
Using Compressed Bytecode Traces for Slicing Java Programs

Tao Wang Abhik Roychoudhury
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543.
{wangtao,abhik}@comp.nus.edu.sg

Abstract

Dynamic slicing is a well-known program debugging
technique. Given a program P and input I, it finds all pro-
gram statements which directly/indirectly affect the values
of some variables’ occurrences when P is executed with I.
Dynamic slicing algorithms often proceed by traversing the
execution trace of P produced by input I (or a dependence
graph which captures control / data flow in the execution
trace). Consequently, it is important to develop space effi-
cient representations of the execution trace.

In this paper, we use results from data compression to
compactly represent bytecode traces of sequential Java pro-
grams. The major space savings come from the optimized
representation of data (instruction) addresses used by mem-
ory reference (branch) bytecodes as operands. We give de-
tailed experimental results on the space efficiency and time
overheads for our compact trace representation. We then
show how dynamic slicing algorithms can directly traverse
our compact traces without resorting to costly decompres-
sion. We also develop an extension of dynamic slicing which
allows us to explain omission errors (i.e. why some events
did not happen during program execution).

1. Introduction

Program slicing is a well-known technique for program
debugging and understanding. Roughly speaking, program
slicing works as follows. Given a program P , the program-
mer provides a slicing criterion of the form (l, V), where l
is a control location in the program and V is a set of pro-
gram variables referenced at l. The purpose of slicing is to
find out the statements in P which can affect the values of
V at l via control and/or data flow. So, if during program
execution the values of V at l were “unexpected”, the cor-
responding slice can be inspected to explain the reason for
the unexpected values. A survey of program slicing tech-
niques appears in [20].

Slicing techniques are divided into two categories: static
and dynamic. Static (Dynamic) slicing computes the frag-
ment affecting V at l (some occurrences of l) when the in-
put program is executed with any (a specific) input. Thus,
for the same slicing criterion, dynamic slice for a given in-
put of a program P is often smaller than the static slice of P .
Static slicing techniques typically operate on a program de-
pendence graph (PDG); the nodes of the PDG are simple
statements / conditions and the edges correspond to data /
control dependences [7]. Dynamic slicing algorithms (w.r.t.
an input I) on the other hand, often proceed by collecting
the execution trace corresponding to I. The data and con-
trol dependences between the statement occurrences in the
execution trace can be pre-computed or computed on de-
mand (during slicing) [23].

Clearly, the representation of execution traces is impor-
tant for dynamic slicing. In practice, traces tend to be huge;
[23] reports experiences in dynamic slicing programs like
gcc and perl where the execution trace runs into several
hundred million instructions. Consequently, it is necessary
to develop a compact representation for execution traces
which capture both control flow and memory reference in-
formation. This compact trace should be generated on-the-
fly during program execution. Furthermore, we want to tra-
verse the execution trace (to retrieve control and data de-
pendences for slicing) without decompressing the trace. In
other words, the program trace should be collected, stored
and analyzed (for slicing) – all in its compressed form.

In this paper, we describe a dynamic slicing technique
for Java programs which operates on compact bytecode
traces. First, the bytecode stream corresponding to an exe-
cution trace of a Java program is compactly represented. We
then perform a backwards traversal of the compressed pro-
gram trace to compute data/control dependences on-the-fly.
The slice is updated as these dependences are encountered
during trace traversal.

The compactness of our trace representation is owing to
several factors. First, bytecodes which do not correspond
to memory read / write (i.e. data transfer to and from the

heap) or control transfer are not stored in the trace. These
bytecodes can be ignored for computing control and data
dependences. Secondly, the sequence of addresses used by
each memory reference / control transfer bytecode is stored
separately. Since these sequences typically have high repe-
tition of patterns, we exploit such repetition to save space.
We modify a well-known lossless data compression algo-
rithm called SEQUITUR [15] for this purpose.

Concretely, the contributions of this paper are as follows.

• We develop a space efficient representation of the byte-
code stream for a single threaded Java program exe-
cution. We have used the Java Grande benchmarks to
measure the compression ratio achieved by this rep-
resentation; for most benchmarks we obtain 100-1000
times compression. We also show that the time over-
heads for constructing this representation on-the-fly
during program execution is not high. Our experimen-
tal results show that the crucial factor leading to com-
pression of program traces is the separation of address
sequences used by conditional jump and memory ref-
erence instructions.

• Our dynamic slicing algorithm operates directly on the
compressed program traces. This is an important fea-
ture of our work and contrasts with the approaches of
[2, 10, 23]. We traverse the program traces in com-
pression domain to retrieve dependences on demand
(whose transitive closure is then computed).

• We also enhance our dynamic slicing algorithm to cap-
ture “omission errors”. Traditional dynamic slicing al-
gorithms explain the values of variables V at a con-
trol location l, by highlighting the executed program
statements which affect the values of V at l. Our ex-
tended slicing algorithm also captures certain state-
ments whose unintended omission affects V at l.

The rest of this paper is organized as follows. The next
section describes our compressed representation of a Java
bytecode stream. Section 3 reports the space efficiency and
time overheads of our compressed trace representation. Sec-
tion 4 presents our slicing algorithm which proceeds by
traversing the compact bytecode traces. Extensions to han-
dle omission errors are also discussed in this section. Sec-
tion 5 presents related work on program slicing and com-
pact trace representations. Section 6 concludes the paper
with other applications of our compact traces.

2. Compact bytecode traces

In this section, we will discuss how to collect compact
bytecode traces of Java programs on the fly. This involves a
discussion of the compaction scheme as well as the neces-
sary instrumentation. Note that the compaction scheme used
by us is exact, lossless and on-the-fly.

2.1. Overall representation

The simplest way to define a program trace is to treat it
as a sequence of “instructions”. For Java programs, we view
the trace as the sequence of bytecodes executed. Part of the
reason for collecting traces at the level of bytecode (instead
of program statements) is the added flexibility in tracing/not
tracing certain bytecodes. For example, most trace based
analysis techniques concentrate on control flow or mem-
ory access behavior. Hence computation bytecodes do not
need to be traced. Unfortunately, representing a Java pro-
gram trace as a bytecode sequence does not allow us to cap-
ture much of the repetitions in the trace. In particular, a lin-
ear representation of the program trace as a single string
loses out structure in the following ways.

• The individual methods executed are not separated in
the trace representation.

• Sequence of addresses accessed by individual memory
load/store bytecodes are not separated out. These se-
quences capture data flow and exhibit high regularity
(e.g. a read bytecode sweeping through an array).

• Similarly, sequence of target addresses accessed by
control transfer bytecodes are not separated out. Again
these sequences show fair amount of repetition (e.g. a
loop branch repeats the same target many times).

In our representation, the compact trace of the whole pro-
gram consists of trace tables, each of which is used for one
method. The initial method executed is clearly marked. Sub-
sequent method invocations are captured by tracing of byte-
codes which invoke methods. The JVM may invoke some
methods automatically when “special” events occur (e.g it
may invoke the method to initialize static fields of a class
automatically when a static field of the class is first ac-
cessed). We do not record these calls. Instead we can find
out such invocations from the occurrences of the “special”
events in the trace. Within the trace table for a method, each
slot in the trace table maintains the run-time information for
a specific bytecode. Monitoring and tracing every bytecode
may incur too much time and space overhead. We trace only
the following three kinds of bytecodes.

Method invocation bytecodes: Java programs use four
kinds of bytecodes to invoke methods. Two of them, in-
vokevirtual and invokeinterface, may invoke different meth-
ods on different execution instances. These invoked meth-
ods have the same method name and parameter descriptor
(which can be discovered in class files), but they belong to
different classes. So every invokevirtual and invokeinterface
bytecode should record the classes which the invoked meth-
ods belong to.

Memory access bytecodes: The bytecodes to access lo-
cal variables and class static fields are not traced since the
addresses accessed by these bytecodes can be obtained from

class Demo

{
 public int foo(int i){

 if (i % 2 == 1)
 return 2;

 else
 return 5;

 }

 static public void main (String argvs[]){
 int a[], i;
 Demo obj= new Demo();

 a= new int[10];
 for (i=0; i < 10; i++)

 a[i]= obj.foo(i);
 }
}

Method void main(String[])

 0 new Class Demo
 3 dup

 4 invokespecial Demo()
 7 astore_3

 8 bipush 10
 10 newarray int

 12 astore_1

 13 iconst_0
 14 istore_2

 15 goto 29
 18 aload_1

 19 iload_2
 20 aload_3

 21 iload_2
 22 invokevirtual foo(int)

 25 iastore
 26 iinc 2 1

 29 iload_2
 30 bipush 10

 32 if_icmplt 18
 35 return

Method Demo()
 0 aload_0

 1 invokespecial Object() ()

 4 return

Method int foo(int)

 0 iload_1
 1 iconst_2

 2 irem
 3 iconst_1
 4 if_icmpne 9
 7 iconst_2

 8 ireturn
 9 iconst_5

 10 ireturn

Figure 1. The left part is a simple Java program, and the right part shows corresponding bytecodes.
Method Demo() is generated automatically as the class constructor.

Bytecode Trace Sequences
22 (D, D, ..., D)
25 (X, X, ..., X)

(0, 1, 2, ..., 9)
32 (18, 18, ..., 18, 35)

Table 1. Trace table for method main(String[])

Bytecode Trace Sequences
4 (9, 7, ..., 9, 7)

Table 2. Trace table for method foo(int)

the class file. For bytecodes accessing object fields / array
elements, we trace the addresses (or identifiers since an ad-
dress may be used by different variables) corresponding to
the bytecode operands.

Branch bytecodes: Each conditional branch bytecode
should record which bytecode is executed immediately af-
ter the branch bytecode (i.e. the target address).

Example: The left part of Figure 1 presents a simple Java
program, and the right part shows the corresponding byte-
code stream. Table 1 and 2 show the trace table for method
main and foo, respectively. Here D is the identifier of class
Demo, and X represents the array object a. Note that for the
array write bytecode iastore two sequences are stored.
These correspond to the two operands of the bytecode,
namely: the array object identifier and the array element in-
dex. Method Demo has no trace table, since no bytecode in-
side this method is traced. Clearly, different invocations of

a method within a program execution can result in differ-
ent traces. The difference in two executions of a method re-
sults from different outcomes of branch bytecodes within
the method. These different traces are all stored implic-
itly via the sequence of target addresses accessed by the
branch bytecodes. As an example, consider the trace ta-
ble of method foo shown in Table 2. The different traces
of foo result from the different outcomes of its only condi-
tional branch (which is represented by bytecode 4 in Fig-
ure 1). Hence the different paths taken in different execu-
tions of foo are captured by the sequence of target addresses
of this conditional branch (which is shown in the trace ta-
ble, see Table 2).

2.2. Compression of operand sequences

So far, we have described how the bytecode operand
sequences representing control flow (target addresses of a
branch), data flow (memory accesses of a load/store), or dy-
namic call graph (class identifiers of invoked methods) are
separated in an execution trace. We now employ a lossless
compression scheme to exploit the regularity and repetition
of these sequences. Our technique is an extension of the SE-
QUITUR, a lossless data compression algorithm [15] which
has been used to represent control flow information in pro-
gram traces [13]. First we briefly describe SEQUITUR.

SEQUITUR The SEQUITUR algorithm represents a finite
string σ as a context free grammar whose language is the
singleton set {σ}. It reads symbols one-by-one from the in-
put string and restructures the rules of the grammar to main-
tain the following invariants: (A) no pair of adjacent sym-
bols appear more than once in the grammar, and (B) ev-
ery rule (except the rule defining the start symbol) is used

more than once. To intuitively understand the algorithm, we
briefly describe how it works on the string abcabc. After
reading the first four symbols, the grammar consists of the
single production rule S → abca (where S is the start sym-
bol). On reading the fifth symbol, it becomes S → abcab.
Since the adjacent symbols ab appear twice in this rule (vi-
olating the first invariant), SEQUITUR introduces a non-
terminal to get {S → AcA,A → ab}. Note that here the
rule defining non-terminal A is used twice. Finally, on read-
ing the last symbol of the string abcabc the above gram-
mar becomes {S → AcAc,A → ab}. This grammar needs
to be restructured since the symbols Ac appear twice. SE-
QUITUR introduces another non-terminal to solve the prob-
lem. We get the rules {S → BB,B → Ac,A → ab}.
However, now the rule defining non-terminal A is used only
once. So, this rule is eliminated to produce the final result.
{S → BB,B → abc}. Note that the grammar accepts only
the string abcabc.

Our compaction scheme To represent the address se-
quences accessed by branch and memory read/write byte-
codes, we employ an improved version of the SEQUITUR
algorithm. Note that SEQUITUR cannot efficiently repre-
sent contiguous repeated symbols, including both termi-
nal and non-terminal symbols. For example, to represent
the string abababab, SEQUITUR will produce the follow-
ing rules: {S → BB,B → AA,A → ab}. The string
(ab)k will be represented by O(lgk) rules.

To solve this problem, we have proposed Run-Length
Encoding SEQUITUR (RLESe); RLESe constructs a con-
text free grammar to represent a sequence on the fly (this
contrasts with the work of [19] which modifies the SE-
QUITUR grammar post-mortem). The right hand side of
each rule is a sequence of “nodes”; Each node is a pair
〈sym : run〉, representing run times contiguous occur-
rences of sym. For space efficiency, the run can be omitted
when it equals 1. Thus, the string (ab)k is represented us-
ing only two rules in RLESe: {S → A : k,A → ab}. Note
that patterns like (ab)k (where RLESe is significantly less
space expensive than SEQUITUR) are not uncommon in
program executions. Consider an if-then-else state-
ment within a loop which alternates its outcome with ev-
ery iteration of the loop. The target addresses of the condi-
tional branch for the if-then-else statement will con-
tain the pattern (ab)k where a and b are the beginning ad-
dresses of then, else parts of the statement.

The RLESe algorithm reads from the input sequence
symbol by symbol. On reading a symbol sym, a node
〈sym : 1〉 is created and appended to the start rule. When
a run of a symbol has finished, the grammar rules are re-
structured by preserving the following properties. The first
two properties are taken (and modified) from SEQUITUR.
The third property is unique to RLESe, resulting from its
maintenance of runs of terminals / non-terminals.

1. Digram uniqueness property. This property means
that no similar digrams appear in resulting grammar
rules. Here a digram refers to two consecutive nodes
on the right side of a grammar rule. Two digrams are
similar if their nodes contain the same symbols e.g.
〈a : 2, b : 2〉 is similar to 〈a : 3, b : 4〉, but 〈a : 3, b : 2〉
is not similar to 〈b : 3, a : 2〉.

2. Rule utility property. This rule states that every rule
(except the start rule S) is referenced more than once.
So when a rule is referenced by only one node and the
run in that node equals 1, the reference will be re-
placed with the right side of this rule.

3. No contiguous repeated symbols property. This
property states that each pair of adjacent nodes con-
tains different symbols. Continuous repeated symbols
will be encoded within the run-length.

To maintain the digram uniqueness property in RLESe,
we might need to split nodes during grammar construction.
Consider a string represented by S → a : 8, b : 1, a : 6.
Now, if the next symbol1 is b, S is restructured to S → a :
8, b : 1, a : 6, b : 1. To ensure digram uniqueness we will
now split the node a : 8 to a : 6, a : 2. This is to find and
remove duplicate occurrences of similar digrams as:

S → a : 2, A : 2 A → a : 6, b : 1

In addition to the run-length encoding performed in
RLESe, we also need to modify the terminal symbols fed
into SEQUITUR or RLESe algorithm. In particular, we
need to employ difference representations in memory refer-
ence sequences. For example, the trace sequence (0, 1, ... 9)
in Table 1 cannot be compressed; this sequence represents
the indices of the array elements written by the iastore
bytecode in Figure 1. By converting it into its difference
representation as (0, 1, 1, ..., 1), RLESe can compactly rep-
resent it with one rule S → 0, 1 : 9. On the other hand,
SEQUITUR requires three rules for representing this se-
quence. This inefficiency stems from its inability to capture
runs of symbols, as shown in its representation of (ab)k.
RLESe compression is linear in space and time, assuming
that we take constant time to find similar digrams (as in SE-
QUITUR [15]).

3. Efficiency of compaction

In this section, we quantitatively evaluate the time and
space overheads of our compaction scheme, and compare it
against existing compression techniques.

1 We assume here that the rules are restructured after we encounter b.
Note that this is not the case if b is followed by other bs, i.e. we wait
for the run of bs to end before restructuring.

Subject Description LOC Input Size
Crypt IDEA encryption and decryption 968 200,000 bytes
FFT 1-D fast Fourier transform 706 215 complex numbers

HeapSort Integer sorting 649 10000 integers
LUFact LU factorisation 1076 200 × 200 matrix
Series Fourier coefficient analysis 705 200 Fourier coefficients
SOR Successive over-relaxation on a grid 559 100 × 100 grid

Table 3. Description of subject programs.

Program Orig. Trace Table Trace Sequences All All/Orig. (%) gzipped gzipped / Orig. (%)
Crypt 69.48M 6.56K 3.99K 10.55K 0.02 3.99M 5.74
FFT 89.51M 3.26K 121.79K 125.04K 0.14 15.25M 17.04

HeapSort 23.29M 2.93K 2.44M 2.44M 10.48 2.03M 8.72
LUFact 139.30M 4.29K 190.02K 194.31K 0.14 15.48M 11.11
Series 38.22M 2.97K 582.43K 585.40K 1.53 10.29M 26.92
SOR 75.54M 2.74K 3.74K 6.48K 0.01 14.35M 19

Table 4. Compression efficiency of our bytecode traces. All sizes are in bytes.

3.1. Subject programs and trace collection

We have used six sequential Java programs to study the
performance of our compact bytecode trace. These pro-
grams are taken from the Java Grande Forum benchmark
suite [9]. Descriptions and sizes of these programs and the
inputs to generate the traces are shown in Table 3. To col-
lect execution traces, we have modified Kaffe virtual ma-
chine to monitor interpreting bytecodes. In our traces, we
use object identifiers instead of addresses to represent ob-
jects. This is because the same address may be used by dif-
ferent objects during a program execution. Note that cre-
ation of structures such as multi-dimensional arrays, con-
stant strings etc. may implicitly create objects. We trace and
allocate identifiers to these objects as well.

In practice, programmers often use methods in libraries
provided by other vendors. The behaviors of these meth-
ods are typically not interesting to programmers. Hence it
is not necessary to trace all the details during execution.
We can use method specifications to describe which vari-
ables and bytecodes in library methods are needed for slic-
ing, and instrument them. For example, assume that the
program has invoked obj.chatAt(index), a method of class
java.lang.String to retrieve the character at the specified in-
dex of a string. The specification tells that the return vari-
able is data dependent on the indexth character of string
obj, so we only trace the identity of object obj and the value
of index.

Post-mortem analysis may require forward or backward
traversal of execution traces. In the first situation, the con-
ditional branch bytecodes at the end of a basic block with
multiple outgoing control flow edges need to be monitored.
Indeed our compact traces as described in the last section

are suitable for forward traversal. For efficient backwards
traversal, we need to monitor/trace bytecodes at the begin-
ning of basic blocks with multiple incoming edges. Since
our slicing algorithm performs backwards trace traversal,
we have implemented this representation of traces.

3.2. Efficiency of compaction

Table 4 shows the compression efficiency of our com-
pact trace representation. The column Orig. represents the
cost of storing uncompressed execution traces. Next two
columns Trace Table and Trace Sequences show the space
overhead to maintain the trace tables and to store the com-
pressed operand sequences of bytecodes. The column All
represents the overall space costs of our compact bytecode
traces. The first % column indicates All as a percentage of
Orig.. For all our subject programs, this percentage is less
than 11% (i.e. approximately 10 times compression). In-
deed for most of the programs we get two orders of mag-
nitude (i.e 100 times) compression.

We also compare the space efficiency of our compact
bytecode trace representation with a general purpose data
compression scheme such as the gzip utility [26]. This is
shown in the column gzipped of Table 4. The second %
column of Table 4 indicates gzipped as a percentage of
Orig., showing the compression ratio achieved by gzip. For
most programs, the space efficiency achieved by gzip is
more than 11%. Our trace representation is significantly
more efficient than gzip. The only exception is the Heap-
Sort program which employs random data access patterns
(and hence is not suitable for SEQUITUR based compres-
sion algorithms).

Figure 2. Time overhead of RLESe and SE-
QUITUR. The time unit is second.

Figure 2 presents the running time of selected pro-
grams without instrumentation, tracing with RLESe and
tracing with SEQUITUR. The experiments were per-
formed on a Pentium 4 1.6 GHz machine with 512MB
memory. It shows that collecting bytecode traces us-
ing RLESe is time-efficient for most programs except
HeapSort. Random memory access patterns in this pro-
gram make some long operand sequences contain too many
digrams. Thus it becomes costly to look for similar di-
grams during checking the digram uniqueness property of
RLESe.

For each program studied, we have only presented per-
formance results with one input. Traces of these programs
have many contiguous repetitions which can be exploited
by RLESe. Most of our programs are such that an in-
crease in input size leads to linear increase in uncompressed
trace size and hence in the time overhead for trace collec-
tion/compression. However, with the increase in input and
trace size, our compression ratio does not decrease; in fact
it remains roughly the same or improves slightly.

Comparing RLESe with SEQUITUR We now compare the
time and space efficiency of RLESe against SEQUITUR.
Both algorithms were performed on operand sequences of
bytecodes. Table 5 compares the space costs of both algo-
rithms by presenting their compression ratio (in percent-
age). Figure 2 compares their time overheads. We exploited
the same hash function to search for similar diagrams in the
implementation of both algorithms. Clearly RLESe outper-
forms SEQUITUR in both space and time on studied pro-
grams. Since RLESe employs run-length encoding of ter-
minal and non-terminal symbols over and above the SE-
QUITUR algorithm, the final compressed sequence cannot
be less space efficient than the output of the SEQUITUR al-
gorithm. The time overheads of both algorithms are mainly
caused by restructuring grammar rules. RLESe restructures

Program RLESe % SEQUITUR %
Crypt 0.02 0.05
FFT 0.14 0.34

HeapSort 10.48 10.52
LUFact 0.14 0.4
Series 1.53 2.56
SOR 0.01 0.02

Table 5. Comparing compression ratio of
RLESe and SEQUITUR.

the rules after a run of the same symbol has finished,
whereas SEQUITUR does this on reading every symbol. In
other words, RLESe restructures the grammar rules less fre-
quently than SEQUITUR. RLESe also produces less sym-
bols, so that similar digrams can be found more efficiently.
The studied program traces have many contiguous repeti-
tions of patterns. This matches the mechanism of RLESe
well. When there are only few contiguous repeated sym-
bols, performance of RLESe will be similar with that of
SEQUITUR, and the intermediate representation used by
RLESe may consume more memory, because each node
used by RLESe has to use one more field to represent the
run length.

4. Dynamic slicing on compact traces

In this section, we describe how our compact bytecode
traces can be used for dynamic slicing. This involves (a)
backwards traversal of the program’s bytecode stream and
the compressed trace simultaneously, and (b) computation
of control/data dependences.

4.1. Slicing algorithm

Dynamic slicing is performed w.r.t. a slicing criterion
(I, α, V), where I is an input, α represents some bytecodes
the programmer is interested in, and V is a set of variables
referenced at these bytecodes. Often the user-defined crite-
rion is of the form (I, l, V) where l is a control location;
in this case α represents the bytecodes corresponding to the
statements immediately preceding l. Dynamic slice contains
all bytecodes which have affected the values of variables in
V referenced at last occurrences of α during execution.

During dynamic slicing, we maintain δ, a list of variables
whose values need to be explained, γ, a set of bytecodes to
check control dependences, and ϕ, the dynamic slice. Ini-
tially we set δ, γ and ϕ to ∅. We now traverse the com-
pressed program trace and program’s bytecode stream back-
wards starting from the last bytecode occurrence recorded
in the trace. At every bytecode occurrence β encountered
during this backwards traversal, let bβ be the bytecode exe-
cuted at β. We perform the following steps.

• If β is the last occurrence of bβ in trace and bβ be-
longs to α (the slicing criterion), then insert the vari-
ables used at β into δ, and the bytecode bβ into γ and
ϕ.

• Check whether any bytecode currently included in γ is
control dependent on bβ using the static program de-
pendence graph. If so, bβ is included in the slice ϕ;
bytecodes which are control dependent on bβ are re-
moved from γ and bβ is inserted into γ; variables used
at β are inserted into δ.

• Check whether the variable defined at β appears in the
set δ. If so, bβ is also included in γ and ϕ; the set δ is
updated by (a) removing the variable defined at β, and
(b) inserting the variables used at β.

Thus, our algorithm essentially proceeds by traversal and is
similar in flavor to the precise dynamic slicing algorithms of
[23]. The crucial operation in constructing slices is to detect
the control/data dependences between bytecodes. The data
dependence analysis is complicated by Java’s stack based
architecture as explained in the following.

Data Dependences Java exploits stacks to exchange data
between program variables, and perform arithmetic calcu-
lations during execution. This leads to additional complica-
tions for data dependence analysis, because dynamic data
dependence exists implicitly or explicitly, depending on
whether or not the stack is involved. In particular, data de-
pendence exists (a) explicitly when the same variable is de-
fined and used by bytecodes or (b) implicitly when the stack
is involved. Taking bytecodes of the method main() in Fig-
ure 1 as an example, bytecode 29 is explicitly data depen-
dent on bytecode 26, since 29 uses the variable (which is the
local variable i in this case) which is defined by 26. Byte-
code 32 is implicitly data dependent on bytecode 29, since
29 pushes the value of a variable which is later used by 32
into the stack. In other words, implicit data dependence ex-
ists when a bytecode uses values which were pushed into
the stack by its predecessor bytecode(s). Explicit data de-
pendence can be detected by comparing the addresses (or
identities) of accessed variables. However, detection of im-
plicit data dependence needs to simulate the stack. Simulat-
ing the stack involves two issues:

• The stack maintained during slicing will not contain
the actual values. We maintain only the exact num-
ber of push and pop operations performed by each
bytecode, (i.e. the content of each stack element is ig-
nored).

• Note that our slicing algorithm is based on backwards
traversal of the program trace, whereas the actual stack
is constructed via forward program execution. Thus,
during slicing we reverse the roles of pushing and pop-
ping the stack. In other words, a push (pop) operation

by a bytecode b during program execution amounts to
a pop (push) operation when b is encountered during
slicing.

Traversal without Decompression The bytecode traces
collected during execution do not need to be decom-
pressed during slicing. The maximum compaction in
our scheme comes from the representation of byte-
code operand sequences via RLESe. To be able to tra-
verse our program traces without decompression, we need
to traverse the RLESe representation. For example, con-
sider a sequence of target addresses for a branch byte-
code 〈9, 7, 8, 7, 9, 7〉. During backwards traversal of the
program trace, we need to mark the portion of the se-
quence which has been seen so far (say 〈9, 7, 8, | 7, 9, 7〉).
We use this marking to find the previous unvisited oc-
currence of the branch bytecode (here the corresponding
target address is 8). Such markings can be efficiently main-
tained and updated on the RLESe representation of the
sequences as follows.

Note that the RLESe grammar of a string σ can sim-
ply be stored as a directed acyclic graph (DAG). This DAG
is constructed from the rules of the grammar starting from
the start symbol. Each node of this graph is of the form
〈sym : run〉 where sym is a terminal or non-terminal sym-
bol and run denotes a run-length. Thus, the symbol in σ that
was last visited in the backwards traversal can be marked
by a root-to-leaf path π in the DAG representation. Further-
more each node X = 〈sym : run〉 in path π is annotated
with an integer n ≤ run denoting the number of occur-
rences of sym which has been visited so far. During back-
wards traversal of the program trace, we can use the anno-
tations of π to find the previous unvisited terminal symbol
of the RLESe grammar as shown in the algorithm GetPre-
vious (refer Figure 3). In Figure 3, G is the DAG represen-
tation of the RLESe grammar and the integer annotation of
any node X in path π is denoted as annotX .

Implementation We employed our backwards traversal al-
gorithm on the compact bytecode traces of the six Java
Grande benchmarks of Table 3. We also implemented in
Java some example programs given in Agrawal’s thesis [1],
including euclid.c2, inter-proc.c3. We then used our slicing
algorithm to debug them. In all the cases, the time overhead
for a single slicing request was minimal, typically compa-
rable to the time overhead for trace collection.

Improvement Our dynamic slicing algorithm is performed
directly on the execution trace. This is suitable for single
slicing request, while not perfect for multiple slicing re-
quests. The latter requires traversing the entire trace multi-

2 It implements the Extended Euclidean algorithm to compute the great-
est common divisor (GCD) of two input integers a and b, as well as
integers x and y such that ax + by = gcd(a,b).

3 It finds the sum of areas of given triangles.

GetPrevious(G: Grammar, π: path in G)

begin X := leaf node of π;
while root of π not reached do

Let X = 〈 sym : run〉;
if annotX < run then

break;
else search for immediate left sibling of X in G;

if such a sibling SibX exists then
X := SibX ; break

else X := parent of X in path π;
endif;

endif;
endwhile;
G1 := DAG rooted at node X within G;
return symbol in rightmost leaf node of G1;

end

Figure 3. One step in the backwards traversal
of a RLESe sequence (represented as DAG)
without decompressing the sequence.

ple times, and the time overheads can grow. Building the dy-
namic dependence graph can reduce the traversal cost. Un-
fortunately, Zhang et al. have reported that full dynamic de-
pendence graphs of real applications tend to be too huge to
fit in the main memory [23]. They suggested some prepro-
cessing of dependences before slicing.

Our slicing algorithm can be improved as follows: dur-
ing the first backward traversal of the trace, we store a sum-
mary of addresses (or identities) of all defined variables of
each block instance, where a block instance can be either
a method invocation or an execution instance of some con-
tiguous basic blocks. During later traversals, before entering
the trace for a block instance, we check whether any vari-
ables appearing in δ (the list of variables whose values need
to be explained) are present in the summary. If no such vari-
able is found, checking data dependences can be avoided.
Using the summary information, we can reduce the num-
ber of address comparisons performed to detect data depen-
dences during slicing [23]. Thus the performance of our dy-
namic slicing algorithm for multiple slicing requests can be
improved.

4.2. Detecting omission errors

Conventional dynamic slices only explain why and how
a statement is executed; they do not consider the fact that
execution of a particular statement may be wrongly omit-
ted. Thus, the statement which is responsible for the pro-
gram failure may be excluded from the slice. Consider the
“buggy” program fragment presented in Figure 4, where the
statement b=1 at line 1 should be b=2 in a correct program.

With input a=2, x at line 6 is 1 unexpectedly. The exe-
cution trace is 〈1,2,3,4,6〉. If we want to explain the value of
x after line 6, the dynamic slice (computed by conventional

1 b = 1;
2 x = 1;
3 if (a > 1) {
4 if (b > 1){
5 x = 2

}
}

6 ... = x

Figure 4. A “buggy” program fragment

slicing algorithms like [23]) contains only lines 2 and 6. Un-
fortunately, line 1, the source of the bug, is excluded. In the
above example, the execution of the statement x=2 at line 5
is wrongly omitted due to the wrong value being set to b in
line 1. Dynamic slicing concludes that lines 1, 4 have no ac-
tual effect on x at line 6 for this particular execution, and
excludes these lines from the slice.

We propose an extended dynamic slicing algorithm to
capture omissions of bytecodes’ execution. The extended
dynamic slice is defined w.r.t. an Extended Dynamic De-
pendence Graph (EDDG); the slice contains those EDDG
nodes from which node(s) for the slicing criterion can be
reached. The EDDG is an extension of the Dynamic De-
pendence Graph (DDG) of [2]. Recall that each node of
the DDG can represent one particular occurrence of a state-
ment (or bytecode in our case) in the program execution;
edges, of course, represent dynamic data and control depen-
dences. We construct the EDDG from DDG by adding (a)
a dummy node for each occurrence of a branch bytecode,
and (b) edges for dynamic data and potential dependences
w.r.t. these dummy nodes. The potential dependence cap-
tures possible execution omissions; a bytecode occurrence
β′ has potential dependence on an earlier branch bytecode
occurrence β if and only if a variable v used at β′ is defined
before β, and v may be re-defined before reaching β′ if β
is evaluated differently. Figure 5 shows the EDDG for the
above example, and the resulting extended dynamic slice
w.r.t. x at line 6 consists of lines 〈1,2,4,6〉. Note that po-
tential dependences have been studied in the context of rel-
evant slices [3, 6] which also capture omission errors. We
compare our approach to these works in the next section.

We can compute the extended dynamic slice by travers-
ing the trace exactly once, without constructing the EDDG.
Before traversing, we will construct the Extended Static
Program Dependence Graph (ESPDG), capturing control,
data and conditional dependences [6]. A bytecode s1 has
conditional dependence on a branch bytecode s2 if a reach-
ing definition of a variable v used at s1 is (transitively) con-
trol dependent on s2. Such a conditional dependence is de-
noted by s1 →v

cond s2, that is, variable v is kept track of.
On each occurrence β of a bytecode bβ encountered dur-

ing backwards traversal of the trace, we first check it as per

Dummy Node

2 1 3

 Entry, with input a=2

3

6

44

Data Dependence
Control Dependence

Potential Dependence

Figure 5. The EDDG of a simple program

the slicing algorithm in Section 4.1. If any of the condi-
tions of this algorithm is satisfied (i.e. β has effect on the
slicing criterion via control/data dependences), we insert bβ

into the slice ϕ, and maintain the sets δ and γ as in Sec-
tion 4.1. Otherwise, we check for potential dependence, that
is, check whether bβ is a branch bytecode and any vari-
able v in δ satisfies: (1) there exists a bytecode b such that
b →v

cond bβ , and (2) v may be re-defined if β is evalu-
ated differently. If so, we insert bβ into the slice, and up-
date δ with variables used at β. Details are omitted due to
space consideration. We are currently implementing this ap-
proach to examine its impact on slice sizes and time over-
heads.

5. Related work

Weiser originally introduced the concept of program
slicing [21]. In last two decades, program slicing, in partic-
ular dynamic slicing, has been widely used in many soft-
ware engineering activities, such as program understand-
ing, debugging and testing [3, 11, 14, 20]. The first dy-
namic slicing algorithm was introduced by Korel and Laski
[10]. In particular, they exploited dynamic flow concepts
to capture the dependences between occurrences of state-
ments in the execution trace, and generated executable dy-
namic slices. Later, Agrawal and Horgan used the dynamic
dependence graph to compute non-executable but precise
dynamic slices, by representing each occurrence of a state-
ment as a distinct node in the graph [1, 2]. Static and dy-
namic slicing of object-oriented programs based on depen-
dence graphs have been studied in [12] and [22] respec-
tively. Computation of control and data dependences be-
tween Java bytecodes has been discussed in [25]. Ohata et
al. [16] combined dynamic and static slicing to avoid the
space overheads of processing traces, at the cost of preci-

sion of computed slices. Recently, Zhang et al. [23] stud-
ied the performance issues in computing the control/data
dependences from the execution traces for slicing purposes.
To the best of our knowledge, none of the existing slicing al-
gorithms operates on compressed representation of the pro-
gram’s run-time information as in our case. Thus, our slic-
ing algorithms achieves immense space savings at the cost
of tolerable additional time overheads.

Literature [3, 6] have studied relevant slices to detect
omission errors. However, the approach in [3] relies on
the huge dynamic dependence graph. Furthermore, if b is a
branch statement on which statements in the slice are po-
tential dependent, [3] only computes the closure of data
and potential dependences of b. In other words, control de-
pendences are ignored w.r.t. statements on which b is data
dependent. The forward relevant slicing algorithm in [6]
avoids using the huge dynamic dependence graph. How-
ever, such an algorithm will compute many redundant de-
pendences since it is not goal directed. Some additional un-
related statements will also be included in the slice. This is
because while computing the dependences of a later occur-
rence of certain branch statements (those which appear in
the slice due to potential dependences), the algorithm also
includes statements which affect an early occurrence of the
same branch statement.

Various compact trace representation schemes have been
developed in [5, 13, 17, 24] to reduce the high space over-
head. Pleszkun presented a two-pass trace scheme, which
recorded basic block’s successors and data reference pat-
terns [17]. The organization of his trace is similar to that of
ours. However, Pleszkun’s technique does not allow traces
to be collected on the fly, and the trace is still large because
no data compression technique is exploited. Recently, Larus
proposed a compact and analyzable representation of a pro-
gram’s dynamic control flow via the on-line compression al-
gorithm SEQUITUR [13]. The entire flow trace is treated as
a single string during compression, but it becomes costly to
access the trace of a specific method. Zhang and Gupta sug-
gested to break the traces into per-method traces [24]. How-
ever, it is not clear how to efficiently represent data flow in
their traces. The idea of separating out the data accesses of
load/store instructions into a separate sequence (which is
then compressed) was explored in [5] in the context of par-
allel program executions. However, this work uses the SE-
QUITUR algorithm (which is not suitable for representing
runs of patterns). In our work, we have developed RLESe to
improve SEQUITUR’s space and time efficiency, by captur-
ing contiguous repeated symbols and encoding them with
their run-length. RLESe is different from the algorithm pro-
posed by Reiss and Renieris [19], since it is an on-line com-
pression algorithm, whereas Reiss and Renieris suggested
modifying SEQUITUR grammar rules in a post processing
step. On-the-fly generation of the grammar, in fact, leads

to significant space savings (as can be seen from the rela-
tive sizes of RLESe and SEQUITUR presented in Table 5).

6. Discussion

In this paper, we have developed a space efficient scheme
for compactly representing bytecode traces of sequential
Java programs. The time overheads and compression effi-
ciency of our representation are studied empirically. We use
our compact traces for efficient dynamic slicing performed
post-mortem. We also extend our dynamic slicing algorithm
to explain ceratin classes of omission errors (errors arising
due to omission of a statement’s execution).

Besides dynamic slicing, our compact bytecode traces
are also useful for many other applications in code opti-
mization and program visualization. First, the trace contains
the sequence of target addresses for each conditional branch
bytecode. We can obtain the most likely taken target ad-
dresses from these sequences to merge basic blocks into a
superblock [8]. Secondly, the operand sequences of byte-
codes to invoke virtual/interface methods describe which
methods are most likely to be invoked; this information is
helpful in inlining methods for optimization [4]. Finally,
note that by recording addresses of objects that each byte-
code creates, our trace provides information about memory
allocations. This can be used to understand the memory be-
havior via visualization, as discussed in [18].

References

[1] H. Agrawal. Towards Automatic Debugging of Computer
Programs. PhD thesis, Purdue University, 1991.

[2] H. Agrawal and J. Horgan. Dynamic program slicing. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 1990.

[3] H. Agrawal, J. Horgan, E. Krauser, and S. London. Incre-
mental regression testing. In International Conference on
Software Maintenance (ICSM), pages 348–357, 1993.

[4] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing
JUDO: Java under dynamic optimizations. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 13–26, 2000.

[5] A. Goel, A. Roychoudhury, and T. Mitra. Compactly repre-
senting parallel program executions. In ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP),
pages 191–202, 2003.

[6] T. Gyimóthy, A. Beszédes, and I. Forgács. An efficient rel-
evant slicing method for debugging. In 7th ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering, pages 303–321, 1999.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(1):26–60,
1990.

[8] W. W. Hwu et al. The superblock: An effective structure for
VLIW and superscalar compilation. The Journal of Super-
computing, 7(1), 1993.

[9] JGF. The Java Grande Forum Benchmark Suite. web
cite: http://www.epcc.ed.ac.uk/javagrande/
seq/contents.html.

[10] B. Korel and J. W. Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, 1988.

[11] B. Korel and J. Rilling. Application of dynamic slicing in
program debugging. In International Workshop on Auto-
matic Debugging, 1997.

[12] L. Larsen and M. Harrold. Slicing object-oriented software.
In Proceedings of ACM/IEEE International Conference on
Software Engineering (ICSE), pages 495–505, 2001.

[13] J. R. Larus. Whole program paths. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion (PLDI), pages 259–269, 1999.

[14] A. D. Lucia. Program slicing: Methods and applications. In
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 142–149, 2001.

[15] C. G. Nevill-Manning and I. H. Witten. Linear-time, incre-
mental hierarchy inference for compression. In Data Comm-
pression Conference (DCC), pages 3–11, 1997.

[16] F. Ohata, K. Hirose, M. Fujii, and K. Inoue. A slicing method
for object-oriented programs using lightweight dynamic in-
formation. In Asia-Pacific Software Engineering Conference,
2001.

[17] A. R. Pleszkun. Techniques for compressing programm ad-
dress traces. In IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 32–39, 1994.

[18] S. P. Reiss and M. Renieris. Generating Java trace data. In
ACM Java Grande Conference, 2000.

[19] S. P. Reiss and M. Renieris. Encoding program executions.
In ACM/IEEE International Conference on Software Engi-
neering (ICSE), pages 221–230, 2001.

[20] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[21] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[22] B. Xu, Z. Chen, and H. Yang. Dynamic slicing object-
oriented programs for debugging. In IEEE International
Workshop on Source Code Analysis and Manipulation, 2002.

[23] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slic-
ing algorithms. In ACM/IEEE International Conference on
Software Engineering (ICSE), pages 319–329, 2003.

[24] Y. Zhang and R. Gupta. Timestamped whole program path
representation and its applications. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 180–190, 2001.

[25] J. Zhao. Dependence analysis of Java bytecode. In IEEE
Annual International Computer Software and Applications
Conference, pages 486–491, 2000.

[26] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information The-
ory, 23(3):337–349, 1977.

