
Detecting Energy Bugs and Hotspots in Mobile Apps

Abhijeet Banerjee1 Lee Kee Chong1 Sudipta Chattopadhyay2 Abhik Roychoudhury1

1National University of Singapore, Singapore 2Linköping University, Sweden
{abhijeet,cleekee}@comp.nus.edu.sg, sudipta.chattopadhyay@liu.se, abhik@comp.nus.edu.sg

ABSTRACT
Over the recent years, the popularity of smartphones has increased
dramatically. This has lead to a widespread availability of smart-
phone applications. Since smartphones operate on a limited amount
of battery power, it is important to develop tools and techniques that
aid in energy-efficient application development. Energy inefficien-
cies in smartphone applications can broadly be categorized into en-
ergy hotspots and energy bugs. An energy hotspot can be described
as a scenario where executing an application causes the smartphone
to consume abnormally high amount of battery power, even though
the utilization of its hardware resources is low. In contrast, an en-
ergy bug can be described as a scenario where a malfunctioning
application prevents the smartphone from becoming idle, even af-
ter it has completed execution and there is no user activity.

In this paper, we present an automated test generation frame-
work that detects energy hotspots/bugs in Android applications.
Our framework systematically generates test inputs that are likely
to capture energy hotspots/bugs. Each test input captures a se-
quence of user interactions (e.g. touches or taps on the smart-
phone screen) that leads to an energy hotspot/bug in the appli-
cation. Evaluation with 30 freely-available Android applications
from Google Play/F-Droid shows the efficacy of our framework in
finding hotspots/bugs. Manual validation of the experimental re-
sults shows that our framework reports reasonably low number of
false positives. Finally, we show the usage of the generated results
by improving the energy-efficiency of some Android applications.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging, C.3 [Special-Purpose and Application-
Based Systems]

Keywords: Mobile Apps; Non-Functional Testing; Energy
Consumption

1. INTRODUCTION
Global penetration of smartphones has increased from 5% to

22% over the last five years. As of 2014, more than 1.4 billion
smartphones are being used worldwide [1]. Over the recent years,
smartphones have improved exponentially in terms of processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

speed and memory capacity. This improvement has allowed appli-
cation developers to create increasingly complex applications for
such devices. Additionally, modern smartphones are equipped with
a wide range of sensors and I/O components, such as GPS, WiFi,
camera, and so on. These I/O components allow developers to cre-
ate a diverse set of applications. In spite of such high computation
power and developer flexibility, the usage of smartphones has been
severely impeded by their limited battery capacity. In terms of com-
putation capacity, most of the current-generation smartphones are
two or even three orders of magnitudes better than their decade-
old counterparts. However, the battery-life of these modern smart-
phones has improved only two or three times1. High computational
power coupled with small battery capacity and the application de-
velopment in an energy-oblivious fashion can only lead to one sit-
uation: short battery life and an unsatisfied user base.

Energy inefficiencies in smartphone applications can broadly be
categorized into energy hotspots and energy bugs. An energy hotspot
can be described as a scenario where executing an application causes
the smartphone to consume abnormally high amount of battery
power even though the utilization of its hardware resources is low.
In contrast, an energy bug can be described as a scenario where a
malfunctioning application prevents the smartphone from becom-
ing idle even after it has completed execution and there is no user
activity. Table 1 lists the different types of energy bugs and en-
ergy hotspots that can be found in Android applications. It is also
worthwhile to know that most contemporary smartphone devices
are designed to operate at different power states and prolong the
battery life. However, as listed in Table 1, malfunctioning applica-
tions may lead to inappropriate power states, such as energy hun-
gry GPS/sensor updates, non-idle power state in the absence of user
activity and so on. Moreover, most of these energy inefficiencies
appear when the application does not access the device resources in
an appropriate fashion (e.g. not releasing WiFi/GPS/Wakelocks or
expensive sensor updates), eventually hampering the battery life.
Therefore, to build energy-efficient applications, it is crucial for
the developer to know these energy inefficiencies in the application
code. Presence of such energy inefficiencies in the application code
can be highlighted to the developer via our proposed methodology.

In this paper, we present an automated test generation framework
to detect energy hotspots/bugs in Android applications. Specifi-
cally, our framework systematically generates test inputs which are
likely to capture energy hotspots/bugs. Each test case in our gen-
erated test suite captures a user interaction scenario that leads to
an energy hotspot/bug in the respective application. We argue that

1
For instance, if we compare Nokia 9000 Communicator (released

in 1996) to Samsung S3 (released in 2012), we can observe that the pro-
cessing power has increased from 24MHz to 1.4GHz, whereas the battery
capacity has only increased from 800mAH to 2100mAH

Category Energy Bug Energy Hotspot
a Hardware

Resources
Resource Leak: Resources (such as the WiFi) that
are acquired by an application during execution
must be released before exiting or else they con-
tinue to be in a high-power state [2]

Suboptimal Resource Binding: Binding resources too early or releasing them too
late causes them to be in high-power state longer than required [3], [4]

b Sleep-state
transition heuristics

Wakelock Bug: Wakelock is a power management
mechanism in Android through which applications
can indicate that the device needs to stay awake.
However, improper usage of Wakelocks can cause
the device to be stuck in a high-power state even
after the application has finished execution. This
situation is referred to as a Wakelock bug [5]

Tail-Energy Hotspot: Network components tend to linger in a high power state
for a short-period of time after the workload imposed on them has completed.
The energy consumed by the component between the period of time when the
workload is finished and the component switches to the sleep-state is referred
to as Tail Energy [6]. Note that tail energy does not contribute to any useful
work by the component. Scattered usage of network components throughout the
application code increases power loss due to Tail-Energy

c Background
Services

Vacuous Background Services: In the scenario
where an application initiates a service such as lo-
cation updates or sensor updates but doesn’t re-
moves the service explicitly before exiting, the ser-
vice keep on reporting data even though no appli-
cation needs it [7]

Expensive Background Services: Background services such as sensor updates can
be configured to operate at different sampling rates. Unnecessarily high sampling
rate may cause energy hotspots and therefore should be avoided. [8] Similarly,
fine-grained location updates based on GPS are usually very power intensive and
can be replaced by inexpensive, WiFi-based coarse-grained location updates, if an
application is using both the WiFi and the GPS [9]

d Defective
Functionality

Immortality Bug: Buggy applications may re-
spawn when they have been closed by the user,
thereby continuing to consume energy [10]

Loop-Energy Hotspot: Portions of application code are repeatedly executed in a
loop. For instance, a loop containing network login code may be executed repeat-
edly due to reasons such as unreachable server [10]

Table 1: Classification of Energy Bugs and Energy Hotspots

the systematic generation of such user interaction scenarios is chal-
lenging. This is primarily due to the absence of any extra-functional
property (e.g. energy consumption) annotations in the application
code. As a result, any naive test-generation strategy may either
be infeasible in practice (e.g. exhaustive testing) or it may lead to
an extremely poor coverage of the potential energy hotspots/bugs.
This also brings us to the difficulty of defining an appropriate cover-
age metric for any test generation framework that aims to uncover
energy hotspots/bugs. In our framework, we address these chal-
lenges by developing a directed search strategy for test generation.

To design a directed search strategy, it is critically important to
know the potential sources of undesirable energy consumption. Ta-
ble 1 lists such sources of energy consumption in Android applica-
tions. Moreover, existing works such as [11] have shown that I/O
components are primary sources of energy consumption in a smart-
phone. One crucial observation is that I/O components are usually
accessed in application code via system calls. Besides, the power
management functionality (e.g. Wakelocks), background services
and other hardware resources (cf. Table 1) of a device can only be
accessed through a set of system calls. In summary, most of the
classified energy hotspots/bugs (cf. Table 1) are exposed via the
invocation of system call(s). Therefore, the general intuition be-
hind our directed search strategy is to systematically generate user
interaction scenarios which potentially invoke such system calls.

Our search strategy revolves around systematically traversing an
event flow graph (EFG) [12]. EFG is an abstraction to capture a set
of possible user interaction sequences. Each node in an EFG cap-
tures a specific user interaction (e.g. touching a button on smart-
phone screen), whereas an edge in the EFG captures a possible
transition between two user interactions. Therefore, each trace in
an EFG captures a possible sequence of user interactions. Since ex-
haustive enumeration of EFG traces is potentially infeasible, our di-
rected search methodology generates appropriate EFG traces which
are likely to lead to undesirable energy consumption. To accom-
plish this, we primarily employ two strategies. Based on our ob-
servation from Table 1, we execute selected EFG traces and these
selected EFG traces invoke system calls that might be responsible
for irregular power consumption . Besides, if an energy hotspot/bug
is detected after executing an EFG trace, we record the sequence of
system calls responsible for such irregular energy behaviour. Sub-
sequently, we prioritize unexplored EFG traces that may invoke a
similar sequence of system calls. Such a guidance heuristic primar-
ily aims to uncover as many energy hotspots/bugs as possible in a
limited time budget.

Besides the challenges encountered in generating energy stress-
ing test inputs, it is also non-trivial to automatically detect a poten-
tial energy hotspot/bug in a given trace. To detect energy hotspots/
bugs, our framework executes a test input (i.e. a user interaction
scenario) on a off-the-shelf smartphone, while simultaneously mea-
suring the power consumption via a power meter. To detect an
energy bug in a specific trace, we measure the statistical dissimi-
larities in power-consumption trace of the device, specifically, be-
fore and after executing the respective application. As the power
consumption of an idle device should be similar, a statistical dis-
similarity indicates an energy bug. To detect an energy hotspot, we
employ an anomaly detection technique [13] to locate anomalous
power consumption patterns. Once we finish the process of detect-
ing hotspots/ bugs in a power-consumption trace, we generate a dif-
ferent user interaction scenario (using the directed search strategy
in the EFG) to investigate. The test generation process continues
till the time budget permits or all event traces invoking system calls
have been explored. As the system calls are the potential locations
to cause irregular energy behaviour, the quality of our test suite is
provided via the coverage of system calls in the application.

Contribution. In summary, we provide a systematic definition,
detection and exploration of energy hotspots/bugs in smartphone
applications. We combine a graph-based search algorithm and guid-
ance heuristics to find possible energy hotspots/bugs in an applica-
tion. Each test case in our generated report captures a user interac-
tion scenario that leads to an energy hotspot/bug. We have imple-
mented our entire framework for Android apps. For the evaluation
of our framework, we have performed experiments with 30 freely-
available Android apps from the Google Play/F-Droid. These ap-
plications are diverse in terms of apk (Android application package
file) size. The largest tested application was 8.0MB in size while
the smallest application was 22KB in size. The average apk size
of the tested applications was 1.1MB. The lines of code for the
open-source applications used in our experiments varied from 448
to 11, 612, with an average of 4010 lines of code per application.
Additionally, the applications used in our experiments use multiple
I/O components and had a substantial number of user-interaction
(UI) screens. Experiments with our framework uncovered energy
bugs in 10 of the tested applications and energy hotspots in 3 of the
tested applications. Manual validation of the experimental results
shows that our framework reports reasonably low number of false
positives. Finally, we show the usage of our test suite by improving
the energy-efficiency of some of the tested Android applications.

2. GENERAL BACKGROUND
Android is an open-source operating system (OS) designed for

mobile devices such as smartphones. We choose Android as our
target platform primarily due to its relevance in the real world (glob-
ally 57% of all smartphones/tablets are Android based [14]). Addi-
tionally, a wide variety of tools are publicly available for Android
application developers. This includes, among others, tools to mon-
itor the state of an application in real-time (e.g. logcat), to commu-
nicate with the device (e.g. android debug bridge) and to facilitate
application development and testing (e.g. emulator).

The user interaction interface of an Android application is re-
ferred to as an Activity. Figure 1 shows the life-cycle of an Android
activity. An activity can be in one of the seven stages during its
life-cycle. Usually, all the set-up tasks (such as acquiring resources
and starting background services) take place in four stages of the
activity, namely onCreate , onStart , onResume and onRestart .
Similarly, all the tear-down tasks (such as releasing resources and
stopping background services) take place in three stages, namely
onPause , onStop and onDestroy . However, some real-life ap-
plications do not follow the ideal set-up and tear-down scenarios
as explained via Figure 1. Such applications may contain energy
bugs. This situation is made worse by the fact that most real-life
applications have a huge number of feasible user interaction sce-
narios (due to complex GUIs). As a result, it can be impossible for
a developer to test an application for all possible scenarios.

Activity

Launch

Activity

Shutdown

Activity

Running

onCreate onDestroy

onStart onStop

onResume onPause

another activity

comes to foreground

user returns

to activity

onRestart

activity finished

or destoryed

activity not

visible to user

Activity

Killed

activity with higher

priority needs memory
user navigates

to activity

Figure 1: Life-cycle of an Android activity

Figure 2 shows a snippet of application code that has a potential
energy bug. The application code is supposed to start a location-
update background service (Line 10) in the onCreate method. Sub-
sequently, it performs some operation with list data (Line 12). When
the user stops the application, the location-update service is re-
moved (Line 19) in the onStop method. However, if there is an
exception before Line 19 (for instance, due to Line 18), the location

List<Integer> data;

LocationManager locationManager;

long Min_Update_Time = 10, Min_Distance = 1000 * 60 * 1;

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 locationManager = (LocationManager)getSystemService(LOCATION_SERVICE);

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,

 Min_Update_Time, Min_Distance, this);

 someFunctionToManipulateDataList();

}

@Override

public void onStop() {

 super.onStop();

 try {

 data.clear(); //this can throw an exception

 locationManager.removeUpdates(this);

 } catch (Exception ex) {

 Log.v("Demo", "some exception happended");

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 2: Code with a potential energy bug

update service is never stopped, resulting in an energy bug. The
example in Figure 2 shows one possible scenario (cf. Table 1 #c:
Vacuous Background Services) which can lead to an energy bug.
Next, we shall show an example that can lead to an energy hotspot.

The code snippet in Figure 3(a) shows an example with energy
hotspots due to disaggregated network activities (cf. Table 1 #b:
Tail-Energy Hotspot). Observe that in Figure 3(a), network related
code (Line 6) is interleaved with CPU-intensive code (Line 8) within
the same loop. Such an interleaving causes energy-inefficiencies
due to Tail-Energy (see Table 1 #b: Tail-Energy Hotspot). Tail-
Energy behaviour has been observed for network components such
as 3G , GSM and WiFi [6]. Other works [11] have observed Tail-
Energy in components such as storage disks and GPS as well. In
order to reduce energy-loss due to Tail-Energy, the network related
code in Figure 3(a) can be aggregated as shown in Figure 3(b).

public Object[] nonAggregatedComm()

{

 Object[] objectArray =

 new Object[10];

 for(int i=0; i<10; i++){

 Object temp = downloadObject(i);

 objectArray[i] =

 processObject(temp);

 }

 return objectArray;

}

public Object[] aggregatedComm()

{

 Object[] tempArray = new Object[10];

 for(int i=0; i<10; i++){

 tempArray[i] = downloadObject(i);

 }

 Object[] objectArray = new Object[10];

 for(int i=0; i<10; i++){

 objectArray[i] =

 processObject(tempArray[i]);

 }

 return objectArray;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) (b)

Figure 3: (a) Code with energy hotspot due to disaggregated communica-

tion (b) Code without energy hotspot

Finally, we shall explain the method used for obtaining the power
consumption ratings of the hardware components in our smart-
phone. One approach to obtain the power consumption ratings
would be to perform empirical experiments based on the guidelines
provided on the Android developer web page [15]. However, there
is a more elegant way to obtain the power consumption ratings.
Most Android smartphones are shipped with a XML file (usually
named as power_profile.xml) containing the average power con-
sumption ratings for the hardware components in the device. The
data contained in this XML file is provided by the device manufac-
turer and therefore it is reliable. Moreover, the Android framework
uses this data to show battery related statistics. However, note that
the data in this XML file is an indicator of average power consump-
tion of the hardware components of the device and does not corre-
spond to any particular application being run on the device. The
data from power_profile.xml for our smartphone LG L3 E400, is
shown in Figure 4.

0

50

100

150

200

250

300

350

Screen Bluetooth GPS Wifi Radio CPU

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 4: Power profile for LG Optimus L3 E400 smartphone

3. FRAMEWORK OVERVIEW
An overview of our test-generation framework is shown in Fig-

ure 5. Our framework has two essential components: (i) guided
exploration of selected event traces that are more likely to uncover
energy hotspots/bugs, and (ii) detection of hotspots/bugs in a given
event trace for an application. The information provided by the
hotspot/bug detection component is also utilized by the guidance
component to select subsequent event-traces. The process of selec-
tion, execution and detection continues until the given time-budget
has expired or all event-traces invoking system-calls have been ex-
plored. Finally, event traces that lead to energy hotspots/bugs are
reported to the developer for further investigation.

To detect a hotspot/bug, we measure the power consumption of
the application for a given event-trace. However, it is impossible to
detect a hotspot/bug in an application solely by analyzing its power
consumption trace. For instance, consider a scenario where two
programs P1 and P2 have similar power consumption traces. How-
ever, program P1 has a much higher utilization of system resources
(such as CPU) compared to P2. In such a scenario, program P1

is more energy-efficient than program P2. Therefore, to accurately
detect energy inefficiencies, it is important to define an appropriate
metric for system-resource utilization.

For a hardware component x, the Loadx represents the average
amount of computational work performed by the hardware compo-
nent x over a given period of time. Loadx has a range from 0 to 1.
For example, LoadCPU represents the fraction of time CPU is in
use and therefore LoadCPU can be a number between 0 and 1. For
other hardware components (i.e. WiFi, screen, Radio and GPS),
Loadx captures whether the respective components are in use. For
instance, LoadWiFi is set to 1 if the WiFi is transmitting data and
it is set to 0 otherwise. For any hardware component x, we mea-
sure Loadx directly from the device, while the application under
test is being executed. It is important to note that a higher Loadx

in a high-power consuming component x would result in a higher
power consumption for the device. Based on this information we
define a new metric of utilization that will be subsequently used in
energy hotspots/bugs detection.

DEFINITION 3.1. Utilization (U) can be defined as the weighted
sum of utilization rates of all major power consuming hardware
components in a device, over a given period of time.

Based on the power profile for our device (cf. Figure 4), major
power consuming components in our mobile device are the screen,
WiFi, Radio, GPS and CPU. Therefore, for a given time interval,
the utilization of system resources can be computed by Equation 1.

Utilization = UScreen +UCPU +UWiFi +URadio +UGPS (1)

UCPU =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
WCPU320 · LoadCPU , if CPU is operating at 320MHz

WCPU480 · LoadCPU , if CPU is operating at 480MHz

WCPU600 · LoadCPU , if CPU is operating at 600MHz

WCPU800 · LoadCPU , if CPU is operating at 800MHz

UScreen =

{
WScreenON · Loadscreen, if screen on

WScreenFULL · Loadscreen, if at full brightness

Ux = Wx · Loadx, x ∈ {WiFi ,Radio,GPS}
In Equation 1, Ux represents the utilization of hardware compo-

nent x. Utilization of a component x is directly proportional to its
Loadx. For any component x, the value of Wx is computed from
the power profile (Figure 4). Specifically, the value of Wx is nor-
malized such that Wx for the most power consuming component

Application

Event Trace

Utilization

Energy Consumption

Trace

Energy

Hotspots/Bugs

Event Flow Graph

Test Suite

Hotspot / Bug

Detection Guidance

Module

Database

EFG Extraction

Event Trace

Generation

Power Meter

Smartphone

Time Budget Expired

HOTSPOT/BUG DETECTION COMPONENT GUIDANCE COMPONENT

Figure 5: Overview of the test generation framework

is 1 (in our case ScreenFULL as shown in Figure 4). Note that in
our case Equation 1 does not include Bluetooth. This is because
in our target device Bluetooth has a very low power consumption
compared to other components. However, if required, we can eas-
ily extend Equation 1 to accommodate Bluetooth as well. Using the
new metric of utilization (U), we can now compute the magnitude
of energy-inefficiency as follows.

DEFINITION 3.2. Energy-consumption to Utilization (E/U) ra-
tio is the measure of energy-inefficiency of an application for a
given time period.

If E/U ratio of an application is high, it implies that the energy-
consumption is high, while utilization is low. Therefore, a high
E/U ratio indicates that the application is energy-inefficient. Re-
call that we discuss two categories of energy issues that can make
an application energy-inefficient (i.e. energy hotspots and energy
bugs). A high E/U ratio during the execution of an application
indicates the presence of an energy hotspot. On the contrary, a per-
sistently high E/U ratio even after the application has completed
execution indicates the presence an energy bug.

Now we shall briefly discuss the exploration of event traces to
reveal hotspots/bugs. In our framework, guided exploration of se-
lected event traces is based on event flow graph (EFG) [12]. EFG
of an application can be defined as follows.

DEFINITION 3.3. An Event Flow Graph (EFG) is a directed
graph, capturing all possible user event sequences that might be
executed via the graphical user interface (GUI). Nodes of an EFG
represent GUI events. A directed edge between two EFG nodes X
and Y represents that GUI event Y follows GUI event X .

In our experiments, we use a modified version of the Dynodroid
tool [16] to generate the EFG. Subsequently, our framework gen-
erates event sequences up to maximum length k and stores them in
a database. After the event traces have been generated, our frame-
work initiates a guided exploration of those traces. The crucial
factor during the exploration is to identify the event traces that may
lead to hotspots or bugs. Our framework accomplishes this by se-
lecting event traces based on the number of invoked system calls
and guidance heuristic. The guidance heuristic gathers information
from previously detected hotspots/bugs, specifically the sequence
of system calls which are likely to lead to energy inefficiencies.
Subsequently, the selection process is biased towards event traces
invoking a similar sequence of such system calls. This process of
selection, execution and detection continues until the time-budget
has expired or all event-traces invoking system-calls have been ex-
plored. Finally, event traces that lead to energy hotspots/bugs are
reported to the developer for further investigation.

4. DETAILED METHODOLOGY
In the following sections, we shall describe our test generation

methodology in detail. Broadly, our framework contains two sub-
steps; (i) preprocessing the application under test to build a database
of possible event traces, and (ii) test generation using event traces
generated in the first step.

4.1 Preprocessing the application
Preprocessing of application can be divided into three steps: (i)

EFG extraction (ii) Event trace generation (iii) Extraction of system
calls sequence for each event trace. Note that this preprocessing
step is performed only once for each application. The generated
EFG and database are stored for later use and need to be updated
only if the application’s user interface changes. Since this prepro-
cessing is done offline, a developer can rerun the test generation
step (detailed in Section 4.2) without repeating preprocessing step.

(i) Event Flow Graph extraction : We build the Event Flow
Graph (EFG) based on the UI model proposed in [12]. For the
purpose of EFG construction we use two third-party tools Hierar-
chy Viewer [17] and Dynodroid [16]. Hierarchy Viewer provides
information about the UI elements of the application under exe-
cution and Dynodroid is used to explore these event sequence au-
tomatically. Note that Dynodroid does not generate the EFG by
itself, therefore we modified the Dynodroid source code to build
the EFG. The EFG was constructed gradually each time Dynodroid
interacts with the application. Figure 6 shows how our EFG is be-
ing gradually built as Dynodroid performs the exploration of event
sequences. It is worthwhile to note that Dynodroid does not guar-
antee to reach all GUI states during exploration. Therefore, our
constructed EFG is in fact a partial EFG of the entire application.
However, in our experiments, we observed that the generated EFGs
cover most of the GUI elements for the tested applications.

(ii) Event trace generation : EFG is primarily used to generate
a set of event traces. Note that each application has a start GUI
screen. This GUI screen is presented to the user when an applica-
tion is launched. We refer to this GUI screen as the root screen.
Therefore, for a sequence of user interactions performed in an ap-
plication, the first action corresponds to an event present in the root
screen. Using this notion, we define an event trace as follows.

DEFINITION 4.1. An event trace is defined as a path of arbi-
trary length in the EFG. Such a path must start from an event in the
root screen of the respective application.

Based on our EFG, we generate a complete set of event traces upto
length k. These event traces are stored in a database for further
analysis during test generation. Figure 6(b) shows the partial EFG
of an application. The node containing the event playbutton cap-
tures the root screen of the same application. An example event
trace of length 3 would be playbutton → stopbutton → playbutton

or skipbutton → ejectbutton → BackButton. Note that events
playbutton and skipbutton correspond to different events in the root
screen of the application.

rewindbutton

playbutton

pausebutton

stopbutton

ejectbutton

skipbutton

rewindbutton

playbutton

pausebutton

stopbutton

ejectbutton

skipbutton

button1button2BackBut ton

(a) (b)

Figure 6: EFG generation process (a) An example EFG (b) EFG after pressing

"ejectbutton"

(iii) Extraction of system calls : Existing literature [11] has
shown that I/O components are one of the major sources of en-
ergy consumption in smartphones. On observing the power profile
of our smartphone (see figure 4) we find this argument to be consis-
tent. In general, for modern smartphones the major power consum-
ing components are the screen, CPU, WiFi, Radio, GPS, SDCard,
Camera and Audio hardware. We observed that these components
(except for the CPU) can only be accessed via a set of system calls
(APIs) provided by the Android SDK framework. Therefore, we
create a pool of such systems calls. Table 2 shows a categoriza-
tion of these systems calls based on their functionalities. Since
our target device (LG L3 E400) uses Android 2.3 (Gingerbread),
therefore we only consider system calls available in Android 2.3. It
is worthwhile to note that such a pool is constructed only once and
it needs to be updated only if the Android SDK framework changes.

Functionality
Number
of APIs

Example

Power Management 3135 WakeLock.acquire()

Local Area

Wireless Networks
2116 WifiLock.acquire()

Telecomm Networks 1691 SmsManager.sendTextMessage()

Haptic Feedback 783 Vibrator.vibrate()

GPS 146 LocationManager.requestLocationUpdates()

Audio/Video 94 Camera.startPreview()

Storage 66 DownloadManager.enqueue()

Others 25 SensorManager.getAltitude()

Table 2: Categorization of Android system calls

We instrument the application code locations which invoke any
system calls from our constructed pool. This instrumented code
runs in an emulator on our desktop PC. The sole intention of this
instrumentation is to collect the system call traces during the exe-
cution of an event trace. We execute the instrumented code on the
emulator and record the system calls invoked for each event trace.
These system calls are annotated with the EFG node corresponding
to the triggered event. Thus, for each event trace generated from the
EFG, we can generate the respective system call trace. It is impor-
tant to note that the event traces are executed on the smartphone,
as well as in the emulator. The instrumented application runs on
the emulator whereas the instrumentation-free application run on
smartphone. Therefore, the instrumentation does not influence the
energy consumption behaviour of the application.

4.2 Test generation
In this subsection, we shall describe (i) technique for hotspot/bug

detection (ii) guidance heuristic for the framework and (iii) algo-
rithm for test-generation

(i) Technique of hotspot/bug detection: As described in section
3, energy hotspots/bugs are those regions of code that lead to high
E/U ratio (cf. Def 3.2). To detect energy hotspots during an event
trace T , we must first obtain the E/U ratio trace (E/UT), during
the execution of T . E/UT is divided into four different stages: pre-
execution stage (PRE), execution stage (EXC), recovery stage
(REC) and post execution stage (POST) (see Figure 7). The ra-
tionale for dividing E/UT trace into four stages is as follows: in
the PRE stage the execution of event trace T has not started yet.
Therefore, PRE stage records the idle-behaviour (low-power state)
of the device. Similarly, in the POST stage, the devices has com-
pleted execution of T and so in an ideal scenario the device would
have gone back to its idle-behaviour during POST stage. The exe-
cution stage, as the name suggests, is when T is actually executing

on the device. After the execution of T , the device takes a brief
period of time (referred to as screen-time-out duration) to return to
its idle-behaviour. In our framework this time period between the
EXC and POST stage is referred to as REC stage 2.

Figure 7: An example of energy-consumption to utilization (E/U) trace with no

hotspot/bug, with an energy bug and with an energy hotspot

To detect the presence (or absence) of an energy bug we compare
the E/UT values in PRE and POST stages using statistical meth-
ods. If the dissimilarity between E/UT values in PRE and POST
stage is more than a predefined threshold (in our experiments the
threshold was set to 50%), an energy bug is flagged (i.e execution
of T changed the idle-behaviour of the device).

Compared to detection of bugs, detection of hotspots is much
trickier. Hotspots may appear only during the execution of an event
trace (i.e. EXC stage) or just after the execution of an event trace
(i.e. REC stage) stage. Note that E/UT values obtained in EXC
stage and REC stage may substantially vary for different event
traces. Besides, different executions of the same event trace may
show different E/UT values in EXC stage or REC stage, due to
different hardware states. Therefore, we first need a clear definition
of energy hotspots to detect them automatically. We believe that
abnormally high energy wastage during the execution of an event
trace is a suitable indicator of energy hotspots. To detect such un-
usual energy behaviours, we draw connections from the data min-
ing and classification techniques. We observe that the problem of
detecting unusual energy behaviours is similar to detect unusual
subsequences in time-series data. We use an anomaly detection
technique that computes discords [18] in a time-series data. Dis-
cords are subsequences in a time-series data, that are maximally
different from the rest of the time-series. We employ the discord
detector on the E/UT values from the EXC and REC stage. As a
result, the discord detector highlights subsequences in E/UT that
are abnormally different from the rest of the subsequences in the
EXC and REC stage. Additionally, the anomaly detector also
points out the magnitude of each computed discord. For instance,
in Figure 7, discord D1 has a higher anomaly magnitude than the
discord D2. These magnitudes are extremely helpful. This is be-
cause the computed energy hotspots can be ranked based on their
magnitude, before reporting to the developers. As the anomaly de-
tector, we integrate JMotif [13] into our framework. JMotif is
an off-the-shelf data mining library and it includes the implemen-
tation of finding discords in a time-series data, as proposed in [18].

(ii) Guidance heuristics for test generation: The primary ob-
jective of the guidance heuristics is to select an unexplored event
trace that has a substantial likelihood of leading to a hotspot or a
bug. The guidance function uses three parameters to rank the unex-
plored event traces: (a) number of systems calls in the event trace

2
In all our experiments, REC stage was much larger than the screen-time-out duration.

This allowed the device to return back to its idle behaviour by the POST stage after

a bug-free event trace has completed execution.

(b) similarity to previously explored, hotspot/bug revealing event
traces (c) starvation of event traces due to unexplored system calls.
The rationale for using these parameters is explained subsequently.

We have described in an earlier section (4.1:(iii) Extraction of

system calls) that the major power consuming component in smart-
phones can be accessed through a set of system calls. Therefore, the
presence of system calls that activate (or deactivate) such hardware
components can be used for guiding our test generation. At the
beginning of test generation process, all event traces are ranked ac-
cording to the number of such system calls they can invoke. In sub-
sequent iterations, the guidance module becomes more intelligent
by learning specific system call subsequences that are more likely
to generate energy hotspots/bugs, which is where the guidance by
similarity (or exploration history) comes into play. While select-
ing an unexplored event trace, the guidance heuristics compares an
unexplored trace to all previously explored event traces that had
uncovered an energy hotspot or a bug. Comparison between two
event traces is performed in terms of the sequence of systems calls
they can invoke. Note that such a comparison is perfectly feasible,
as we extracted the system call trace for each event trace during
the preprocessing stage. Similarity between two system call traces
is compared using Jaro Winkler Distance algorithm [19]. Finally,
our third parameter, guidance by starvation, aims to cover as many
system calls as possible during exploration. Since the first two pa-
rameters are based on the number of system calls and the explo-
ration history it is possible that the guidance heuristics may ignore
several unexplored system calls. This leads to starvation, where
a set of system calls will never be explored by the test generation
process. Such starvation is undesirable, as unexplored system calls
may potentially expose new energy hotspots/bugs. Therefore, to
ensure a fair coverage of all the system calls invoked by an appli-
cation, we add a guidance parameter to deal with the problem of
starvation. Essentially, guidance by starvation ranks all unexplored
event traces by the ratio of number of unexplored system calls in an
event trace to the total number of system calls in all event traces.

(iii) Algorithm for test-generation: The algorithm for our test-
generation framework is shown using a flow chart (see Figure 8).
The primary objective of our framework is to uncover as many en-
ergy hotspots/bugs as possible in an application, within a given
time budget. Input to our framework is an Android application
from which the database of the application’s event traces is gen-
erated. Recall that generation of event traces from the EFG of an
applications was explained in section 4.1. Our framework system-
atically executes the event traces from the database on the smart-
phone. Each execution is monitored for presence of hotspots/bugs.
The exploration continues until the allocated time budget has ex-
pired. On completion, the framework reports a set of event traces,
each of which leads to an energy hotspot/bug when executed on
the device. The two most important components of our frame-
work, that are Guidance heuristics for test generation and Tech-
nique of hotspot/bug detection, have been discussed in preceding
paragraphs. There is however, one more component of the frame-
work that must be explained. Notice that in the flow chart (Figure
8), the first block indicates Refine Guidance Parameters, α, β, γ.
Essentially, this indicates the step in our framework where the re-
liance (or the weight) of the various guidance parameters are re-
fined. Recall that our guidance heuristics is based on three param-
eters, guidance by number of system calls (corresponding weight
would be α), guidance by exploration history (corresponding weight
would be β) and guidance by starvation of system calls (corre-
sponding weight would be γ). Assume that, for a given event trace
E, guidance by number of system calls assigns a rank Gn, similarly
guidance by exploration history assigns a rank Gh and guidance by

Refine Guidance Parameters α, β, γ

α: weight for guidance by number of system calls

β: weight for guidance by exploration history

γ: weight for guidance by system call starvation

Update

Test Suite

Database of Unexplored Events

Test Suite

Update Database

Re-rank all unexplored event traces

Select Execution Trace, E

Start Monitoring Device

Execute Event Trace, E, on the smartphone

Stop Monitoring Device

Analyze E/U data to

detect Hotspots / Bugs

Time Budget Expired?

Contains Hotspot / Bug ?
Y

N

N

Y

Figure 8: Flow chart for our test-generation framework

starvation assigns a rank Gs. To obtain a single score SE for an
unexplored event trace E, we use equation 2.

SE = α×Gn + β ×Gh + γ ×Gs (2)

where α + β + γ = 1. In equation 2, α, β and γ are three tun-
able factors which drive the priorities of different guidance param-
eters. In the beginning, we do not have any knowledge about likely
hotspots/bugs. Therefore, α is initialized to 1 and both β and γ are
initialized to 0. In each iteration, the value of α, β and γ are refined
to uncover likely energy hotspots/bugs, as well as to get a fair cov-
erage of invoked system calls. Specifically, in each iteration, we
decrease the value of α by a fixed amount Δ (0 < Δ < 1). If an
energy hotspot was found in the previous iteration, we increase the
value of β to β +Δ. The intuition behind this refinement is to find
energy hotspots/bugs that had similar system call sub-sequences as
previously found hotspots/bugs. We continue increasing the value
of β as long as we find hotspots/bugs or the value of β reaches 1. If
we are unable to find any hotspots/bugs in some iteration, we hope
to reach previously unexplored system calls and therefore, we in-
crease the weight of γ to γ + Δ. This assignment of extra weight
Δ is taken out from α, if α ≥ Δ. Otherwise, we modify the value
of β to β −Δ to decrease the priority of execution history.

5. EXPERIMENTAL EVALUATION
We evaluated our framework to answer the following three re-

search questions: (i) Efficacy of our framework in uncovering en-
ergy bugs and hotspots in real-world applications, (ii) How can an
application developer benefit from the reports generated by our
framework, and (iii) Is guidance based on system call coverage
more appropriate metric than code coverage for uncovering energy
bugs and hotspots? First, we describe our experimental setup and
the set of subject programs that we analysed in our experiments.

5.1 Experimental setup
In our experiments, we use an LG Optimus L3 smartphone as

the device to run our subject programs. The device has a single
core processor and features standard I/O components such as GPS,
WiFi, 3G and Bluetooth. The device uses Android 2.3.3 (Ginger-
bread) operating system (OS). To monitor energy consumption of
the smartphone, we used a Yokogawa WT210 [20] digital power
meter for precise power measurement. Our energy-testing frame-
work runs on top of a Desktop-pc that has an Intel Core i5 processor
and 4 GB RAM. The OS used on our Desktop-pc was Windows 7.

+-

Battery Power Meter

Smartphone Desktop PC

Power Meter

output over

serial port

communication

over adb

voltage

measurement

current

measurement

Figure 9: Our experimental setup

Figure 9 shows the setup for our experiments. For the purpose of
this experiment we created a special apparatus to house the smart-
phone battery, such that we could measure the voltage and current
flowing through the battery without any distortion. Note that con-
temporary smartphone batteries may have more than two terminals.
Additional terminals may be used by the battery to report data such
as internal temperature. However, for our experiments only the
positive and the negative terminals need to be monitored (as shown
in Figure 9). Any additional terminals may be directly connected
to the smartphone. Our framework runs on the Desktop-PC, which
also serves as the global clock. All the measurements from the
power-meter (reporting power consumption data) and the smart-
phone (reporting utilization data) are collected at the Desktop-PC.
Each reading is recorded with a timestamp generated on the Desktop-
PC. Since the timestamps are generated by a single clock (the clock
on the Desktop-PC) we can use these timestamps to synchronize
[21] the data from the power-meter and the smartphone. Also note
that we use the android debug bridge to communicate with the
smartphone. These communication includes sending event traces
to the smartphone and recording utilization data.

5.2 Choice of subject programs
The subject programs for our experiments are available on Google

Play store/F-droid repository [22–51]. We have analyzed a total of
30 Android applications from different categories (e.g.tools, pro-
ductivity, transportation) as shown in Figure 10. The subject pro-
grams are diverse in terms of apk (Android application package
file) size. The largest application tested was 8.0MB in size while
the smallest application was 22KB in size. The average apk size of
the subject programs was 1.1MB. The subject programs also had
varying GUI complexity. We measure GUI complexity of an ap-
plication by the number of feasible event traces that could be ex-
plored, starting from the main screen of the application. By fixing
the length of the event traces to explore (to a length of 4), we ob-
serve that our chosen subject programs contain between 26 to 2,800
feasible event traces. We also estimate the popularity of an appli-
cation by observing the number of times it has been downloaded,
as well as its user ratings. These two statistics are only available
for applications on the Google Play store. As of March 10, 2014,
the subject programs have an average user rating of 4.0 out 5, with

Application Description Feasible
Traces (k=4)

Bugs Found /
False Positive

Hotspots Found /
False Positive

Hotspot / Bug Type Previously
Reported

Aagtl A geocaching tool 131 Yes / No Yes / Yes Resource Leak No

Aripuca Records tracks and waypoints 502 Yes / No No / n/a Vacuous Background Services No

Montreal Transit Fetches bus, subway and other tran-
sit information

64 Yes / No No / n/a Expensive Background Services,
Suboptimal resources binding

No

Omnidroid Automated event/action manager 233 Yes / No No / n/a Vacuous Background Services, Im-
mortality bug

Yes

Zamnim Shows location-aware zmanim 965 Yes / No No / n/a Vacuous Background Services Yes

Sensor Test Monitors and logs sensor output 2,800 Yes / No No / n/a Immortality bug No

Eponte Displays traffic information 200 No / n/a Yes / No Suboptimal resources binding No

760 KFMB AM Listens to online radio 26 Yes / No Yes / No Vacuous Background Services, Sub-
optimal resources binding

No

Food Court Finds restaurants near a location 42 Yes / No No / n/a Vacuous Background Services No

Fire and Blood Simple touch and draw game 156 Yes / No No / n/a Vacuous Background Services No

Speedometer Shows measurements of sensors 2,492 Yes / No No / n/a Vacuous Background Services No

Table 3: Statistics for all the Energy Hotspots/Bugs found in tested applications (out of the 30 applications that we analyzed)

a minimum rating of 2.7 and a maximum rating of 4.6. The median
number of downloads for the subject programs is between 10,000 -
50,000, with a minimum download count of 1,000 and a maximum
download count of 10,000,000.

Figure 10: Categories of the 30 Android applications used in our experiments

Note that our framework does not require the source code of an
application to detect energy hotspots/bugs. However, the source
code is required to obtain code coverage metrics and for debugging
purposes. Therefore, we only consider open-source applications
for the second and third research questions (where the source code
is needed to perform our evaluation). The lines of code for the
open-source applications used in our experiments varied from 448
to 11, 612, with an average of 4010 lines of code per application.

5.3 Results

RQ1: Efficacy of our framework in uncovering energy bugs and
hotspots in real-world applications One of the objective of our ex-
periments was to observe the efficacy of our framework to quickly
uncover energy bugs and energy hotspots in real world applications.
To do so, we evaluated the applications using our framework with
a time budget of 20 minutes. Additionally, we also limit our explo-
ration for event traces up to a length of 4. A summary of the bugs
and hotspots reported by our framework is listed in Table 3.

Our framework reported energy bugs for 10 out of 30 subject
programs. The framework also reported energy hotspots for 3 sub-
ject programs. Note that our hotspot detection technique is based
on an anomaly detection method [18]. Therefore, some of the re-
ported hotspots may contain false positives due to the presence of
noise in the measured data. Such noise may arise due to unpre-
dictable behaviours such as network load. To confirm a reported
energy hotspot, we manually execute the respective event trace on
our device and we observe whether the same energy hotspot can
be replicated. The result of the manual validation (cf. Table 3)
revealed only one false positive, for the application Aagtl. It is im-

portant to note that the number of feasible event traces can be sub-
stantially large even for event traces having length 4 (as shown in
Table 3). In spite of this large number of event traces, we observed
that our framework can quickly gravitate the exploration process
towards more energy-consuming event traces. Existing tools for
Android application UI testing , such as Monkey, cannot uncover
such high energy consuming event traces because they are designed
to stress test the UI of the application by generating pseudo random
stream of user events irrespective of the application’s EFG or the
system call usage.

RQ2: How can an application developer benefit from the re-
ports generated by our framework? After analyzing an applica-
tion, our framework generates a test report. This report serves as a
guide to optimize energy consumption and to remove potential en-
ergy issues. The report contains a set of test cases, where each test
case captures an energy issue reported by our framework. Each test
case includes (i) a MonkeyRunner script for automatic execution of
events that lead to the energy issue , (ii) energy trace pattern (iii)
details of the energy issue (e.g. magnitude of energy hotspot) and
(iv) the set of system calls invoked.

From the report, the developer may prioritize energy issues ex-
hibiting an energy bug or an energy hotspot of relatively high mag-
nitude. For each test case, the developer can run the provided Mon-
keyRunner script and observe the event sequence that navigates the
application to trigger the reported energy issue. This would help
the developer in identifying the root cause of the energy issue. For
instance, let us assume that an event trace T exposes an energy
hotspot. While executing T , if the hotspot appears before the exe-
cution of a certain event E, neither E nor any subsequent events in
T are responsible for causing the hotspot. Thus, the search space
for identifying the root cause of the hotspot is reduced to the code
fragments that were executed before E was triggered. This will
help the developer in fixing the reported energy issues. We have
performed case studies on two of the analyzed applications (our
framework reported energy bug for one and a hotspot for another)
to demonstrate how a developer can utilize the generated reports to
debug and fix energy issues in applications.

Aripuca GPS Tracker. Our framework reports two event traces
with energy bugs in Aripuca GPS Tracker. The energy consump-
tion pattern for such an event trace is shown in Figure 11(a). As
shown in Figure 11(a), the energy consumption in the POST stage
is not similar to the PRE stage, indicating an energy bug. There-
fore, the device did not become idle even in the absence of user
activity. The effect of the bug is permanent, unless (i) GPS location
update is explicitly removed, or (ii) the application is killed. We

manually verified that the reported event traces do not exercise the
functionality of the application that requires GPS location update
to run in the background. The reported event traces were:
waypointsButton− waypoint_details− MenuButton− button1

waypointsButton− waypoint_details− MenuButton− BackBtn

The reported bug indicated that the location updates (GPS updates)
were not removed before the application becomes inactive. By ob-
serving the similarity between the two traces (i.e. the event se-
quence waypointsButton − waypoint_details − MenuButton), we
deduced that the bug was triggered upon arriving at a certain GUI
state. We manually execute the event trace waypointsButton −
waypoint_details − MenuButton and suspend the application af-
terwards by pressing the Home button. At this point, location up-
dates are not needed by the application any more and they should
be switched off. Upon inspecting the source code, we observed that
the application had a missing code fragment for removing location
updates when exiting. We fix the issue by adding the release code
at an appropriate location. Thereafter, we re-run the reported event
trace using our framework. The energy consumption graph after
fixing is shown in Figure 11(b). As shown in Figure 11(b), the en-
ergy consumption in the POST stage is similar to the PRE stage,
resolving the energy bug.

(a) Before fix

(b) After fix

Figure 11: Energy trace of the event trace for Aripuca GPS Tracker

Montreal Transit. Five event traces with hotspots are reported
for the application Montreal Transit. The energy consumption trace
for one such event trace is shown in Figure 12(a). Immediately af-
ter the execution enters the REC stage (cf. Figure 12(a)), we can
observe potentially high E/U ratios in a period of around 5 sec-
onds. Note that this energy issue is an energy hotspot and not an
energy bug. This is because the high E/U ratio does not persist.
The code for pausing the application consumes abnormally high
amount of energy, causing the hotspot to appear during the same
period. We observed that all the five reported event traces exhibit
similar hotspots. On a closer inspection, we found that the GPS
location updates continue to run for a few seconds even after the
application exits. Before we explain the exact cause for the hotspot,
let us first give an overview of the application.

Montreal Transit is an application to show transit information,
where each screen shows transit information for some mode of
transportation. When a screen for some transportation, say sub-
way, is displayed, it fetches the distances to some of the nearest
subway stations. However, in order to do so, it needs to acquire the
location of the device. Surprisingly, we found that the location up-
date was triggered twice, instead of once. The second location up-
date was triggered by a third-party advertisement module to display
location-based advertisements in the application. We found that the
code to load advertisement is being executed on the main thread of
the application. As a result, any delay in loading the advertisement
from the network prolongs the entire main thread. If the user exits
the application while the main thread is being delayed, the release

of GPS based location updates is delayed as well. The hotspots re-
ported in our experiment can be best explained by such delay. To
confirm our speculation, we moved the code related to the loading
of advertisements in a separate asynchronous thread. As a result,
we observed that the event traces which earlier exhibit hotspots, no
longer do so (cf. Figure 12(b)). On a different note, we suggest
that to develop energy-efficient applications, the developer should
use expensive resources as optimally as possible. For instance, the
location updates in the preceding scenario should be performed just
once and shared between the various modules that need it. We also
suggest that any feature that is surplus to the requirements of users
(e.g. advertisements), should be put in a separate asynchronous
thread to improve the user experience.

(a) Before fix

(b) After fix

Figure 12: Energy trace of the event trace for Montreal Transit

RQ3: Is guidance based on system call coverage more appropri-
ate than code coverage for uncovering energy bugs and hotspots?

Application System Call Code Lines
Name Coverage (%) Coverage (%) of Code
Aagtl 100 21 11,612

Android Battery Dog 100 17 463

Aripuca 100 15 4,353

Kitchen Timer 100 30 1,101

Montreal Transit 89 11 10,925

NPR News 100 24 6,513

Omnidroid 83 36 6,130

Pedometer 100 56 849

Vanilla Music Player 86 20 4,081

Simple Chess Clock 100 49 448

WiFi ACE 100 27 504

World Clock 100 90 1,147

Table 4: Coverage statistics of all open-source applications used in our experiments

We have argued that I/O components and power management
utilities contribute significantly to the energy consumption of a mo-
bile device. Therefore, we use the number of system calls in-
voked by an event trace as one of the guiding parameters in the
exploration. As a result, the test-suite generated by our framework
should cover as many system calls as possible. On the other hand,
a more conventional approach would be to measure code coverage
of the test-suite to evaluate the efficacy of a test-generation frame-
work. Therefore, we evaluated the efficacy of system call based
coverage with respect to code coverage, to obtain a minimal test
suite for uncovering energy bugs or energy hotspots. We choose
line of code (LoC) as our code coverage metric and use EMMA,
a Java code coverage tool, to obtain LoC covered by a test suite
compared to the total LoC of the application. We observed that the
generated test-suites had a system call coverage of more than 83%,
while having code coverage ranging from 11%− 90% (see second
and third columns of Table 4). Subsequently, we wanted to observe
if achieving an incremental code coverage uncovers any additional
hotspots/bugs. Therefore, we manually generated additional test
cases for the applications in Table 4. We observed that the manu-

ally generated test cases increased the code coverage ranging from
4% to 17%. However, no additional hotspots/bugs were revealed.
This is most likely due to the inefficiency of a human user to sys-
tematically find energy-inefficient event traces, based on a given
metric. Additionally, on inspecting the EMMA coverage reports
(and the source code), we observed that for real-life applications,
a substantial portion of the code is present to give feedback to the
user and to ensure compatibility over different versions of the OS.
Therefore, the coverage achieved by executing such code would not
necessarily contribute to finding energy hotspots/bugs.

6. RELATED WORK
In recent times, due to the prevalent use of smartphone devices,

topics related to functional and extra-functional testing of smart-
phone applications have attracted the attention of software engi-
neering research community. Recent proposals, such as [52] and
[16], have discussed functionality testing of Android applications
based on symbolic execution and biased random search. In con-
trast, we focus on automated testing of extra-functional aspects for
smartphone applications, specifically the energy behaviour.

Recent works on energy-aware profiling [11, 53] have shown
poor energy behaviour of several smartphone applications. These
works on profiling validates the idea of energy-aware development
for smartphone applications. However, like any other program pro-
filing techniques, works proposed in [11, 53] require specific input
scenarios to execute the application on smartphone device. A more
recent work [54] has proposed a technique to relate power mea-
surements with source lines of applications. Such a technique also
requires input scenarios to execute an application. Automatically
finding such input scenarios is extremely non-trivial, as the poor
energy behaviour might be exposed only for a specific set of user
interaction scenarios. Therefore, our approach on generation of in-
put scenarios complements the works proposed on energy-aware
profiling or source-line level energy estimation. Once the set of
user interaction sequences is generated by our framework, they can
be further used with works such as [11, 53] or [54].

The work proposed in [55] discusses energy-aware programming
support via symbolic execution. For each code path explored by a
symbolic execution toolkit, the base energy cost can be highlighted
to the programmer. However, such an approach is preliminary in
the sense that it only considers the CPU power consumption. In
contrast, power consumption to access memory subsystems, net-
work card and other I/O components were not considered. In smart-
phone devices, I/O components consume the most power. Since
we perform direct power measurements for an application, we can
highlight the gross energy consumption to the developer, without
ignoring the energy consumption of any hardware component. The
work in [56] proposes to analyze the overall energy behaviour of
an application via an energy model. Our goal is orthogonal to such
approach. We aim to find user interaction scenarios that may lead
to undesirable energy behaviours of an application. Therefore, our
work has a significant testing flavour compared to the work pro-
posed in [56]. More importantly, we rely on direct power measure-
ments rather than relying on any energy model. Another work [57]
uses data flow analysis to detect wakelock bugs in Android appli-
cations. The detection of wakelock bugs is relatively easy. This
is due to the fact that the acquire and release of wakelocks can be
related directly to program statements. Therefore, the detection of
wakelock bugs can be performed even in the absence of power mea-
surements. In contrast, we aim to solve a more general problem of
detecting energy inefficiencies and in addition, we also compute
the specific input scenarios that witness the same.

A different line of work aims to produce energy-efficient ap-

plications from different implementations of the same functional-
ity [58,59]. The decision to choose an implementation is influenced
by monitoring the power consumption for a given test-suite. For in-
stance, the work in [58] dynamically chooses approximate imple-
mentations of a given functionality to reduce the power consump-
tion. Along the same line, a recent work [59] monitors the power
consumption of different API implementations and computes the
potentially best implementation in terms of energy-efficiency. Our
work is complementary to such approaches, as we aim to automat-
ically detect input scenarios that result in energy inefficiencies and
generate a test-suite that can be used for improving the energy-
efficiency of the application. Finally, the work in [60] introduces
programming language constructs to annotate energy information
in the source code. Since we directly measure the power consump-
tion, our approach does not require any new language construct.

7. DISCUSSION AND FUTURE WORK
Summary. In this paper, we provide a systematic definition, de-
tection and exploration of energy hotspots/bugs in smartphone ap-
plications. Our methodology is used to develop a test-generation
framework that targets Android applications. Each entry in our
generated test report contains a sequence of user-interactions that
leads to a substantial wastage of battery power. Such test cases are
useful to understand several corner scenarios in an application, in
terms of energy consumption. Our evaluation with 30 applications
from Google Play/F-Droid suggest that our framework can quickly
uncover potential energy hotspots/bugs in real-life applications.

Threats to validity. It is worthwhile to mention that our test
generation method is not complete. This is due to the fact that
our computed event flow graph (EFG) may only cover a portion
of the application. As a result, we may not expose all the energy
hotspots/bugs in an application. Besides, our current test gener-
ation framework revolves around directing the test generation to-
wards I/O operations, as I/O components are some of the major
sources of energy consumption in smartphones. However, it is pos-
sible in some pathological cases (e.g. unusual cache thrashing and
memory traffic) that CPU-bound applications may lead to substan-
tial drainage of battery power. Detection of such energy stressing
behaviours can be studied in the future.

In our current implementation, we can deal with GUI-based ap-
plications by generating UI inputs automatically. However, cer-
tain applications (such as game applications) require human intel-
ligence in navigating through the different GUI screens. For ex-
ample, the transition between two GUI screens might happen only
by answering questions that require human intelligence. In such
a situation, we may not be able to generate sufficient event traces
automatically to stress the energy behaviour.

Future work. Using our energy-aware test generation frame-
work, several research directions can be studied in future. In par-
ticular, we plan to study energy-aware debugging. Specifically, we
plan to use our energy stressing input scenarios and compute the
root cause of energy wastage automatically. Such debugging tech-
niques will greatly help the developer to bring down the possible
causes of energy wastage. We also plan to investigate the auto-
mated refactoring of an application to reduce energy wastage.

8. ACKNOWLEDGEMENT
The work was partially supported by a Singapore MoE Tier 2

grant MOE2013-T2-1-115 entitled "Energy aware programming".

9. REFERENCES
[1] Business insider: Smartphone and tablet penetration.

http://www.businessinsider.com/
smartphone-and-tablet-penetration-2013-10?IR=T.

[2] Android develeoper website, wifimanager.
http://developer.android.com/reference/android/net/
wifi/WifiManager.WifiLock.html.

[3] Android application coding guidelines -power save.
http://dl-developer.sonymobile.com/documentation/
dw-300012-Android_Power_Save.pdf.

[4] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter. Removing energy code
smells with reengineering services. 2012.

[5] Android develeoper website, powermanager. http://developer.
android.com/reference/android/os/PowerManager.html.

[6] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy
consumption in mobile phones: a measurement study and implications for
network applications. In SIGCOMM, 2009.

[7] Android develeoper website, sensormanager.
http://developer.android.com/reference/android/
hardware/SensorManager.html.

[8] Android-sensors. http://developer.android.com/guide/
topics/sensors/sensors_overview.html.

[9] Android develeoper website, location strategies. http://developer.
android.com/guide/topics/location/strategies.html.

[10] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy
debugging on smartphones: A first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.

[11] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof. In EuroSys, 2012.

[12] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In WCRE, 2003.

[13] JMOTIF: a time series data-mining toolkit based on SAX and TFIDF statistics.
http://code.google.com/p/jmotif/.

[14] Business insider: Number of smartphones worldwide.
http://www.businessinsider.com/
15-billion-smartphones-in-the-world-22013-2?IR=T.

[15] Android power profiles.
http://source.android.com/devices/tech/power.html.

[16] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: an input generation system
for android apps. In ESEC/SIGSOFT FSE, 2013.

[17] Hierarchy viewer. http://developer.android.com/tools/help/
hierarchy-viewer.html.

[18] E. J. Keogh, J. Lin, and A. W-C. Fu. HOT SAX: Efficiently finding the most
unusual time series subsequence. In ICDM, 2005.

[19] W. E. Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In Proceedings of the Section on Survey
Research, 1990.

[20] Yokogawa wt210 digital power meter. http://tmi.yokogawa.com/us/
products/digital-power-analyzers/
power-measurement-application-software/
wtviewer-for-wt210wt230/.

[21] A.S. Tanenbaum and M. van Steen. Distributed systems: principles and
paradigms. Pearson Prentice Hall, 2007.

[22] Android advanced geocachingtool. https://play.google.com/
store/apps/details?id=com.zoffcc.applications.aagtl.

[23] Android battery dog. https://play.google.com/store/apps/
details?id=net.sf.andbatdog.batterydog.

[24] Aripuca gps tracker. https://play.google.com/store/apps/
details?id=com.aripuca.tracker.

[25] Kitchen timer. https://play.google.com/store/apps/details?
id=com.leinardi.kitchentimer.

[26] Montreal transit. https://play.google.com/store/apps/
details?id=org.montrealtransit.android.

[27] Npr news. https://play.google.com/store/apps/details?id=
org.npr.android.news.

[28] Pedometer. https://play.google.com/store/apps/details?
id=name.bagi.levente.pedometer.

[29] Simple chess clock. https://play.google.com/store/apps/
details?id=com.chessclock.android.

[30] Wifi advanced config editor. https://play.google.com/store/
apps/details?id=org.marcus905.wifi.ace.

[31] World clock. https://play.google.com/store/apps/details?
id=com.irahul.worldclock.

[32] Sensor status. https://play.google.com/store/apps/details?
id=com.tpaln.snsst.

[33] Zoom camera. https://play.google.com/store/apps/details?
id=ar.com.moula.zoomcamera.

[34] Voice recorder. https://play.google.com/store/apps/
details?id=si.matejpikovnik.voice.pageindicator.

[35] Virtual recorder. https://play.google.com/store/apps/
details?id=ix.com.android.VirtualRecorder.

[36] Quick recorder. https://play.google.com/store/apps/
details?id=com.workspace.QuickRecorder.

[37] Speedometer. https://play.google.com/store/apps/details?
id=com.bjcreative.tachometer.

[38] Zmanim. https://play.google.com/store/apps/details?id=
com.gindin.zmanim.android.

[39] Omnidroid. https://play.google.com/store/apps/details?
id=edu.nyu.cs.omnidroid.app.

[40] Fox news. https://play.google.com/store/apps/details?id=
com.foxnews.android.

[41] Best unit converter. https:
//play.google.com/store/apps/details?id=simple.a.

[42] Sensor tester. https://play.google.com/store/apps/details?
id=com.dicotomica.sensortester.

[43] Eponte. https://play.google.com/store/apps/details?id=
com.amoralabs.eponte&hl=en.

[44] Goodreads. https://play.google.com/store/apps/details?
id=com.goodreads.

[45] Food court. https://play.google.com/store/apps/details?
id=com.eksavant.fc.ui.

[46] Fire and blood. https://play.google.com/store/apps/
details?id=com.zeddev.plasma2.

[47] 760 kfmb am. https://play.google.com/store/apps/details?
id=com.airkast.KFMBAM.

[48] Math workout. https://play.google.com/store/apps/details?
id=com.akbur.mathsworkout.

[49] Vanilla music. https://play.google.com/store/apps/details?
id=ch.blinkenlights.android.vanilla.

[50] Vimeo. https://play.google.com/store/apps/details?id=
com.vimeo.android.videoapp.

[51] Baby solid food. https://play.google.com/store/apps/
details?id=com.bytecontrol.diversification.

[52] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing of
smartphone apps. In SIGSOFT FSE, 2012.

[53] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Profiling
resource usage for mobile applications: a cross-layer approach. In MobiSys,
2011.

[54] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source line level
energy information for android applications. In ISSTA, 2013.

[55] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat. SEEP: exploiting
symbolic execution for energy-aware programming. HotPower, 2011.

[56] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In ICSE, 2013.

[57] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my phone
awake?: characterizing and detecting no-sleep energy bugs in smartphone apps.
In MobiSys, 2012.

[58] W. Baek and T. M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In PLDI, 2010.

[59] I. Manotas, L. Pollock, and J. Clause. SEEDS: A software engineer’s
energy-optimization decision support framework. In ICSE. ACM/IEEE, 2014.

[60] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy types. In OOPSLA,
2012.

