEL: The language and environment.
Prentice Hall, 1992.

[15] OMG. Object Constraint Language - version 2.2, 2010.

[16] OpenJML. http://jmlspecs.sourceforge.net/.

[17] H. Rajan and K. Sullivan. Aspect language features for
concern coverage profiling. In AOSD, pages 181–191, 2005.

[18] T. Rho, G. Kniesel, and M. Appeltauer. Fine-grained
generic aspects. In FOAL, pages 29–35, 2006.

[19] J. M. Spivey. An introduction to Z and formal
specifications. Software Engineering Journal, 4(1):40–50,
January 1989.

http://jmlspecs.sourceforge.net/

	INTRODUCTION
	OVERVIEW
	Three problems of an old expression
	Our solution with a past expression
	Traditional formal specification languages
	Tool support

	FORMAL SEMANTICS
	Programming language
	Semantic rules

	SUPPORT FOR RAC
	Difference heap
	Proxy record
	Refined semantics
	Java-specific issues

	IMPLEMENTATION THROUGH AOP
	Branch pointcut
	Evaluation

	RELATED WORK
	CONCLUSION AND DISCUSSION

