
Cache-aware Optimization of BAN Applications∗
Lei Ju, Yun Liang, Samarjit Chakraborty, Tulika Mitra, Abhik Roychoudhury

Department of Computer Science, National University of Singapore
{julei, liangyun, samarjit, tulika, abhik}@comp.nus.edu.sg

Abstract
Body-area sensor network or BAN-based health monitoring is increasingly becoming a

popular alternative to traditional wired bio-monitoring techniques. However, most biomon-
itoring applications need continuous processing of large volumes of data, as a result of
which both power consumption and computation bandwidth turn out to be serious con-
straints for sensor network platforms. This has resulted in a lot of recent interest in design
methods, modeling and software analysis techniques specifically targeted towards BANs
and applications running on them. In this paper we show that appropriate optimization
of the application running on the communication gateway of a wireless BAN and accurate
modeling of the microarchitectural details of the gateway processor can lead to significantly
better resource usage and power savings. In particular, we propose a method for deriving
the optimal order in which the different sensors feeding the gateway processor should be
sampled, to maximize cache re-use. In addition, we also investigate the effects on cache
re-use of different memory layouts of the code processing the different sensor data. The
joint optimization of code layout and the order in which the different sensors should be
sampled – in order to maximize code cache re-use – turns out to be a difficult combinatorial
optimization problem. But our experiments show that optimizing the sampling order of the
sensors has a much larger influence on cache re-use, compared to the effects that different
code layouts have. Based on this, we also propose a heuristic that obtains near-optimal
solutions in jointly optimizing both code layout as well the sensor sampling order. Our
case study using a faint fall detection application – from the geriatric care domain – which
is fed by a number of smart sensors to detect physiological and physical gait signals of a
patient show very attractive power consumption in the underlying processor. Alternatively,
our method can be used to improve the sampling frequency of the sensors, leading to higher
reliability and better response time of the application.

1 Introduction
Body-area sensor networks (or BANs) and related wearable computing technologies have lately
become very popular, particularly in the context of biomonitoring applications. Well-known
projects and prototype architectures in this area include MIThril [4], CustoMed [11], Wearable

∗A preliminary version of this paper appeared in the Proc. International Conference on Hardware-Software
Codesign and System Synthesis (CODES+ISSS) 2008, and was nominated for a best paper award.

1

Figure 1: Data from different sensors triggering different parts of the application on the gateway pro-
cessor.

e-Textiles [5], Wearable Motherboard [18], e-Textile [12], and RFab-Vest [10]. Growth in this
area has been largely fueled by the recent technological advancements in embedded processors,
availability of lightweight sensor nodes, and advances in wireless networking. As a result,
BAN-based health monitoring is increasingly becoming a viable alternative to traditional wired
biomonitoring techniques, which require a patient to be hospitalized and hooked up to large
monitoring equipments.

However, most biomonitoring applications require continuous processing of large volumes
of data streams arriving through multiple sensors. As a result, both computation bandwidth and
power consumption turn out to be serious constraints while designing sensor network-based
computing platforms for high-end biomonitoring applications. This has led to a trememdous
interest in architectures, design methods and software analysis techniques specifically targeted
towards wireless BANs and wearable-computing related applications such as biomonitoring (for
example, see [6, 7, 11, 13] and the references therein).

Our contributions: In this paper we propose a disciplined method to optimize applications
running on the communication gateway of a wireless BAN by exploiting the microarchitecture
of the processor and the code layout of the application in memory. More specifically, we show
how to compute the optimal order in which the different sensors feeding data into the gateway
processor should be sampled in order to maximize the cache re-use. Techniques for optimal
code/data [17, 20] placement to maximize cache re-use – which are related to the problem we
address in this paper – have been well-studied in the embedded systems literature along with
techniques for optimally configuring a cache [8]. But the problem of optimizing applications
processing data from multiple sensors has not received sufficient attention so far. An important
difference between well-known cache-aware code/data placement techniques and the problem
we address here is that the former case is primarily concerned with static data. On the other
hand, we are concerned with data streams, where different data items trigger different parts of
the application code.

2

As mentioned above, computing the optimal sampling order of the sensors – given a code
layout in memory – is closely connected to computing the optimal code layout to maximize the
instruction cache re-use. Hence, we also consider the problem of jointly optimizing the layout
of the code processing the different sensor data, and the order in which the different sensors
should be sampled. As expected, such a joint optimization leads to a combinatorial explosion
even with relatively small problem sizes. To get around this, we have investigated – with one
concrete real-life application – the relative influences of code layout and sensor sampling order
on the instruction cache re-use. It turns out that at least for the application at hand, the sensor
sampling order has a significantly larger effect on cache re-use compared to different code
layouts. Based on this observation, we propose a heuristic for jointly optimizing both sensor
ordering as well as the code layout. Our heuristic gives near-optimal solutions and we believe
that the basis for this heuristic also holds for a wide variety BAN applications.

We have applied our method to a real-life fall detection application from the geriatric care
domain, which is fed by eight different smart sensors connected to a patient’s body. By using
a combination of physiological and physical gait signals, this fall detection application is able
to distinguish between regular motion (e.g., walking and stair climbing) and the onset of an
imminent fall. Once the possibility of such a fall is detected, various precautionary measures
can be activated or an alarm might be triggered to call for help. Hence, the application has
strict real-time requirements; an increased sampling rate of the sensors increases the reliability
and responsiveness; and finally — as with all other applications in this class — it should incur
low battery energy consumption. Clearly, these goals contradict each other and complicate
the design of both the underlying hardware and the software, especially when combined with
additional requirements like light-weight, ease of use, and small form-factor. Hence, this calls
for careful optimization and co-design of the hardware and the software. Our results show
that the order in which the eight sensors are sampled in each round (which does not affect the
functionality of the application) has a significant effect on the degree of instruction cache re-
use and hence the processing time of the sensor data. Ignoring this sampling order can lead to
up to 24.8% increased average power consumption per clock cycle in the gateway processor.
Alternatively, the reduction in processing time can be exploited to increase the sampling rate of
sensors, which leads to improved reliability and responsiveness of the application.

The above power savings were obtained with a “natural” code layout (i.e., one that was ob-
tained by compiling the code written by the application developer). By jointly optimizing the
code layout as well as the sensor sampling order, a further 3% reduction in the average power
consumption was obtained. This shows that while code layout does have an impact on instruc-
tion cache re-use (and hence power consumption), its influence is significantly lower than that
of different sensor orderings.

Overview of the proposed method: A high-level overview of our setup is shown in Figure 1.
Data from multiple wireless sensors attached to a patient’s body arrive at a battery-operated
gateway processor (also strapped to the patient), which runs various biomonitoring applications
implementing fall detection, electrocardiogram (ECG) analysis, etc. Often such applications
are run on regular personal mobile devices such as mobile phones or PDAs. However, given
that such devices usually have large form-factors and short battery life, there is an increasing
trend towards building customized gateways that have been tailored for specific biomonitoring

3

applications. We assume such an application-specific gateway having a lightweight processor
(running at 60 - 80 MHz) with a small instruction cache.

Depending on the sensor from which the data arrives, different parts of the application code
are triggered. However, often there is a significant overlap between the codes corresponding
to two different sensors. As the processing time of any sensor data depends on the state of
the instruction cache (that is determined by the previously executed code blocks), the specific
order in which data from different sensors is processed has a significant impact on the number
of instruction cache misses and hence the processing time. Towards this, our cache modeling
relies on fixed-point construction-based analysis of program semantics [16] and is similar to
the ones used for estimating the so-called cache-related preemption delay (see [15]). When the
number of sensors in question is relatively small, it may be feasible to exhaustively enumerate
all possible sensor orderings, compute the processing time corresponding to each of these order-
ings by accurately modeling the instruction cache states, and finally select the ordering with the
smallest processing time. However, this scheme breaks down when the number of sensors start
increasing. For high-end biomonitoring applications, the number of sensors can easily exceed
20 (e.g., 12 sensors for ECG monitoring [13] plus 8 sensors for our fall detection application).
For these many sensors, it is easy to see that exhaustively enumerating all possible sensor order-
ings can be ruled out. For such problems, we rely on modeling the instruction cache re-use from
the last one sensor only. In other words, given an ordering of sensor nodes . . . , Si, Sj, Sk, when
estimating the maximum execution time of the code for Sk, only the cache state resulting from
processing Sj’s data is accounted for; we ignore the cache state resulting from processing the
data from Si and all previous sensors. Although this leads to some (safe) over-approximation
of the processing time, this is done in order to contain the complexity of the problem. With
this restricted cache modeling, our problem can be formulated as a standard traveling salesman
problem (TSP). However, unlike versions of TSP that are anemable to reasonable approxima-
tions, the TSP arising in our case is a non-metric, asymmetric TSP that cannot be approximated
within any factor [3]. Hence, we have used the well-known Lin-Kernighan local search heuristic
(LKH) [3], which is known to perform well for this class of TSP problems [9].

Apart from the sensor ordering, we also study the impact of code layout on the power
consumption in our bio-monitoring application. Clearly, the maximum power savings can be
obtained by jointly choosing a code layout and a sensor ordering. However, this leads to a
combinatorial explosion. Hence we develop a heuristic to choose a near-optimal code layout.
The heuristic works on a weighted cache conflict graph whose nodes are procedures, and the
edge weights capture cache misses incurred due to instruction cache interference by two given
procedures. Based on this cache conflict graph, a code layout is obtained where the procedure
causing maximum cache evictions is placed first, and procedures causing lesser cache evictions
are placed later. We then find the best sensor ordering for the code layout thus obtained. Our
experiments on the fall detection application suggest (a) the impact of sensor ordering on the
power consumption far exceeds the impact of code layout, and (b) our heuristic for code layout
exploration finds the best possible code layout in terms of power savings.

Organization of this paper: In the next section we describe our fall detection application in
detail, followed by our cache modeling technique in Section 3 in conjunction with the exhaus-
tive search for determining the optimal sensor ordering. We then present our restrictive cache

4

Figure 2: Structure of the fall detection application.

modeling and discuss how it is used along with the LK heuristic. Experimental results are pre-
sented in Section 5. Finally, we conclude in Section 6 by discussing some directions for future
work.

2 Case-Study Application
Any wearable fall detection system typically employs physical motion sensors such as tri-axial
accelerometers and gyroscopes. The fall detection system we examine as a case study consists
of one tri-axial (3D) MEMS accelerometer plus one gyroscope on the thigh position and another
accelerometer on the waist position. The sensitivity axes of each accelerometer is arranged in
lateral, vertical, and antero posterior directions. The gyroscope provides 2D angular (lateral
and sagittal) motion information. Overall we have eight streams of sensor signals coming in
from the physical motion sensors (lateral, vertical, antero-posterior for each accelerometer and
lateral, sagittal for gyroscope) to the gateway device through ZigBee (802.15.4) wireless com-
munication protocol. The sensor signals are sampled at 300 samples per second to detect the
onset of falls. The fall detection algorithm runs on the gateway device. In the event that the
onset of a fall is detected, the fall safety system is engaged that may attempt to minimize the
injury through airbag inflation or prevent the fall through muscle constriction. In any case, the
gateway device notifies the incident to the heath care providers or relative of the patient via
mobile telephone networks (GPRS, 3G, etc.) or wireless LAN.

The algorithm implementing fall detection first needs to transform the 3D accelerometer
data to 2D angular data (lateral and sagittal). Next, it marks an angular motion of the thigh
beyond a threshold as a “possible” onset of fall. For each such possible onset of fall, the corre-
lation between thigh and waist angles as well as pattern matching of gyroscope angle (against
reference values obtained from a number of actual falls) are used to eliminate false positives. A
high-level overview of the functionalities of this application appears in Figure 2.

Let us now examine the code sharing pattern among the program paths exercised by the eight
different sensors in this application to intuitively understand the opportunities for instruction
cache reuse. Figure 3 shows the different modules (procedures or functions) for a small frag-

5

Figure 3: A fragment of the application with different sensor data exercising different paths through the
application.

ment of the application code. Each of the sampled sensor data first undergoes discrete wavelet
transformation by going through two complimentary filters (a low-pass filter and a high-pass
filter). However, the coefficients for the acclelerometer signals and gyroscope signals are quite
different. So we have two different coefficient selection modules. Next, the accelerometer sig-
nals are calibrated and the calibration process is different for each signal. Finally, each 3D
accelerometer signal is converted to 2D angular motion data by going through the appropriate
3D → 2D module.

Figure 3 also shows the modules exercised to process the lateral motion from the waist
accelerometer say S (left path) and the lateral motion from the gyroscope say S ′ (right path).
Clearly, the processing of these two sensor data shares the FIR filter code. If S ′ is processed
after S, then S ′ can take advantage of the common code left in the instruction cache by S (such
as FIR filter code). Moreover, in this small fragment of the application, it is quite obvious that
sampling the accelerometer signals first followed by gyroscope signals will provide maximum
opportunities for cache reuse (as the code for coefficient selection may be reused in addition
to FIR filter). In general it is non-trivial to manually identify the optimal sampling order of
the different sensors for maximal cache re-use, especially when the number of sensors is large
and/or the application is complex.

Traditional code optimization approaches are oblivious to the context in which a sensor data
is being processed. In other words, the processing of each sensor data is considered in isolation.
Thus these code optimization techniques fail to exploit the cache reuse opportunities opened
up by code sharing among the processing tasks of the different sensors. In the next section we
present a systematic methodology to exploit maximal cache reuse through optimal sampling
order of the sensors.

3 Choosing a Sensor Ordering
In this section, we describe our optimization scheme based on micro-architectural modeling,
in particular, cache modeling. Further, we determine the order in which the different sensors
should be sampled to maximize the guaranteed cache re-use. As an example, consider two
sensors S and S ′ — which are processed by programs P and P ′. If the two programs are
completely disjoint, we do not encounter any instruction cache re-use (owing to the execution

6

of P) while executing P ′. However, typically, the processing of different pieces of sensed data
share (a lot of) common code. Consequently, there is non-trivial cache re-use from the execution
of P while we are executing P ′. However, since P and P ′ are programs with many possible
execution traces, the cache re-use (the number of cache hits thus accrued) is not a constant.
Depending on the exact value of the sensor data — both P and P ′ may execute different paths.
Executing a trace π1 of P just prior to a trace π′1 of P ′ may produce many additional hits over
executing some other trace π2 of P prior to another trace π′2 of P ′. Therein lies our notion of
guaranteed cache re-use. The guaranteed cache re-use of a given ordering of sensors S1, . . . , Sk

stems from the commonality of the processing code for S1, . . . , Sk irrespective of the paths
executed in these processing codes. Note that this involves static program analysis (we are
analyzing the programs processing the sensor data). The static analysis results are used to find
a sensor ordering which maximizes the guaranteed cache re-use.

3.1 Cache Behavior Summarization
We now formally describe our static analysis method for computing cache behavior summary
for a given application program. To model cache behavior, we first need the notion of a cache
state. For simplicity of notation, let us assume a direct-mapped cache; the analysis can be
straightforwardly extended for set-associative caches. For a direct-mapped cache with n blocks,
a cache state cs is simply a mapping {1, . . . , n} → M∪{⊥}, where M is the set of code memory
blocks being mapped to cache, and ⊥ indicates the situation where a cache block is empty. As
a notational shorthand, we use cs[i] to denote the content of the ith cache block in cache state
cs.

Now, let us consider a program processing a particular sensed data. In order to statically
summarize the overall cache behavior, we associate program points or control locations in the
program with sets of cache states. We develop and use two quantities: Reaching Cache States
(RCS) and Live Cache States (LCS).

Definition 1 (Reaching Cache States) For a program point p in a program Prog, the set of
reaching cache states RCS(p) is defined as the set of cache states with which p can be reached
(via any incoming path to p in Prog).

Definition 2 (Live Cache States) For a program point p in a program Prog, the set of live
cache states LCS(p) is the set of possible first references to cache blocks via any outgoing path
from p in Prog.

Given any program point p in program Prog, the quantities LCS(p) and RCS(p) are computed
by exploring the paths to/from p in the control flow graph of Prog. This is done efficiently
(without path enumeration) by (i) associating each program point with a LCS/RCS, (ii) defining
the RCS of a program point using the RCS of its predecessors, and (iii) defining the LCS of
a program point using the LCS of its successors. As a program contains loops, the above will
produce a set of recursive equations on LCS/RCS that needs to be solved iteratively. Assuming
empty cache at the beginning of the program, we can iteratively solve the recursive equations
for LCS and RCS separately. This is done, until the LCS and RCS estimates at each program
point is stable – that is, until the iterative computation reaches a fixed-point.

7

Figure 4: Computing Guaranteed Cache Re-use.

The resultant RCS estimate for the exit point of the program is denoted as RCS(Prog);
these are the possible cache states at the end of the program. Similarly, the LCS estimate at the
entry point of the program is denoted as LCS(Prog); these are the possible first references to
cache blocks during the program’s execution. Given a program Progi processing a particular
sensed data Si, the quantities RCS(Progi) and LCS(Progi) form the summary of the cache
behavior for Progi. Details of LCS and RCS computation for a program appear in [15].

3.2 Composition of Cache Summaries
Consider the processing of various sensed data S1, . . . , Sk where the processing of Si is done
by application Progi. In reality, for i 6= j, applications Progi and Progj are not disjoint —
they share non-trivial chunks of code. In the preceding, we have shown the cache behavior
summarization of each individual application. Now we compose these cache summaries to
tightly estimate the cache re-use from a given ordering of processing. When we say a given
ordering S1, . . . , Sk we mean that (i) data from these sensors are repeatedly obtained over many
“rounds”, and (ii) in each round, the sensed data in that round are processed by executing Prog1,
followed by Prog2, . . . , followed by Progk.

So, we need to estimate the minimum guaranteed cache re-use resulting from the execution
of Prog1, . . . , P rogk. At this stage, we are determining the cache behavior across applications.
The cache behavior within an application is already summarized by the LCS/RCS quantities.
The cache behavior across applications can be intuitively captured by queries like the following.

• Given the execution of Prog1, . . . , P rogi, what is the guaranteed cache re-use when we
execute Progi+1?

To answer the above query, let us try to estimate the set of possible cache states after the
execution of Prog1, . . . , P rogi. For this purpose, we define a simple operation over cache

8

blocks. Note that a cache block’s content is drawn from M ∪ {⊥} where M is the set of
memory blocks and ⊥ is a symbol denoting empty cache block. We define:

m⊕m′ def
=

{
m′ if m′ 6=⊥
m otherwise

Thus m⊕m′ is m′ (the later content) unless it is empty. As a cache state is essentially a vector of
cache block contents, the above operation can be lifted to cache states by applying the operation
point-wise to individual cache blocks.

(cs⊕ cs′)[i]
def
= cs[i]⊕ cs′[i] 1 ≤ i ≤ n

The operation can now be further lifted to sets of cache states CS, CS ′ as CS ⊕ CS ′
def
=

{cs ⊕ cs′ | cs ∈ CS, cs′ ∈ CS ′}. Using this operator, the set of possible cache states after the
execution of Prog1, P rog2 is simply RCS(Prog1) ⊕ RCS(Prog2). That is, the set of cache
states is drawn from the execution of Prog2 (the application last executed), but for empty cache
blocks their content is derived from RCS(Prog1). In a similar way, the set of cache states after
the processing of sensed data S1, . . . , Si (i.e., after executing Prog1, P rog2, . . . , P rogi) is

Reach1...i = RCS(Prog1)⊕RCS(Prog2)⊕ . . .⊕RCS(Progi)

Given the above set of cache states after the execution of Prog1, . . . , P rogi, what is the
minimum number of guaranteed cache hits when Progi+1 is executed? To answer this, we
need to see how the cache states at the end of Prog1, P rog2, . . . , P rogi can help (in terms
of achieving cache hits) the possible first references to cache blocks in Progi+1. Recall, the
possible first references to cache blocks in an application is summarized by the LCS of the
application. So, the hit/miss scenarios encountered in Progi+1 due to the prior execution of
Prog1, . . . , P rogi is

Reach1...i ¯ LCS(Progi+1)

where Reach1...i is as defined in the preceding (using RCS quantities) and the operator¯ defines
cache state equality as follows. Given cache states cs, cs′ we get a vector of boolean values as
follows: (cs ¯ cs′)[i]

def
= (cs[i] == cs′[i]). Thus, cs ¯ cs′ checks whether the cache states

cs, cs′ are equal; for each cache block that is equal in content it stores the boolean value true
(otherwise false). We can lift the ¯ operation over sets of cache states CS, CS ′ in the usual
way: CS ¯ CS ′

def
= {cs¯ cs′ | cs ∈ CS, cs′ ∈ CS ′}

Hence, the set Reach1...i ¯ LCS(Progi+1) summarizes all the hit/miss scenarios for the
first cache block accesses in Progi+1 owing to the prior execution of Prog1, . . . , P rogi. The
minimum guaranteed number of cache hits is given by:

minh∈Reach1...i¯LCS(Progi+1) |h|
where h is a vector of boolean values in Reach1...i¯ LCS(Progi+1) and |h| is the number of
occurrence of true in the boolean vector h.

A schematic explanation of the guaranteed cache re-use computation appears in Figure 4.
Here we show the processing of three sensors S1, S2, S3 and the guaranteed cache re-use en-
countered while processing S3 assuming prior processing of S1, S2. We have shown a direct-
mapped cache with only two blocks for simplicity of explanation. Effect of the prior processing

9

of S1, S2 is captured by RCS(S1) ⊕ RCS(S2). This set is computed by applying the ⊕
operator pairwise to the members of RCS(S1) and RCS(S2). Thus 〈⊥,m2〉 ⊕ 〈m1,⊥〉 =
〈m1,m2〉. Once RCS(S1)⊕ RCS(S2) has been computed, we check for cache state equality
with LCS(S3), the possible first references to cache blocks in the processing of S3. Again,
(RCS(S1)⊕RCS(S2))¯LCS(S3) is computed by applying the¯ operation pairwise. Thus,
by applying ¯ to 〈m1,m2〉 (a cache state in RCS(S1) ⊕ RCS(S2)) and 〈m5, m2〉 (a cache
state in LCS(S3)), we get the boolean vector 〈false, true〉 signifying a cache hit in the second
cache block. By analyzing all such possible hit/miss scenarios (in this simple example there
are only two of them as shown in Figure 4), we calculate the number of guaranteed cache hits
during the processing of S3 due to the prior processing of S1, S2.

In the preceding discussion, we have detailed the cache behavior summarization for (a) any
one application, and (b) across many applications, provided an ordering for their execution is
given. We now describe how these cache behavior summaries can be exploited to produce an
“optimal” ordering of the applications’ execution. The generated ordering is optimal in the
sense that it maximizes cache re-use.

3.3 Determining Optimal Composition Order
For an application with k sensors, in each ordering S1, . . . , Sk, the cache re-use can be calcu-
lated as: k−1∑

j=1

(minh∈Reach1...j¯LCS(Progj+1)|h|)

We can compute the cache re-use for all k! different orderings and find the “optimal” order-
ing with maximum cache re-use. However, for larger number of sensors, such an exhaustive
search becomes infeasible. We propose to convert our problem of finding the “optimal” order-
ing into the well-known Traveling salesman problem (TSP). Given k sensed data for processing,
(S1, . . . , Sk), we define a complete graph G where each vertex represents a sensor. The weight
w(Si → Sj) of the edge Si → Sj represents the guaranteed number of cache hits encountered
while processing Sj owing to the processing of Si immediately prior to it. Thus

w(Si → Sj)
def
= minh∈RCS(Progi)¯LCS(Progj)|h|

Thus, we are only considering the application program Progi that executed immediately before
Progj . We are not considering in the execution history which application program(s) executed
prior to Progi. Thus, the guaranteed cache re-use estimated by us will be a (safe) underestimate
of the actual cache re-use. However, this under-estimation is relatively small, and ignoring it
still produces near-optimal results. Finally, note that w(Si → Sj) 6= w(Sj → Si) as the cache
re-use of Si from Sj could be different from the re-use of Sj from Si.

For a small fragment of our fall detection application, Table 1 shows the guaranteed number
of cache hits for the task associated with sensor Sj if the immediately preceding sensor whose
data was processed is Si. The guaranteed cache hits for the optimal sampling order are indicated
in bold face. It may be noted that even for such relatively few sensors, determining this order
optimally in an ad hoc trial-and-error fashion might not be possible. Therefore, we formulate it
as a TSP.

10

Sj

s1 s2 s3 s4 s5 s6 s7 s8
s1 - 45 34 36 45 45 17 18
s2 29 - 24 25 32 34 16 19

Si s3 11 16 - 16 14 16 13 11
processing s4 39 39 28 - 37 38 14 15

order: s5 43 48 37 39 - 48 20 21
(Si, Sj) s6 21 26 24 17 24 - 8 18

s7 33 38 28 29 36 38 - 23
s8 25 30 23 22 28 30 21 -

Best ordering: 240 cache hits for (S8, S7, S2, S4, S1, S5, S6, S3)

Table 1: Guaranteed cache reuse from previous sensor task.

TSP is defined as finding a hamiltonian cycle (a tour) of a graph G with minimum cost.
To solve our problem as a TSP, we need to make the following modifications. (1) TSP finds
hamiltonian cycles where each node is visited exactly once. However, our problem of searching
for the best ordering is to find an acyclic path in the graph, where each node is visited exactly
once. Hence, we add a dummy node Sk+1 to G. Edges Sk+1 → Si and Si → Sk+1 are set with
weight 0 for all nodes Si (1 ≤ i ≤ k). The dummy node tells us where to break the cyclic tour
to generate the optimal linear ordering. (2) While TSP returns a tour with the minimum cost,
we need to find a path with maximum cost instead (maximum cache re-use). Hence, for each
edge, weight w(Si, Sj) is modified to Const − w(Si, Sj) for all edges, where Const is a large
constant bigger than any edge weight of G.

After these two modifications above, we apply the well-known Lin-Kernighan local search
heuristic (LKH) [9] to find the tour of G with minimum cost. LKH is known to perform well
for non-metric, asymmetric TSP; it produces near-optimal results for our experiments as well.

4 Code Layout Exploration
In this section, we develop a heuristic to find a near-optimal code layout. Since jointly opti-
mizing for code layout and sensor ordering leads to combinatorial explosion — we find a code
layout and then find the best sensor ordering for the code layout thus found.

Let us step back and find out why at all code layout is an issue in terms of cache optimization
of a given application. For a BAN application and a particular hardware configuration, the in-
struction cache utilization depends on not only the ordering of sensor tasks been processed, but
also the application’s code layout in the memory. Consider two sensor tasks S1 and S2, which
execute the function sequences (A,B,C) and (D,B, E) respectively. Suppose instructions in
functions A, B, and D are all mapped to the same instruction cache blocks (assuming a direct
mapped cache). In this case, neither sensor ordering (S1, S2) nor (S2, S1) gives any cache reuse
due to the second invocation of function B, since instructions of function A or D will replace
B’s cached instructions after its first invocation.

Cache-aware code placement is a well studied compiler optimization to increase instruction
cache utilization, and hence improve the overall performance of an application. [20] performs

11

���������	
�
��
������
��
�������
�

�	
�
�	
�
�	
�
�

��
�������
��
�������
�

�	
�
�	
�

�
�
�
�
�
�

 !���"�
����	

�	

#���������$

�	
�
%	
�
�
���&�����''�
��
��
�(����

��
)	
��*	
��+	
�

,

�
-
.

�	

�	

Figure 5: Call frequency based procedure placement.

code placement based on program execution profile information, which reduces the cache miss
rates for average case execution time (in contrast to the worst case analysis in our problem
setting). In [20], the code placement is done at basic block level, so that additional branching
statements need to be inserted into original code, which increases the code size. The work of
[14] proposes an iterative approach targeting for WCET reduction via procedure positioning.
Based on the call graph and call frequencies information of the WCET path for current program
layout, the analysis tries to find the next program layout with a smaller WCET by placing
procedures with high call frequencies contiguously in memory (so that they do not conflict with
each other in the cache). However, call frequency based procedure placement techniques (e.g.,
[19], [14]) do not fit for the specific BAN application we are trying to optimize in this paper.
Figure 5 shows an example of procedure placement using call frequency based approach for a
direct mapped instruction cache. Suppose procedure B() is a common task invoked by main()
for processing each sensor task. Thus, the highest call frequency in the call graph is between
main() and B(). However, placing main() and B() contiguously in the code memory does not
give a good instruction cache utilization, because procedures called by main() in between two
consecutive invocations of B() (e.g., C() and D() in Figure 5) can be mapped to the same cache
blocks as B() and cause subsequent invocations of B() to incur cache misses. In other words,
for the particular sensor processing ordering (S1, S2), even though procedure C() and D() are
not invoked by B(), their relevant positions to B() must be considered in order to improve the
cache behavior.

Our problem of cache performance optimization of BAN application is more complex than
previously studied code placement-based optimizations. The maximum guaranteed cache reuse
in one execution of the application (which leads to a tight WCET result) depends on both the
sensor task processing ordering and application code layout. The two factors are correlated to
each other, which makes the joint optimization a difficult problem. For the application con-
sisting of 42 procedures and 8 different sensor tasks (to be processed in any order), the design
space contains (42!× 8!) different combinations of possible procedure layout and sensor order-
ing, which makes the full-space searching for an optimal combination infeasible. In this paper,

12

��
�������
����	��

�

��
����
�
��
��

��
�����	�
����
��

�	
��	����
�	��
��

��

	�

�

��

(a) I-cache conflict graph (b) Our “good” layout (c) Another worse layout

Step 1: p3�[c0-c39]
Step 2: p3�[c0-c39]

p2�[c40-c59]
Step 3: p3�[c0-c39]

p2�[c40-c59]
p4�[c60-c63],[c0-c31]

Step 4: p3�[c0-c39]
p2�[c40-c59]
p4�[c60-c63],[c0-c31]
p1�[c32-c63],[c0-c19]

Eviction on p3 due to p1: 28
Eviction on p2 due to p1: 20
Total cache evictions: 48

Step 1: p3�[c0-c39]
Step 2: p3�[c0-c39]

p4�[c40-c63],[c0-c11]
Step 3: p3�[c0-c39]

p4�[c40-c63],[c0-c11]
p1�[c12-c63]

Step 4: p3�[c0-c39]
p4�[c40-c63],[c0-c11]
p1�[c12-c63]
p2�[c0-c19]

Eviction on p3 due to p1: 28
Eviction on p2 due to p1: 8
Eviction on p3 due to p2: 80
Eviction on p2 due to p3: 60
Total cache evictions: 176

(a) I-cache conflict graph (b) Our “good” layout (c) Another worse layout

Figure 6: Example I-cache conflict graph and possible code layouts.

we propose a simple heuristic to find a near-optimal layout, then use the technique described in
Section 3.3 to find the optimal sensor ordering for this layout.

4.1 Cache Conflict Graph
Our greedy heuristic approach to generate a near-optimal layout is based on an instruction
cache conflict graph G = 〈V, E〉. A node v ∈ V represents a procedure in the application,
and is associated with its (maximum) invocation count Nv in one complete execution of the
application. A directed edge ei→j ∈ E from node vi to vj is weighted with number of maximum
possible additional cache misses incurred by vj due to possible calls to vi in between consecutive
invocations of vj . Let SZv denotes the size (number of instructions) of procedure v, the weight
of edge ei→j can be calculated as:

Wei→j
= min{Nvi

, (Nvj
− 1)} ×min{SZvi

, SZvj
}

since the number of time vj’s cached instructions get replaced by vi’s instruction depends on
the minimum between Nvi

and Nvj
− 1 (due to the cold miss of vj’s first invocation); and for

each such interference, number of vj’s instructions replaced by vi is bounded by the minimum
size of procedures vi and vj . Clearly, for procedures only invoked once during the application’s
execution, all incoming edges are weighted with 0. Furthermore, for pairs of procedures that
are guaranteed to have mutual exclusive lifetime, the cache conflicts between them are set to be
0. For example in the code shown in Figure 5, procedures X(), Y () and Z() are invoked only
after execution of all individual sensor processing tasks. Regardless of the sensor ordering,
these procedures will not cause any cache conflicts with sensor processing tasks (e.g., B()).
Figure 6(a) shows an example of a cache conflict graph with four nodes (procedures). Edges
are labeled with the conflict values between two nodes, and dashed edges are with weight 0. For
instance, v4’s lifetime is assumed to be mutual exclusive with the remaining three procedures,
thus all edges connecting from (to) v4 are assigned a weight 0.

13

Algorithm 1 Greedy algorithm to generate a near-optimal layout
1: INPUT: A set P of all procedures (excluding main()) in the application program
2: OUTPUT: A optimized program layout (procedure ordering) L
3:
4: L = ∅
5: G = buildConflictGraph(P)
6: initProc = maxConflict(G)
7: append(L, initProc)
8: repeat
9: nextProc = ∅; minConflict = +∞
10: for (each unplaced procedure pi ∈ P) do
11: tmpConflict = computeConflict(L,pi,G)
12: if (tmpConflict < minConflict) then
13: nextProc = pi

14: else
15: if (tmpConflict == minConflict) then
16: nextProc = chooseProc(pi,nextProc,G)
17: end if
18: end if
19: end for
20: append(L, nextProc)
21: until (all procedures p ∈ P are placed into L)
22: append(L, main())

4.2 Greedy Algorithm to Produce a Layout
The greedy algorithm to generate a near-optimal code layout (with the goal of reducing misses
in the instruction cache) is shown in Algorithm 1. The above-mentioned instruction cache
conflict graph G is initially built based on the information of procedures and corresponding
lifetimes (Line 5). The procedure in G with maximum aggregated sum of incoming edges’
weight is chosen (Line 6) and appended to the program layout L (Line 7). Subsequently, the
remaining procedures are appended to the end of L one at a time (Line 8 - 21). In each iteration,
each remaining procedure is tested on the maximum cache evictions on the existing placed
procedures in L if it is placed at the end of L (Line 11). Given procedure p and existing
procedure p′ in the layout L, the maximum cache eviction on p′ because of appending p is the
number of interferences between p and p′ multiplied by the actual layout conflicts by taking
the layouts of p and p′ in L into account. The procedure results in minimum cache eviction is
chosen to append to L (Line 20). If multiple remaining procedures cause the same number of
cache conflicts, a heuristic is applied to choose the procedure with maximum aggregated sum
of all its outgoing edges’ weights (Line 16).

We illustrate the algorithm using the cache conflict graph example shown in Figure 6(a).
We assume a direct mapped instruction cache with 64 cache blocks [c0, ...c63]. Without loss of
generality, we also assume the starting memory address of the first procedure in the generated
layout is mapped to cache block c0. Figure 6(b) shows the steps and final output layout from
our greedy algorithm. Procedure p3 is first added into the memory layout and mapped to cache
blocks [c0 − c39]. Placing either p2 or p4 next to p3 will result in 0 cache eviction. Due to our
heuristic at Line 16, p2 is placed in the second step, which is mapped to cache blocks [c40−c59].
p4 is placed after p2, which cause no cache eviction on p3 and p2 according to the cache conflict
graph. Finally, p1 is placed after p4, and mapped to cache blocks [c32 − c63] and [c0 − c19],
which causes 28 cache evictions on p3 (sharing cache blocks [c0− c19] and [c32− c39]) and 20
evictions on p2 (sharing cache blocks [c40 − c59]). On the other hand, without the heuristic at

14

2780

6364

9955 10004

6888

2901
6000

9000

12000

15000

se

ns
or

 o
rd

er
in

gs

72 763

2780 2901

593
0

3000

220157-
221287

221287-
222417

222417-
223547

223547-
224677

224677-
225807

225807-
226937

226937-
228067

229197-
230327

230327-
231457

se

ns
or

 o
rd

er
in

gs

processor requirements (#processor cycles)

Figure 7: Execution requirements for different sensor orderings.

Line 16, if any procedure with minimum cache evictions with p3 is chosen to be placed at step 2
(e.g., p4), the generated layout may result in a worse cache behavior (as shown in Figure 6(c)).

Finally, recall that given the code layout produced by Algorithm 1, we will employ the
methods presented in Section 3 to find the best sensor ordering for this layout.

5 Experimental Results
We have conducted two different classes of experiments. The first using the full-fledged fall
detection application that was described in Section 2. Here, our experiments illustrate the utility
of our proposed cache modeling in tightly estimating the gateway processor’s minimum clock
frequency and reducing its power dissipation. Our second class of experiments are based on
synthetic data and a larger number of sensors (15 - 20 in number). Here, our main goal is to
illustrate the minimal loss in accuracy as a result of the restrictive cache modeling.

Experimental Setup for Fall Detection Application Recall that our application has three
sensor inputs from the accelerometer and two from the gyroscope attached to the thigh, and
three sensor inputs from the accelerometer attached to the waist (Figure 2). For the gateway, we
have assumed a light-weight processor with single-issue in-order pipeline, 1 KB direct-mapped
instruction cache (128 cache sets, 8 bytes block size) and 100 cycles cache miss penalty. We
have also used a “natural” code layout that resulted from compiling the original C code of the
application using SimpleScalar GCC compiler [1]. For all power estimates, we used Wattch [2]
along with the SimpleScalar instruction set simulator.

Power Savings due to Sensor Ordering Our experimental results show that for the original
natural code layout, the number of processor cycles required for processing all the data from
one round of sampling (i.e., one data sample from each of the eight sensors) is equal to 248,657
cycles, when no inter-application (i.e., processing code for different sensors) cache reuse is
modeled. In other words, the instruction cache is assumed to be empty before the applica-
tion code for each sensor starts executing. With inter-application cache modeling, an optimal
ordering of the sensors results in 220,157 cycles, whereas the worst-case ordering results in

15

5000

10000

15000

20000

25000

M
em

or
y

la
te

nc
y

(c
yc

le
s)

0

5000

1 2 3 4 5 6 7 8

M
em

or
y

la
te

nc
y

(c
yc

le
s)

sensor
w/o cache modeling w/ cache(worst sensor ordering) w/ cache(best sensor ordering)

Figure 8: Memory latency reduction for sensor data processing tasks.

231,457 cycles. Note that the chances of an arbitrary ordering being close to the optimal is
fairly low. This is illustrated in Figure 7 where the range of execution requirements (i.e., num-
ber of processor cycles) for one round of processing has been partitioned into 9 equal-sized
bins (horizontal axis). Each bar in this figure represents the number of sensor orderings that
result in the execution requirement corresponding to the associated bin. The bin with the lowest
execution requirement (first bin) contains only 72 of the 8! different possible sensor orderings.
This illustrates the need for a systematic approach to optimize the sensor sampling order. The
importance of accurate cache modeling is illustrated in Figure 8, which shows the memory la-
tencies (in number of processor cycles) for the tasks associated with the different sensors, with
and without cache modeling. It also shows the reduction in memory latency with optimal order-
ing (except for sensor 8, which being the first sensor in this ordering cannot exploit any cache
reuse). With a sampling rate of 300 samples/sec and no inter-task cache modeling, the processor
is estimated to be clocked at 74.6 MHz. With the same sampling rate, but with inter-task cache
modeling the estimated minimum clock frequencies drop to 69.5 MHz and 66.1 MHz for the
worst and the best sensor orderings. Hence, without accurately modeling the instruction cache
and ignoring the sampling ordering of the sensors can lead to running the processor at a 13%
higher clock frequency. We simulate the applications over 100 rounds using Wattch and com-
pute the average power consumption. As a result, by running the original application (natural
code layout) with the optimal sensor processing ordering, the average power consumption can
be reduced by a factor of 19.88%.

Power Savings due to Code Layout Our application contains 42 procedures, which makes
it infeasible to exhaustively search all possible code layouts and their corresponding best-case
sensor orderings in order to obtain the optimal cache optimization solution (42! × 8! combi-
nations). We have randomly generated 100,000 different layouts and calculated WCET of the
application with best-case sensor ordering for each of these layouts. Figure 9 shows the WCET
distribution of the 100,000 layouts. The “best” layout among them gives WCET of 214,157 with
its best-case sensor ordering, which is 2.7% smaller than the WCET of natural code layout. We

16

819

12372

31512

22034

10195 10631 9707

2730

0

6000

12000

18000

24000

30000

214K-
216K

216K-
218K

218K-
220K

220K-
222K

222K-
224K

224K-
2226K

226K-
228K

228K-
230K

ra

nd
om

 la
yo

ut
s

processor requirements (#processor cycles)

Figure 9: WCET with best-case sensor ordering for 100,000 random code layouts of the application.

have also applied the heuristic algorithm as described in Section 4.1 to produce a code layout.
WCET of our generated layout with best-case sensor ordering is 215,657 (2.3% smaller than the
WCET of natural code layout). Based on the required sampling rate of 300 samples/sec, mini-
mum clock frequency to execute our application with this “good” layout is 64.7 MHz, leading
to a total 22.93% reduction on average power consumption (comparing with running the proces-
sor at 74.6 MHz for natural code layout without sensor ordering optimization). Choice of code
layout only achieves additional 3.05%(22.93%-19.88%) average power consumption reduction
comparing to natural layout.

Experiments with Synthetic Datasets For large number of sensors, exhaustively enumerat-
ing all possible sensor orderings is not feasible. Hence, we rely on the TSP formulation of the
problem (as described in Section 3.3) to identify the optimal ordering. The question remains
about the quality of the solutions returned by this TSP formulation. There are two sources of
approximations in this formulation: (1) it maintains a limited cache history, and (2) it applies
the LK heuristic to solve the TSP problem. While the sub-optimality due to the LK heuristic
is a well studied issue (see [3]), the effect of the first approximation is unknown. First, we
observe that for our case study, there exists up to 5% additional guaranteed cache reuse beyond
the immediate predecessor sensor. But the TSP formulation returns identical sensor orderings
as the exhaustive search.

To confirm the generality of this result, we modeled cache reuse beyond just the immedi-
ate predecessors in an experiment with synthetic data. We assigned random weights (within
appropriate constraints) for cache re-use between two sensor nodes as well as three sensors se-
quences. However, as cache sizes in gateway devices are quite small, we do not model cache
reuse beyond two sensor nodes. We compare the quality of the solutions (in terms of guaranteed
cache hits) returned by TSP formulation and exhaustive search for 12 sensor nodes. The TSP
formulation returns optimal or near-optimal solutions (with more than 95% accuracy) in all the
cases. Moreover, we observed that exhaustive search is scalable only up to 15 sensors. But our
TSP formulation in conjunction with the LK heuristic returns an ordering within few seconds
for hundreds of sensors.

17

6 Concluding Remarks
In this paper we have proposed a methodical cache-aware optimization technique for wire-
less Body area Networks (BANs). Our results — with a real-life fall detection application for
the elderly — show that appropriate modeling of the gateway processor’s cache, coupled with
carefully determining the order in which the sensors are sampled can lead to significant energy
savings. Moreover, we also observed that near-optimal code placement strategies in conjunction
with an appropriate sensor ordering further improves execution time and energy consumption
estimates of our biomonitoring application.

7 Acknowledgments
This work is supported by A*STAR SERC project R-252-000-258-305. We would like to thank
Francis Eng Hock Tay and Nyan Myo Naing for sharing the fall detection application with us.

References
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system

modeling. IEEE Computer, 35(2), 2002.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level
power analysis and optimizations. In ISCA, 2000.

[3] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill, 2006.

[4] R. W. DeVaul et al. MIThril 2003: Applications and architecture. In International Sym-
posium on Wearable Computers, 2003.

[5] J. Edmison et al. E-Textile based automatic activity diary for medical annotation and
analysis. In International Workshop on Wearable and Implantable Body Sensor Networks,
2006.

[6] I. Al Khatib et al. A multiprocessor system-on-chip for real-time biomedical monitoring
and analysis: Architectural design space exploration. In DAC, 2006.

[7] E. Farella et al. A wireless body area sensor network for posture detection. In IEEE
Symposium on Computers and Communications, 2006.

[8] A. Ghosh and T. Givargis. Cache optimization for embedded processor cores: An ana-
lytical approach. ACM Transactions on Design Automation of Electronic Systems, 9(4),
2004.

[9] P. Gupta, A. B. Kahng, and S. Mantik. Routing-aware scan chain ordering. TODAES,
10(3), 2005.

18

[10] R. Jafari et al. Adaptive and fault tolerant medical vest for life-critical medical monitoring.
In ACM Symposium on Applied Computing, 2005.

[11] R. Jafari et al. Wireless sensor networks for health monitoring. In International Confer-
ence on Mobile and Ubiquitous Systems, 2005.

[12] J.-C. Kao and R. Marculescu. On optimization of e-textile systems using redundancy and
energy-aware routing. IEEE Trans. on Computers, 55(6), 2006.

[13] I. Al Khatib et al. Performance analysis and design space exploration for high-end biomed-
ical applications: Challenges and solutions. In CODES+ISSS, 2007.

[14] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven Cache-based Procedure Posi-
tioning Optimizations.

[15] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related preemp-
tion delay. In CODES+ISSS, 2003.

[16] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 2004.

[17] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory data organization for improved cache
performance in embedded processor applications. TODAES, 2(4), 1997.

[18] S. Park, K. Mackenzie, and S. Jayaraman. The wearable motherboard: A framework for
personalized mobile information processing (PMIP). In DAC, 2002.

[19] K. Pettis and R.C. Hansen. Profile guided code positioning. ACM SIGPLAN Notices,
25(6), 1990.

[20] H. Tomiyama and H. Yasuura. Code Placement Techniques for Cache Miss Rate Reduc-
tion. ACM Transactions on Design Automation of Electronic Systems, 2(4), 1997.

19

