
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Beyond Tamaki-Sato Style Unfold/Fold Transformations for
Normal Logic Programs

Abhik Roychoudhury

Department of Computer Science, School of Computing, National University of Singapore,

S16 Level 5, 3 Science Drive 2, Singapore 117543. e-mail: abhik@comp.nus.edu.sg

K. Narayan Kumar

Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai, India.
e-mail: kumar@smi.ernet.in

C.R. Ramakrishnan

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794, USA. e-mail: cram@cs.sunysb.edu

and

I.V. Ramakrishnan

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794, USA. e-mail: ram@cs.sunysb.edu

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Unfold/fold transformation systems for logic programs have been extensively investi-

gated. Existing unfold/fold transformation systems for normal logic programs typically

fold using using a single, non-recursive clause i.e. the folding transformation is very
restricted. In this paper we present a transformation system that permits folding in the

presence of recursion, disjunction, as well as negation. We show that the transformations
are correct with respect to various model theoretic semantics of normal logic programs

including the well-founded model and stable model semantics.

Keywords: Logic Programming, Program Transformations, Unfold/Fold Transforma-

tions, Normal Logic Programs.

1. Introduction

Unfold/fold transformation systems for logic programs have been used for auto-
mated deduction [10, 17, 18], and program specialization and optimization [2, 4, 12].
Normal logic programs consist of definitions of the form A:− φ where A is an atom
and φ is a boolean formula (not necessarily positive) over atoms. Unfolding replaces
an occurrence of A in a program with φ while folding replaces an occurrence of φ
with A. Folding is called reversible if its effects can be undone by an unfolding, and
irreversible otherwise. Thus, in a folding step which replaces a boolean formula φ
with A in program P

• if the definition A :− φ appears in P , then the folding is reversible

• otherwise, the folding step is irreversible

Given a logic program P , an unfold/fold transformation system generates a se-
quence of programs P = P0, P1, . . . , Pn, such that for all 0 ≤ i < n, Pi+1 is obtained
from Pi by applying one of the two transformations. Unfold/fold transformation
systems are proved correct by showing that all programs in any transformation
sequence P0, P1, . . . , Pn are equivalent under a suitable semantics, such as the well-
founded model semantics for normal logic programs. A comprehensive survey of
research on logic program transformations appears in [16].

As an illustration of unfolding/folding, consider the sequence of normal logic
programs in figure 1. In the figure, P1 is derived from P0 by unfolding the occurrence
of q(X) in the first clause of P0. Program P2 is derived from P1 by folding the literal
q(Y) in the body of the second clause of p/1 into p(Y) by using p(X) :- q(X) in
P0. This clause from a previous program which is used in a folding step (the clause
p(X) :- q(X) of P0 in this case) is called the folder. This is an example of an
irreversible folding step since the clause p(X) :- q(X) does not appear in P1.

1.1. Related Work

An unfold/fold transformation system for definite logic programs was first de-
scribed in a seminal paper by Tamaki and Sato [24]. It allows folding using a single
clause only (conjunctive folding) from the initial program. This folder clause is
required to be non-recursive, but need not be present in the current program Pi.
Maher [14] proposed a transformation system using only reversible folding in which
the folder clause is always drawn from the current program. However, reversibility
is a restrictive condition that limits the power of unfold/fold systems by disallowing

p(X):- q(X).

q([]).

q([X|Y]):- ¬r(X),q(Y).

p([]).

p([X|Y]):- ¬r(X),q(Y).
q([]).

q([X|Y]):- ¬r(X),q(Y).

p([]).

p([X|Y]):- ¬r(X),p(Y).
q([]).

q([X|Y]):- ¬r(X),q(Y).

Program P0 Program P1 Program P2

Figure 1: Example of an unfold/fold transformation sequence

many correct transformations, such as the one used to derive P2 from P1 in Fig-
ure 1. Hence, there was considerable interest in developing irreversible unfold/fold
transformation systems, for both definite and normal logic programs.

Existing unfold/fold transformation systems for normal logic programs can be
broadly classified based on the semantics preserved by the transformations. Gardner
and Shepherdson [6] presented unfold/fold transformations which preserve SLDNF
derivations and Clark’s completion semantics. On the other hand, a host of other au-
thors have investigated the correctness of unfold/fold transformations w.r.t. model
theoretic semantics which are constructively defined e.g. perfect model and well-
founded model semantics. These works include [15, 17, 22] which study trans-
formations for stratified programs preserving perfect model semantics, and [1, 23]
which present transformations for general logic programs preserving well-founded
model and other semantics. However, these works are either extensions of Ma-
her’s reversible transformation system or the original Tamaki-Sato system [24]. In
particular, [15] extends Maher’s reversible transformation system to stratified logic
programs, and [1, 17, 22, 23] present extensions of the Tamaki-Sato style irreversible
transformation system to normal logic programs. All these transformation systems
have a more restrictive folding rule than ours. Our folding rule allows (a) multi-
ple folder clauses, (b) recursive folder clauses and (c) folder clauses drawn from a
previous program in the transformation sequence. However, some of these works
(such as [17]) present a more powerful unfolding rule since they allow unfolding of
negative literals.

To the best of our knowledge, the only work which studies correctness of un-
fold/fold transformations in presence of recursion, disjunction and negation is [21].
This work consider unfold/fold transformations of first-order programs, but the se-
mantics considered is three-valued semantics. Even for definite logic programs,
irreversible transformations of programs, until recently, did not allow folding using
multiple recursive clauses i.e. folding in presence of disjunction and recursion. In
[19] these restrictions were relaxed; the technique used there is conceptually related
to Kanamori’s work on logic programs in [11] and Sands’ work on functional pro-
grams in [20]. In this paper, we substantially extend this work to allow folding
in presence of disjunction, recursion and negation. The correctness of these trans-
formations hold w.r.t. various model-theoretic semantics of normal logic programs
such as well-founded model, stable model etc.

1.2. Overview of Results

The main result of this paper is a unfold/fold transformation system that per-
forms folding in the presence of recursion, disjunction as well as negation (see Sec-
tion 2). In [19] we proposed a transformation framework for definite logic programs
which permits folding using multiple recursive clauses. These transformations asso-
ciate counters with program clauses (a la Kanamori and Fujita [11]) to determine
the applicability of fold and unfold transformations. In this paper, we extend this
scheme to accommodate negative literals. We show that this extension is sufficient
to guarantee that the resulting transformation system preserves a variety of seman-

tics for normal logic programs, such as the well-founded model, stable model, partial
stable model, and stable theory semantics. Central to this proof is the result due
to Dung and Kanchanasut [5] that preserving the semantic kernel of a program
is sufficient to guarantee the preservation of the different semantics for negation
listed above. The notion of semantic kernel is a powerful one, since it captures the
commonality of various semantics of normal logic programs. An equivalent notion,
called argumentation theoretic semantics, has also been proposed in [25]. In [1],
Aravindan and Dung use this notion to develop an unfold/fold transformation sys-
tem which preserves the semantic kernel, thereby preserving the various semantics
of negation.

However, in contrast to [1] where this idea was used to prove the correctness
of Tamaki-Sato style transformations, we present a two-step proof which explic-
itly uses the operational counterpart of semantic kernels (see Section 3). In the
first step of our proof, we show that the transformations preserve positive ground
derivations, which are derivations of the form A ¬B1,¬B2, . . . ,¬Bn such that
there is a proof tree rooted at A with leaves labeled ¬B1 through ¬Bn (apart from
true). We then show that preserving positive ground derivations is equivalent to
preserving the semantic kernel of the program. Thus positive ground derivations
are the operational analogues of semantic kernels.

Our correctness proof suggests that we can treat the negative literals in a pro-
gram as atoms of new predicates defined in a different (external) module. The
correctness of the transformation system is assured as long as the transformations
respect module boundaries (see Section 4). This indicates how a transformation
system originally designed for definite logic programs (such as the one we proposed
in [19]) can be adapted for normal logic programs.

2. The Transformation System

In this section, we present our unfold and fold transformations for normal logic
programs. We assume familiarity with the standard notions of terms, substitutions,
unification, most general unifier (mgu), atoms, literals, clauses and stratification
[13]. We will use the following symbols (possibly with primes and subscripts): P to
denote a normal logic program; C and D for clauses; A,B to denote atoms ; L,K
to denote literals ; N to denote sequence of literals and σ, θ for substitutions.

Recall that a transformation sequence is a sequence of programs P0, P1, . . . , Pn
such that for all 0 ≤ i < n, Pi+1 is obtained from Pi by applying a transformation
(unfolding or folding). In any transformation sequence P0, P1, . . . , Pn we annotate
each clause C in program Pi with a pair (γilo(C), γihi(C)) where γilo(C), γihi(C) ∈ Z
and γilo(C) ≤ γihi(C). Thus, γilo and γihi are functions from the set of clauses in pro-
gram Pi to the set of integers Z. The transformation rules dictate the construction
of γi+1

lo and γi+1
hi from γilo and γihi. We assume that for any clause C in the initial

program P0, γ0
lo(C) = γ0

hi(C) = 1. Intuitively, γilo(C) and γihi(C) for a clause C
are analogous to the Kanamori-Fujita style counters [11]; the separation of hi and
lo permits us to store estimates of the counter values which is crucial for allowing
disjunctive folding.

p :- r.

q :- r .

r.

p :- r .

q :- p.

r.

p :- q.

q :- p.

r.

Program P0 Program P1 Program P2

Figure 2: Indiscriminate folding is not semantics preserving

Rule 1 (Unfolding) Let C be a clause in Pi and A a positive literal in the body
of C. Let C1, ..., Cm be the clauses in Pi whose heads are unifiable with A with
most general unifiers σ1, ..., σm. Let C ′j be the clause that is obtained by replacing
Aσj by the body of Cjσj in Cσj (1 ≤ j ≤ m).

Then, assign Pi+1 := (Pi−{C})∪{C ′1, ..., C ′m}. Set γi+1
lo (C ′j) = γilo(C)+γilo(Cj)

and γi+1
hi (C ′j) = γihi(C) + γihi(Cj). The annotations of all other clauses in Pi+1 are

inherited from Pi. 2

Rule 2 (Folding) Let {C1, ..., Cm} be clauses in Pi and {D1, ..., Dm} be clauses
in Pj (j ≤ i) where Cl denotes the clause A:− Ll,1, . . . , Ll,nl , L′1, . . . , L′n and Dl

denotes the clause Bl:− Kl,1, . . . ,Kl,nl . Also, let
1. ∀1 ≤ l ≤ m ∃σl ∀1 ≤ k ≤ nl Ll,k = Kl,kσl, where σl is a substitution.
2. B1σ1 = B2σ2 = ... = Bmσm = B

3. D1, ..., Dm are the only clauses in Pj whose heads are unifiable with B.
4. ∀1 ≤ l ≤ m σl substitutes the internal variablesa of Dl to distinct variables which
do not appear in {A,B,L′1, ..., L′n}.
5. ∀1 ≤ l ≤ m γjhi(Dl) < γilo(Cl) + Number of positive literals in the sequence
L′1, . . . , L

′
n.

Then, assign Pi+1 := (Pi − {C1, ..., Cm}) ∪ {C ′} where C ′ ≡ A:− B,L′1, ..., L′n.
Set γi+1

lo (C ′) = min1≤l≤m(γilo(Cl)− γ
j
hi(Dl)) and γi+1

hi (C ′) = max1≤l≤m(γihi(Cl)−
γjlo(Dl)). The annotations of all other clauses in Pi+1 are inherited from Pi. 2

The first four conditions of the folding rule are essential for any correct applica-
tion of a single folding step, including reversible folding. Finally, the fifth condition
of the rule governs sound applications of folding in a transformation sequence. The
necessity of the fifth condition arises from potential circularities imposed by indis-
criminate folding as shown in Figure 2. We obtain program P1 from P0 by folding
q using the definition of p as folder. Now, if we fold p using the definition of q in
P0 as folder, then p,q are removed from the least model.

To avoid the introduction of such circularities, our folding rule does not impose
any restrictions on the syntax of the folder clauses. We avoid imposing restrictions
on the syntax by maintaining annotations to each clause C ∈ Pi for a transformation
sequence P0, P1, . . . , Pn. Restrictions are then imposed on the clause annotations
to maintain correctness of folding. For definite programs, we define:
Definition 1 (Ground Proof of an Atom) A ground proof of a ground atom in
a definite logic program P is a tree T such that : (1) each internal node of T is

aAn internal variable of a clause C is a variable appearing in the body of C, but not in the
head of C.

labeled with a ground atom (2) each leaf node of T is labeled with the special symbol
true (3) for any internal node A of T , A:− B1, . . . , Bn must be a clause in program
P where B1, . . . , Bn are the children of A in T .

Now let us consider a clause C in Pi. Informally, the annotations γilo(C) and
γihi(C) denote the lower and upper bound on savings incurred in the size of any
ground proof of a ground atom B in Pi (relative to the smallest proof of B in the
initial program P0) by applying the clause C. The folding rule is applicable pro-
vided the minimum savings accrued in the folded clause is more than the maximum
savings in the folder clause. Note that this notion is similar to Sands’ notion of
“improvement” for functional programs [20]. In particular, this ensures that there
is positive savings in the clause generated by folding.

For normal logic programs, we can augment the above notion of a ground proof
of an atom to define :
Definition 2 (Positive ground derivation) A positive ground derivation of a
literal in a normal logic program P is a tree T such that : (1) each internal node
of T is labeled with a ground atom (2) each leaf node of T is labeled with a negative
ground literal or the special symbol true, and (3) for any internal node A of T ,
A:− L1, . . . , Ln must be a clause in program P where L1, . . . , Ln are the children of
A in T .
Now let T be a positive ground derivation in program P whose root is labeled with
the ground literal L. Let N be the sequence of negative literalsb derived in T i.e.
N is formed by appending the negative literals appearing in the leaf nodes of T
from left to right. Then we say that “L derives N” and denote this as L P N
or L N if the program P is obvious from the context. Thus if L Pi N , then
starting from L we can repeatedly resolve positive literals (using clauses of program
Pi) to obtain a sequence of negative literals N . Note that if L is a ground negative
literal, there is only one positive ground derivation for L in any program, namely
the empty derivation L L.

Let P0, P1, . . . , Pn be a transformation sequence of normal logic programs and
consider a clause C in Pi. Then, roughly speaking, γilo(C) and γihi(C) denote
the lower and upper bound on savings incurred in the size of any positive ground
derivation B Pi N (relative to the size of the smallest derivation B N in P0)
by applying the clause C. Folding is applicable if the minimum savings in the folded
clause exceeds the maximum savings in the folder clause.

An Example: The following example (derived from [9]) illustrates the use of our
unfold/fold transformation system. The odd/1 and even/1 predicates are encoded
in the usual way and are not shown. The two integers to the right of each clause
denote the counter values.

bFor simplicity of exposition, we consider N to be a sequence. However, our results hold even
if N is regarded as a multi-set.

C1 : in position(X,L) :- in odd(X,L), ¬ even(X). (1,1)
C2 : in position(X,L) :- in even(X,L), ¬ odd(X). (1,1)
C3 : in odd(X,[X|L]). (1,1)
C4 : in odd(X,[Y,Z|L]) :- in odd(X,L). (1,1)
C5 : in even(X,[Y,X|L]). (1,1)
C6 : in even(X,[Y,Z|L]) :- in even(X,L). (1,1)

In the above program, in odd(X,L) (in even(X,L)) is true if X appears in an odd
(even) position in list L. Thus, in position(X,L) is true if X is in an odd (even)
position in list L, and X is not an even (odd) number. Unfolding in odd(X,L) in
C1 we get the following:

C7 : in position(X,[X|L]) :- ¬ even(X). (2,2)
C8 : in position(X,[Y,Z|L]) :- in odd(X,L), ¬ even(X). (2,2)
C2 : in position(X,L) :- in even(X,L), ¬ odd(X). (1,1)

Unfolding in even(X,L) in C2 yields the following clauses:
C7 : in position(X,[X|L]) :- ¬ even(X). (2,2)
C8 : in position(X,[Y,Z|L]) :- in odd(X,L), ¬ even(X). (2,2)
C9 : in position(X,[Y,X|L]) :- ¬ odd(X). (2,2)
C10 : in position(X,[Y,Z|L]) :- in even(X,L), ¬ odd(X). (2,2)

Finally, we fold clauses {C8, C10} using the clauses {C1, C2} from the initial program
as the folder to obtain the following definition of in position/1.

C7 : in position(X,[X|L]) :- ¬ even(X). (2,2)
C9 : in position(X,[Y,X|L]) :- ¬ odd(X). (2,2)
C11 : in position(X,[Y,Z|L]) :- in position(X,L). (1,1)

Note that the final step is an irreversible folding in presence of negation that uses
multiple clauses as the folder. Such a folding step is neither allowed in Tamaki-Sato
style transformation systems for normal logic programs nor in reversible transfor-
mation systems.

Remark: We can maintain more elaborate book-keeping information than inte-
ger counters, thereby deriving more expressive unfold/fold systems. For instance,
as in the SCOUT system described in [19], we can make the counters range over
use a tuple of integers, and obtain a system that is strictly more powerful (in terms
of transformation sequences allowed) than the existing Tamaki-Sato-style systems.
The construction parallels that of the SCOUT system in [19]; details are omitted.

3. Proof of Correctness

In this section, we show that our unfold/fold transformation system is correct
with respect to various semantics of normal logic programs. This proof proceeds
in three steps. First, we show that positive ground derivations (introduced in Defi-
nition 2) are preserved by the transformations. Secondly, we show that preserving
positive ground derivations is equivalent to preserving semantic kernel [5]. Finally,
following [1], preserving semantic kernel implies that the transformation system
is correct with respect to various semantics for normal logic programs including
well-founded model [7] and stable model semantics [8]. We begin with a review of
semantic kernels.

3.1. Semantic Kernel of a Program

Definition 3 (Quasi-Interpretation) [1, 5] A quasi-interpretation of a normal
logic program P is a set of ground clauses of the form A:− ¬B1, . . . ,¬Bn (n ≥ 0)
where A,B1, . . . , Bn are ground atoms in the Herbrand Base of P .
Quasi-interpretations form the universe over which semantic kernels are defined. For
a given normal logic program P , the set of all quasi-interpretations of P (denoted
QI(P)) forms a complete partial order with a least element (the empty set φ) with
respect to the set inclusion relation ⊆.
Definition 4 Given a normal logic program P , let Gnd(P) denote the set of all
possible ground instantiations of all clauses of P . The function SP on quasi-
interpretations of P is defined as

SP : QI(P)→ QI(P)
SP (I) = {R(C,D1, . . . , Dm) | C ∈ Gnd(P) ∧Di ∈ I, 1 ≤ i ≤ m}

where, if Di(1 ≤ i ≤ m) are ground clauses

Ai:− ¬Bi,1, . . . ,¬Bi,ni (ni ≥ 0)

and A1, . . . , Am(m ≥ 0) are the only positive literals appearing in the body of ground
clause C, then R(C,D1, . . . , Dm) is the clause obtained by resolving the positive body
literals A1, . . . , Am in C using clauses D1, . . . , Dm respectively. 2

If P is a definite program, then the function SP is identical to the immediate logical
consequence operator TP [13]. The semantic kernel of the program P is defined in
terms of SP as:
Definition 5 (Semantic Kernel) [1, 5] The semantic kernel of a normal logic
program P , denoted by SK(P), is the least fixed point of the function SP , i.e.,
SK(P) =

⋃
n∈ω SK

n(P) where SK0(P) = φ and SKn+1(P) = SP (SKn(P))

Example : Consider the following normal logic program P :
p :- ¬ q, r.
r :- ¬ r.

The semantic kernel of P will be computed as follows.
SK0(P) = {}.
SK1(P) = SP (SK0(P)) = { (r :- ¬ r) }
SK2(P) = SP (SK1(P)) = { (r :- ¬ r), (p :- ¬ q, ¬ r) }
SK3(P) = SP (SK2(P)) = SK2(P)
Therefore, SK(P) = { (r :- ¬ r), (p :- ¬ q, ¬ r) }

The following theorem from [1] formally states the equivalence of P and SK(P)
with respect to various semantics of normal logic programs.
Theorem 1 [1] Let P be a normal logic program and SK(P) be its semantic kernel.
Then :
(1) If P is a definite logic program, then P and SK(P) have the same least Herbrand
Model.
(2) If P is a stratified program, then P and SK(P) have the same perfect model
semantics.
(3) P and SK(P) have the same well-founded model.

(4) P and SK(P) have the same stable model(s).
(5) P and SK(P) have the same set of partial stable models.
(6) P and SK(P) have the same stable theory semantics.

3.2. Preserving the Semantic Kernel

We now show that in any transformation sequence P0, P1, . . . , Pn where Pi+1 is
obtained from Pi by applying unfolding (rule 1) or folding (rule 2), the semantic
kernel is preserved, i.e., SK(P0) = SK(P1) = . . . = SK(Pn). To do so, we will
use the notion of a positive ground derivation introduced in the last section (refer
Definition 2). We now define:
Definition 6 (Weight of a positive ground derivation) Let L P N be a
positive ground derivation. The number of internal nodes in this derivation (i.e.
the number of nodes labeled with a ground positive literal) is called the weight of the
derivation.
Definition 7 (Weight of a pair) Let P0, . . . , Pn be a transformation sequence of
normal logic programs. Let L be a ground literal, N be a (possibly empty) sequence
of ground negative literals s.t. L P0 N . Then, the weight of (L,N), denoted by
w(L,N), is the minimum of the weights of positive ground derivations of the form
L P0 N .

Note that for any program Pi in the transformation sequence, the weight of any
pair w(L,N) is defined as the weight of the smallest derivation L P0 N .
Definition 8 Let P0, P1, ..., Pn be a transformation sequence of normal logic pro-
grams. A positive ground derivation L Pi N is said to be weakly weight-consistent
if for every ground instance A:− L1, ..., Lk of a clause C used in this derivation, we
have w(A,NA) ≤ γihi(C) +

∑
1≤l≤k w(Ll,Nl) where NA,N1, ...,Nk are the negative

literal sequences derived from A,L1, ..., Lk respectively in this derivation.
Definition 9 Let P0, P1, ..., Pn be a transformation sequence of normal logic pro-
grams. A positive ground derivation L Pi N is said to be strongly weight-
consistent if for every ground instance A:− L1, ..., Lk of a clause C used in this
derivation, we have

• w(A,NA) ≥ γilo(C) +
∑

1≤l≤k w(Ll,Nl)

• ∀1 ≤ l ≤ k w(A,NA) > w(Ll,Nl)

where NA,N1, ...,Nk are the negative literal sequences derived from A,L1, ..., Lk in
this derivation.
Definition 10 (Weight consistent program) Let P0, P1, . . . , Pn be a transfor-
mation sequence of normal logic programs. Then, program Pi is said to be weight
consistent if

• for any pair (L,N), whenever L derives N in Pi, there is a strongly weight
consistent positive ground derivation L Pi N .

• every positive ground derivation in Pi is weakly weight consistent.

Using the above definitions, we now state certain invariants which always hold
after the application of any unfold/fold transformation.

• I1(Pi) ≡ ∀L∀N (L P0 N ⇔ L Pi N).

• I2(Pi) ≡ Pi is a weight consistent program

We now show that these invariants are maintained after every unfolding and
folding step. This allows us to claim that the set of positive ground derivations of
P0 is identical to the set of positive ground derivations of program Pi.
Lemma 1 If (∀j ≤ i I1(Pj)) holds, then ∀L∀N (L Pi+1 N ⇒ L Pi N)
Lemma 2 (Preserving Weak Weight Consistency) Let P0, ..., Pi, Pi+1 be an
unfold/fold transformation sequence s.t. ∀0 ≤ j ≤ i I1(Pj) ∧ I2(Pj). Then, all
positive ground derivations of Pi+1 are weakly weight consistent.

The proofs for both Lemma 1 and 2 follow by induction on the weight of positive
ground derivations in Pi+1. The complete proofs appear in the appendix. We
now establish the main theorem concerning the preservation of positive ground
derivations in a transformation sequence.
Theorem 2 Let P0, P1, . . . be a sequence of normal logic programs where Pi+1 is
obtained from Pi by applying unfolding (rule 1) or folding (rule 2). Then ∀i ≥
0 I1(Pi) ∧ I2(Pi).
Proof : The proof proceeds by induction on i. For the base case, I1(P0) holds
trivially, and I2(P0) holds because every positive ground derivation of P0 is weakly
weight consistent, and for any pair (L,N) the smallest positive ground derivation
L P0 N is strongly weight consistent.

For the induction step, we need to show I1(Pi+1) ∧ I2(Pi+1). By Lemma 1 we
have L Pi+1 N ⇒ L Pi N , and by Lemma 2 we know that all positive ground
derivations of Pi+1 are weakly weight consistent. We need to show that :

1. L Pi N ⇒ L Pi+1 N , and

2. for any pair (L,N) s.t. L Pi+1 N , there exists a strongly weight consistent
derivation L N in Pi+1.

Thus, it suffices to prove that for any pair (L,N) s.t L Pi N , there exists a
strongly weight consistent derivation L Pi+1 N .

Consider a pair (L,N) such that L Pi N . Since Pi is weight consistent,
therefore there exists a strongly weight consistent derivation L N in Pi. Let
this be called Dr. We now construct a strongly weight consistent derivation Dr′ ≡
L Pi+1 N . Construction of Dr′ proceeds by induction on the weight of (L,N)
pairs. The base case occurs when L is a negative literal, N = L and w(L,N) = 0.
We then trivially have the same derivation L N in Pi+1 as well. Otherwise if L is
a positive literal, let C be the clause used at the root of Dr. Let L:− L1, . . . , Ln be
the ground instantiation of C used at the root of Dr. Since Dr is strongly weight
consistent w(L,N) > w(Ll,Nl) where Nl is the sequence of negative literals derived
by Ll for all 1 ≤ l ≤ n. Hence, we have strongly weight consistent derivations
Ll Pi+1 Nl. We construct Dr′ by considering the following cases :

Case 1: C is inherited from Pi to Pi+1

Dr′ is constructed with the clause L:− L1, . . . , Ln at the root and then appending
the derivations Ll Pi+1 Nl for all 1 ≤ l ≤ n. This derivation Dr′ is strongly
weight consistent.
Case 2: C is unfolded.
Let the L1 be the positive body literal of C that is unfolded. Let the clause used
to resolve L1 in the derivation Dr be C1 and the ground instance of C1 used be
L1:− L1,1, . . . , L1,k. By definition of unfolding L:− L1,1, . . . , L1,k, L2, . . . , Ln is a
ground instance of a clause C ′1 in Pi+1 with γi+1

lo (C ′1) = γilo(C) + γilo(C1). Also,
let N1,1, . . . ,N1,k be the sequence of negative literals derived by L1,1, . . . , L1,k in
Dr. Then, by strong weight consistency w(L1,l,N1,l) < w(L1,N1) < w(L,N) for
all 1 ≤ l ≤ k. Thus we have strongly weight consistent derivations L1,l Pi+1 N1,l.
We construct Dr′ by applying L:− L1,1, . . . , L1,k, L2, . . . , Ln at the root and then
appending the strongly weight consistent derivations L1,l Pi+1 N1,l (for all 1 ≤
l ≤ k) and Ll Pi+1 Nl (for all 2 ≤ l ≤ n). Since Dr is strongly weight consistent,
therefore

w(L,N) ≥ γilo(C) +
∑

1≤l≤n w(Ll,Nl)
and w(L1,N1) ≥ γilo(C1) +

∑
1≤l≤k w(L1,l,N1,l)

⇒ w(L,N) ≥ γi+1
lo (C ′1) +

∑
1≤l≤k w(L1,l,N1,l) +

∑
2≤l≤n w(Ll,Nl)

This shows that Dr′ is strongly weight consistent.
Case 3: C is folded
Let C (potentially with other clauses) be folded, using folder clause(s) from Pj(j ≤
i), to clause C ′ in Pi+1. Assume that L1, . . . , Lk are the instances of the body
literals of C which are folded. Then, C ′ must have a ground instance of the form
L : −B,Lk+1, . . . , Ln, where B:− L1, . . . , Lk is a ground instance of a folder clause
D in Pj . Since, we have derivations Ll Pi Nl for all 1 ≤ l ≤ k, therefore by
I1(Pi) ∧ I1(Pj) there exist derivations Ll Pj Nl. Then, there exists a derivation
B Pj NB where NB is obtained by appending the sequences N1, . . . ,Nk. Since Pj
is a weight consistent program, this derivation must be weakly weight consistent,
and therefore w(B,NB) ≤ γjhi(D)+

∑
1≤l≤k w(Ll,Nl). By strong weight consistency

of Dr, we have

w(L,N) ≥ γilo(C) +
∑

1≤l≤k

w(Ll,Nl) +
∑

k+1≤l≤n

w(Ll,Nl)

≥ γilo(C) + w(B,NB)− γjhi(D) +
∑

k+1≤l≤n

w(Ll,Nl) · · · · · · (∗)

> w(B,NB) (by condition (5) of folding)

Thus there exists a strongly weight consistent derivation B Pi+1 NB . We con-
struct Dr′ with L:− B,Lk+1, . . . , Ln at the root and then appending the strongly
weight consistent derivations B Pi+1 NB , Lk+1 Pi+1 Nk+1, . . . , Ln Pi+1 Nn.
To show that Dr′ is strongly weight consistent, note that γi+1

lo (C ′) ≤ γilo(C)−γjhi(D)

since C and D are folded and folder clauses. Combining this with (*),

w(L,N) ≥ γi+1
lo (C ′) + w(B,NB) +

∑
k+1≤l≤n

w(Ll,Nl)

This completes the proof. 2

Thus we have shown that all positive ground derivations are preserved at ev-
ery step of our transformation. Now we show how our notion of positive ground
derivations directly corresponds to the notion of semantic kernel. Intuitively, this
connection is clear, since a clause in the semantic kernel of program P is derived by
repeatedly resolving the positive body literals of a ground instance of a clause in P
until the body contains only negative literals. Formally, we prove that :
Theorem 3 Let P be a normal logic program and A,B1, . . . , Bn(n ≥ 0) be ground
atoms in the Herbrand base of P . Let N be the sequence ¬B1, . . . ,¬Bn. Then, A
derives N in P iff (A:− N) ∈ SK(P)
Proof Sketch: We prove A P N ⇒ (A:− N) ∈ SK(P) by well-founded induc-
tion on the weight (i.e. the number of internal nodes, refer definition 6) of the
derivation A P N . The proof for (A:− N) ∈ SK(P) ⇒ A P N follows by
fixed-point induction. 2

We can now prove that the semantic kernel is preserved across any unfold/fold
transformation sequence.
Corollary 3 (Preservation of Semantic Kernel) Suppose P0, . . . , Pn is a se-
quence of normal logic programs where Pi+1 is obtained from Pi by unfolding (Rule
1) or folding (Rule 2). Then ∀0 < i ≤ n SK(Pi) = SK(P0).
Proof: We prove that SK(P0) = SK(Pi) for any arbitrary i. By Theorem 2
we know that A P0 N ⇔ A Pi N for any ground atom A and sequence of
ground negative literals N . Then, using Theorem 3 we get (A:− N) ∈ SK(P0) ⇔
(A:− N) ∈ SK(Pi). Thus, SK(P0) = SK(Pi). 2

Following Theorem 1 and Corollary 3 we have:
Theorem 4 (Correctness of Transformations) Let P0, . . . , Pn be a sequence of
normal logic programs where Pi+1 is obtained from Pi by an application of unfolding
(Rule 1) or folding (Rule 2). Then, for all 0 < i ≤ n we have
(1) If P0 is a definite program, then P0 and Pi have the same least Herbrand Model.
(2) If P0 is a stratified program, then P0 and Pi have the same perfect model.
(3) P0 and Pi have the same well-founded model.
(4) P0 and Pi have the same stable model(s).
(5) P0 and Pi have the same set of partial stable models.
(6) P0 and Pi have the same stable theory semantics.

Thus we have proved the correctness of any interleaved application of our un-
fold/fold transformation with respect to the different semantics for normal logic
programs.

4. Discussions

Goal Replacement The transformation system presented in this paper can be
extended to incorporate a goal replacement rule which allows the replacement of
a conjunction of atoms in the body of a clause with another semantically equiv-
alent conjunction of atoms provided certain conditions are satisfied (which ensure
preservation of weight consistency). In future, it would be interesting to study
how we can perform multiple replacements simultaneously without compromising
correctness (as discussed in [3]).

Motivation : Verification of Parameterized Systems The motivation of
the unfold/fold transformation system reported here is verification of parameter-
ized concurrent systems. Parameterized systems are infinite families of finite state
concurrent systems e.g. an n-process token ring for any n. Proving temporal prop-
erties of parameterized systems requires reasoning about each of the members of
the infinite family, which can be accomplished by induction. Recently, we have
used unfold/fold transformations of definite logic programs [19] to verify liveness
and safety properties of parameterized systems [18]. However, temporal properties
containing both greatest and least fixed point operators cannot be encoded as a
definite logic program. A trivial example of such a property is : “it is the case that
always if an input event occurs (infinitely often) then an output event eventually
occurs (infinitely often)”. This property contains the always operator (defined as
a greatest fixed point) and the eventually operator (defined as a least fixed point).
This property is commonly used in verification of hardware circuits. To use pro-
gram transformations to construct induction proofs of such temporal properties we
need unfold/fold transformation systems for normal logic programs. This indeed
has been a motivation for the work reported in this paper.

Implications of the Correctness Proof Apart from the transformation sys-
tem, the details of the underlying correctness proof reveal certain interesting issues.
Note that we showed that positive ground derivations form the operational counter-
part to semantic kernels. This result, which makes explicit an idea in the proof of
Aravindan and Dung [1], enables the correctness proof to be completed by connect-
ing the other two steps: an operational first step, where the measure consistency
technique is used to show the preservation of positive ground derivations and the
final model-theoretic step that applies the results of Dung and Kanchanasut [5]
relating semantic kernels to various semantics for normal logic programs.

Interestingly, by its very nature, the notion of semantic kernel cannot be used
in proving operational equivalences such as finite failure and computed answer sets.
The important task then is to formulate a suitable operational notion that plays the
role of semantic kernel in the correctness proofs with respect to these equivalences.

Acknowledgments

The authors would like to thank the anonymous referees for helpful suggestions.
This work was partially supported by NSF grants CCR-9711386, CCR-9876242,
CDA-9805735 and EIA-9705998.

References

1. C. Aravindan and P.M. Dung. On the correctness of unfold/fold transformations of
normal and extended logic programs. Journal of Logic Programming, pages 295–322,
1995.

2. A. Bossi, N. Cocco, and S. Dulli. A method of specializing logic programs. ACM
TOPLAS, pages 253–302, 1990.

3. A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs.
Journal of Logic and Computation, 6(1):79–120, February 1996.

4. D. Boulanger and M. Bruynooghe. Deriving unfold/fold transformations of logic
programs using extended OLDT-based abstract interpretation. Journal of Symbolic
Computation, pages 495–521, 1993.

5. P.M. Dung and K. Kanchanasut. A fixpoint approach to declarative semantics
of logic programs. In North American Conference on Logic Programming, pages
604–625, 1989.

6. P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logic pro-
grams. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in
Honor of Alan Robinson, pages 565–583. MIT Press, Cambridge, MA, 1991.

7. A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

8. M. Gelfond and V. Lifshitz. The stable model semantics for logic programming. In
International Conference and Symposium on Logic Programming, pages 1070–1080,
1988.

9. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause
programs. In PLILP, LNCS 844, pages 340–354, 1994.

10. T. Kanamori and H. Fujita. Formulation of Induction Formulas in Verification of
Prolog Programs. In International Conference on Automated Deduction (CADE),
pages 281–299, 1986.

11. T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with
counters. In USA-Japan Seminar on Logics of Programs, 1987.

12. M. Leuschel, D. De Schreye, and A. De Waal. A conceptual embedding of folding
into partial deduction : Towards a maximal integration. In Joint International
Conference and Symposium on Logic Programming, pages 319–332, 1996.

13. J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1993.

14. M. J. Maher. Correctness of a logic program transformation system. Technical
report, IBM T.J. Watson Research Center, 1987.

15. M. J. Maher. A transformation system for deductive database modules with perfect
model semantics. Theoretical Computer Science, 110:377–403, 1993.

16. A. Pettorossi and M. Proietti. Transformation of logic programs, volume 5 of
Handbook of Logic in Artificial Intelligence, pages 697–787. Oxford University
Press, 1998.

17. A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transforma-

tions. In Computational Logic, LNCS 1861, pages 613–628, 2000.

18. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I.V. Ramakrishnan,
and S. A. Smolka. Verification of parameterized systems using logic program trans-
formations. In International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), LNCS 1785, 2000.

19. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan.
A parameterized unfold/fold transformation framework for definite logic programs.
In Principles and Practice of Declarative Programming (PPDP), LNCS 1702, pages
396–413, 1999.

20. D. Sands. Total correctness by local improvement in the transformation of functional
programs. ACM TOPLAS, 18(2):175–234, 1996.

21. T. Sato. Equivalence-preserving first-order unfold/fold transformation systems.
Theoretical Computer Science, 105:57–84, 1992.

22. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, pages 107–139, 1991.

23. H. Seki. Unfold/fold transformation of general logic programs for well-founded
semantics. Journal of Logic Programming, pages 5–23, 1993.

24. H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Pro-
ceedings of International Conference on Logic Programming, pages 127–138, 1984.

25. F. Toni and R. Kowalski. An argumentation-theoretic approach to logic program
transformation. In M. Proietti, editor, Logic Program Synthesis and Transform-
ation, Proceedings LoPSTr ’95, Utrecht, The Netherlands., Lecture Notes in Com-
puter Science 1048, pages 61–75. Springer-Verlag, 1996.

Appendix

Lemma 1 (∀j ≤ i I1(Pj))⇒ (L Pi+1 N ⇒ L Pi N)

Proof : We consider a positive ground derivation Dr ≡ L N in Pi+1, and
construct a derivation L N in Pi by induction on the weight (i.e the number of
internal nodes) of Dr. If L is a negative literal, then the result is obvious since then
N = L, i.e. Dr is empty. Otherwise, let L:− L1, ..., Ln be the ground instance of a
clause C ∈ Pi+1 used at the root of Dr. For all 1 ≤ l ≤ n let Nl be the sequence of
negative ground literals derived from Ll in the derivation Dr. Then, by induction
hypothesis, we have derivations Ll Pi Nl for all 1 ≤ l ≤ n. We consider three
possible cases.
Case 1 : C was inherited from Pi
L Pi N is constructed by applying L:− L1, ..., Ln at the root and then resolving
L1, ..., Ln by using the derivations Ll Pi Nl.
Case 2 : C was obtained by unfolding
Then, without loss of generality, Pi contains clauses with ground instantiations
L:− B,Lk+1, ..., Ln and B:− L1, ..., Lk. We construct derivation L Pi N by first
applying the clause L:− B,Lk+1, ..., Ln then the clause B:− L1, ...Lk and then re-
solving L1, ..., Ln by using Ll Pi Nl for all 1 ≤ l ≤ n.
Case 3: C was obtained by folding
Let L1 be the atom introduced by folding, and let Pj(j ≤ i) be the program from
which folder clauses were picked. By induction hypothesis, we have derivations

Ll Pi Nl for all 1 ≤ l ≤ n. Then, L1 Pi N1 and hence L1 P0 N1 (by
I1(Pi)) and hence L1 Pj N1 (by I1(Pj)). Let a derivation L1 N1 in Pj
be called Drj and let L1:− L1,1, ..., L1,k be the ground clause used at the root of
Drj . Then, by conditions (3) and (4) of the folding transformation, there must
be a ground instantiation of a clause in Pi (one of the folded clauses) of the form
L:− L1,1, ..., L1,k, L2, ..., Ln. Also, by I1(Pj), we must have derivations L1,l P0

N1,l for all 1 ≤ l ≤ k, where N1,l is the sequence of negative literals derived
from L1,l in Drj . Then, by I1(Pi), we must have derivations L1,l Pi N1,l for
all 1 ≤ l ≤ k. We can therefore construct L Pi N by applying the clause
L:− L1,1, ..., L1,k, L2, ..., Ln at the root and then resolving L1,1, ..., L1,k, L2, ..., Ln
by using L1,l Pi N1,l (∀ 1 ≤ l ≤ k) and Ll Pi Nl (∀ 2 ≤ l ≤ n). 2

Lemma 2 Let P0, P1, . . . , Pi, Pi+1 be an unfold/fold transformation sequence s.t.
∀0 ≤ j ≤ i I1(Pj)∧I2(Pj). Then, all positive ground derivations of Pi+1 are weakly
weight consistent.

Proof: The proof proceeds by induction on the weight (i.e number of internal
nodes) of positive ground derivations in Pi+1. Let Dr ≡ L N be a derivation
in Pi+1 and let L:− L1, . . . Ln be the ground instance of a clause C ∈ Pi+1 that is
used at the root of Dr. Then, the sub-derivations Ll Pi+1 Nl (for all 1 ≤ l ≤ n)
of Dr are weakly weight consistent by induction hypothesis, where N1, . . . ,Nn are
the sequence of negative literals derived from L1, . . . , Ln in derivation Dr. Hence
it suffices to show that w(L,N) ≤ γi+1

hi (C) +
∑

1≤l≤n w(Ll,Nl). We consider three
cases.
Case 1 : C was inherited from Pi.
Since Ll Pi+1 Nl, therefore by lemma 1, we have Ll Pi Nl. Thus L:− L1, . . . , Ln
is used at the root of a positive ground derivation in Pi. Since Pi is a weight
consistent program and γi+1

hi (C) = γihi(C), the result follows.
Case 2: C was obtained by unfolding.
Let L1, . . . , Lk be the body literals of C which were introduced through unfolding.
Then, without loss of generality, Pi contains clauses C and C ′′ which have ground
instantiations L:− B,Lk+1, ..., Ln and B:− L1, ..., Lk. Also, by lemma 1, we have
Ll Pi Nl (for all 1 ≤ l ≤ n). Then, the above mentioned two ground instances
of C ′ and C ′′ are used in some positive ground derivation of Pi. Since Pi is weight
consistent, we have :

w(L,N) ≤ γihi(C
′) + w(B,NB) +

∑
k+1≤l≤n

w(Ll,Nl)

w(B,NB) ≤ γihi(C
′′) +

∑
1≤l≤k

w(Ll,Nl)

where NB is the sequence of negative literals derived by B, i.e. NB is obtained by
appending N1, . . . ,Nk. Then combining the above inequalities we have w(L,N) ≤
γi+1
hi (C) +

∑
1≤l≤n w(Ll,Nl) since we know that γi+1

hi (C) = γihi(C
′) + γihi(C

′′) by
definition of unfolding.
Case 3: C was obtained by folding.

Let L1 be the atom introduced by folding, and let Pj(j ≤ i) be the program from
which folder clauses were picked. By lemma 1 we have L1 Pi N1. Again since
I1(Pi) ∧ I1(Pj), therefore L1 Pj N1. As Pj is a weight consistent program,
therefore there exists a strongly weight consistent derivation L1 N1 in Pj . Let
this derivation be called Drj . Let the clause used at the root of Drj be D′ and let
the ground instance of D′ used at the root of Drj be L1:− L1,1, . . . , L1,k. Then, by
definition of strong weight consistency

w(L1,N1) ≥ γjlo(D
′) +

∑
1≤l≤k

w(L1,l,N1,l)

where N1,1, . . . ,N1,k is the sequence of negative literals derived by L1,1, . . . , L1,k in
Drj . But D′ must be a folder clause by definition of folding. Hence there must be
a clause C ′ in Pi with a ground instance L:− L1,1, . . . , L1,k, L2, . . . , Ln (this is the
folded clause corresponding to D′). Now, by lemma 1 we have Ll Pi Nl for all
2 ≤ l ≤ n. Also since I1(Pj) ∧ I1(Pi) therefore L1,l Pi N1,l for all 1 ≤ l ≤ k.
Therefore the ground clause L:− L1,1, . . . , L1,k, L2, . . . , Ln appears at the root of
a positive ground derivation in Pi. As Pi is a weight consistent program, this
derivation must be weakly weight consistent. Hence

w(L,N) ≤ γihi(C ′) +
∑

1≤l≤k

w(L1,l,N1,l) +
∑

2≤l≤n

w(Ll,Nl)

≤ γihi(C ′)− γ
j
lo(D

′) + w(L1,N1) +
∑

2≤l≤n

w(Ll,Nl)

≤ γihi(C ′)− γ
j
lo(D

′) +
∑

1≤l≤n

w(Ll,Nl)

≤ γi+1
hi (C) +

∑
1≤l≤n

w(Ll,Nl)

This completes the proof. 2

