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ABSTRACT

Symbolic execution of Android applications is challenging as it
involves either building a customized VM for Android or modeling
the Android libraries. Since the Android Runtime evolves from one
version to another, building a high-fidelity symbolic execution en-
gine involves modeling the effect of the libraries and their evolved
versions. Without simulating the behavior of Android libraries, path
divergence may occur due to constraint loss when the symbolic val-
ues flow into Android framework and these values later affect the
subsequent path taken. Previous works such as JPF-Android have
relied on the modeling of execution environment such as libraries.
In this work, we build a dynamic symbolic execution engine for
Android apps, without any manual modeling of execution environ-
ment. Environment (or library) dependent control flow decisions
in the application will trigger an on-demand program synthesis
step to automatically deduce a representation of the library. This
representation is refined on-the-fly by running the corresponding
library multiple times. The overarching goal of the refinement is to
enhance behavioral coverage and to alleviate the path divergence
problem during symbolic execution. Moreover, our library synthe-
sis can be made context-specific. Compared to traditional synthesis
approaches which aim to synthesize the complete library code, our
context-specific synthesis engine can generate more precise expres-
sions for a given context. The evaluation of our dynamic symbolic
execution engine, built on top of JDART, shows that the library
models obtained from program synthesis are often more accurate
than the semi-manual models in JPF-Android. Furthermore, our
symbolic execution engine could reach more branch targets, as
compared to using the JPF-Android models.
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1 INTRODUCTION

Symbolic execution is a powerful program analysis technique which
can simultaneously explore multiple program paths that a pro-
gram could take under different inputs. However, it is difficult to
apply it to framework-oriented Android apps because Android
framework is very complex and it is built with multiple languages.
Moreover, Android framework cannot be executed outside Android
devices/emulators.

One common solution to this problem is to manually generate a
framework model that simulates the framework behavior but can
be symbolically executed. For example, JPF-Android [4] relies on
a semi-manual created model of Android framework that can be
symbolically executed on Java virtual machine. However, signifi-
cant effort needs to be spent on writing models of Android libraries.
According to a study on the Android ecosystem, Android is evolv-
ing rapidly at an average rate of 115 API updates per month [18].
The rapid evolution of Android API poses additional challenges
for applying these approaches in practice. To relieve the burden of
writing framework models, PASKET [13] explores the possibility of
synthesizing framework models for symbolic execution. It leverages
several design patterns (e.g, the Observer patterns) to synthesize
models for several classes in Android frameworks and these models
are then passed to off-the-shelf symbolic execution engine where
the symbolic execution engine simply serves as a separate valida-
tion step for the correctness of the synthesized models. Instead of
incorporating the constraints gathered during symbolic execution,
PASKET requires tutorial programs to exercise the target models.

Another standard solution is to perform concrete execution of
the framework code to provide environment models for symbolic
execution of a particular code of interest such as app code. For
example, S’E [6] performs symbolic execution on specified com-
ponents and concretely executes other components. Meanwhile,
existing concolic execution techniques on Android apps such as
ACTEve [1] and Collider [11] uses instrumentation for constraint
tracking. One of the major challenges in such approaches is the


https://doi.org/10.1145/3238147.3238225
https://doi.org/10.1145/3238147.3238225
https://doi.org/10.1145/3238147.3238225

ASE ’18, September 3-7, 2018, Montpellier, France

problem of path divergence where missed instrumentations could
lead to the divergence between the concrete and symbolic execution
paths [1, 10]. Moreover, the path divergence problem may impair
the soundness and completeness of the concolic execution. Without
symbolic execution of framework code, certain path constraints
can be missed when symbolic values flows into the framework.

In this paper, we present synthetic symbolic execution, as em-
bodied by our tool SynthesiSE. It is a concolic execution approach
for Android apps that aims to alleviate all of the above mentioned
problems. Instead of relying on manually written models for An-
droid framework, our approach automatically deduces expression
representing Android models dynamically during the execution.
When dependent control flow decisions are encountered in sub-
sequent execution, the deduced expression will be refined with
the ultimate goal of enhancing branch coverage and to alleviate
the path divergence problem. Moreover, instead of generating the
entire Android model classes in a single step, our library synthe-
sis is context-specific, which allows it to generate more precise
expression for a given context.

Symbolic execution of applications always requires capture of the
environment, which includes libraries. The two extreme approaches
are the in-vitro approach where the effect of the libraries are mod-
eled, and the in-vivo approach where the effect of libraries/environ-
ment are captured via whole system execution. For C programs, the
KLEE tool [5] embodies the in-vitro approach and the S2E tool [6]
embodies the in-vivo approach. At a high level, our approach lies
in between the in-vivo and in-vitro approaches. We do not model
the libraries, and yet we go beyond concrete execution of libraries.
Instead, we synthesize expressions to capture the effect of libraries
with the goal of enhancing branch coverage in testing. We have
implemented a dynamic symbolic execution platform for Android
apps. In summary, we make the following contributions.

e On demand framework synthesis. We present an approach
which synthesizes the relationship between symbolic inputs and
outputs for a framework library during concrete execution. Using
the deduced relationship, we collect more complete path con-
straints from the programs to explore paths which are missed by
symbolic execution due to concrete execution of framework code.
We implement a dynamic symbolic execution platform for An-
droid apps which could be used for enhancing testing of Android
apps. As our approach does not require manual modeling, our
platform is agnostic to different Android SDK versions. Moreover,
this approach could be used for the symbolic execution of any
code that uses libraries.

o Incorporating GUI constraints. Android apps rely on Graph-
ical User Interface (GUI) to interact with users. GUI constraint
imposes restrictions to the layout and application resources de-
fined in an Android app. Our platform automatically extracts
these constraints and incorporates them into symbolic execution
for exploration of Android apps.

e Importance of modeling Android libraries We perform a
study of 68 Android apps in the Androtest benchmark [7] to
investigate how often the results of invoking Android libraries
affect the dependent branch decision in Android apps. Our study
shows that 37.1% of branches in Android apps are affected by the
results of executing Android libraries.

Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury

e Evaluation. We evaluate our approach on 14 Android apps by
comparing our synthesized models against real implementation
and semi-manually created models in JPF-Android. Our evalua-
tion shows that if we treat all the branches affected by an Android
library invocation as targets, our synthesized models are able to
reach more targets than the models used in JPF-Android.

2 BACKGROUND

Concolic execution. Concolic execution [9] is a program analysis
technique combining concrete execution and symbolic execution.
It uses a concrete value ¢ to generate a path 7., and uses symbolic
execution along the path to compute a path condition pc. System-
atic negation of branch conditions in the path condition pc then
leads to modified constraints pc’, which is solved to generate inputs
which trace different paths. The process is repeated to obtain a
test-suite with high path coverage. Concolic execution has been
used to analyze Android apps for event generation [1], and fault
localization [2]. Typically it is performed either on a Java sym-
bolic engine with Android library models, or on Android Runtime
using instrumentation techniques to trace the app execution for
constraints collection and explore different paths with generated
inputs.

Program synthesis. Program synthesis has been formalized to be
a second-order constraint solving problem through propositional
synthesis encoding, recently in [19], and we use this work in our
testing method. Given a set of components, it will construct the set
of terms and represent them via a tree. Boolean variables s;, called
selector variables, are assigned to choose a particular term from
among a set of terms. Specifically, each leaf of the tree corresponds
to components without input and intermediate node has as many
subnodes as the maximal number of inputs of a component. For
each node i with sub-node {i1,iz,...,it}, the output and inputs are
represented by out; and {out;, ,out;,,...,out;, }, respectively. In addi-
tion, s‘f is the j-th selector of node i, which means j-th component
is used in this node, C is the number of components, F; is the se-
mantics of j-th component. For node i, a set of terms is encoded as

®i = Prode N Pchoice> Such that

IC|
Onode = /\s{ = out; = Fj(out;,,out;,, ..., out;, ) (1)
j=1
1.2 C
@choice = exactlyOne(s;, sj, ..., s;) (2)

@node describes the semantic relations between the output value of
node i and the output value of its subnode, while ¢.j;ce restricts
that only one component is selected inside each node. Given a set
of input-output pairs, this algorithm should return a set of nodes
satisfying the input-output restriction. Using the above encoding,
the second-order constraint solver can be implemented on top of
the first-order solver.

3 THE IMPORTANCE OF MODELING
ANDROID LIBRARIES

To study the importance of encapsulating the constraints given by
Android libraries, we perform an initial investigation of 68 Android
apps in the Androtest benchmark [7], a commonly used benchmark
in prior evaluations of Android testing techniques [17, 29]. Our goal
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Figure 1: The number of branches affected by Android library calls and the corresponding percentage

is to investigate how often the results of invoking Android libraries
affect the dependent branch decision in Android apps. To achieve
this goal, we perform taint analysis to determine whether there
exists an information flow from Android library calls to subsequent
branches in the evaluated Android apps. Specifically, we modify
FlowDroid [3], a taint analysis tool, by specifying all Android li-
braries as “source” and branches as “sink” to count the number
of paths from “source” to “sink”. We also instrument apps using
Soot [34] to compute the total number of branches.

Our investigation aims to answer two questions:

Q1: What is the general structure of Android apps in terms of
control flow? What is the number of branches in apps?

Q2: How would the results of invoking Android libraries influence
the branch decisions in Android apps?

We study Q1 to obtain an overview of the control structure
in Android apps. Our main goal in Q1 and Q2 is to compute the
percentage of branch decisions affected by the results of invoking
Android libraries.

Figure 1 shows the results of our study. The x-axis in Figure 1
denotes the names of the evaluated apps, whereas the y-axis on the
left and the bar represent the number of branches in each app that
are affected by the results of invoking Android libraries. Meanwhile,
the dashed line and the y-axis on the right of Figure 1 denote the
percentage of branches affected by Android library calls, computed
using the equation in the following.

# of branches affected

%branches affected =
£ total #of branches

According to Figure 1, the branch decisions of most apps are heav-
ily influenced by Android libraries. On average, 37.1% of branches
in the evaluated Android apps are affected by the results of invok-
ing Android libraries. Figure 1 also shows that in one extreme case,
although the “gestures” app only contains six branches in total,
all of its branches are affected by Android library calls. Overall,
our study demonstrates a high percentage of branches in Android
apps are affected by Android library calls. Hence, we derive that if
Android libraries are not properly modeled by a symbolic execution
engine, the constraints imposed by Android libraries in Android
apps may be lost. Subsequently, the inappropriate modeling of An-
droid libraries may also hinder the ability of a symbolic execution
engine to explore more program branches.

0NN R W =

public boolean onTouchEvent(MotionEvent event) {
float x = event.getX();
float y = event.getY();
int offset = getOffsetForPosition(x, y);
putOffsetInRange (offset);
)
private int putOffsetInRange (int o) {
int offset = o;
Editable text = getText();
int realLength = text.length();
if (offset >= realLength)
return offset;
Editable editable = getText();
while (offset >= 0 && findText(editable, offset)
== -1 && findChip (offset) == null) {
offset ——;
}
return offset;

}

Listing 1: The onTouchEvent event handler of TagActivity

4 OVERVIEW

We give a high-level overview of synthetic symbolic execution
and SynthesiSE by presenting an example Android application,
TagActivity. TagActivity is an Android open-source text tag edi-
tor that generates tags using user text input. Listing 1 shows the
simplified source codes of one event handler, onTouchEvent, which
will be invoked when user touches the screen. The execution of
this event handler proceeds as follows: (1) extracting the touch
coordinates (x, y) (2) invoking Android library method getOffset-
ForPosition with touch coordinates as parameters (3) triggering a
local method putOffsetInRange which contains at least four path
conditions (including path conditions inside findText and findChip)
that are related to the return variable of getOffsetForPosition.
Existing symbolic execution approaches may face several chal-
lenges when analyzing this simple Android app. First, path explo-
sion may occur when these techniques symbolically execute the
whole Android app and framework. Second, some Android libraries,
such as getX, cannot be symbolically executed, since it will invoke a
native call which is implemented in the C language. Although exist-
ing symbolic execution techniques could leverage pre-built models
for Android libraries, building models is a time-consuming task and
the manually/automatically designed model may be imprecise. For
example, in the model of JPF-Android, the method getOffsetForPosi-
tion in Listing 1 simply returns a constant global variable TOP_INT.
Another option is to concretely execute Android libraries while
performing symbolic execution of app code. However, the symbolic
relationship between the input x,y, and the output offset will be
lost if the library code is concretely executed. Therefore, existing
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Figure 2: Workflow of on-demand synthesis for symbolic execution

symbolic execution engines cannot generate the correct inputs (x,y)
to explore program branches that are affected by the output (offset).
To solve the above mentioned problems, SynthesiSE is designed
to efficiently explore behaviors that are constrained by the return
values of concretely executed library. For example, if we concretely
execute the method getOffsetForPosition, the execution of line 16
(Listing 1) is constrained by the concrete execution result. To con-
tinue the symbolic exploration after concrete execution, symbolic
relation between its input and output should be recovered.

The key idea of SynthesiSE lies on the Symbolic-Concrete tran-
sition across the symbolic/concrete execution boundary. The in-
terleaving between symbolic value and concrete value must be
handled carefully, to preserve the consistency and completeness.
We now describe how we handle the transition.

Symbolic — Concrete transition When a library that should
be concretely executed is invoked and its parameters are marked
symbolic, the concrete values for the arguments should be gener-
ated. The concretization of symbolic variables can affect subsequent
path exploration by (incorrectly) ruling out certain paths. S?E uses
a back-and-forth mechanism for switching between symbolic and
concrete execution to ensure the execution consistency [6]. Differ-
ent from S?E, SynthesiSE does not suffer from the path missing
problem due to concretization, as it performs concolic execution
from the beginning of the execution. SynthesiSE retains concrete
value as well as symbolic value for each variable at each program
point. Therefore, it can directly invoke a concrete execution with
the concrete values of its parameters, without affecting the subse-
quent symbolic exploration.

Concrete — Symbolic transition We consider two situations
where concrete value is transferred to symbolic:

o the return value of library methods that obtain user inputs
(like getX() in Listing 1)

o the return value of library method, if its return value is
dependent on its symbolic arguments.

For the first scenario, a new symbolic variable will be created. For
the second scenario, we will illustrate our workflow in Figure 2.
Assume that the library code getOffsetForPosition (represented by
F in Figure 2) should be concretely executed and x, y are symbolic
variables. This method is invoked with the concrete value of its
parameters. Due to the concrete execution, the symbolic informa-
tion of parameters cannot flow into the output (offset). Therefore,
a function §(x, y) is introduced to represent the Android library
call (F). Meanwhile, the symbolic value of method output (offset)
will be regarded as §(x, y). In the subsequent execution, there is
path condition d(x,y) > 0 related to variable o. Assume that in

the first iteration of the execution, we explore the left path, then
we can generate a path constraint (¢ A d(x,y) > 0) along with
the concrete execution. To explore a different path, we negate the
corresponding path condition and provide the generated path con-
straints ¢ A §(x,y) < 0 to the solver. As function §(x, y) is unknown,
a synthesis process will be triggered to deduce the relation between
inputs (x, y) and output (offset). With the initialized expression e, a
new value (x’, y’) will be generated by solving AS(x,y) < 0AS =e.
Ideally, the solution (x’, y’) should allow us to explore the target
path. However, since we cannot ensure that the synthesized expres-
sion &(x, y) represents F correctly, this solution may fail to follow
the negated path. If the input (x’, y’) could trigger the execution of
the target path, then we derive a new input. Otherwise, the expres-
sion e will be refined based on the newly generated input (x’, y’)
and its corresponding output o’.

Furthermore, application configurations or UI hierarchy may
impose additional constraints on the variables. In this example,
touch coordinates (x, y) must be within the scope of the screen.
We define such constraints as GUI constraint, which can be missed
by concretely executing library code. Therefore, we introduce a
strategy to collect GUI constraint by parsing app configuration
(XML) and monitoring UI hierarchy.

5 APPROACH

In this section, we first introduce the notations that we use, and then
we present the on-demand program synthesis and the extension of
traditional concolic execution technique. Throughout this section,
P represents the program under test, X to denote the set of symbolic
variables, and § to denote the library function to be synthesized.

5.1 On-demand analysis

Algorithm 1 shows the key steps in our on-demand analysis built
on top of existing concolic execution engine. The algorithm op-
erates on an Android app that consists of Java source code with
function calls to Android libraries. The pathExploration procedure
is similar to traditional concolic execution approaches [9] where
symbolic execution is run simultaneously with concrete execution
and path constraints pc are collected alongside with the concrete
execution. The pathExploration procedure proceeds by invoking
the executeConcolic procedure that iterates through each program
statement. For each program statement stmt, executeConcolic pro-
cedure distinguishes between two kinds of statements: (1) state-
ments that involve invocations of Android libraries and (2) other
statements that can be treated as regular Java statements. The al-
gorithm will process the second kind of statements by invoking
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Algorithm 1: Synthetic Symbolic Execution; the main proce-
dure is pathExploration

1 Procedure executeConcolic(program P, symbolic X)
2 symbolic memory S=[x > expression | x € X];

3 concrete memory C=[x + value | x € X]J;

4 path condition pc := &;

5 library functions A := [];

6 stmt := stmty;// Initial program statement

7 while stmt ¢ Exits do

8 switch stmt do

9 case y := libraryInvocation(vy, v1,..v,) do
10 ¢ := executeConcrete (stmt);

1 C:=Clymc];

12 D = {v|v €{vy, vy,..vn}AS[v] # null};
13 if lisEmpty (D) then

14 s «— 6({S[d] | d € D});

15 S:=S[y —s];

16 A:=AUJ;

17 end

18 otherwise do

19 executeJavaConcolic (stmt, pc);

20 end

21 end

22 stmt := P.getNextStmt ();

23 end

24 return (pc, A) ;
25
26 Procedure pathExploration(program P)
27 X :=1init ();

28 while X # null do

29 (pc, A) := executeConcolic (P, X);
// select one condition to negate

30 pci = select(pc);

31 pc’ =-pei A(pe\ pei);

32 ©:={8|6 € A A contains(pc’, 5)};

33 if !isEmpty(®) then

34 ‘ X := synthesize(pc’, ©);

35 else

36 ‘ X = solve (pc);

37 end

38 end

a concolic execution engine for Java programs (lines 18-20). For
the statements that contain invocations of Android libraries, we
assume that they are of the form y:= libraryInvocation(vy, v1,...vn)
where the effect of calling an Android library function will be cap-
tured through its return values'. We execute the statements that
involve Android library function calls and analyze the statement to
check if it satisfies two criteria (1) at least one of the function argu-
ments is symbolic variable (line 12-13), and (2) its return value is
accessed in subsequent branch conditions in the program (line 32).
As our synthesis engine is triggered when an Android library invo-
cation satisfies these two criteria, our synthesis engine is invoked
on-demand. In line 14, the to-be-synthesized function ¢ collects all

1A function where its return value is not stored is rewritten with new temporary
variable that store the return value.

Algorithm 2: Tterative Synthesis

1 Procedure synthesize(program P, pathCond pc, func §)

// < ing, outy > from initial execution
2 e = outy;
3 R = {(ino, outy)};
4 synthesislteration = 0;
5 while synthesisIteration < L do
6 x" :=solve(pc A S =e);
7 if UNSAT or UNKNOWN then
8 x" := solve(pc A # e);
9 if UNSAT or UNKNOWN then
10 ‘ return null;// unsatisfiable pc
1 end
12 end
13 (m, rip) := concreteExecution(P, x");
14 R=RU{rio};
15 if 71 == target then
16 ‘ return x’;
17 else
18 ‘ e := componentBasedSynthesis(R);
19 end
20 synthesislteration + +;
21 end

arguments of the function libraryInvocation that contain symbolic
values. After that, our algorithm maps the return variable y to the
to-be-synthesized function in our symbolic memory S (line 15).
After processing the program statements on line 29, the concolic
execution engine proceeds by picking a condition to negate in order
to visit a new execution path (line 30-31). In lines 32-34, if the mod-
ified path constraint pc’ contains the to-be-synthesized function,
our algorithm will trigger the synthesis procedure to generate new
input to explore a new execution path. Otherwise, our engine will
solve the modified path condition like regular concolic execution.

5.2 Synthesis

One of the main challenges in concolic execution is the problem
where concolic testing may get stuck in exploring a huge number of
program paths before reaching the target state[16]. Our synthesis
engine aims to solve this problem by synthesizing a representation
for the Android library invocation. Specifically, we consider all the
subsequent branch decisions that are dependent on the results of
the Android library invocation as the target states target. During
the path exploration, a generated input may not be able to reach the
target states, or no input satisfies the condition of the target states
due to the inaccurate library synthesis. For such cases, we concretely
execute the program and iteratively refine the synthesized function
until generated inputs reach the target states.

5.2.1 lterative refinement. Algorithm 2 presents our iterative re-
finement steps. In practice, path conditions collected by concolic
engine might be computed with symbolic values from multiple
to-be-synthesized functions. Our algorithm refines each of the in-
volved functions independently using the same process. For the
sake of simplicity, we demonstrate iterative refinement with a sin-
gle synthesized function in Algorithm 2. Given the input-output
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Table 1: The categorization of synthesis components

Level Type Elements
1 Constant constants
2 BitWise <<, >> &, |
3 Arithmetic -5
4 Flow-control Ite (If-then-else)
5 Array-access array

pair (ing, outp) from the initial concrete execution of an Android
library function, the synthesize procedure starts by initializing the
synthesized expression e to the output outy (constant expression)
of the Android library function (line 2). Then, our synthesis engine
conjoins the constraint § = e represented by the synthesized ex-
pression with the path constraint pc and pass this new constraint to
the SMT solver (line 6). If the solver returns UNSAT or UNKNOWN,
this unsatisfiability may be caused by pc or the introduced con-
straint § = e. Therefore, we will try to solve pc A § # e. If the solver
still returns UNSAT or UNKNOWN, that means pc is unsatisfiable
and we directly return null. Otherwise, we generate a new input x’,
and perform concrete execution of program P using the updated
input to obtain additional input-output pair r;, (line 13). When
our algorithm has successfully synthesized a library representation
to reach the target state, we return the new generated input x” to
the concolic execution engine for its path exploration (Section 5.1).
Otherwise, the synthesis engine adds a new input-output pair r;, to
the set R and continue generating new expressions until we reach
the target state or the synthesis iteration exceeds the threshold L.

Though this algorithm requires iterative refinement, the program
will not be concolically executed multiple times. To gather more
input-output pairs, multiple concrete executions are needed, while
the symbolic execution is performed once. Therefore, compared
with traditional concolic execution, this algorithm will not induce
too much overhead.

5.2.2 Core program synthesis. Different from traditional synthesis
approaches which aim to simulate behaviors of a library, our syn-
thesis engine is designed to synthesize an expression that can guide
path exploration of symbolic execution. We use the recent work of
[19] to generate expressions by incrementally feeding input-output
pairs.

As mentioned in Algorithm 2, we provide our synthesizer with
one input-output pair initially, then iteratively feed more pairs only
if the synthesized expression does not help in generating new inputs
to explore the target state. When the generated input x” by solving
(pc A (6 = e)) fails to make real execution follow the target path,
the synthesized expression e must be incorrect. In this situation,
refinement process will be triggered to refine expression e. This
strategy does not need pre-generated input-output pairs, instead,
it will generate new pairs according to the feedback of concrete
execution. Therefore, this strategy needs less input-output pairs to
synthesize an expression to cover more program behaviors.

Moreover, we provide different components to the synthesizer
based on an incremental strategy. To reduce the complexity of
synthesis, we first categorize common components according to
their complexity [24]. Table 1 shows the categorized components.
The first level is “Constant”, which means that our synthesizer will
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first use a constant value to represent the library. If this level fails to
generate expressions that satisfies the input-output relations, then
it will try higher levels with more input-output pairs. This process
will terminate when a certain iteration limit is reached or when it
generates new inputs that explore the target path (algorithm will
reach the iteration limit if the target path is infeasible).

5.2.3 Context-specific. Our synthesis process is context-specific,
which means that we will treat the same method invoked in different
program points as different. Synthesizing a library method under
a certain context will simplify the synthesis process, because the
library method may only show part of its behaviors under this
context (e.g. some execution paths are constrained by global states).
Under a certain context, more precise models can be synthesized.
Context-specific synthesis is used because the goal of our synthesis
is not simulating complete library behaviors, instead, synthesizing
a model to help symbolic execution reach more branches.

We consider the context of an Android app to be the global states
of the app. In the refinement process, we have to make sure the
function to-be-synthesized is invoked under the same context, so
that the input-output pairs are generated based on same context. We
will illustrate this process using the example in Figure 2. Consider
a library call F(x,y) invoked with x and y as argument. Let x; and
x2 be two concrete values of x (same operation for variable y). In
Figure 2, ¢ is the path constraint before the invocation of F(x,y), and
x1 and x3 is obtained by solving ¢ A§(x,y) < 0AS = e. Since x1 and
x7 satisfy the path constraint ¢, the program will reach the method
invocation F following the same path when it is given either x;
or x3 as input. Hence either the library invocation is reached with
the same global state, or the difference in global states at the time
of the library invocation F(x) is accounted for by the difference in
the value of x. Though our synthesized expressions do not model
the effect of global states, they adequately capture this situation by
synthesizing expressions on the argument x.

5.3 GUI constraints

For Android apps, developers often specify certain constraints on
inputs by defining constraints for Ul elements. These constraints
are validated by Android libraries at runtime. For instance, in
app TagActivity, the touch coordinates (x,y) are extracted at run-
time. Based on our experimental devices, the bound of screen is
[0,0][1440,2879]. This means that x is limited to (0, 1440) while y is
limited to (0, 2879). We call this type of constraint GUI constraint.
GUI constraint collection can be added after line 17 in Algorithm 1
and then incorporated to path condition pc. Adding GUI constraints
to the path condition can help the concolic execution engine to
generate valid inputs (i.e., inputs that are accepted by the app).
Generating valid inputs is important in ensuring that the errors
found by our concolic execution engine correspond to real errors
that could be replicated in Android devices.

Our concolic execution incorporates GUI constraints in two steps.
First, we collect the GUI constraints from the Android execution at
runtime. Secondly, we provide a set of templates to translate GUI
constraints to constraints that are supported by the SMT solver.
Defining a template is required since GUI constraints are typically
defined in high-level semantics and cannot be directly used by
SMT solvers. Currently, we support seven common GUI constraints
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Table 2: The templates for translating GUI constraints,
where m and n represent attribute values.

Source  GUI constraints Translation
android:maxLength=n; android:digit=true | 0<i && 1<10"
android:alpha = m 0<m && m<1.0

Layout android:progress = m; android:max =n  [0<m && m<n
android:maximumAngle = m 0<m && m<360
comboBox:numltems = n 0<i && i<n

Ul listnumltems = n 0<i && i<n
hierarchy bound=[0,0][m,n] 0<x<m&&0<y<n

Concolic executor

o o Y= 3
engine solvers
ki3

T !

[ JVM-Android communicator ]
kI3 ki3
( VM ] ( ART ]

Figure 3: Architecture of our implementation SynthesiSE.

shown in Table 2. This list of supported GUI constraints can be
easily extended.

5.4 Handling library functions with side effects

As capturing the effect of an Android library invocation via its
return value may not be sufficient for library functions with side ef-
fects, we handle the potential imprecision caused by methods with
side effects by mitigating this issue for certain Android library func-
tions. Specifically, we analyze Android libraries that are accessor
methods (getters) if it has a corresponding mutator methods (set-
ters) that are invoked before the execution of the mutator method
within the same class. For each mutator method (e.g., setX(val))
that changes the value of a field, we store the value in a map and
we use this value for representing the subsequent accessor method
(e.g., val=getX()). Similar strategy can also be used for library func-
tions related to inter-process communication (Intent) and database
access.

6 IMPLEMENTATION

To perform concolic execution of Android app, we reuse the con-
colic execution engine designed for Java programs. During concolic
execution, when encountering a call to Android API (from Android
framework), it communicates with Android device/emulator to ob-
tain the runtime value for the result of the API call. If the Android
library invocation satisfies the criteria defined in Section 5.1, it will
trigger a synthesis process.

Figure 3 shows the architecture of our implementation Synthe-
siSE (implemented in Java), which comprises of three layers: con-
colic executor, JVM-Android communicator, and Java and Android
execution environments.

Concolic executor. We implement our synthesis engine based on
the recent work of [19] which embodies program synthesis via
second-order constraint solving; this is partly because [19] has
been successfully used for library modeling. We choose JDART [15]
(GitHub commit id 6584bd0) as the concolic engine of SynthesiSE.
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JDART, which has been used to test industry programs, is devel-
oped as an extension to Java Pathfinder (JPF) [36]. The concolic
engine can be easily replaced by other engines since our approach
does not require modifications of the concolic execution engine,
In SynthesiSE, we use Microsoft Z3 [8] as the SMT solver since it
supports constraints containing complex arithmetic operations.
JVM-Android communicator. The Android-related statements
will be delegated to the Android devices/emulators so that the Java
concolic engine does not need to execute them. We implement An-
droid execution delegator on top of the Model Java Interface (MJI*)
component supported by JPF and JDART, which allows delegating
the execution of the specified methods to the host-VM from the con-
colic engine. Furthermore, we leverage the Android Debug Bridge
(ADB) to communicate with a device/emulator from one desktop.
Execution environments. Our concolic execution runs in the
Java environment. The concrete execution of Android apps can
run on real devices/emulators so that our concolic execution can
analyze Android apps in a real Android environment.

7 EVALUATION

We perform evaluation on the effectiveness of SynthesiSE in syn-
thesizing Android library methods, and its ability to enhance code
coverage of symbolic execution. Our evaluation aims to address the
following research questions:

RQ1 If we treat all the branches affected by an Android library
invocation as targets, how many targets can we reach with
our synthesized model?

RQ2 What is the quality of the synthesized library code? How
many iterations are needed for our synthesis engine?

7.1 Subject selection

To compare our synthesized library models with other existing
models, we evaluate our generated models against the models in
JPF-Android [4]. We choose to evaluate against the models in JPF-
Android® because (1) it contains a large number of models (a set of
models developed over a course of several years); and (2) all of these
models are publicly available. Some of the models in JPF-Android
are manually crafted, whereas others are automatically generated
using OCSEGen [33] (these automatically generated model methods
will return default values). The details of our selection process are
described below:

(1) Asitis difficult to distinguish between manually crafted models
and automatically generated models, we first obtain the set
of Android library methods that have been modeled by JPF-
Android. Among the supported library models, we only consider
the library methods with at least one input of primitive type
and output of primitive type.

(2) We randomly select 20 methods for our evaluation because we
need to manually assess the quality of each synthesized library
methods.

(3) For each of these methods, we search through GitHub for An-
droid apps that invoke these methods.

(4) From the GitHub search results, we select the first app where
at least one of its branches are affected by the output of the

Zhttps://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/mji
3https://bitbucket.org/heila/jpf-android/src
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Table 3: Statistics for the selected Android library calls
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Method Class Description App LOC
calculateSignalLevel WifiManager Calculates the level of the signal. WifiScanner 875
checkSignatures PackageManager Compare the signatures of two packages CatLogDonate 3.5K
compareSignalLevel WifiManager Compare Signal level GoProClose 3.4K
getAttributeResValue  AttributeSetImpl Return the value of "attribute’ as a resource identifier. MusicXiaMi 3.4K
getColor ContextCompat Retrieve the color value for the attribute at index MyLeafPic 16K
getDefaultSize View Utility to return a default size constrained by input AudioVideoRecord 12K
getDimensionPixelOff TypedArray Retrieve a dimensional offset in raw pixels Marketing 738
getIndex TypedArray Returns an index in the array that has data. Robolectriclssue 100
getIntExtra Intent Retrieve extended data from the intent. twowayActivity 156
getLayoutDimension ~ TypedArray Retrieving ViewGroup’s layout_width and layout_height attributes ~ PrecentAdaptation 579
getOffsetForPosition TextView Get the character offset closest to the specified absolute position. TagActivity 1.5K
nextSpanTransition SpannableStringBuilder Return the ﬁr?t span offset that is greater than the first parameter. SecHandTreak 3.6K
or parameter itself.
resolveSize View Reconcile a desired size and state, and return only masked bits Surrounding-scanner 425
resolveSizeAndState View Reconcile a desired size and state constrained by input Paper-scissors 719

corresponding library methods. We exclude six methods where
the outputs of these methods do not affect any branch decision
in the evaluated Android apps.

Overall, we select 14 Android apps using the process mentioned
above. Table 3 shows the selected subjects as well as their statistics,
where the Class column represents the class in which the corre-
sponding method is defined. Meanwhile, the Description column
gives a brief description of each method according to the Google
API document. The last two columns show the open-source An-
droid apps that use the corresponding method, and the line of code
(LOC) of these apps.

7.2 Experimental Setup

We conduct two experiments to answer our research questions. To
answer RQI, we regard all the branches affected by the invocation
of the given library method as targets. We manually generate an
event sequence that can reach the method (in app code) where the
corresponding library method is invoked. Based on the generated
event sequence, concolic execution will generate data inputs, envi-
ronment inputs, etc, to reach the targets. We evaluate how many
targets can be reached with three variants of concolic execution:

Concrete Concolic execution with concretely executing Android
library method (without synthesis).

SynthesiSE Concolic execution with concretely executing An-
droid library method and on-demand synthesis.

JA Model Concolic execution with JPF-Android models.

The comparison of the first two approaches aims to investigate
whether our synthesis could help concolic execution explore more
affected branches. Meanwhile, the comparison with existing model
evaluates existing manual/automated modeling strategy. We choose
to use the JPF-Android models instead of the tool itself because (1)
JPF-Android requires users to manually write the input sequence
and application-specific models which would require almost one
day for each subject app [4]; and (2) we need to ensure that the con-
colic execution engine used in all variants is the same to facilitate a
fair comparison between the synthesized library methods and the
JPF-Android models.

Our synthesis terminates when we find new inputs that can
cover the target branch or when the number of iterations exceeds a
certain limit (we use synthesisIteration=20 for our experiment).

To answer RQ2, we evaluate SynthesiSE by manually analyzing
the synthesized expressions obtained from RQ1. Our analysis eval-
uates the correctness of our synthesized expressions compared to
the real library and JPF-Android models.

We conduct all the experiments on a real Android device (LG Gé6,
Android OS v7.0, API 24). For the concolic execution engine, we con-
figure it to use Z3 for constraint solving (symbolic.dp=23) and reuse
other default configurations (symbolic.dp.z3.bitvectors=true) [15].
We run our concolic execution engine on a desktop (Ubuntu 16.04,
Intel Core i7-2600 3.40GHz processor, 8GB Memory).

7.3 Results

Target reachability. As our synthesized models will only induce
differences in code coverage for branches that are dependent on the
results of Android library invocations, we regard those branches
as target. Table 5 shows the number of reached targets for each
subject by each variant. The #Targets column represents the total
number of targets, whereas the SynthesiSE, JA Model and Concrete
columns indicate the number of reached targets using synthesis,
JPF-Android model and concrete values, respectively. If we compare
the reached targets by SynthesiSE and concolic execution using JPF-
Android model, SynthesiSE outperforms the JPF-Android models in
its ability to reach more targets for most of the subjects. Specifically,
SynthesiSE reach more targets in nine subjects. For the subjects
marked with NA, SynthesiSE could not synthesize expressions to
reach more targets as it reaches its limit during the synthesis it-
erations. Specifically, SynthesiSE reach one more target than the
JPF-Android model for the checkSignatures method because the
JPF-Android model throws an exception. For the getIntExtra and
compareSignalLevel methods, both synthesis and JPF-Android pro-
vide correct models. Compared to concolic execution with concrete
values, SynthesiSE reach more targets except for: (1) two subjects
that SynthesiSE fail to synthesize expressions; (2) one subject getDi-
mensionPixelOff, where some targets are unreachable in the single
test input used for concolic execution.
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Table 4: Synthesized results

Method #synthesis Time(s) Synthesis Type Synthesized Correctness ~ JA model
calculateSignalLevel 3 29  Arithmetic 0.18"x1+18 C2 Constant(0)
checkSignatures Reach Limit 336 No No - Exception
compareSignalLevel 2 15  Arithmetic x1-x2 C1 x1-x2
getAttributeResValue  Reach Limit 438 No No - Constant(0)
getColor 13 156  Array-access array(x1->y) C2 X2
getDefaultSize 4 28  BitWise x2 & Oxbfffffff C2,C3 TOP_INT
getDimensionPixel Off 15 192 Array-access array(x1->y) C2 X2

getIndex 14 204  Array-access array(x1->y) C2 Canstant(0)
getIntExtra 1 10 Set-get put ->get C1 Map
getLayoutDimension 12 120  Array-access array(x1->y) C2 X2
getOffsetForPosition 4 35  Arithmetic x1/30-0.13 C2 TOP_INT
nextSpanTransition 2 28  Arithmetic X2 C3 Constant(0)
resolveSize 4 42  BitWise x2 & OxbfHfffff C2,C3 TOP_INT
resolveSizeAndState 5 54 BitWise & ITE  (x2==0)? 0:x2&0xDbfffffff C2,C3 TOP_INT

Table 5: Affected branches reached with synthesized models,
JPF-Android models and Concrete values

#reached targets

priority to Arithmetic/Bitwise component (Table 1). Meanwhile, li-
brary methods that require access to Android resources are usually
synthesized using Array-access. For example, the method getColor
which extracts color values based on resource id, is synthesized
using Array-access.

SynthesiSE generates expressions for 12 out of 14 evaluated
method libraries within the iteration limit.

Method #Targets SynthesiSE JA Model Concrete
calculateSignalLevel 2 2 1 1
checkSignatures 2 (NA)1  (Exception)0 1
compareSignalLevel 2 2 2 1
getAttributeResValue 2 (NA)1 1 1
getColor 18 18 1 1
getDefaultSize 4 4 2 2
getDimensionPixelOff 8 4 4 4
getIndex 3 3 1 1
getIntExtra 5 5 5 1
getLayoutDimension 8 6 4 4
getOffsetForPosition 8 6 3 3
nextSpanTransition 2 2 1 1
resolveSize 4 4 1 1
resolveSizeAndState 2 2 1 1

SynthesiSE is able to reach more targets that are affected
by library output.

Synthesis result. Table 4 shows the synthesis results, where
#synthesis is the number of synthesis iterations and Synthesis Type
indicate the type of synthesized expression. The Time column rep-
resents the time taken to infer each of the stubs, which is corre-
lated with the number of synthesis iterations. On average, it takes
103s to synthesize the final expression. The Synthesized column
shows the simplified expression, where x1, x2 represent the first
and second parameter respectively and y represents the output.
The supported synthesis type (component) includes “Constant”,
“Arithmetic”, “BitWise”, “ITE (if-then-else)” and “Array-access”. We
also include "Set-get" (explained in Section 5.4) as a synthesis type.
Among the 14 subjects, four of the synthesized expressions are
arithmetic, three of them are bitwise operation, four expressions
are synthesized by Array-access, one expression synthesized using
ITE, and one is handled by Set-get. Table 4 shows that the number
of synthesis iterations for the “Arithmetic/Bitwise” expression is
less than the “Array-access” expression because we give higher

Correctness We manually compare each synthesized expression
with corresponding method in Android framework and JPF-android
model. If the semantic of the synthesized expression is different
from the real library, we further investigate the context-specific and
conditional correctness. Given a synthesized expression libsyn, and
its corresponding implementation in Android framework lib, .,
we measure the correctness of libsy, using three criteria:

(C1) Correct: libsyp is correct if and only if libsy, and lib, .4
always produce the same semantic behavior.

(C2) Conditionally Correct: libsyy is conditionally correct if
libsyn and lib,..,; show the same behavior for a range of inputs.

(C3) Context-specific Correct: libsy, is context-specific cor-
rect if libsyn and lib,.4; show the same behavior under certain
context (e.g. global variables).

In the Correctness column, we mark two cases with “-” because
our synthesis engine reaches its iteration limit for these cases.
Specifically, the correct expression of checkSignatures and getAt-
tributeResValue should involve object comparison, which our syn-
thesis does not support. These two cases do not synthesize code
which can be classified as C1, C2 or C3.

The Correctness column denotes the correctness category for
each synthesized expression. Overall, our synthesis engine gener-
ates correct expressions for two library methods. Meanwhile, nine
of the synthesized expressions are considered conditionally-correct
expressions. Among these conditionally-correct expressions, three
expressions are context-specific at the same time. Our synthesis
engine may generate conditionally-correct expression because (1)
the synthesis process terminates once new inputs exploring target
path are generated, and (2) the input-output pair may not be able to
cover all behaviors. If more input-output pairs are given, then our
synthesis engine will be able to generate more correct expressions.
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For example, the synthesized expression for calculateSignalLevel is
(0.18"x1+18). This synthesized expression is correct for all inputs,
except for cases where the real library will return 0 if x1 is less
than a constant variable MIN_RSSI. Given more input-output pairs
(e.g. <MIN_RSSI-1, 0>), SynthesiSE will be able to generate a more
precise expression. Meanwhile, we synthesize four context-specific
correct expressions. These expressions simulate the (simplified)
behaviors of the library only under certain context (global states).

All of the expressions synthesized within the iteration limit
are correct, conditionally-correct or context-specific correct.

7.4 Threat to validity

Internal validity: There are several internal threats in the experi-
mental methodology that may affect our results. While there are
several symbolic execution engines that rely on library models,
we only compare our synthesized models against the JPF-Android
models because they are publicly available and are crafted specifi-
cally for Android libraries. Our synthesis engine terminates after
20 refinement iterations, we did not investigate the effect of differ-
ent iteration limits on the synthesis results. Nevertheless, for most
subjects in our evaluation, a small number of synthesis iterations
is sufficient to synthesize the desired expression. Moreover, we
manually evaluate the correctness of the synthesized expression.
As the implementation of Android framework is open-source, the
analysis is relatively straightforward.

External validity: Our study is limited to the evaluated Android
apps and our results may not generalize beyond the evaluated apps.

8 RELATED WORK

Symbolic/concolic execution. There exists several symbolic/con-
colic execution frameworks. S?E [6] embodies the in-vivo approach
to perform exploration of programs inside complex systems. Similar
to our work, S?E does not require modeling of libraries but it dif-
fers from SynthesiSE in two aspects. First, SE performs symbolic
execution while SynthesiSE conducts concolic execution. After
symbolic variables are concretized (for concrete execution), S’E
stops exploring paths constrained by these variables and uses a
backtracking mechanism to alleviate this issue. SynthesiSE solves
this issue by maintaining both symbolic values and concrete val-
ues. Second, SynthesiSE leverages program synthesis for deducing
the relations between inputs and outputs, whereas S?E may ob-
tain incomplete constraints when symbolic information flows into
libraries. KLEE [5] embodies the in-vitro approach which relies
on manually-written POSIX libraries. Symbolic Pathfinder [25, 26]
(SPF) is an extension of JPF, which uses Java library models. Dif-
ferent from these approaches, SynthesiSE do not model libraries,
instead, we synthesize expressions to capture the effect of libraries.
Program synthesis for symbolic execution. We use program
synthesis [19] which embodies program synthesis via second-order
constraint solving, to synthesize a representation for Android li-
brary. To increase the scalability of program synthesis, our synthesis
engine adapts the categorization of common components in prior
work that synthesizes program expression to patch software er-
rors [24]. Although the models synthesized by PASKET [13] are
also used in a symbolic execution engine, its synthesis algorithm
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is driven by several commonly used design patterns. Meanwhile,
SynthesiSE synthesizes libraries to drive the program execution to
unexplored program branches and to relief the program divergence
problem. Qi et al. [27] synthesize library models by sampling be-
haviors of the original implementation of a function. SynthesiSE
synthesizes library model using input-output specifications and the
feedback about branch reachability.

Android testing via symbolic/concolic execution. Extensions
of Symbolic Pathfinder (e.g., JPF-Android [35], PathDroid [23] and
Mirzaei’s work [22]) conduct symbolic execution on Android apps
in JVM by modeling Android libraries which require significant
manual effort to adapt to the rapid evolution of Android versions,
while SynthesiSE is designed to solve this problem. SymDroid [12]
is a symbolic executor for Dalvik bytecode, while jpf-mobile [14]
attempts to run JPF on Android systems. Both approaches have
been evaluated only on small demo apps. Applying symbolic/con-
colic execution to GUI testing has been explored in several works:
ACTEve [1], Collider [11], Applntent [37], ConDroid [28], and SIG-
Droid [21]. Those tools uses either instrumentation or simplified
models. Instrumentation based approaches (including ACTEve [1],
[11], etc) may suffer from path divergence problem as missed in-
strumentations could lead to the divergence between the concrete
and symbolic execution paths. The refinement process in Synthe-
siSE is able to address this problem. Approaches based on library
stubs, including ConDroid [28] and SIGDroid [21] (does not con-
sider Android framework in symbolic execution) may miss many
path constraints. In constrast, SynthesiSE leverages on-demand syn-
thesis to deduce a model to simulate Android libraries. Meanwhile,
crashes found by our approach could be used as inputs for existing
repair approaches for automatically fixing these crashes [20, 30-32].

9 CONCLUSION

We present synthetic symbolic execution, and its realization via a con-
colic execution engine that leverages a novel on-demand program
synthesis for testing Android apps. Program synthesis is iteratively
invoked to generate library code which can help achieve greater
branch coverage in testing of Android apps. We believe our ap-
proach shows promise in terms of solving the rather hard problem
of environment behavior capture in symbolic execution, since li-
braries are a form of environment. Our work shows the promise of
symbolic execution techniques which neither manually model the
environment, nor depend on whole system executions to capture
the environment via under-approximations.
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