
Cache-Aware Timing Analysis of Streaming Applications

Samarjit Chakraborty1 Tulika Mitra1 Abhik Roychoudhury1

Lothar Thiele2 Unmesh D. Bordoloi1 Cem Derdiyok3
1National University of Singapore

2Eidgenössische Technische Hochschule Zürich
3Ecole Polytechnique Fédérale de Lausanne

{samarjit, tulika, abhik, unmeshdu}@comp.nus.edu.sg, thiele@tik.ee.ethz.ch, cem.derdiyok@epfl.ch

Abstract
Of late, there has been a considerable interest in models,

algorithms and methodologies specifically targeted towards
designing hardware and software for streaming applica-
tions. Such applications process potentially infinite streams
of audio/video data or network packets and are found in
a wide range of devices, starting from mobile phones to
set-top boxes. Given a streaming application and an ar-
chitecture, the timing analysis problem is to determine the
timing properties of the processed data stream, given the
timing properties of the input stream. Most of the previ-
ous work related to estimating or optimizing these timing
properties take a high-level view of the architecture and ne-
glect microarchitectural features such as caches. In this
paper, we show that an accurate estimation of a stream-
ing application’s timing properties, however, heavily relies
on an appropriate modeling of the processor microarchitec-
ture, such as its instruction cache. Towards this, we present
a novel framework for timing analysis of stream processing
applications. Our framework accurately models the evo-
lution of the instruction cache of the underlying processor
as a stream is processed, and the fact that the execution
time involved in processing any data item depends on all
the previous data items occurring in the stream. We have
implemented a prototype of this framework partly in C and
partly in Mathematica and plan to integrate it into a design-
space exploration tool for system-level design of hardware-
software architectures for streaming applications.

1 Introduction
Today, stream processing applications are widespread in

several domains ranging from networked hand-held devices
playing streaming audio and video, to mobile phone base
stations and network routers implementing complex packet
processing functionality at high line speeds. Many of these
domains have very stringent constraints pertaining to cost,
performance and power consumption and have posed sev-
eral challenges in terms of developing appropriate models,
methodologies and design tools. Most applications in these

Figure 1. Task graph corresponding to a simple software-
based router which processes packets of two different types.

domains are centered around the notion of a “stream”, and
it is now increasingly being realized that conventional mod-
els, languages and design methodologies developed in the
embedded systems domain do not adequately exploit this
notion. To address this shortcoming, recently there has
been a number of developments in the form of new “stream-
centric” programming languages and compiler support [6],
processor architectures [17] and design methodologies.

In this paper, we follow this line of development and ad-
dress the following problem. We are given a block of code
corresponding to an application which processes a stream of
data items or events (the arrival of a data item may consti-
tute an event and henceforth we will only refer to a stream
of events). The events belonging to the stream aretyped
and the processing of events of different types requires the
execution of different, but partially overlapping parts ofthe
code. The task graph corresponding to such a code, im-
plementing a simple software-based router is shown in Fig-
ure 1. It processes two different types of packets: VoIP
packets, which have real-time constraints on their process-
ing time, and packets which need to be encrypted and which
do not have any constraints on their processing time. The
processing of any VoIP packet follows the right hand side
path in this task graph and the processing of all other pack-
ets follows the left hand side path in this graph. The arrival
of any packet causes an interrupt, which is processed by

the receive packettask. This is followed by packet header
parsing and classification, after which the packet type is
known and based on this type the code corresponding to
either the right or the left hand side of the task graph is
executed. Given the arrival process (timing properties) of
a stream of incoming packets, we would like to determine
the timing properties of the packet stream after it has been
processed by this code. Assuming that the worst case ex-
ecution time (WCET) associated with each packet type is
given and is a constant, this timing analysis problem has
been addressed in [3]. However, this problem becomes sig-
nificantly more complicated if we take into account the fact
thatthe execution time involved in processing two packets of
the same type also might vary. This is because the sequence
of previously processed packets determine thestateof the
processor’s microarchitecture, which affects the execution
time involved in processing any packet. Thus, the execution
time associated with any packet might vary considerably,
depending not only on the type of the packet but also on the
sequence of packets processed prior to the packet in ques-
tion.

Given a setup such as the one described above, in this
paper we solve the above mentioned timing analysis prob-
lem by obtaining tight bounds on the WCET incurred in
processing any event by the streaming application. Towards
this, we take into account all possible sequences of events
that might be processed prior to processing of any event in
question, and how such possible sequences might modify
the state of the instruction cache. As part of the problem
specification, we are given a mapping of the different mem-
ory blocks corresponding to the code processing the events,
onto a cache. We are also given a specification of the possi-
ble sequences of events that might arrive, for example, in the
form of a finite state transition system. In other words, such
a transition system describes the possible compositions of
an event stream in terms of the different event types. Such a
specification can be used to rule out certain sequences of ar-
rivals, for example, that there can not be more than 10 con-
secutive VoIP packets at the input of the task graph shown
in Figure 1. This problem specification will enable us to
rule out certain “worst-case states” of the cache and thereby
bound the WCET in processing any packet of a particular
type.

The system model we consider in this paper is shown
in Figure 2. The incoming stream of events get stored
in a FIFO buffer of sizeB, which is read by the proces-
sor running the stream processing application, such as the
software-based router shown in Figure 1. Apart from the
code layout (mapping of the memory blocks onto the in-
struction cache) of the application, and a specification of
the possible sequences of events, we are also given the ar-
rival process or the timing properties of possible incoming
streams to be processed. Since we are interested in the tim-

Figure 2. A processor with an instruction cache, on which
the code (for example, that shown in Figure 1) processing
an event stream is executed. Incoming events are stored in
a buffer of sizeB, which is read by the processor.

ing properties of aclassof arrival patterns, rather than one
concrete instance of a stream (or a trace), the specification
providesboundson the arrival process. For example, in the
case of our router, the maximumrate at which packets ar-
rive would typically be bounded. Such a bound might be
specified in the form of the maximum possible bursts al-
lowed over different time interval lengths, and a long-term
arrival rate of the packets. In the communication networks
domain, such a specification is based on the theory ofnet-
work calculus[5, 8]. We formally describe this specification
in Section 2.

By computing the timing properties of the processed
event stream from those of the input stream, we show
how to accurately compute important performance metrics
pertaining to the application as well as the architecture.
These include (i) the minimum buffer sizeB to guarantee
that it does not overflow, and (ii) the maximum delay
experienced by any event from its arrival, till the time it is
completely processed.

Related work: The work reported in this paper is closely
related to the problem of statically analyzing the WCET
of a program, which is an important problem in the do-
main of real-time and embedded software design. Note
that WCET analysis techniques are conservative, that is,
they compute an upper bound on the program’s actual worst
case execution time. Usually this involves a path analysis
to find out infeasible paths in the program’s control flow
graph, and microarchitectural modeling. Both path analysis
and micro-architectural modeling have been studied exten-
sively [9, 10, 13, 14, 18, 19] because of the inherent impor-
tance of deriving WCET estimates for schedulability analy-
sis. However, we are not aware of any work specifically
on the WCET analysis of streaming applications. In fact,
most of the previous work on WCET analysis consider the
uninterrupted execution of a program, which is similar to
processing asingle event in our setup. In this paper, we
compute the WCET of astreamof events, where, to esti-
mate the processing time of any single event we consider
the micro-architectural state resulting from the processing
of all previous events.

As mentioned earlier, our work is also related to the
system-level timing analysis problems studied in [3, 15, 16].
Although, these papers also deal with end-to-end delays

experienced by event streams and the computation of
maximum buffer fill levels, their focus is on multiprocessor
architectures and the modeling of resource sharing. They
do not consider an extended task model and do not focus on
the distinction between different event types, as we do in
this paper. More importantly, none of these papers consider
the role of the processor microarchitecture on the execution
time of the different events. In this context, the importance
our work stems from the fact that in many cases on-chip
buffer/memory is available only at a premium because of
its high area requirements. In such cases (e.g. in portable
multimedia players) an accurate estimation of delay and
buffer requirements is essential, and therefore calls for an
appropriate modeling of the processor microarchitecture as
we attempt to do in this paper.

Organization of this paper: The rest of the paper is orga-
nized as follows. In the next section we formally state our
problem and describe the underlying models used in this pa-
per. This is followed by our cache modeling in Section 3.
We then make use of this cache model to bound the WCET
involved in processing asingleevent of any specified type.
In Section 4 we then show how to use such WCET estimates
for single events to perform a WCET analysis of astream
of events, i.e. solve our timing analysis problem. More
specifically, we show how to compute the maximum buffer
fill level and the maximum delay experienced by a stream
of events. Some implementation issues to improve the run-
ning times of the algorithms presented in Sections 3 and 4
are then discussed in Section 5. A case study is presented in
Section 6 to illustrate the utility of our proposed framework.
Finally, in Section 7 we conclude by summarizing the im-
plications of this work and then outlining some directions
for future work.

2 Problem Formulation
Our problem specification has the following components:

1) A task graph, such as the one shown in Figure 1, which
models the streaming application and the corresponding
program or code. This application executes on a single
processor and we are also given its code layout in the mem-
ory, i.e., the mapping of the different memory blocks of the
application onto the instruction cache.

2) The specification of the event stream to be processed
by the application is composed of two parts. As mentioned
in Section 1, events aretyped. Let us assume that thesetypes
are drawn from a finite setΣ. The first part of the stream
specification is a transition systemT = (S, S0,Σ,Ψ)
which captures all possiblesequences of event typesthat
might occur in the stream. Here,S is finite set of states,
S0 ⊆ S is a set of initial states, andΨ ⊆ S × Σ × S is
a set of transitions. Henceforth, we denote any transition
〈s, σ, s′〉 in Ψ by s

σ
→ s′. Any sequence of events in the

stream can only be generated as follows. The system starts
in an initial state, and ifs

σ
→ s′ then the system can change

its state froms to s′ and generate an event of typeσ. The
transition systemT can be used to model constraints on al-
lowable sequences of events.T can either be determined
by analyzing the device or the system which generates the
stream, or by analyzing a sufficiently large number of rep-
resentative input streams.

3) The second part of the stream specification is con-
cerned with its timing properties. Towards this, we are
given a function̄α : R

≥0 7→ Z
≥0, which bounds the maxi-

mum number of events that can arrive within any time inter-
val of a given length. We will refer tōα as anarrival curve.
For a stream bounded bȳα, letR(t) denote the number of
events that arrived during the time interval[0, t]. Then, the
inequalityR(t + ∆) − R(t) ≤ ᾱ(∆) holds for allt ≥ 0
and∆ ≥ 0, for any concrete arrival processR(t). As an
example,ᾱ = b + r∆ specifies a stream with aburst size
b (i.e. the number of events that can arrive at any instant
in time) and a long-term arrival rate ofr. As mentioned
in Section 1, such an abstraction of the arrival process of
streams (more specifically, packet flows) is common in the
domain of communication networks [5, 8]. It may also be
noted here that this specification is more general than the
event models traditionally studied in the real-time systems
literature, such as periodic, periodic with jitter or the spo-
radic event model [1, 2, 12], and can more accurately model
streams exhibiting a high degree of burstiness (see [3]).

4) Lastly, for each event type inΣ we are given the exe-
cution path (or a set of paths) through the control-flow graph
of the application. We are also given the worst case execu-
tion time for each of these execution paths, i.e. the exe-
cution time corresponding to the case where the cache is
empty before the processing of any event starts. In other
words, the first references to all memory blocks always re-
sult cache misses. Finally, we are also given the cache miss
penalty, using which we can compute the processing time
of an event in the case where some of the first memory ref-
erences result in a cache hit.

Given the above, we would like to compute the max-
imum number of backlogged events (i.e. the maximum
buffer size required) and the maximum delay experienced
by any event. As discussed in Section 1, the main difficulty
in this problem arises from the fact that the WCET of any
event depends on the state of the cache, and hence on all the
events that arrive prior to this event. To compute the maxi-
mum delay and buffer size, the evolution of the cache state
has to be linked to the arrival process of the events, which
is bounded bȳα.

3 Cache Modeling
The basic technique used in this section bears some sim-

ilarity with that used for computing cache related preemp-

tion delays in [13]. However, in this paper we do not con-
sider task preemptions—we deal with a single stream, and
events from this stream are processed to completion in a
FCFS manner.

By “cache state”, we refer to the contents of all the
cache blocks. For simplicity of exposition, in this paper
we only consider direct-mapped caches. However, the tech-
niques we present below can easily be generalized to set-
associative caches. LetM denote the set of all memory
blocks. For a direct mapped cache withn blocks, acache
state is a vectorc of n elementsc[0], . . . , c[n − 1] where
c[i] = m if the cache blocki holds the memory blockm.
If the ith cache block does not hold any memory block, we
denote this asc[i] =⊥. Hence, a cache state is a vector
of lengthn, where each element of the vector belongs to
M ∪ {⊥}. We assume that any operation� overM ∪ {⊥}
can be applied to the cache states, by applying this opera-
tion pointwise to its elements. For example, if� is a bi-
nary operation overM ∪{⊥} andc, c′ are cache states then
c� c′ = c′′ denotesc′′[i] = c[i]� c′[i] for all 0 ≤ i < n. To
compute the WCET that might be incurred in processing an
event, and the state of the cache after this event is processed,
we will rely on the following two functions.

Definition 1 (Reaching Cache States)Reaching cache
states of an eventσ, denoted asRCS (σ), is the set of
possible cache states when the end of the last basic block
corresponding to any of the execution paths associated
with the processing ofσ is reached. We suppose that the
cache is initially empty.

Definition 2 (Live Cache States)Live cache states of an
eventσ, denoted asLCS (σ), is the possible first memory
references to cache blocks via any execution path associ-
ated with the processing ofσ.

RCS(σ) andLCS(σ) can then be computed as follows.
Let τ(σ) be the task graph associated with the process-
ing of an event typeσ, i.e. τ(σ) contains only the basic
blocks and the control-flow relevant toσ. Therefore, the
basic blocks inτ(σ) are a subset of all the basic blocks in
our stream processing application which processesall event
types. Further, some of the basic blocks inτ(σ) might also
be inτ(σ′), which is the task graph for another event type
σ′. Examples of such common basic blocks are those in the
nodesreceive packet, header parsing & classificationand
route lookup & CRC computationin the task graph in Fig-
ure 1. Note that each of the nodes in this task graph might
contain multiple basic blocks, conditional branches and also
loops.

Now, let Bσ be the set of basic blocks appearing in
τ(σ). For any basic blockB ∈ Bσ, we can now com-
pute two quantitiesRCSIN

B andRCSOUT
B . RCSIN

B is the
set of possible cache states whenB is reached via any in-
coming program path andRCSOUT

B is the set of possible

cache states whenB completes execution. These quan-
tities are computed by propagation; thusRCSIN

B will be
computed using theRCSOUT estimates of the basic blocks
from where there is an incoming edge to blockB (for more
details the reader is referred to [13]). Since the control flow
graph contains loops, the RCS computation will be iterative,
where the RCS estimates for each basic block gets updated
in every iteration. This is continued until a (least) fixed-
point is reached. Convergence to a fixed point is guaranteed
because the RCS estimates must monotonically increase for
the fixed-point iterations to continue, and the total set of
cache states is finite. After the fixed point is reached, we set
RCS(σ) = RCSOUT

end(σ), whereend(σ) is the sink node in
the control flow graphτ(σ).

The computation ofLCS(σ) is similar to comput-
ing RCS(σ). We setLCS(σ) to LCSIN

start(σ) where
start(σ) ∈ Bσ is the start node in the graphτ(σ).
RCS(σ) is therefore the set of possible cache states af-

ter the processing of any event of typeσ, andLCS(σ) cap-
tures the possible usages of a cache state at the start of the
processing of an event of typeσ.

3.1 Computing the WCET of a Single Event

We can now use the notion of cache states to compute the
WCET of a single eventσ (while considering the events ex-
ecuting prior toσ). We first define two operations on cache
states, namely merge and equality.

We define the operation⊕ is over memory blocks as:

m⊕m′ def
=

{

m′ if m′ 6=⊥
m otherwise

Themergeof two sets of cache statesX andY is defined
asX ⊕ Y = {x ⊕ y | x ∈ X ∧ y ∈ Y } wherex ⊕
y is calculated over cache states by applying the operation
⊕ (defined earlier over memory blocks) to the individual
elements of the cache states.

Theequalityof two sets of cache statesX andY is de-
fined asX � Y = {x� y | x ∈ X ∧ y ∈ Y } where,

x[i]� y[i] =

{

1 if x[i] = y[i]
0 otherwise

For a cache withn blocks,X�Y is a set of boolean vectors
of lengthn. Observe that for any two cache statesx ∈
RCS(σ) and y ∈ LCS(σ′), x � y records the “useful”
cache blocks for some execution path in the processing of
σ′, due to the prior processing ofσ. Using this observation,
we will now show how to obtain a more accurate estimate
on the WCET involved in processing an event, compared to
the case where the initial cache state before processing the
event is considered to be empty.

Let us consider the processing of a sequence of consecu-
tive events〈σ1, · · · , σN 〉. For simplicity, we useσi to refer

to both an event and its type, and the actual meaning should
be clear from the context. In the absence of cache state mod-
eling, i.e. with a completely empty cache, let us assume that
the WCET ofσN is given by the functionWCET (σN ,⊥),
where⊥ denotes the set of cache states that contains only an
empty cache. However, if the task graphsτ(σ1), . . . , τ(σN)
share some common memory blocks and the effects of the
cache is taken into account, then our estimate of the WCET
of σN can possibly be improved. More specifically, the
WCET of σN will be reduced if during the processing of
the events〈σ1, · · · , σN−1〉 some memory blocks are left in
the cache, which are then referenced byτ(σN). We next
show how to compute this reduced WCET using the merge
and equality operators defined above.

If we start with a set of cache statescs, and process a
sequence of events〈σ1, · · · , σN−1〉, then the set of possible
cache states after this sequence of events is processed can be
given by the function

NSTATE(〈σ1, ..., σN−1〉, cs) =
cs⊕RCS(σ1)⊕ ...⊕RCS(σN−1)

Note that the operator⊕ is associative. Now, if the event
σN is to be processed, then the set of possibleusefulcache
blocks forσN is given by the function

useful(σN , NSTATE(〈σ1, · · · , σN−1〉, cs)) =
NSTATE(〈σ1, · · · , σN−1〉, cs)� LCS(σN)

In other words, the functionuseful returns a set of
boolean vectors. In any vector belonging to this set, a “1” in
the position of any cache block indicates that the contents of
this cache block might be used while processingσN , while
a “0” indicates otherwise. Therefore, based on this set of
boolean vectors, our revised estimation of the WCET ofσN

is given byWCET (σN , cs
′), defined as follows.

WCET (σN , cs
′) =WCET (σN ,⊥)−

penalty ·min {|v| : v ∈ useful(σN , cs
′)}

cs′ = NSTATE(〈σ1, · · · , σN−1〉, cs)

Herepenalty is the cache miss penalty associated with any
memory block and|v| denotes the number of 1s in the
boolean vectorv, i.e. |v| =

∑n−1
i=0 v[i].

4 Timing Analysis of Event Streams
In this section we will make use of our revised estimation

of the WCET of a single event to solve our timing analysis
problem. More specifically, we use this revised estimation
to accurately compute the maximum delay and backlog ex-
perienced by a stream of events.

Recall from Section 2 that we are given a transition sys-
tem T = (S, S0,Σ,Ψ) which captures all possible se-
quences of event types that might occur in a stream. Us-
ing the cache modeling technique described in Section 3,

and the transition systemT , we derive a transition system
T ′ = (S′, S′

0, D
′,Ψ′) which capturesall possible evolu-

tions of the cache state, as a stream of events is processed.
Each states′ ∈ S′ is a tuple(s, cs) wheres ∈ S andcs is a
set of possible cache states ats. A transition from(s1, cs1)
to (s2, cs2) belongs toΨ′ if and only if there exists a tran-
sition s1

σ
→ s2 in T andcs2 = NSTATE(σ, cs1). The set

of initial statesS′
0 contains all tuples(s,⊥) wheres ∈ S0.

Finally, any transitionψ from (s1, cs1) to (s2, cs2) in Ψ′,
wheres1

σ
→ s2, is annotated withWCET (σ, cs1). We de-

note this asD′(ψ) = WCET (σ, cs1).
Again, recall from Section 2 that we are also given a

functionᾱ, which bounds the maximum number of event ar-
rivals over any time interval. More specifically,ᾱ(∆) is the
maximum number of events that can arrive over any time
interval of length∆. ᾱ(∆) therefore specifies the timing
properties of aclassor family of arrival processes of event
streams that are to be processed by the streaming applica-
tion. To compute similar bounds on the timing properties of
any processed stream and the maximum delay and backlog
(which is a measure of the maximum buffer requirement)
experienced by any input event stream, we need to com-
pute the maximum processing requirement arising from the
ᾱ(∆) events. Towards this, let us define a functionγ(k)
whose argument is an integerk and it returns the maximum
processing time that can be demanded byanysequence ofk
consecutive events belonging to the stream. We next show
how to obtain this functionγ.

Consider our transition systemT ′, where each transition
ψ from (s1, cs1) to (s2, cs2) represents the processing of an
event of the typeσ, wheres1

σ
→ s2 ∈ T . The annotation

on each such transition, i.e.D′(ψ), denotes the maximum
processing time of the eventσ, given that the cache state
before the start of this processing iscs1. Hence,γ(k) is the
weight of the maximum-weight path of lengthk in the tran-
sition systemT ′. Given a parametern, we can efficiently
computeγ(k) for all 1 ≤ k ≤ n by traversing the graph,
and storing/updating the maximum weight path of lengthk
ending atx for all nodesx in the graph. Details are omitted.

It is easy to see that the functionα(∆) = γ(ᾱ(∆)) there-
fore represents the maximum processing requirement that
can arise from the event stream withinany time interval of
length∆, for ∀∆ ≥ 0. Using the results derived in [3], it is
possible to show that worst case delayWCD (i.e. the maxi-
mum length of time between the arrival of any event and the
time when it is completely processed) experienced by any
event stream whose arrival process is bounded byᾱ(∆) is
given by:

WCD = sup
∆≥0
{ inf

τ≥0
{τ : α(∆) ≤ ∆ + τ}}

Intuitively, WCD can be interpreted as the maximum
horizontal distance between the curveα(∆) and the straight
line representing the processor availability.

To compute the maximum backlog, we first need to
define a functionγ−1, which can be considered as the
pseudoinverseof the functionγ that we already defined
above. We define,γ−1(∆) = infk≥0{k : γ(k) ≥ ∆}.
Hence,γ−1(∆) returns the minimum number of events that
can generate a processing requirement of∆. In other words,
at leastγ−1(∆) events from the stream are guaranteed to
be processed within a time interval of length∆. Within this
time interval, at most̄α(∆) events might arrive. Hence, the
backlog generated within this interval is̄α(∆) − γ−1(∆).
Therefore, the maximum or worst case backlogWCB is
given by:

WCB = sup
∆≥0
{ᾱ(∆)− γ−1(∆)}

As in the case of computingWCD, intuitively,WCB can
be interpreted as the maximum vertical distance between
the curves̄α(∆) andγ−1(∆) (see Figure 3).

To compute the timing properties of the processed
stream, let us denote usinḡα′(∆) the maximum number
of processed events that can possibly be seen at the output
of the processor (see Figure 2) within any time interval of
length∆. ᾱ′(∆) is therefore exactly of the same form as
ᾱ(∆) which bounds an input stream. Again, using the re-
sults derived in [3], it may be shown that

ᾱ′(∆) = sup
τ≥0
{ᾱ(∆ + τ)− γ−1(τ)}

The bounds on the timing properties of any processed
stream and the maximum delay and backlog that we com-
puted above, are more accurate compared to those com-
puted in [3], where the effects of the processor’s instruction
cache was not taken into account. This difference primarily
stems from the use of the transition systemT ′ in comput-
ing the functionγ(k). In contrast to this, the results in [3]
rely on a significantly simpler approach of scaling the func-
tion ᾱ(∆) by a constant representing the (same or constant)
processing time per event, in order to obtain the function
α(∆).

5 Implementation Issues
The running time of the algorithm presented so far would

depend on the number of states in the transition systemT
and the number of cache states generated from our applica-
tion and its code layout in the instruction cache. For many
realistic problem instances, the number of such cache states
might be very large, thereby our algorithm incurring a high
running time. To get around this problem, there are three
possible techniques that we can adopt (they are not mutu-
ally exclusive). (i) Partially constructing the transition sys-
temT ′. (ii) Instead of computingγ(k) for all values ofk,
exploit the fact thatγ(k) becomes periodic beyond a certain
value ofk. (iii) Note that the computation ofWCD , WCB ,

as well as̄α′ requires an iteration over all∆ ≥ 0. To avoid
such an iteration over an unbounded range, we can approx-
imate the functions̄α(∆) andγ(k) by a sequence of linear
segments. Using such an approximation, we can then com-
pute a∆max such that it would be sufficient to iterate only
till this value for the computation ofWCD , WCB andᾱ′.

Note that while the first and the third techniques men-
tioned above will lead to a (safe) approximation ofWCD ,
WCB andᾱ′, the second technique will not lead to any loss
of accuracy in our estimation of these quantities.

5.1 Partial Construction of T ′

Constructing the cache state annotated transition system
T ′ is computationally expensive. This is because for each
states in the transition systemT we need to compute the
possible cache states with whichs can be reached; each of
these contribute to a state inT ′. Assuming a direct mapped
cache withk cache lines and the program code of all event
types spread overn contiguous memory blocks, the number
of possible cache states isd(n/k)ek. This leads to an ob-
vious blowup in the number of states ofT ′. To avoid this
blowup, we can constructT ′(U), an approximation ofT ′;
we assume thatU is a pre-defined constant.

The basic idea for defining the approximation ofT ′ is
as follows. Clearly, a cache state is a function of the finite
(but unbounded) execution history of events. We make the
following observations about cache state evolutions.

• Given a boundU , the bounded execution history of the
lastU events may not be able to distinguish between
different cache states, and

• A cache state can be reached with various event histo-
ries.

Our partial construction ofT ′ is based on these two obser-
vations. In the full construction ofT ′, each state ofT ′ is of
the form(s, cs). In the construction ofT ′(U), each state of
this transition system is of the form(s, cs, seq) wheres and
cs are as defined in Section 3;seq is sequence of length at
mostU over the event alphabetΣ denoting the lastU events
(if less thanU events have occurred, thenseq contains fewer
events). At first sight, our definition of the states ofT ′(U)
seems to blowup the state space even further (as compared
to the full construction ofT ′). However, our construction
of the transitions ofT ′(U) is such that the reachable state
space ofT ′(U) is sparse.

We now describe the construction ofT ′(U) (refer Algo-
rithm 1). For this purpose, we use the algorithm for con-
structingT ′ but with two important modifications. First
of all, when we construct the destination states for a state
(s, cs, seq) for eventσ, apart from applyingNSTATE on
cs, we also need to defineNSTATE on seq. Since the se-
quence associated with a state captures the lastU events,

we define the following. Note that◦ denotes concatenation,
andseq = 〈σ1, σ2, . . . , σU 〉.

NSTATE(σ, U, seq) =

{

seq ◦ σ if |seq| < U
〈σ2, . . . , σU , σ〉 if |seq| = U

Secondly, the check for whether a state(s′, cs′, seq′) ex-
ists inS′′ (see Algorithm 1) is done differently. The logical
disjunction in this membership check performs two kinds of
state merging. The two sources of state merging mentioned
below exploit our two main observations about the cache
state evolution.

• Two states (s′, cs′, seq′) and (s′, cs′′, seq′) are
merged. This is the main source of size reduction in
the construction ofT ′(U) since we are merging two
states ofT ′.

• Two states (s′, cs′, seq′) and (s′, cs′, seq′′) are
merged. This ensures that the state space size ofT ′(U)
is guaranteed to be bounded by the state space size of
T ′.

As we are no longer maintaining exact cache states in
T ′(U), we need to show that a safe upper bound on WCET
is obtained by analyzingT ′(U) as opposed toT ′. If the
WCET associated to an eventσ at a certaincs does not
decrease by removing the first eventσ1 from the event se-
quence that leads tocs, we can guarantee that analyzing
the partially unrolled transition systemT ′(U) yields safe
WCET bounds. Therefore, the following condition must be
satisfied by the functionWCET (σ, cs).

WCET(σ, cs) ≤WCET(σ, cs′) for all σ, where
cs = NSTATE(〈σ1, σ2, . . . , σn〉,⊥)
cs′ = NSTATE(〈σ2, . . . , σn〉,⊥)

That is, starting with an empty cache, executingσ after
σ1, σ2, . . . , σn should not produce more cache misses than
executingσ after σ2, . . . , σn. This is indeed the case for
direct mapped as well as set-associative caches (with com-
mon replacement policies such as LRU). To see why, con-
sider the cached execution of an eventσ under two different
historiesσ1, σ2, . . . , σn andσ2, . . . , σn. What can be the
effect ofσ1 on the execution ofσ? The memory blocks of
σ1 which are replaced byσ2, . . . , σn, clearly have no ef-
fect onσ’s execution. On the other hand, if some memory
blocks ofσ1 do not get replaced byσ2, . . . , σn, these mem-
ory blocks ofσ1 can onlyreducethe cache misses inσ’s
execution.

5.2 Computingγ
Recall from Section 4 thatγ(k) is the weight of the

maximum-weight path of lengthk in the transition sys-
temT ′ = (S′, S′

0, D
′,Ψ′). Our computation of the max-

imum delay and backlog experienced by a stream requires

Algorithm 1 Constructing the transition systemT ′(U)

Input: Transition systemT = (S, S0,Σ,Ψ), the functions
NSTATE andWCET and a positive integerU

Output: Transition systemT ′(U) = (S′′, S′′
0 , D

′′,Ψ′′);
Q← S′′ ← S′′

0 ← D′′ ← Ψ′′ ← ∅ ;
for all s∈ S0 do

enqueue(Q, 〈s,⊥, ε〉) ; S′′ ← S′′ ∪ {〈s,⊥, ε〉} ;
S′′

0 ← S′′
0 ∪ {〈s,⊥, ε〉} ;

end for
while Q 6= ∅ do
〈s, cs, seq〉 ⇐ dequeue(Q) ;
for all transitionss

σ
→ s′ ∈ Ψ do

cs′ ← NSTATE (σ, cs) ;
seq′ ← NSTATE(σ, U, seq) ;
if (〈s′, cs′, 〉 /∈ S′′) ∨ (〈s′, , seq′〉 /∈ S′′) then

enqueue(Q, 〈s′, cs′, seq′〉) ;
S′′ ← S′′ ∪ {〈s′, cs′, seq′〉} ;

end if
Ψ′′ ← Ψ′′ ∪ {〈s, cs, seq〉

σ
→ 〈s′, cs′, seq′〉} ;

D′′(〈s, cs, seq〉
σ
→ 〈s′, cs′, seq′〉) ←

WCET (σ, cs);
end for

end while

the computation ofγ(k) for k = 1, . . . , n, where the value
of n would depend on the range of∆ over which we need
to iterate. Here, we would like to point out that it is suffi-
cient to computeγ(k) for k = 1, . . . , n for somen = n0,
and for all values ofk larger thann0 it would be possible to
determine the value ofγ(k) without traversing the cache an-
notated transition systemT ′. Typically,n0 would be much
smaller than the maximum value ofk for which we will
need to determineγ(k) during our computation ofWCD

andWCB , andn0 would only depend on the transition sys-
temT ′.

The above observation stems from the fact the the weight
of the maximum-weight path of lengthk in a graph eventu-
ally becomes periodic with increasingk, beyond a certain
value ofk (see [4] and [7]). Let us denote this period as
p, and the increment in the sum of the edge weights within
this period asq. Given a graph, the values ofp andq de-
pend on the number of edges and the sum of the weights
in the cycle with the maximummean(i.e. the sum of the
weights divided by the number of edges). Both,p andq can
be efficiently determined (see [7]).

Therefore,γ(k), for increasing values ofk, is made up of
a prelude of lengthn0 followed by a periodic continuation.
For anyk ≥ n0, γ(k) is given as:

γ(k) = γ((n0 − p) + (k − n0) mod p) + b
k − n0 + p

p
cq (1)

The value ofn0 can be determined by traversingT ′ and

Figure 3. Computing∆max from the affine bounds on
γ−1 andᾱ.

computingγ(k) for all 1 ≤ k ≤ n wheren is sufficiently
large. We then test for periodicity. Towards this, we test if
Eqn. 1 holds for the lastp values ofγ(k) from k = n, with
p andq determined from the cycle inT ′ with the maximum
mean weight. For this test, we setn0 = n−p+1 and check
if Eqn. 1 holds for alln0 ≤ k ≤ n0 + p− 1.

5.3 Approximating ᾱ and γ
Note that in general,̄α andγ can be arbitrary functions.

In this subsection we show that by approximatingᾱ andγ
using affine functions, it is possible to derive a∆max such
that it is sufficient to restrict our iteration of∆ only till this
value, for the computation of the maximum delay and back-
log experienced by a stream. In other words, the computa-
tion of WCD andWCB can now be given by:

WCD = sup
0≤∆≤∆max

{ inf
τ≥0
{τ : α(∆) ≤ ∆ + τ}}

WCB = sup
0≤∆≤∆max

{ᾱ(∆)− γ−1(∆)}

The approximation of any given̄α and γ using affine
functions involves the selection of constantsrᾱ, sᾱ, rγ and
sγ , such that the following two inequalities hold:

ᾱ(∆) ≤ rᾱ + ∆ · sᾱ, ∀∆ ∈ R
≥0

γ(k) ≤ rγ + k · sγ , ∀k ∈ Z
≥0

Using our approximations of̄α andγ, it is possible to
derive affine bounds onα andγ−1 as well. These are given
by: α(∆) ≤ rα + ∆ · sα, ∀∆ ∈ R

≥0

γ−1(∆) ≥ rγ−1 + ∆ · sγ−1 , ∀∆ ∈ R
≥0 where,

rα = rγ + rᾱsγ , sα = sᾱsγ , rγ−1 = −
rγ
sγ

andsγ−1 =
1

sγ

From our computation of the maximum backlog,WCB ,
experienced by a stream, it is easy to see that∆max can be
the∆-intercept of the intersection point of the affine bounds
onα andγ−1 (see Figure 3). Such a∆max is therefore given
by:

∆max =
rγ + rᾱsγ

1− sᾱsγ

FS DCT Q IQ IDCT

I 0 23204 12624 5177 16061
P 285918 23307 15919 7258 15943
B 134601 23307 11656 0 0

Table 1. Experimental results: Task WCET under differ-
ent contexts.

The same value of∆max can also be obtained from the
computation ofWCD , the maximum delay experienced by
any event of the stream, by computing the intersection point
of the affine bound onα with the straight line representing
the processor availability.

Using the affine bounds on̄α andγ, it is also possible to
boundWCD andWCB as follows:

WCD ≤ rγ + rᾱsγ ; WCB ≤ rᾱ + max{rγsᾱ,
rγ
sγ

}

The functionᾱ′ can also be similarly bounded. Although
these bounds are computationally simpler, in general they
are not as tight as those derived in Section 4.

6 A Case Study
Our prototype implementation of the timing analysis

framework consists of three parts. The first part consists
of a cache state analyzer, which was implemented in C. It
involves the LCS/RCS computation elaborated in Section
3. The second part is the construction of the cache annota-
tion transition system. We use the improved method (Algo-
rithm 1 in Section 5) which merges cache states to prevent
blow-up of the transition system. The final step involves
integrating the analysis of event streams (results derivedin
Section 4) with the cache annotated transition system to ob-
tain tight delay/buffer size estimates. This part is imple-
mented in Mathematica [11]. The main motivation behind
using Mathematica is that it supports symbolic computa-
tions, using which it is possible computeWCD , WCB and
ᾱ′ (whenα, ᾱ andγ−1 are represented as a sequence of lin-
ear segments, not necessarily only affine) without resorting
to “pointwise” computations.

We now present a case study to illustrate how the esti-
mated timing properties of a streaming application are af-
fected when the instruction cache is modeled using our pro-
posed framework. This case study also serves to validate
our framework and shows that our modeling of the cache
behavior is efficient and scales to handle real-life setups.

Our application consists of an MPEG-2 encoder running
on a device such as a Personal Digital Assistant (PDA) or a
mobile phone, that has a small movie camera attached to it.
Many of these devices today have general-purpose proces-
sors running a light-weight operating system and multiple
applications. In our setup, the input to the encoder appli-
cation is a constant bit-rate raw video stream and its output
is a64 × 64 pixel MPEG-2 encoded clip. We assume that
such a clip would be played out at the rate of 30 frames

Figure 4. Application scenario: MPEG-2 encoder in a video phone.

per second, which in turn determines the sampling rate of
the camera capturing the video. Our setup is shown in Fig-
ure 4. The raw bitstream is stored in a small on-chip buffer,
which is read out by the processor running the encoder ap-
plication. Since the computational workload involved in
encoding eachmacroblockis dependent on the data being
encoded, it is highly variable. Hence, the fill-level of the
on-chip buffer varies over time and it is important to choose
an appropriate buffer size at design time, especially since
on-chip buffers are expensive and occupy a significant frac-
tion of the chip area.

We modeled an encoder application consisting of five
different tasks. These areforward search(FS), discrete
cosine transform(DCT), quantization(Q), inverse quanti-
zation(IQ), andinverse discrete cosine transform(IDCT).
The layout of these tasks in the memory is shown in Fig-
ure 5(a). We consider a direct-mapped instruction cache
with 64 cache lines and64 bytes block size. The incom-
ing raw bitstream is encoded into a sequence of I, B and P
frames, where possible patterns of I, B and P are determined
by the transition system given in Figure 5(b). This transi-
tion system is determined by the implementation of the en-
coder application. We note here that the MPEG-2 standard
does not prescribe any particular encoder implementation.
The transition system we derive here, and the patterns it at-
tempts to compress, is taken from earlier works on timing
analysis of event streams [20].

Given that the frame resolution in our case is64 × 64
pixels, each frame is composed of16 macroblocks, each of
size16 × 16 pixels. The encoding of macroblocks consti-
tuting different frame types requires a different sequenceof
tasks getting executed. For example, all macroblocks be-
longing to an I-frame requires the tasks DCT, Q, IQ and
IDCT to be executed. This task set, along with the task sets
corresponding to B and P frames are listed in the following
table:

Frame Type Task Set

I-Frame DCT, Q, IQ, IDCT
P-Frame FS, DCT, Q, IQ, IDCT
B-Frame FS, DCT, Q

The worst-case execution times of the five different tasks
(in terms of number of processor cycles), when process-
ing macroblocks of different frame types are given in Table
1. These numbers were obtained with an instruction cache
miss penalty of100 cycles. As a sequence of macroblocks
gets processed (or encoded), different tasks get executed
following the pattern given by the transition system in Fig-
ure 5(b). Note that for any two macroblocks belonging to
different frame types, there is a significant overlap between
the tasks that get executed.

The results obtained from analyzing this setup using our
proposed framework are shown in Table 2. These results
were obtained with the processor frequency set to105 MHz
and an instruction cache penalty of100 cycles. From this ta-
ble, it may be noted that modeling the effects of the instruc-
tion cache leads to substantially tighter estimates of both–
the on-chip buffer size and the maximum delay. The buffer
size estimate reduces by33% and the delay estimate reduces
by 36%. Such tighter estimates directly translate into bet-
ter resource dimensioning and improved system design. As
mentioned before, the crux of our approach is in accounting
for the fact that there is significant overlap in the code in-
volved in processing the different frame types in the event
stream. We believe that this property can be exploited in a
wide variety of streaming applications.

7 Concluding Remarks
Currently, we are in the process of integrating this frame-

work into a design space exploration tool and evaluating it
with large applications and cache configurations. In con-
trast to the prototype implementation reported in this paper,
we will replace the Mathematica code with an equivalent
implementation in C and integrate it with ourcache state
analyzer.

References

[1] S. Baruah. Dynamic- and static-priority scheduling of recur-
ring real-time tasks.Real-Time Systems, 24(1):93–128, 2003.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks.Real-Time Systems, 17(1):5–22, 1999.

FS

DCT

Q

IQ

IDCT

B PI Memory

Blocks

0 - 54

55 - 65

66 - 77

78 - 84

85 - 123

Inverse DCTIDCT:

Inverse

Quantization
IQ:

QuantizationQ:

Discrete Cosine

Transform
DCT:

Forward SearchFS:

Frame types:

1 2 43 5 6

9

7

8

PI B B P B

B

B

I

I I

P

B

I I I

sequence of

16 macroblocks/frame

(a) (b)

Figure 5. (a) The MPEG-2 encoder’s code layout in the memory and the sequence of tasks executed for I,B,P — the three different
frame types, and (b) Transition systemT specifying the possible frame patterns according to which araw video stream is encoded.

Maximum delay experienced by any macroblock

With Cache Modeling 28 ms
Without Cache Modeling 44 ms

Estimated minimum buffer size required

With Cache Modeling 13.30 macroblocks
Without Cache Modeling 20.68 macroblocks

Table 2. Experimental Results: Delay and Buffer Size estimation forMPEG encoder application.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. InProc. 6th Design, Automation and
Test in Europe (DATE), pages 190–195, Munich, Germany,
March 2003.

[4] G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot. A linear-
system-theoretic view of discrete-event processes and itsuse
for performance evaluation in manufacturing.IEEE Transac-
tions on Automatic Control, 30(3):210–220, March 1985.

[5] R. Cruz. A calculus for network delay, Parts 1 & 2.IEEE
Transactions on Information Theory, 37(1), 1991.

[6] M. Gordon et al. A stream compiler for communication-
exposed architectures. In10th Conf. on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2002.

[7] R. Karp. A characterization of the minimum cycle mean in a
digraph.Discrete Mathematics, 23(3):309–311, 1978.

[8] J.-Y. Le Boudec and P. Thiran.Network Calculus - A Theory
of Deterministic Queuing Systems for the Internet. LNCS
2050, Springer, 2001.

[9] X. Li, T. Mitra, and A. Roychoudhury. Modeling control
speculation for timing analysis.Real-time Systems, 29(1),
2005.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estimation
of embedded software with instruction cache modeling.ACM
Transactions on Design Automation of Electronic Systems,
4(3), 1999.

[11] Mathematica 5, Wolfram Research.
http://www.wolfram.com/products/mathematica/index.html.

[12] A. Mok and D. Chen. A multiframe model for real-
time tasks. IEEE Transactions on Software Engineering,
23(10):635–645, 1997.

[13] H. Negi, T. Mitra, and A. Roychoudhury. Accurate estima-
tion of cache related preemption delay. InCODES+ISSS,
2003.

[14] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs.Journal of Real-time Sys-
tems, 1(2), 1989.

[15] K. Richter, M. Jersak, and R. Ernst. A formal approach to
MpSoC performance verification.IEEE Computer, 36(4),
2003.

[16] K. Richter, R. Racu, and R. Ernst. Scheduling analysis inte-
gration for heterogeneous multiprocessor soc. InIEEE Real-
Time Systems Symposium (RTSS), 2003.

[17] M. Rutten, J. van Eijndhoven, E. Jaspers, P. van der Wolf,
O. Gangwal, and A. Timmer. A heterogeneous multiproces-
sor architecture for flexible media processing.IEEE Design
& Test of Computers, 19(4):39–50, July-August 2002.

[18] A. Shaw. Reasoning about time in higher level language
software.IEEE Transactions on Software Engineering, 1(2),
1989.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and pre-
cise WCET prediction by separated cache and path analysis.
Journal of Real Time Systems, May 2000.

[20] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative
characterization of event streams in analysis of hard real-time
applications. In10th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 450–461,
2004.

