
Accurate Timing Analysis by Modeling Caches,
Speculation and their Interaction

Xianfeng Li
lixianfe@comp.nus.edu.sg

Tulika Mitra
tulika@comp.nus.edu.sg

Abhik Roychoudhury
abhik@comp.nus.edu.sg

School of Computing
National University of Singapore
Republic of Singapore 117543

ABSTRACT
Schedulability analysis of real-time embedded systems re-
quires worst case timing guarantees of embedded software
performance. This involves not only language level program
analysis, but also modeling the effects of complex micro-
architectural features in modern processors. Speculative ex-
ecution and caching are very common in current processors.
Hence one needs to model the effects of these features on the
Worst Case Execution Time (WCET) of a program. Even
though the individual effects of these features have been
studied recently, their combined effects have not been inves-
tigated. We do so in this paper. This is a non-trivial task be-
cause speculative execution can indirectly affect cache per-
formance (e.g., speculatively executed blocks can cause ad-
ditional cache misses). Our technique starts from the con-
trol flow graph of the embedded program, and uses integer
linear programming to estimate the program’s WCET. The
accuracy of our modeling is illustrated by tight estimates
obtained on realistic benchmarks.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and Embedded
Systems

General Terms
Measurement, Performance.

Keywords
Worst Case Execution Time, Cache, Branch Prediction.

1. INTRODUCTION
Static timing analysis of software is important for real-

time embedded systems. A worst case timing guarantee is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

part of functional requirements for these systems. Given
a software and a micro-architecture, Worst Case Execution
Time (WCET) analysis finds the maximum execution time
of the software for any possible input. Static analysis is
required because for most software and micro-architectures,
it is impossible to guess the input that will generate the
worst case execution time.

WCET analysis consists of two steps: (a) path analysis
that eliminates infeasible paths and derives upper bounds
on loop executions, and (b) micro-architectural modeling of
pipeline, caches, branch prediction, etc. to estimate the ex-
ecution time of feasible paths. A useful approach to WCET
analysis is Integer Linear Programming (ILP) formulation
that combines the two steps in a single framework [12].

Current generation processors use aggressive speculation
to improve performance. In particular, they commonly em-
ploy control speculation which is also known as branch pre-
diction. Conditional branch instructions cause pipeline stalls
as the processor does not know which way to go till the
branch is resolved. Branch prediction solves this problem
by fetching and executing instructions along the predicted
path. If the prediction is correct, then the processor never
stalls. If the prediction is incorrect, then the instructions
from the predicted path are flushed resulting in branch mis-
prediction penalty. Modeling speculative execution is impor-
tant for timing analysis as discussed in [2, 3, 14].

Apart from penalty due to instruction flushing, mispre-
diction can indirectly affect instruction cache performance.
As the processor caches instructions along the mispredicted
path, the instruction cache content changes. This prefetch-
ing of instructions can have both constructive and destruc-
tive effect on the cache performance and hence on WCET.
It is also known as wrong path prefetching in the computer
architecture community [15]. Effect of wrong-path prefetch-
ing on cache performance has been quantitatively evaluated
in [4, 15]. However, there have been no studies to combine
speculative execution and caching for WCET analysis, leave
alone the indirect effects such as wrong path prefetching.
In fact, it is believed that these indirect effects are hard to
capture for WCET analysis [16].

In this paper, we develop an ILP based technique to model
the combined effects of speculation, caching and wrong-path
instruction prefetching on embedded code performance. We
first combine existing micro-architectural modeling of in-
struction cache and branch prediction in a unified frame-
work. Furthermore, we accurately estimate the constructive



and destructive effects of instruction prefetching by branch
prediction. Our experimental results demonstrate the accu-
racy of our WCET estimates.

2. RELATED WORK
Analyzing the WCET of a program has been extensively

investigated. Earlier works estimated the WCET of a pro-
gram by finding the longest execution path via program
analysis. The cost of a path is the sum of the costs of the
different instructions, assuming that the execution time of
each instruction is constant. Presence of performance en-
hancing micro-architectural features such as pipeline, cache
and branch prediction make this cost model inapplicable.
Recent works on WCET analysis have therefore modeled
micro-architectural features such as pipelined processors [6,
8], superscalar processors [13], cache [7, 12, 18], and branch
prediction [2, 3, 14].

Integer Linear Programming (ILP) formulation of WCET
analysis problem is a popular technique. In particular, [12]
has reduced the WCET analysis of instruction cache behav-
ior into an ILP problem and [14] has modeled various branch
prediction schemes using ILP. In [17], ILP has been used for
program path analysis subsequent to abstract interpretation
based micro-architectural modeling of cache, pipelines etc.

The wrong-path cache effect involves prefetching instruc-
tions due to misprediction. Note that instruction prefetch-
ing has been previously modeled for WCET analysis in [2,
11]. However, wrong-path prefetch modeling is much more
involved as the prefetching is controlled by branch mispre-
dictions (which by itself is difficult to model).

3. TIMING ANALYSIS BACKGROUND
Our formulation is based on Integer Linear Programming

(ILP). The WCET is obtained by maximizing a time func-
tion subject to linear constraints. The time function will
take into account the effects of branch prediction as well as
instruction caching.

Path Analysis.The starting point of the ILP analysis is
the Control Flow Graph (CFG) of the program. The
vertices of the control flow graph are basic blocks (a con-
secutive sequences of instructions with a single entry and
exit point) and the edges denote the flow of control from
one basic block to another. A separate copy of the CFG
of a function f (recursive or otherwise) is created for ev-
ery distinct call site of f in the program such that each call
transfers control to its corresponding copy of CFG.

Let vi be the execution count of a basic block Bi and costi
be a constant representing the execution time ofBi assuming
zero cache miss and perfect branch prediction. The total
execution time of the program is Time =

∑N
i=1 costi × vi

where N is the number of basic blocks in the program. Let
ei→j be the execution count of the edge i→ j between basic
blocks Bi and Bj in CFG. Since inflow equals outflow for
each basic block, we have vi =

∑
j ej→i =

∑
j ei→j . We

provide upper bounds on loops and recursion depths either
from user input or via offline data flow analysis.

Instruction Cache.In order to model the instruction cache
effect, we use line-block or l-block as defined by Li, Malik
and Wolfe in [12]. An l-block is a sequence of instructions
in a basic block that belong to the same instruction cache

line. A basic block Bi is partitioned into ni l-blocks denoted
as Bi.1, Bi.2, . . . , Bi.ni . Let cmi.j be the total cache misses
for l-block Bi.j and cmp be the constant denoting the cache
miss penalty. Then the total execution time becomes

Time =

N∑
i=1

(costi × vi +

ni∑
j=1

cmp× cmi.j) (1)

For simplicity of exposition, let us assume a direct mapped
cache. For each cache line c, we construct a Cache Conflict
Graph (CCG) Gc [12]. The nodes of Gc are the l-blocks
mapped to c. An edge m → m′ exists in Gc iff there exists
a path in the CFG s.t. control flows from m to m′ with-
out going through any other l-block mapped to c. In other
words, there is an edge between l-blocks m to m′ if m can
be present in the cache when control reaches m′ resulting in
a cache miss for m′.

Let ei.j→u.v be the execution count of the edge between
l-blocks Bi.j and Bu.v in a CCG. Now execution count of l-
block Bi.j is equal to the execution count of basic block Bi.
Also, at each node of the CCG, inflow is equal to outflow and
both are equal to the execution count of the node. Therefore,

vi =
∑
u.v

ei.j→u.v =
∑
u.v

eu.v→i.j (2)

Finally, cache miss count at an l-block is equal to the inflow
from other l-blocks in the CCG. Thus,

cmi.j =
∑
u.v

u.v 6=i.j

eu.v→i.j (3)

Speculative Execution.Most modern processors perform
control speculation via dynamic branch prediction. Dy-
namic prediction schemes use a 2n entry branch prediction
table to store past branch outcomes. When the processor
encounters a conditional branch instruction, this prediction
table is looked up using some index and the indexed entry is
used as prediction. When the branch is resolved, the entry is
updated with the actual outcome. Different branch predic-
tion schemes differ in how they compute n-bit index to access
this table. In case of simplest prediction scheme, the index
is n lower order bits of the branch address [10]. More accu-
rate are the global branch prediction schemes [19] where the
index also uses the outcome of the neighboring branches to
exploit the correlation among consecutive branch outcomes.

Let bmi be the number of mispredictions of the branch (if
one exists) in Bi and bmp is a constant denoting the penalty
for a single branch misprediction. Then the total execution
time can be modified as

Time =

N∑
i=1

(costi× vi + bmp× bmi +

ni∑
j=1

cmp× cmi.j) (4)

In earlier work [14] we have modeled different branch pre-
diction schemes for WCET analysis in ILP framework. Here,
we use that modeling to derive constraints on bmi.

4. SPECULATION + CACHING
The WCET analysis as described in the previous section

does not take into account the effect of branch mispredic-
tion on instruction cache performance. When a branch is
predicted, instructions are fetched and executed from the



predicted path. If all the branches were predicted correctly,
then the analysis described in previous section will give ac-
curate results. Now consider a branch that is mispredicted.
The processor will fetch and execute instructions along the
mispredicted path till the branch is resolved. There can be
two scenarios during mispredicted path execution (1) there
is no cache miss, and (2) there are one or more cache misses.
In the first scenario, the misprediction has no effect on the
instruction cache. However, in the second scenario, the in-
struction cache content has been modified when the proces-
sor resumes execution from the correct path. Various studies
concluded that depending on the application, this wrong-
path prefetching can have constructive or destructive effect
on the instruction cache performance [4, 15]. Our goal here
is to model this wrong-path cache effect for WCET analysis.

Assumptions.We make two standard assumptions. First,
the processor allows only one unresolved branch at any point
of time in execution. Thus, speculative execution occurs
only when all previous branches have been resolved. We
also assume that the instruction cache is blocking (i.e., it
can support only one pending cache miss). This is indeed
the case in almost all commercial processors.

Wrong Path Prefetching.From now, we will use the short-
hand m ∼= m′ to denote that l-blocks m,m′ map to the same
cache line. Also, we will use [m] to denote the cache line to
which l-block m maps to. Thus m ∼= m′ iff [m] = [m′]. We
want to capture the following: (1) destructive effect: addi-
tional cache misses suffered due to speculative execution and
(2) constructive effect: cache misses avoided due to specu-
lative execution. The cache misses/delays introduced due to
speculative execution belong to two categories.

Category 1 An l-block m misses during normal execution,
since m′ ∼= m was fetched during speculative execu-
tion.

Category 2 An l-block m misses during speculative exe-
cution. All or part of this cache miss delay can be
masked by the branch misprediction penalty. We call
this additional delay due to miss at m as mp delay.

Wrong path prefetching can also avoid cache misses as
follows. Suppose m ∼= m′ and there is an edge between
m and m′ in the original CCG of [m]. The edge implies
that there are one or more paths from m to m′ that do
not go through any node in [m]. Suppose, all these paths
go through a branch b whose mispredicted path contains
m′. Now, for any misprediction of b, m′ can be fetched
along the wrong path and hence m′ will not incur cache miss
in the correct path. Both the constructive and destructive
effects of wrong path prefetching are modeled by changing
the Cache Conflict Graph (CCG) as discussed below.

4.1 Changes to Cache Conflict Graph
A brief discussion of Cache Conflict Graph was given in

the last section. A more detailed discussion appears in [12].
We add some nodes and edges to the CCG to capture the
constructive and destructive effects on instruction cache per-
formance due to branch misprediction.

Additional nodes in CCG.Given a branch b, actual out-
come X (non-taken or taken, denoted as 0, 1) and mispredic-
tion penalty bmp, we can identify a totally ordered sequence

of l-blocks which will be accessed along the mispredicted
path. This is denoted as Spec(b,X). Clearly, the cost of ex-
ecuting the blocks in Spec(b,X) cannot exceed bmp (which
is why we need to consider the misprediction penalty while
defining Spec(b,X)). Also, note that every speculative exe-
cution of branch b (where the actual outcome is X and the
misprediction is along outcome ¬X) may not execute all the
l-blocks in Spec(b,X). This is because an l-block along the
mispredicted path may incur cache miss which will reduce
the total number of l-blocks that can be fetched in branch
misprediction penalty duration.

We now add the following set of nodes to the CCG. For
convenience, we will call these nodes as mp-nodes (nodes
to model effect of branch misprediction).

{mb,X | b ∈ Branches(P ), X ∈ {0, 1},m ∈ Spec(b,X)}

Branches(P ) denotes the set of branches in the control flow
graph of the program P we are considering. In an abuse of
notation, we have written m ∈ Spec(b,X) to denote mem-
bership even though Spec(b,X) is a sequence.

Additional edges in CCG.For any mp-node mb,X , the
following edges are added to the CCG of cache line [m]

1. n → mb,X if (a) there exists a path in CFG from n
to the l-block containing branch b that does not pass
through any l-block in [m] (b) m is the first use of
cache line [m] in Spec(b,X) and (c) n ∼= m.

2. mb,X → mb,X
1 where m1 is the first l-block appearing

after m in Spec(b,X) s.t. m ∼= m1.

3. mb,X → n1 where n1 (n1 ∼= m) is a possible first use
of cache line [m] if outcome X occurs at branch b.

4. mb,X → nb
′,Y where n (n ∼= m, n ∈ Spec(b′, Y )) is a

possible first use of cache line [m] if outcome X occurs
at branch b (b′ can be same as b).

The figure below illustrates these cases. The shaded ones are
the mp-nodes and the unshaded ones are the normal nodes.

���������
���������
���������

���������
���������
���������

���������
���������
���������
��������� ���������

������������������
���������

���������
���������
���������

���������
���������
���������

b

m

m1

n1 m b’

bn

X~ X

X

Y

Case  2

Case 3

Case 4

Case  1

n

The third and the fourth type of edges require some expla-
nation. If there are multiple l-blocks along the speculative
path that map to a particular cache block, then we conser-
vatively add outgoing edges from all of them to the first use
of the cache block in the correct path (or another specula-
tive path). This is because any one of these l-blocks can be
in the cache when the branch is resolved.

Figure 1 illustrates the modifications to the CCG with an
example. The control flow graph is shown in Figure 1(a).
Let us assume that l-blocks B0.1, B1.2 and B3.1 belong to
the same cache block. Then the original CCG for that cache
block is shown in Figure 1(b). A dummy start node and an
end node are added to each CCG to make the initial and
terminal flow equations correct.



S

E

1.2 3.1

0.1

S

0.1

1.2 3.1

E

3.1
(2,1)

1.2
(3,0)

(c)(b)

0

1

2

3

4

(a)

Figure 1: Changes to Cache Conflict Graph (Shaded
nodes are mp-nodes)

The modifications to the CCG due to wrong-path prefetch-
ing is shown in Figure 1(c). We add two mp-nodes B2,1

3.1 and
B3,0

1.2 corresponding to the mispredictions at node B2 and
node B3 respectively. Note that we do not add any node
corresponding to 0 outcome at branch B2 and 1 outcome at
branch B3 respectively. This is because corresponding to 0
outcome at branch B2, the mispredicted path fetches basic
block B2 which does not contain any l-block that maps to
the cache line and similarly for B3 with outcome 1. Among
the additional edges, B1.2 → B2,1

3.1 and B3.1 → B3,0
1.2 belong

to the first type. The edges B2,1
3.1 → B3.1 and B2,1

3.1 → B2,1
3.1

belong to the third and fourth type respectively.

4.2 Objective function
We want to model both constructive/destructive effects:

cache misses avoided/introduced due to speculative execu-
tion. The constructive effect is modeled by modifying the
CCG. Let us illustrate with the example in Figure 1(b). In
the original CCG, there is a direct edge B1.2 → B3.1 and
that is the only path between the two nodes; every time
control reaches from B1.2 to B3.1, it is a cache miss. In
the modified CCG, we have another path via the mp-node
B2,1

3.1 . The cache miss at B2,1
3.1 is (partially) masked by the

branch misprediction delay, but this cache miss results in
early prefetching of B3.1 and hence a subsequent cache hit.
Therefore, number of cache misses at B3.1 is reduced.

Among the destructive effects, in the modified CCG cmi.j

will include the cache misses of Bi.j due to normal as well as
speculative execution of other memory blocks (i.e., category
1 cache misses described in Section 4). In order to capture
the delay introduced due to category 2 misses, we modify
the objective function:

Time =

N∑
i=1

(costi × vi + bmp× bmi +

ni∑
j=1

cmp× cmi.j)

+
∑

b∈Branches(P )
X∈0,1

mp delay(b,X) (5)

where mp delay(b,X) is the delay imposed due to cache
misses in the mispredicted path of branch b with outcome
X.

4.3 Additional constraints
We introduce some additional constraints to model the ef-

fect of speculation on caching. The execution count of a nor-
mal l-block is equal to the execution count of the basic block
it belongs to. However, for an mp-node mb,X , this count is

dependent on the number of mispredictions at branch b with
actual outcome X. To derive this execution count, note that
the number of mp-nodes missed due to a single mispredic-

tion is
⌈
bmp
cmp

⌉
where bmp (cmp) denotes branch mispredic-

tion penalty (cache miss penalty). In accordance with most
modern processors we assume bmp < cmp and therefore⌈
bmp
cmp

⌉
= 1. This assumption is however not required and

our modeling can be easily extended. Given bmp < cmp, a
single misprediction can result in only one cache miss along
the mispredicted path. Let Spec(b,X) = 〈m1, . . . ,mk〉.
Therefore, execution count of the mp-node mb,X

i is

bmX
b −

i−1∑
l=1

cmb,X
ml

where bmX
b is the number of mispredictions at branch b with

outcome X (obtained from the modeling of branch predic-
tion) and cmb,X

ml is the number of cache misses at the mp-

node mb,X
l . Constraints on cmb,X

ml are obtained from the
CCG as shown in Equation 3.

We introduce additional constraints on CCG edges to get
tighter WCET estimates. Consider the self-loop B2,1

3.1 →
B2,1

3.1 in Figure 1(c). With constraints only on nodes and
not edges, the ILP solver will try to assign a high execution
count to this self-referencing edge and thereby maximize the
execution count (and cache misses) on the edge B1.2 → B3.1.
We can solve this problem by putting an upper bound on
the execution count of self-referencing edges. The bounds
are obtained from static analysis of the control flow graph
for normal nodes and branch misprediction analysis for the
mp-nodes. Details are omitted due to space constraint.

Finally, we bound mp delay(b,X) in Equation 5. For a
delay to result from misprediction at b with actual outcome
X we must have a cache miss during mispredicted execution
of b. Recall that Spec(b,X) = 〈m1, . . . ,mk〉. Thus

mp delay(b,X) =

k∑
i=1

(cmb,X
mi × delay

b,X
mi )

where delayb,Xmi is the delay introduced due to cache miss
of mi along the mispredicted path of branch b with actual
outcome X. This delay is not a constant, as part or all of
the cache miss delay cmp can be masked depending on the
location of the cache miss in the mispredicted path. Thus

delayb,Xmi = cmp− (bmp−
i−1∑
l=1

costml)

where costml is the execution time of the l-block ml assum-
ing zero cache miss and perfect branch prediction.

5. EXPERIMENTAL RESULTS
We select ten different benchmarks for our experiments

(refer Table 1). They have been widely used in prior stud-
ies on WCET analysis [7, 12, 14]. Many of these bench-
marks (such as bsearch, des, dhry) contain large number of
hard-to-predict conditional branches arising from if-then-else
statements within nested loops.

5.1 Methodology
In our experiments we assume a perfect processor pipeline

with no stalls due to data dependencies. This makes each in-



Pgm. WCET Misprediction Cache miss mp delay
Obs. Est. Ratio Obs. Est. Obs. Est. Obs. Est.

matsum 105504 105917 1.00 203 203 307 409 613 6
matmul 25155 25679 1.02 204 215 945 975 621 790
isort 48685 48836 1.00 391 400 107 109 495 495
bsearch 506 546 1.07 8 10 33 35 43 53
fdct 8798 8803 1.00 8 8 626 626 25 30
fft 219428 229651 1.04 3094 5139 21 25 26 0
dhry 218684 232523 1.06 2603 2514 8125 9639 9014 8088
des 87436 96437 1.10 574 1460 3255 3497 1839 3732
whet 545544 581557 1.06 3752 10580 765 986 769 432
djpeg 44962565 65184227 1.44 384102 1356349 2431414 3304327 1598854 3962793

Table 2: Observed and estimated WCET (in processor cycles), misprediction count, cache miss count, and
additional delay due to partially masked cache misses on mispredicted paths (mp delay)

Pgm. Description
matsum Summation of two 100× 100 matrices
matmul Multiplication of two 10× 10 matrices
isort Insertion sort of 100-element array
bsearch Binary search of 100 element array
fft 1024-point Fast Fourier Transform
fdct Fast Discrete Cosine Transform
dhry Dhrystone benchmark
des Data Encryption Standard
whet Whetstone benchmark
djpeg Decompresses 128× 96 color JPG image

Table 1: Description of benchmark programs.

struction take a fixed number of clock cycles to execute. The
only time overhead is introduced by instruction cache misses
and branch mispredictions. We assume that the branch mis-
prediction penalty is 5 clock cycles and cache miss penalty is
10 clock cycles. Needless to say, any other choice of penalties
can also be used.

We use SimpleScalar architectural simulation platform [1]
to evaluate the accuracy of our analysis. SimpleScalar in-
struction set architecture (ISA) is a superset of MIPS ISA - a
popular embedded processor. Given a benchmark program,
we attempt to identify the program input that will generate
the WCET. Among the benchmarks, matsum, matmult, fft,
fdct, dhry and whet have only one possible input and we
can get the actual WCET. For the other programs, deter-
mining the worst-case input can be tedious. Therefore we
use human guidance to select a set of inputs (which are sus-
pected to increase execution time). We then simulate the
execution of the benchmark programs using SimpleScalar
with these selected inputs. We report the profile for the se-
lected input which maximizes the execution time and call it
observed WCET.

We wrote a prototype analyzer that accepts assembly lan-
guage code annotated with loop bounds and recursion depths.
Various techniques exist currently for offline computation of
such loop bound annotations [9]. Our analyzer is parameter-
ized w.r.t. cache configuration, cache miss penalty, predictor
table size, choice of prediction schemes and misprediction
penalty. The analyzer first disassembles the code, identifies
the basic blocks and constructs the the CFG. From the CFG,
our analyzer automatically generates the objective function
and the linear constraints. These constraints are submit-
ted to an ILP solver to obtain estimated WCET. For our
experiments, we use CPLEX [5], a commercial ILP solver.

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

matsum matmult bsearch fdct fft dhry whet
Pe

rc
en

ta
ge

change of cache misses

change of overheads

Figure 2: Comparison of combined modeling of
cache and speculation with individual modelings.

5.2 Results
First, we illustrate the importance of combined modeling

of cache and speculation for WCET analysis by compar-
ing it against a naive technique which models both cache
and speculation but ignores the cache-speculation interac-
tion. Figure 2 shows this comparison with benchmarks for
which we can find the actual WCET and the correspond-
ing cache miss and branch misprediction overheads through
simulation. The first group of bars indicate the percentage
increase/decrease in cache misses due to the effect of branch
prediction on cache behavior. The second group of bars
show the percentage change in total timing overhead of cache
miss and branch misprediction due to cache-speculation in-
teraction. The timing overhead shows similar behavior as
cache misses (i.e., both the bars show similar trends in each
benchmark). The results show that if the naive modeling
was used (i.e., the effect of branch prediction on cache was
not modeled), the WCET can either be overestimated (as
the downward bars indicate in matsum, fft, dhry and whet),
or, more seriously, be underestimated (as the upward bars
indicate in matmult, bsearch and fdct).

The accuracy our WCET estimation technique is shown
in Table 2. The first four smaller benchmarks are evalu-
ated with a cache of 8 lines (each line is 16-bytes). The
other larger benchmarks are evaluated with a cache of 16
lines (each line is 32 bytes). This is because the first four
benchmarks are too small to be simulated/estimated against
larger cache sizes. For modeling branch prediction, we use
the popular gshare scheme [19] with a 16 entry prediction ta-



(a) Scalability w.r.t. predictor table size

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1k

Number of predictor table entries

S
ol

vi
ng

 ti
m

e 
(in

 s
ec

on
ds

)

(b) Scalability w.r.t. cache size

0

0.5

1

1.5

2

2.5

3

32 X 8 32 X 16 32 X 32 32 X 64 32 X 128 32 X 256

Cache size (cache line bytes X cache lines)

S
ol

vi
ng

 ti
m

e 
(in

 s
ec

on
ds

)

fft

dhry

des

whet

Figure 3: scalability w.r.t increasing hardware complexity

ble. The observed WCET (obtained by SimpleScalar simu-
lation) is a lower bound on the actual WCET. The estimated
WCET, which is computed by analysis, is an upper bound
on actual WCET. Thus estimated WCET ≥ actual WCET
≥ observed WCET. The observed (estimated) misprediction
count is the total misprediction count that produces the ob-
served (estimated) WCET; similarly for the cache misses.
The experiments were performed on a Pentium IV 1.3 GHz
workstation with 1 GB of memory.

As we can see from the Ratio column, most benchmarks
have very tight estimated bounds. Some benchmarks have
lower estimated misprediction counts than their observed
counterparts, such as dhry. This is because the ILP solver
may trade lower mispredictions for higher cache misses to
maximize the overall WCET. The djpeg benchmark has a
higher Est./Obs. ratio because finding an input close to the
actual worst case and thus the actual WCET is extremely
hard. In this case, we generate a set of random compressed
images to obtain the observed WCET.

We also study the variation of ILP solution time for some
benchmarks with larger predictor table sizes (gshare scheme)
and cache sizes. Figure 3 shows that the ILP solving time
for each benchmark does not change significantly with in-
creasing cache and branch prediction table sizes, thereby
exhibiting good scalability.

6. DISCUSSION
In this paper, we have modeled speculation, caching and

their indirect interactions (prefetching of instructions dur-
ing speculative execution). Our experimental results indi-
cate that our modeling is accurate, tightly estimating the
maximum execution time. In future we plan to extend our
micro-architectural modeling to real-life processors involv-
ing caches, pipeline and speculation.

7. ACKNOWLEDGMENTS
This work was partially supported by NUS research grant

R252-000-088-112.

8. REFERENCES
[1] D. Burger, T. Austin, and S. Bennett. Evaluating Future

Microprocessors: The SimpleScalar Toolset. Technical
Report CS-TR96-1308, Univ. of Wisconsin - Madison, 1996.

[2] K. Chen, S. Malik, and D.I. August. Retargatable static
software timing analysis. In IEEE/ACM Intl. Symp. on
System Synthesis (ISSS), 2001.

[3] A. Colin and I. Puaut. Worst case execution time analysis
for a processor with branch prediction. Jnl. of Real time
Systems, May 2000.

[4] J. Combs, C. B. Combs, and J. P. Shen. Mispredicted path
cache effects. In Euro-Par Conference, 1999.

[5] CPLEX. The ILOG CPLEX optimizer v7.5, 2002.
Commercial software, http://www.ilog.com.

[6] J. Engblom and B. Jonsson. Processor pipelines and their
properties for static WCET analysis. In Intl. Conf. on
Embedded Software (EmSoft), LNCS 2491, 2002.

[7] C. Ferdinand, F. Martin, and R. Wilhelm. Applying
compiler techniques to cache behavior prediction. In ACM
Intl. Workshop on Languages, Compilers and Tools for
Real-Time Sys. (LCTRTS), 1997.

[8] C. Healy et al. Bounding pipeline and instruction cache
performance. IEEE Trans. on Computers, 48(1), 1999.

[9] C. Healy, M. Sjodin, V. Rustagi, and D. Whalley. Bounding
loop iterations for timing analysis. In IEEE Real-time
Appplications Symposium (RTAS), 1998.

[10] J.L. Hennessy and D.A. Patterson. Computer Architecture-
A Quantitative Approach. Morgan Kaufmann, 1996.

[11] M. Lee, S. L. Min, and C. S. Kim. A worst case timing
analysis technique for instruction prefetch buffers.
Microprocessing and Microprogramming, 1994.

[12] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation
of embedded software with instruction cache modeling.
ACM Transactions on Design Automation of Electronic
Systems, 4(3), 1999.

[13] S.S. Lim, J.H. Han, J. Kim, and S.L. Min. A worst case
timing analysis technique for in-order superscalar
processors. Technical report, Seoul Nat. Univ., 1998.

[14] T. Mitra, A. Roychoudhury, and X. Li. Timing analysis of
embedded software for speculative processors. In ACM Intl.
Symp. on System Synthesis (ISSS), 2002.

[15] J. Pierce and T. Mudge. Wrong-path instruction
prefetching. In Intl. Symp. on Microarchitecture, 1996.

[16] C. Rochange and P. Sainrat. Difficulties in computing the
WCET for processors with speculative execution. In Intl.
Workshop on Worst-Case Execution Time Analysis
(WCET), 2002.

[17] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise WCET prediction by separated cache and path
analysis. Jnl. of Real Time Systems, May 2000.

[18] Fabian Wolf, Jan Staschulat, and Rolf Ernst. Associative
caches in formal software timing analysis. In ACM Design
Automation Conf. (DAC), 2002.

[19] T.Y. Yeh and Y.N. Patt. Alternative implementations of
two-level adaptive branch prediction. In ACM Intl. Symp.
on Computer Architecture (ISCA), 1992.


