
EÆciently Computing Vertex Arboricity of Planar Graphs �

Abhik Roychoudhury Susmita Sur-Kolay y

Abstract

Acyclic-coloring of a graph G = (V;E) is a partitioning of V , such that the induced subgraph
of each partition is acyclic. The minimumnumber of such partitions of V is de�ned as the vertex
arboricity of G. An O(n) algorithm (n = jV j) for acyclic-coloring of planar graphs with 3 colors
is presented. Next, an O(n2) heuristic is proposed which produces a valid acyclic-2-coloring of
a planar graph, if one exists (since there are planar graphs with arboricity 3). We also prove
that our heuristic is guaranteed to produce a valid acyclic-2-coloring for all outerplanar graphs
(which are of arboricity 2) in O(n) time. Finally, some experimental results for our acyclic
3-coloring and 2-coloring algorithms, along with future directions are presented.

Keywords : Vertex arboricity, Planar graph, Graph coloring,
Testing of sequential circuits.

Contact author : Abhik Roychoudhury
E-mail : abhik@cs.sunysb.edu
Phone : (516) 632-8470

Fax : (516) 632-8334

�A preliminary version of this paper was published in \Foundations of Software Technology and Theoretical
Computer Science" (FST & TCS), 1995.

yThe �rst author is currently at : Department of Computer Science, State University of New York at Stony
Brook, Stony Brook, NY 11794, USA; E-mail : abhik@cs.sunysb.edu. The second author's address is : Department
of Computer Science and Engg, Jadavpur University, Calcutta 700032, India. E-mail : elcv9602@isical.ernet.in,
dgd@jadav.ernet.in

1 Introduction

In this paper, the problem of determining the vertex arboricity of �nite planar graphs eÆciently
is studied [12]. Vertex arboricity of a graph is the minimum number of vertex-disjoint forests into
which the graph can be decomposed. All vertices of a forest can be assigned the same color, thus
producing no monochromatic cycles in the graph. This problem is also equivalent to a generalized
vertex coloring problem [2] and will be henceforth referred to as acyclic-coloring [7].

Formally, let G = (V;E) be a �nite undirected (directed) graph. An acyclic-k-coloring color :
V ! f1; 2; : : : ; kg is a partitioning of V into fV1; V2; : : : ; Vkg such that for all i, the subgraph GVi

induced by Vi is a forest. Any vertex v 2 Vi is assigned color i, i.e. color(v) := i. The minimum
value of k for which such partitioning exists, is called the vertex arboricity � of G.

The immediate motivation of this problem comes from the domain of design for testability in
VLSI circuits [1]. A clocked sequential circuit is represented by a graph G whose vertices correspond
to the ip-ops of the circuit and an < i; j > edge implies the existence of a combinational path
from ip-op i to ip-op j. The partitions obtained by acyclic-coloring of such a graph correspond
to the independent clocks of the circuit. Each independent clock corresponds to a test mode of the
circuit. In any particular test mode, the ip-ops in its own partition change states while the other
ip-ops in the circuit maintain their states. An e�ective acyclic-coloring algorithm can minimize
the number of partitions, and hence the number of test modes.

The acyclic-k-coloring problem for general digraphs is NP-complete [6]. A depth-�rst-search
based simple heuristic for acyclic-coloring any digraph was suggested in [1]. Nevertheless, the fact
that � � 3 for any planar graph [3, 7], leads us to the following pertinent question: is the acyclic-
coloring problem polynomial-time solvable for planar graphs? Determining the vertex arboricity of
maximal planar graphs is known to be NP-Hard [8]. This would e�ectively mean that determining
whether � = 2 for a planar graph is, in general, not polynomial time solvable. In this paper, we
give an algorithm to compute an acyclic coloring of planar graphs using 3 colors. We also suggest
an eÆcient (and sound) heuristic to compute the acyclic coloring with 2 colors. Parallel algorithms
to obtain acyclic coloring of planar graphs were reported independently in [4, 5].

A simple linear time algorithm for acyclic-coloring of planar graphs using 3 colors (along with
a proof of correctness) is presented in Section 2. Section 3 provides a polynomial-time heuristic to
compute the acyclic-2-coloring of a planar graph. The method discussed is sound but incomplete,
and a proof of soundness is also furnished. Moreover, we formally prove that our heuristic can
always produce a valid acyclic-2-coloring for certain classes of planar graphs (namely outerplanar
graphs) in linear time. Experimental results for both the algorithms appear in Section 4 along with
concluding remarks.

For graph-theoretic terminologies used without de�nition in this paper, the reader is referred
to [9]. The induced subgraph formed by the neighbors of a vertex v is called the Neighbor Induced
Subgraph (NIG) of v. With respect to a given acyclic-coloring, the number of vertices in NIG(v)
which have been colored i, is denoted by Ni(v). A path or a cycle is said to be i-monochromatic if
all the vertices on it are assigned the color i.

2 Acyclic-3-Coloring Algorithm for Planar Graphs

Since all planar graphs have � � 3 [3, 7], an acyclic-3-coloring exists always. In fact, it was proven
in [7] that there exists an acyclic-3-coloring of any planar graph where each partition induces a
linear forest. But no eÆcient algorithm follows from these results.

1

Our algorithm for acyclic-3-coloring a planar graph is a recursive one, similar to that for vertex-
coloring [10]. In each recursive call, a vertex v of degree at most 5 (always exists in a planar graph)
is deleted, until a suÆciently small graph Gs with at most 5 vertices is obtained. While deleting
the vertex v, the vertices of NIG(v) which have not yet been deleted, are stored.

The vertices of Gs are colored by procedure N�aive Color 3 as follows: (a) If �(Gs) is 0 or 1,
all its vertices are assigned color 1. (b) Otherwise, it is shown below that a vertex u 2 Gs exists
such that 2 � deg(u) � 3. Assign color 1 to u, color 2 to two neighbors of u and color 3 to all other
vertices in Gs.

v

n1

n2

n3 n4

n5

(e)

v n1
v

n1

n2

v

n1

n3n2

v

n1
n2

n3
n4(a)

(b)

(d)
(c)

 Colors are

Figure 1: Five cases of NIGs for acyclic 3-coloring

The recursive calls are completed by coloring the deleted vertex v in each call. The color i
is given to v (for i 2 f1; 2; 3g) such that there is at most one vertex in NIG(v) with color i.
Figs. 1a{1e show �ve NIGs and the corresponding acyclic-colorings; all possible other NIGs are
subgraphs of one of these �ve. Since a vertex of degree at most 5 is always deleted, it is clear that
jVNIGj � 5. The complete algorithm is presented below in pseudocode.

procedure Acyclic 3 Color (G);

begin
1. if jV j � 5 then
2. N�aive Color 3(G)
3. else begin
4. Find a vertex v in G with degree � 5;
5. Keep track of the neighbors of v;
6. Acyclic 3 Color(G� v);
7. Color v by considering the color of its neighbors;

end;

2

end;

Lemma 1 Algorithm N�aive Color 3 outputs an acyclic-3-coloring for any planar graph Gs with
5 or fewer vertices in constant time.

Proof: If all vertices of Gs have degree 0 or 1, then Gs has no cycles. In the second case, if the
existence of u is established, then the Lemma is proven since the color assignment does not produce
any monochromatic cycles. Suppose contrary to the hypothesis, all vertices of Gs have degree 4
then Gs must have 5 vertices. But a planar graph of 5 vertices can have a maximum of 9 edges
whereas the sum of the degrees of all vertices is 20, hence violating the Handshaking Lemma [9]
for any graph. Therefore, vertex u exists. 2

Theorem 1 Algorithm Acyclic 3 Color produces an acyclic-3-coloring for any planar graph with
n vertices in O(n) time.

Proof: The correctness of the algorithm is established from the following observations:
i) Since 3 colors are available, by pigeon-hole-principle there exists no coloring of the vertices of
NIG(v) for which : jNi(v)j � 2; i = 1; 2; 3. Thus, if jNj(v)j < 2 for some j 2 f1; 2; 3g, then v can
be assigned color j to complete that recursive call and no monochromatic cycles are introduced.
ii) The given algorithm halts. In each recursive call, a vertex is removed from the graph and
ultimately when the number of vertices is 5 or less, by Lemma 1N�aive Color 3 terminates correctly.

Regarding the time complexity, each recursive call can be performed in constant time and there
are O(n) recursive calls. Step 4 is accomplished by always choosing the minimum degree vertex.
Before invoking Acyclic 3 Color, the vertices are kept sorted by bucket-sort in order of their degrees.
Deletion of a vertex then causes minor adjustments. Step 5 takes constant time since NIG(v) has
at most 5 vertices. Step 7 involves computing Ni(v) by counting the number of neighbors with
color i (i = 1; 2; 3) where VNIG(v)j � 5. 2

3 Acyclic-2-Coloring for Planar Graphs

An example of a planar graph with � = 3 is the geometric dual of the Tutte graph [3]. Determination
of � of planar graphs is equivalent to testing whether an acyclic-2-coloring exists and producing
it. If the arboricity is 3 then the algorithm reports failure in yielding a valid acyclic-2-coloring.
Moreover, for outerplanar graphs (which always have � = 2), the algorithm never reports failure in
constructing an acyclic-2-coloring.

3.1 Overview

The proposed algorithm colors the vertices of a planar graph G in a step-by-step fashion, coloring
one vertex at each recursive call. At each stage, it is ensured that there exists no monochromatic
cycle among the vertices already colored. A list of monochromatic paths for each color, obtained
so far, is also stored. Initially, the two lists of monochromatic paths are empty. Since any cycle in
G is entirely within a biconnected component (block) of G, the �rst step comprises in dividing G

into its blocks. Next, the blocks of G are colored one by one in such a sequence that the cutpoints
can be colored consistently. Each block is colored recursively by �nding a vertex v of minimum
degree which is certainly at most 5, keeping track of its not yet deleted neighbors, and deleting
v. This continues until a suÆciently small graph Gs of at most 5 vertices is obtained, which is
then colored naively. A recursive call is completed with coloring the deleted vertex by considering

3

the colors of its neighbors and the set of monochromatic paths produced so far. This may induce
limited backtracking if monochromatic cycles are obtained. The algorithm halts if elimination of
these monochromatic cycles fails.

N�aive Color 2 is very similar to N�aive Color 3 excepting in the case where there is a vertex
u with degree 2 or 3. Here u is colored 1, two of its neighbors are assigned color 2 and all other
vertices of Gs are given color 1.

It is to be noted that if the input graph G is divided into blocks B1; B2; : : : ; Bn, then while
Bk is being colored, after the deletion of a �nite number of vertices from Bk , the remaining graph
could turn out to have cutpoints. The next recursive call will then again divide this graph into
blocks Bk;1; Bk;2; : : : ; Bk;m. Then in our algorithm, coloring of Bk;i; fi = 1; 2; ::;mg are completed
and thus the coloring of Bk is obtained. Only then can the coloring of Bk+1 proceed.

The following sections discuss this algorithm in details. Section 3.2 gives a safe ordering of
blocks for consistent coloring of cutpoints. The various cases of NIG(v) during backtracking and
the respective methods for elimination of monochromatic cycles appear in Section 3.3. The criterion
for reporting failure, i.e., inability to compute an acyclic-2-coloring is given in Section 3.4. An idea
about storing monochromatic paths and updating schemes is given in Section 3.5. Section 3.6
deals with the correctness proof and complexity analysis of the algorithm. Finally section 3.7
provides a formal proof that the algorithm will always successfully produce an acyclic-2-coloring
for outerplanar graphs.

The algorithm is presented below in pseudo code.

BEGIN
Read(G); % the input graph is read %
Set list of monochromatic paths to �;
Acyclic 2 Color(G);

END.

procedure Acyclic 2 Color(G);

begin
1. Divide G into blocks;
2. Find a sequence � in which the blocks are to be colored;
3. For each block Bi 2 � do

begin
4. Keep track of any already colored cutpoint c of Bi;
5. if jVBi

j � 5 then
6. N�aive Color 2(Bi)
7. else begin
8. Find a vertex v in Bi of minimum degree; % deg(v) � 5%
9. Keep track of the neighbors of v;
10. Acyclic 2 Color(Bi � v);
11. Color v by considering the color of its neighbors;
12. Eliminate monochromatic cycles by

�rst invoking \Toggle Iterate" and
then invoking \Break Cut Cycle";

13. if failure occurs in Step 12 then report and exit;

4

14. Update the lists of monochromatic paths;
end;

15. if color(c) is di�erent now, then toggle all vertices on Bi;
end;

end;

3.2 Safe Ordering of Blocks

Our strategy is to obtain acyclic 2-coloring for the blocks separately. However, the cutpoints need
to be consistently colored. An illustration of inconsistent coloring of cutpoints for the graph in
Fig. 2a is given in Fig. 2b where a cutpoint may have been assigned di�erent colors when the two
blocks sharing it were colored separately. Changing the color of the cutpoint in any of these two
blocks results in a monochromatic cycle. In order to ensure a consistent coloring the blocks should
be colored in a particular sequence which is called a safe ordering. By this ordering, at the start
of coloring any block, at most one cutpoint is previously colored. It is shown next that such an
ordering always exists.

Lemma 2 There exists a safe ordering of blocks of a graph such that when the coloring of the
vertices of a particular block commences, there exists at most one vertex in that component which
is already colored.

Proof: Let us de�ne an ordering � as follows and then show that it is safe. For a graph G, its
block-cutpoint tree [9] BC(G) (Fig. 2c) has vertices corresponding to the blocks and the cutpoints
of G and an undirected edge (c; B) exists if cutpoint c is on block B. Initially, the sequence � is
empty. A pruning step on BC(G) involves (i) removing all its pendant vertices (these correspond
to blocks of G only) from BC(G), (ii) adding the list of these blocks to the beginning of �, and (iii)
removing the pendant vertices of the resultant graph (these correspond to cutpoints of G only).
This pruning step is repeated until the resultant graph is empty or has one vertex which again
corresponds to the central block of G. This block is added to the beginning of �.

Since BC(G) is a tree, it has no cycles and if the central block is treated as its root, any other
block has a unique parent which is pruned after it and thus colored before it according to � (Fig.
2d). Hence, when coloring of any block begins, only the cutpoint shared with its unique parent is
previously colored. 2

3.3 Completion of Recursive Call by Coloring a Vertex

Before invoking the recursive call in step 10 of our acyclic-2-coloring algorithm, the NIG of the
deleted vertex v is stored in Step 9 because on returning from the recursive call, the color of v in
Step 11 depends on NIG(v) and its acyclic 2-coloring (Fig.3), so that no monochromatic cycles are
introduced.

If Nk(v) < 2 for some k, then color(v) := k (Figs. 3a and 3b). If for both colors k = 1; 2, there
are two vertices nik and njk in NIG(v) which have been colored k but there is no k-monochromatic
path in G� v between nik and njk for at least some k, then color(v) := k.

In the remaining case, for both k there is exactly one k-monochromatic path of length 1 (i.e.,
direct edge) or more between nik and njk due to the assumption that the graph G � v already
has a valid acyclic-2-coloring when v is being colored. There is no option but to backtrack and
NIG(v) is referred to as the backtracking NIG. The major intricacy of our algorithm lies in e�ective

5

B3 B4

1

2 3

4 5

7 8 96

1

4 5

1
2 3

2

6 7

3

8 9

B2

B1

B2

1

B1
2

B3 B4

3

4 5
1

1

2 3

2

6 7

3

8 9

(a) (b) (c) (d)

Figure 2: (a) Separable graph (b) Inconsistent coloring (c) Block-cutpoint tree (d) Consistent
coloring

v

n1

n2

n1

n2 n3

v
v

n1(vtd) n2(vtss)

n4(v n3(vts)

v

n4
(v t)

n3
(v)

n2

(c) (d)(a) (b)

tst)

n1(vtd)

Figure 3: NIGs for acyclic-2-coloring (a)K2 (b) K3 (c) C4 (d)K4 � x

backtracking. The operation starts with setting color(v) to color(ni) where ni is in NIG(v), and
changing color(ni) to 3� color(ni); this is called toggling the color of ni. The choice of ni depends
on the backtracking NIG(v). But toggling of ni may give rise to monochromatic cycles now.
Monochromatic cycles obtained while backtracking can be classi�ed as follows:

De�nition 1 A block cycle of a toggled vertex ni in NIG(v) is a monochromatic cycle containing
ni and at least one other vertex in NIG(v).

De�nition 2 A cut cycle of a toggled vertex ni in NIG(v) is a monochromatic cycle containing
ni and no other vertex in NIG(v).

De�nition 3 A cut-chain cycle of a toggled vertex ni in NIG(v) is a monochromatic cut cycle
which is formed by breaking a cut cycle of ni and contains none of the vertices in NIG(v).

If all block and cut cycles are eliminated eÆciently without re-toggling any vertex in G, then
backtracking ends and coloring of v is complete. Detection of failure necessitates maintaining a
list of vertices toggled upto now. The salient cases of backtracking NIG(v) are taken up below to
discuss the choice of ni to be toggled and subsequent elimination of monochromatic cycles.

Case 1: jVNIGj = 4.
Here N(c1) = N(c2) = 2 and color of any vertex of minimum degree in NIG(v) can be toggled. If
there are more than one (at most two) choices and backtracking from one fails, then backtracking
from the other is started. Two major subcases for backtracking are illustrated in Figs. 3c & 3d

6

after the color of vertex n4 in NIG(v) has been toggled. The method for eliminating block cycles
and cut cycles in each case are described below. Let us assume without loss of generality that
color(n4) is 2 after toggling. The following notations are used:
vt: the toggled vertex, (n4),
vtd : the di�erently colored neighbor of vt, (n1),
vts : the similarly colored neighbor of vt, (n3),
vtss : the other neighbor of vts and vtd colored similarly to vt, (n2),
Ci(vt) : the i-th monochromatic cycle through vt,
vi(vt) : the neighbors of vt on a cycle Ci(vt), excepting vts if Ci(vt) is a block cycle of vt in which
case it contains the edge (vt; vts);
togg set : set of vertices whose colors were toggled earlier.

Case 1.1 : NIG = K4 � x.
(a) Elimination of block cycles (Fig. 4): The key idea behind eliminating 2-colored block cycles
due to toggling of vt is to toggle the colors of vi(vt) for all i = f1; 2; : : : ; pg to color 1. It is to
be observed that G being planar, for any plane embedding of it, only one of these, say vj(vt) |
either the �rst or the last one in clockwise order in the embedding of G | can create one or more
1-colored cut cycles through vtd. Once again, planarity guarantees that only ul and ur, the �rst
and the last neighbor of vj(vt) in clockwise order, may form 2-colored cut cycles through vt or vts.
In the next iteration, all the neighbors of vj(vt) excepting one of ul and ur (any one if neither has
been toggled before) are toggled to color 2. However, if either of these two distinct vertices has a
direct edge to vt or vts, as the case may be, then all neighbors of vj(vt) on 1-colored paths to vtd
have to be toggled. Ultimately, if no more monochromatic cycles are created, the procedure halts
successfully. It exits unsuccessfully if at any stage, an already toggled vertex must be toggled for
elimination of a monochromatic cycle. These ideas could be presented in a semi-formal manner as
follows.

7

Algorithm Toggle Iterate
(Eliminates block cycles due to toggling of color(vt))
Input : G; vt; vts; vtd; NIG(v),monochromatic paths formed by S, the set of already colored vertices,
togg set.
Output : A 2-coloring of S [v, possibly including cut-cycles, and the set of toggled vertices.
Technique:

T1.If vt has one or more color(vt) monochromatic paths to vts then
begin

T2. for all paths do toggle color(vi);
T3. ul := �rst just toggled neighbor of vt in clockwise order;

ur := last just toggled neighbor of vt in clockwise order;
(in the embedding of G)

end
T4.for other node := fvt; vtsg do

begin
check node :=vtd ; clr := 3 - color(vt);

T5. while (either ul or ur has two or more clr-paths to check node) do
%these are cut cycles%
begin

T6. u := vertex having two or more clr-paths to check node;
T7. U := neighbors of u on clr-paths to check node

in clockwise order ;
T8. ul := �rst element of U ; ur := last element of U ;
T9. if check node 2 U then toggle all vertices in U - check node

% toggling check node is avoided%
T10. else toggle all vertices in U except either ul or ur %not both%;
T11. Swap check node and other node; clr := 3 - clr;

end
end

Lemma 3 Toggle Iterate runs in O(n) time when a vertex v in a graph of n vertices with
NIG(v) = K4 � x is to be acyclic-2-colored and breaks all block cycles if it does not have to
re-toggle.

Proof: In the recursive algorithm for acyclic-2-coloring, there are no monochromatic cycles
before vt is toggled. Any block cycle resulting from toggling of vt in NIG = K4 � x, must have
vt and vts on it. All such block cycles are eliminated in Step T2. The remaining steps are for
eliminating cut cycles arising due to toggling in Step T2. This procedure stops when either no
more new cut cycles are created or some vertex has to be re-toggled.

In a planar graph, the number of distinct paths between two vertices is O(n). So Step 2 may
need O(n) time. There are two iterations of the for loop in Step T5. Each iteration involves a while
loop but since this inner loop toggles already colored vertices, it can do so at most O(n) times over
all its iterations. Hence, the total time complexity in the worst case is linear in n, the number of
vertices in G. 2

(b) Elimination of cut cycles: Fig. 5a gives a glimpse of the possible cut-cycles created due to
toggling color(vt). It should be noted that many of the cut cycles get eliminated in the process

8

of eliminating block-cycles, e.g. if in Fig. 5a, the path p1 (marked in bold) is 2-monochromatic,
then the cut cycle (n4; vi; : : : ; vj; n4) gets broken as well. (vi; : : : ; vj) implies the existence of a
monochromatic path between vi and vj) But the ones in Fig. 5b need separate treatment because
cut-chain cycles appear.
Algorithm Break Cut Cycle;

Inputs : G; vt; vts; vtd; NIG(v), monochromatic paths formed by S, the set of vertices colored so
far, toggset;
Output : Valid acyclic-2-coloring of S [fvg
Technique :

B1.just toggled := vt; clr := color(vt); check node := vtd; other node := vts;
B2. for all vi 2 just toggled do

begin
B3. Uvi := list of neighbors of vi having color clr and

clr-colored paths among them, in clockwise order;
B4. if 8i; Uvi = �, then return; %no more cut or cut-chain cycles%
B5. else toggle all ui except either the �rst or last in Uvi;

% Taking caution not to re-toggle any vertex %
end;

B6. just toggled :=
S
kUvk ;

B7. if there is a cut cycle through any ui and check node then
toggle neighbors of ui as in Steps T7 to T11 in Toggle Iterate;

B8.Swap check node and other node; clr := 3 - clr;
B9.Go to Step B2 for checking any further cut-chain-cycles.

end;

Lemma 4 Break Cut Cycle runs in O(n) time when a vertex v in a graph of n vertices with
NIG(v) = K4 � x is to be acyclic-2-colored and breaks all cut- cycles and cut-chain-cycles which
are not broken by Toggle Iterate if it does have to re-toggle any vertex.

Proof: Similar arguments as in Lemma 3. 2

Case 1.2 : NIG = C4 or its subgraphs.
(a) Elimination of block-cycles: The technique adopted is similar to Toggle Iterate with the addition
that 2-monochromatic paths between neighbor of a just toggled vertex to both vts and vtss are to
be detected [11]. Thus the for loop in Step T5 is for vt; vts; vtss. However, if a 2-monochromatic
cycle containing vtss is found at any stage, then in the subsequent iterations it is not necessary to
search for cycles containing vts because of planarity.

(b) Elimination of cut-cycles: The technique is similar to the algorithm Break Cut Cycle.
Case 2: jVNIGj = 5 (Fig. 6). Here Ni(v) � 2 : i = 1; 2. For each color, a monochromatic

path with endpoints e1 and e2 where e1; e2 2 VNIG is tested for. If such paths exist for both the
colors, then obviously backtracking is needed. The criteria for selecting the vertex ni 2 VNIG to
be toggled di�ers from case to case, and is included in the discussion for each individual case. The
elimination of cut-cycles for this case is similar to the algorithm Break Cut Cycle discussed earlier.
Therefore only the block cycles need to be discussed. The di�erent NIGs in this case are as follows.

Case 2.1: NIG = K1 + (C4 � x). (Fig. 6a)
Here, the vertex ni 2 VNIG to be toggled must satisfy :
a) deg(ni) = 2 in NIG(v);

9

b) the neighbors of ni are di�erently colored;
c) Ncolor(ni) = 2.
If there is no vertex satisfying all three conditions enlisted above, then it has to be checked whether
the degree 4 vertex (n1 in Fig.6a) has at least two same colored neighbors. If so, then n1 is toggled
otherwise any vertex satisfying conditions (a) and (b) but not (c) is toggled. The elimination of
block-cycles here is exactly similar to the case NIG = K4 � x .

Case 2.2 : NIG = (K1 + (C4 � x))� x. (Fig. 6b)
The three conditions for selecting of ni 2 VNIG to be toggled for proper coloring of v in case 2.1
above are also applicable here. But if no vertex satisfying all three conditions exists, then ni is a
vertex meeting conditions (a), (b) and also the condition:
c') the two neighbors of ni have no edge between them.

Possible subcases :
Case 2.2.1 : There is the edge (vts; vtd) (Fig. 7a).

Elimination of block cycles is done by algorithm Toggle Iterate discussed earlier in Case 1.1.
Case 2.2.2 : No edge between vts and vtd (Fig. 7b).

Some modi�cations in Toggle Iterate algorithm are required to tackle the situation. These are same
as those mentioned in Case 1.2.

Case 2.3 : NIG = C5 or its subgraphs. (Fig. 6c)
This is the most diÆcult situation with largest number of possibilities. To simplify the situation,
the conditions for choosing a vertex ni 2 VNIG whose color is to be toggled are the following:
i) deg(ni) = 2;
ii) neighbors of ni are similarly colored;
iii) Ncolor(ni) = 3.
It can be easily seen that in the C5 backtracking NIG, such a vertex ni will always exist. This choice
gives us an additional advantage as well in shortening the monochromatic paths obtained after
coloring of v. The elimination of block cycles is done by making a few additions to the procedure
Toggle Iterate as follows [11]. This procedure is invoked twice, once with vtd1 as check node and
then with vtd2. The basic strategy is similar to that for Case 1.1 but here monochromatic paths
between the toggled vertex vt and both of its neighbors vts1 and vts2 are relevant for creation of
block cycle. If in this process, there is a vertex u which has edges to both vts1 and vts2 and is
toggled to color(vt), then vertex vts2 (vts1) is toggled where check node is vtd1 (vtd2) and invoke
Toggle Iterate with vt := vts2 (vts1); vtd := u; vts := vtd1 (vtd2).

3.4 Monochromatic Path Management

The lists of monochromatic paths formed by vertices colored so far are consulted during the vital
operation of backtracking. Here the storage and updation of monochromatic paths are discussed
briey. This covers Step 14 of our acyclic-2-coloring algorithm.

For both the colors, a set S of existing monochromatic paths for which the following invariant
holds, is stored: For any path pi 2 S, there exists no pj 2 S, (j 6= i), such that pi � pj .

Without loss of generality, let us consider the updation of 1-monochromatic paths. First, the
1-monochromatic paths are scanned for vertices that have just been toggled from 1 to 2. As and
when these are found, the corresponding 1-monochromatic paths are broken. Let this set of broken
paths be denoted as P1. Then, the di�erent paths in the induced subgraph formed by set of vertices
just toggled from 2 to 1(say S2;1) are built. Let this set of paths be called P2;1. This is followed
by merging of P1 with P2;1. Finally, if v has been colored 1, necessary changes are made in the
1-monochromatic paths.

10

3.5 Correctness and Time Complexity

Theorem 2 Algorithm Acyclic-2-Color reports failure if �(G) > 2. Also, any coloring produced
by the algorithm is valid and is produced in O(n2) time.

Proof: The proof is based on the following facts.
(a) The 2-acyclic-coloring algorithm halts.
In each recursive call, a vertex is deleted from a biconnected component of the input graph. Ulti-
mately, when the number of vertices � 5, N�aive Color 2 is invoked. Then, there are two options :
i) the algorithm reports failure while trying to color a vertex and thereby complete a recursive call;
ii) the recursive calls are completed for each block, after which the algorithm terminates success-
fully.
In either case, the 2-coloring algorithm halts.
(b) Algorithm N�aive Color 2 introduces no monochromatic cycles.
Let Gs be the small graph with which N�aive Color 2 is invoked. Then, the only possibility of
monochromatic cycles exists when for a color, say 1, N1 is 3. If vstart is the �rst vertex in Gs to be
colored, then color(vstart) := 1. Since, two of the neighbors of vstart are colored with 2, vstart can
have at most one neighbor with color 1. Hence, no cycles are introduced.
(c) Given the coloring of the neighbors of a deleted vertex v, if no failure is reported, the coloring
of v introduces no monochromatic cycles.
This follows from Lemmata 3 and 4.
(d) Given a valid coloring of the biconnected components, a valid coloring of the entire graph can
be obtained.
This is based on the existence of safe ordering in Lemma 2.
(e) If the input graph is not 2-colorable, then a failure is reported.
From facts (a), (b), (c) and (d) above, it follows that if no failure is reported, the algorithm produces
a valid 2-coloring. But if no failure is reported for an acyclic 3-colorable graph, then one of the two
partitions produced by the algorithm must include a monochromatic cycle, i.e the coloring must
be invalid. The proof follows by contradiction.
(f) Any coloring produced by the algorithm is done in O(n2) time (n = Number of vertices in input
graph)
There are O(n) recursive calls in Acyclic-2-color. In each call, step 1 which basically performs
depth-�rst search on a planar graph, takes O(n) time. Step 8 is also linear time in the worst case
and so are steps 12, 14 and 15. The remaining steps require constant time. The overall time
complexity is thus O(n2).

Observation (e) proves that Acyclic-2-color reports failure if �(G) > 2. Observations (a),
(b), (c) and (d) prove that any 2-coloring produced by Acyclic-2-color is valid. Observation
(f) proves that any coloring produced is accomplished in O(n2) time. This completes the proof.

2

3.6 Acyclic-2-coloring for outerplanar graphs

Our acyclic-2-coloring algorithm always successfully produces a valid 2-coloring for a special class
of graphs, namely outerplanar graphs. In fact, we prove that for this class of planar graphs, our
algorithm will never backtrack, i.e. the color assigned to a vertex will never be toggled.

A graph is outerplanar if and only if it has no subgraph homeomorphic1 to K4 or K2;3 except

1Two graphs are homeomorphic if both can be obtained from the same graph by a sequence of subdivisions of
lines [9]

11

K4 � x [9]. Note that, therefore we produce valid 2-colorings for all K4- and K2;3-free graphs as
well, as in [4].

Theorem 3 Algorithm Acyclic 2 color(G) will always produce a valid 2 coloring for G, if G is
outerplanar.

Proof : If the coloring of all the blocks are correct, the coloring of the graph is produced correctly
by Acyclic 2 color (Lemma 2). Also, a graph G is outerplanar i� all its blocks are outerplanar [9].
Hence, it is suÆcient to show that while coloring a vertex v in an outerplanar block B in step 11
of Acyclic 2 color, the color of none of the neighbors of v is toggled. In that case, Acyclic 2 color
will never invoke \Toggle Iterate" or \Break Cut Cycle" while coloring an outerplanar graph G.

Now, since we are considering an outerplanar block B, clearly

1. 8u 2 V (B) degree(u) � 2 (B is a block)

2. 9v 2 V (B) s.t. degree(v) = 2. (This is because B is outerplanar. Even maximal outerplanar
graphs are guaranteed to have at least 2 vertices of degree 2 [9].)

Therefore, the minimum degree vertex v chosen in step 8 of Acyclic 2 color is always of degree
exactly 2 (for any invocation of Acyclic 2 color). Hence, when we color v at each recursive
call, by looking at its neighbors, we have exactly 2 neighbors to consider,- a case which does
not lead to any toggling of assigned colorings. However, the only case when Acyclic 2 color(G)
can report failure even when �(G) = 2 is when in the process of coloring G, it attempts to tog-
gle the color of a vertex whose color assignment was previously toggled. Since for outerplanar
graphs, color assignments are never toggled, such a situation can never arise. Also, we know
from theorem 2 that any coloring produced by Acyclic 2 color is valid. This completes the proof.

2

Complexity Analysis :

Aminor modi�cation of Acyclic 2 color(G) can ensure that the average case complexity of 2-coloring
of outerplanar graphs is O(n) where n = jV (G)j. This can be explained as follows. In general, there
are O(n) recursive calls. In each recursive call, step 1 (dividing G into blocks), step 8 (obtaining
the minimum degree vertex), step 12 (elimination of monochromatic cycles created due to toggling
of color assignments), step 14 (updating the list of monochromatic paths) and step 15 (toggling the
color of all the vertices of a block so as to obtain consistent coloring of a cutpoint) take O(n) time
(refer Theorem 2 part(f)) for general planar graphs.

Now, while coloring an outerplanar graph G, we will require a depth-�rst search to �nd the
blocks of G in the �rst recursive call. However, in the subsequent recursive calls, we are always
coloring an outerplanar block. To �nd out the number of biconnected components obtained by the
deletion of a degree 2 vertex from an outerplanar block (recall that we always delete a vertex of
degree 2 at every recursive call), we observe that any outerplanar block B is hamiltonian, i.e. all
vertices of B lie on a cycle. Let these vertices be fv1; v2; :::; vng. Without loss of generality, assume
that v1 is of degree 2 with neighbors v2 and vn, and B 6� Cn. Now, we can split V (B� v1) into the
following subsets :
U1 = fv2; v3; :::; vkg, U2 = fvm; vm+1; :::; vng and U3 = V (B � v1)� U1 � U2

where k � 2 is the largest possible integer such that the induced subgraph of U1 in B � v1 is a
chain. Similarly, m � n is the smallest possible integer, such that the induced subgraph of U2 in
B � v1 is a chain. The induced subgraph of U3 is then a block. The induced subgraphs of U1

and U2 are clearly free from cycles. Hence they can be colored in O(jU1j+ jU2j) time and we can
avoid issuing any further recursive calls to perform this coloring. Moreover, in the average case,

12

jU1j = O(1) and jU2j = O(1), Hence, unless B � Ck (i.e. the outerplanar block concerned is a
cycle of k vertices, for some k), the identi�cation of any new block resulting from the deletion of
a minimum degree vertex from an outerplanar block can be performed in O(1) time. If we have
B � Ck, then jU1j � jU2j, and we can color B � v1 in O(k) i.e. O(jV (B � v1)j) time. Hence, if G
is outerplanar, the separation of G into its blocks in step 1 through a depth-�rst search is required
only in the �rst recursive call and not subsequently.

Obtaining the minimum degree vertex (step 8) can be performed in O(1) time by keeping the
vertices of G sorted (on the basis of their degrees) prior to computing Acyclic 2 color(G) (as was
done in Acyclic 3 color). Since color assignments are never toggled, therefore step 12 is never
executed in Acyclic 2 color(G) when G is outerplanar. Moreover, the list of monochromatic paths
can also be updated in O(1) time since we always color a vertex of degree 2 in each recursive
call. Finally, step 15 never needs to be invoked except in the �rst recursive call. Hence, if G is
outerplanar, for each recursive call issued in computing Acyclic 2 color(G) the following property
holds :

� Either, it takes O(1) time (average-case) before it issues the subsequent recursive call, and it
also takes O(1) time after returning from that recursive call

� Or, it is of the form Acyclic 2 color(B), and it is computed in O(jV (B)j) without issuing any
further recursive calls

Hence, the average-case complexity for acyclic-2-coloring an outerplanar graph G by our method
is O(n), where n = jV (G)j.

4 Experimental Results and Future Work

Some of the results obtained by applying the algorithms on various types of planar graphs are
shown in Fig. 8, 9 and 10. The algorithm Acyclic 2 Color reported failure on the geometric dual
of the Tutte graph, which is known to have � = 3.

The acyclic-2-coloring algorithm can be improved by using a more eÆcient data structure for
storing monochromatic paths and reducing the overhead of re-determining blocks after a vertex is
deleted. There is scope for parallelizing the algorithm since in the safe ordering of blocks, all blocks
which are siblings (having same parent) in the block-cutpoint tree can be processed independently.

The algorithms described in this paper evidently work for planar digraphs as well. It may be
worth investigating the class of planar graphs (digraphs) without any cycles (directed) of length
3. The ultimate goal is however to obtain the acyclic coloring of general digraphs with colors less

than the known bound of 1+ bmax(Æ(G0))
2 c where the maximum is taken over all induced subgraphs

G0 of G.

References

[1] V.D. Agrawal, S. Seth, and J.S. Deogun. Design for testability and test generation with 2
clocks. Univ. of Nebraska-Lincoln, Dept. of Comp. Sc. Engg, Report series #102, 1990.

[2] I. Broere and C.M. Mynhardt. Generalized colorings of planar and outerplanar graphs. Y.
Alavi et al. eds., Graph Theory with Applications to Algorithms and Computer Science(Wiley,
New York), pages 151{161, 1985.

13

[3] G. Chartrand and H.V. Kronk. The point arboricity of planar graphs. Journal of London
Math. Soc., 44(4), 1969.

[4] Zhi-Zhong Chen and Xin He. NC algorithms for partitioning planar graphs into induced
forests and approximating NP-hard problems. Proc. 21st Intl. Workshop on Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer Science, Vol 1017, 1995.

[5] Zhi-Zhong Chen and Xin He. Parallel complexity of partitioning planar graphs into induced
forests. Discrete Applied Mathematics, 69, 1996.

[6] M. Garey and D.S. Johnson. Computers and Intractability: A complete guide to NP-
completeness. Freeman, 1979.

[7] W. Goddard. Acyclic colorings of planar graphs. Discrete Mathematics 91, pages 91{94, 1991.

[8] S. L. Hakimi and E. F. Schmeichel. A note on the vertex arboricity of a graph. SIAM J. on
Discrete Mathematics, 2(1), 1989.

[9] F. Harary. Graph theory. Addison Wesley Publishing Co., 1969.

[10] T. Nishizeki and N. Chiba. Planar graphs: theory and algorithms. North Holland Mathematics
Studies 140, 1988.

[11] A. Roychoudhury. Cycle-coloring of planar and general graphs with applications to VLSI
testing. Project Report, Dept. of Computer Sc. Engg., Jadavpur University, India, 1995.

[12] A. Roychoudhury and S. Sur-Kolay. EÆcient algorithms for vertex arboricity of planar graphs.
Proceedings of FST&TCS 1995, Lecture Notes in Computer Science, Vol 1026, pages 37{51,
1995.

14

v

n3

n2
n1(v

n4(vt)

td)

(v ts)

denotes toggled vertices

Figure 4: Elimination of block cycles

v

v

v

n3

n2
n1(vtd)

(v ts)

p1
j

i

n4(vt)

p0

Cut-cycle

Cut-chain-cycle

n1
n2

n3n4

(a) (b)

Colours are

denotes a vertex toggled from

denotes a vertex toggled from

to

to

Figure 5: Elimination of (a) cut-cycles (b) cut-chain-cycles

15

n1

n2

n3 n4

n5
v

n1

n2

n3 n4

n5

v

n1

n2

n3 n4

n5

v

(a) (b) (c)

Figure 6: NIGs for acyclic-2-coloring with 5 vertices

v

n1

n2

n3 n4

n5

n1

n2

n3 n4

n5

v

(v t)

(v ts)

(v
td

)

(v
t
)

(v
ts

)

(v td)

Figure 7: Two subcases of Fig. 6b (before toggling)

16

(b)

(b)

i) (a)

(a)ii)

 Colors are

Figure 8: Experimental results with (a) 3 colors (b) 2 colors on : i) Polyhedron ii) Separable graph

(a) (b)

 Colors are

Figure 9: Experimental results with (a) 3 colors (b) 2 colors on a maximal planar graph

17

(a)

(b)

Colors are

Figure 10: Results for acyclic coloring of a 5 connected planar graph: (a) 3 colors (b) 2 colors

18

