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Abstract—Message Sequence Charts (MSCs) or Sequence m1
Diagrams are one of the behavioral diagram types in the Unified
Modeling Language or UML. In system requirements modeling, m2
MSCs are conventionally used for describing possible system
scenarios. In the recent past, there have been concerted attempts Process p Process q
to develop executable system modeling languages directly based
on MSCs — Live Sequence Charts, Triggered Message Sequence Fig. 1. A Message Sequence Chart (MSC)
Charts and Interacting Process Classes, to name a few. In this
paper, we study the problem of model synthesis in these languages

— how to translate informal requirements into formal models. . - .
We also discuss (a) test generation from these formal models, andState(S) and then linearizing the MSC sequences thus obtained.

(b) how the generated tests can be traced back to the informal The model of MSC graphs is suitable for complete system

requirements. descriptions; extended with hierarchy it forms the popular
Index terms— Computer aided software engineering, Softwaneotation of High-level Message Sequence Charts (HMSCs).
requirements and specifications. However, we cannot directly construct implementations for
the participating processes by projecting out their behaviors

. INTRODUCTION within the MSCs of an HMSC, due to the presence of “implied

Message Sequence Charts (MSCs) or Sequence Diagracenarios” [1].
are widely used by requirements engineers in the early stage3o overcome such problems, executable formalisms di-
of reactive system design. Conventionally, MSCs are usedrictly based on MSCs have been proposed in recent years.
the system requirements document to descsbenarios— In particular, the Live Sequence Chart formalism [2], [3]
possible ways in which the processes constituting a distributextends MSCs (which only describe “possible behaviors”)
reactive system may communicate among each other as welldescribe mandatory behavior. The execution semantics of
as with the environment. Due to their widespread usage an LSC specification is of a centralized nature. In contrast,
requirements engineering, MSCs have been integrated itibhe work on Triggered Message Sequence Charts (TMSCs)
the Unified Modeling Language (UML). In UML, they are[4] allows for a per-process execution semantics. Both LSCs
popularly known as Sequence Diagrams. and TMSCs suppress the computation/control flow within

Visually, a Message Sequence Chart (MSC) consists ofpeocesses, emphasizing the inter-process communication. The
number of interacting processes each shown as a vertical lineerall system behavior is captured by expressing temporal
Message communication between the processes are shownastraints on the relative order of process interactions. To
horizontal or downward sloping arrows. Message communidaalance the intra-process and inter-process modeling styles
tion can be synchronous (sender and receiver handshakejverhave proposed the Communicating Transaction Processes
asynchronous (non-blocking send events). In this paper, W&TP) formalism [5] and extended it to process classes via the
always assume asynchronous message communication sindetéracting Process Classes (IPC) model [6]. Here, the system
is less restrictive. Semantically, an MSC denotes a labelstwdeling is done at two levels. At the top level, the processes
partial order of events. This partial order is the transitivare described by transition systems; however, the action labels
closure of (a) the total order of the events in each processthese transition systems correspond to guarded (collections
and (b) the ordering imposed by a message’s communicatioi) Message Sequence Charts.
— a message is receiveddter it is sent. An example MSC In this article, we take a fresh look at these different
appears in Figure 1. Based on the partial order denoted by thiecutable modeling languages based on MSCs. The formal
MSC, we cannot conclude any ordering between the recesygntax and semantics of these modeling languages have been
event of message:1 and the send event of message. studied in their respective books/papers [2], [3], [7], [5], [6],

Since an MSC denotes a single scenario in system exefdif: Our goal in this article is to study the suitability of these
tion, it does not form a complete system description. Thimodeling languages for modeling various kinds of informal
problem can be alleviated by MSC-graphs. Each node of equirements found in practice. This different from the
MSC-graph is an MSC. Thus, an MSC-graph represents exay-in approach advocated in [3] where the user inputs the
cution traces formed by unfolding the MSC-graph from initialequirements by making certain choices and the user choices
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’ . ‘ o seme: ¢ system model satisfies a universal ch@ri o Body iff : from
sebesl ) (&) start every reachable state of the system model, if a linearization
start engage of the pre-chartPre is executed, then it must be followed
started started by a linearization of the body chafody. In other words,
for any execution trace of the system model, whenéveat is
M coer () executed Body mustbe executed. Along with the charts being
<etbest universal or existential, LSCs also allow locations or events in
started a chart to be universal or existential in a similar fashion [2].
engoge | © An example LSC universal chart, adapted from Harel and
start Gery’s rail-car example [8], [2] appears in Figure 2(A). The

requirements specified by this chart should be interpreted as
. _ _ _ ~ follows — whenever the control-center instructs a car to
Fig. 2. (A) An LSC universal chart, (B) An execution respecting the universplaye for certain destination, the car must eventually start
chart, and (C) An execution not respecting the universal chart . . . L :

its cruiser, followed by the cruiser confirming once it gets
started Figure 2(B) shows an execution which obeys the event

internally get converted to Live Sequence Charts. In this pap8fdering specified by Figure 2(A), while Figure 2(C) shows
we only consider the (more modest but more common) ta8R execution which does not obey the Figure 2(A)'s event
of converting an informal requirements document to a form@rdering. Note that the occurrence of messages which do not
specification in a scenario-based modeling language. We a@Pear in a universal chart (such as the message “engage” in
discuss how fragments of the model (captured by test casEigure 2(A)) are not constrained by the chart.

can be mapped back to the informal requirements.

In summary, the aim of this article is to initiate an
further study into the issue of relating MSC-based informal Triggered Message Sequence Charts (TMSCs) [4] extend
requirements to MSC-based executable modeisrently, the Message Sequence Charts withnditional and partial sce-
requirements documents refer to MSCs (which capture intevarios together with mathematically precise semantics for
process communication), whereas the design models are giegscution and refinement. A TMSC is visually similar to an
by state diagrams (capturing intra-process behavior). TISC with events comprising of sending and receiving of
creates a gap which needs to be filled in the manual synthesisssages amongst processes, and internal actions. However
of the design models. We believe that MSC-based executalileaddition, all the instances (vertical lines) in a TMSC are
design models will be more tightly linked to the requirementdivided into two parts: drigger and anaction. In any system
and hence will allow better traceability of models to informagxecution, if the sequence of events constituting tiigger
requirements. of a process occurs, then subsequent behavior of that process
is restricted to the sequence of events described bgctisn
part. The execution ofction part following the trigger in

In this section, we summarize three major efforts in buildingmscCs, resembles the execution of body-chart following a
MSC-based executable languages — Live Sequence Chgfis.chartin a LSC. However, in the case of LSCs all processes
(LSCs), Triggered Message Sequence Charts (TMSCs) aAghe chart synchronize at the end of the pre-chart, whereas for
Interacting Process Classes (IPC). TMSCs the conditional execution is described per-process. An
example TMSC appears in Figure 3(A). The dashed horizontal
) ) ) line divides each instance into thdgger (upper half) and

Live Sequence Charts (LSCs) [2] is a powerful visual for.(ion segments (lower half). According to this TMSC, once
malism which serves as an enriched requirements specificatipg,; receives the ‘setDest’ message from tentrol-center
language. Descriptions in the LSC language are executatygyigger is complete; it must then ask itguiser to ‘start’.
and the execution engine which supports it is calledRI®  gimjjarly, the cruiser must confirm with message ‘started’
Engine In the Live Sequence Chart (LSC) terminology, each,ce it has been asked to ‘start’.
chart is a concatenation of a pre-chart followed by a bOdyThe individual TMSCs (such as TM-A and TM-B in Figure
chart. The notion of concatenation requires some explanati%ry.can be combined to generate larger and more realistic

Crc]J_nS|der a cr;]arP Tlle ° Body whe]:c_reo denotes Eon;:tenatgn'specifications (called TMSC expressions), using the process-
This means that all processes first execute the dRaftand 5 \gapraic operators:||* for parallel composition, ' for

then they execute the chaBody; no event of chartBody delayed choice, ‘' for sequential compositiorand tecX

takes place before any event of chitte. for expressing recursive behavior. The “logical” conjunction

In the LSC language, charts are classified as existentigloator #' is used to constrain the behavior of one TMSC
or universal. An existential cha®re o Body represents the

following prope_rty : there EX'StS areachable State_ of the S_yStem]The sequential composition involvasynchronousoncatenation of MSCs
model from which an outgoing trace executes a linearization [of.

¢B- Triggered Message Sequence Charts

II. MSC-BASED MODELING LANGUAGES

A. Live Sequence Charts
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Center Car Cruiser  Center Car Cruiser  Center Car Cruiser Flgure 4(A), hereAthar denotes the set Of Ilfellnes In WhICh

setDest selDest setDest objects of thecar class can participate in. Thus, regular
‘ tart expressions are used to specify the history component of a
e start [error | guard. Snippets of the labeled transition systems of the Car and
e o Cruiser classes are shown in Figure 4(B) and (C) (occurrences
= = = e e of the DepartRegAaction label in the transitions systems are
A ® © marked in bold).
Fig. 3. (A) TM-A: TMSC illustratingtrigger and action (B) TM-B: A partial  |Il. W HICH REQUIREMENTSDOCUMENTS ARESUITABLE
TMSC, behavior of processes after this TMSC is unrestricted as shown by FOR WHICHLANGUAGE?
absence of bars at the foot of vertical lines, and (C) TM-C: A possible ) . . ) )
completion of TM-B In this section, we discuss the possible usage of MSCs in

requirements documents and the issues involved in construct-

ing MSC-based executable specifications from these informal
expression with respect to another. The formal semanticsretjuirements. In the following, we assume that the system
TMSCs is based on the concept of ‘acceptance trees’, whishing modeled is a reactive system consisting of several
also help in defining a mathematically precise notion of origteracting processes.

TMSC expression refining another. . . .
P g A. Documents capturing overall system scenarios via MSCs

C. Interacting Process Classes One obvious usage of MSCs in requirements is just to

Interacting Process Classes (IPC) [6], model a reactipainly describe system scenarios. In these kind of documents,
system as a network of process classes where processes watally
similar functionalities are grouped into a class. For eache the intra-process control flow for each process in the
process clasg, a labeled transition systeffiS, captures the system is presented at a very high level using state
control flow of the objects belonging to that class. However, a machine like notation, and
transition label rather than being an individual event such ase Snhippets of typical interactions between processes (as well
a message send or receive, represents the part played by anas interactions between processes and environment) are
object of that class in a short interaction protocol. Since we presented as MSCs.
depict protocols using MSCs, a transition label thus becom€ke informality in these kind of requirements stems from the
a lifeline of an MSC. Hence, each transition label is of thper-process state machines not being detailed enough, and all
form ~,., wherey names the interaction protocol (also calleghossible system interactions not being given (only “important”
a Transaction in our terminology) and- is the role played by use-cases are captured).
an object of the class in the transaction. We have had some experience in system modeling from

Formally, a Transactionis a guarded Message Sequencsuch documents, the most notable being the requirements
Chart. If a process clagshas a transition labe}, appearing document ofMedia-oriented Systems Transpast MOST.
in its transition system, then this label will correspond to afihe MOST [10] is a networking standard that has been
object of classp playing the roler in MSC . When we designed for interconnecting various classes of multimedia
draw the MSCy, we will often annotate this lifeline as. to components in automobiles. It is currently maintained by the
emphasize that the role playedrisind it is being played by an “MOST Cooperation”, an umbrella organization consisting of
object of clasg. In a transaction, thguard associated with various automotive companies and component manufacturers
lifeline p, will specify the conditions that must be satisfied byike BMW, Daimler-Chrysler and Audi. It has been designed to
an object belonging to the clagsn order for it to be eligible suit applications that need to network multimedia information
to play the roler. These conditions consist of two componentslong with data and control functions. The processes in this
(i) a history property of the execution sequence (sequence jfstem consist of a network master and several network slaves.
transition labels) that the object has so far gone through (ii) aFrom our experience in modeling MOST, we found ttreg
propositional formulabuilt from boolean predicates regardinghybrid nature of the Interacting Process Classes (IPC) model
the values of the variables owned by the object. makes it suitable for this kind of requirements documents.

Consider the transactidbepartRegAshown in Figure 4(A). In particular, the IPC model captures both state machine like
This captures the same interaction which was depicted asd MSC like notations — albeit at different levels — the
LSC in Figure 2(A). However, in this case the initial receipstate machine like notation at the top level and the MSC
of ‘setDest’ message by aar from the control-centeroc- like notations at the lower level. Thus, we could obtain the
curs in a separate transaction: eitf®etDestor SelectDest high-level Labeled Transition Systems (LTSs) of the processes
(not shown here). Thus, the Car object wishing to pldyy elaborating the control flow described in the requirements
the lifeline Cargsnare;, Must have last played the lifelinedocument. Similarly, the MSCs appearing in the requirements
Cargrevpest IN the transactionSetDest or in the transac- documents (system scenarios) will typically be broken into
tion SelectDest. This is captured by the regular expressioseveral MSCs appearing in the IPC model (these are the MSCs
guard Act?,,..(SetDestreypest| SelectDestrevpest) Shown in - which are mentioned in the action labels of the LTSs). This

car-*
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. . . \Iﬁg&uirement 2.6.2The CM should perform the following actions when a
process 1S of course manual, but the SYStem SCenarios IN dgther-aware client attempts to establish a socket connection to CM...
requirements document form a useful guide about the alphagt set the weather-aware client's weather
of MSCs appearing in the IPC model. Stath1 to ‘pre;{initialilzing’

Since LSCs/TMSCssuppress intra-process control flow ® ?&L_}nﬁia‘l"i’;ﬁg,er'cyce status to
obtaining a LSC or TMSC specification from such requirge) disable the weather control panel ....
ments documents involves a higher-level of human ingenuiequirement 2.8.5The CM should perform the following actions when the
It involves understanding the global control flow from the peMIeather Cycle status is ‘initializing’ and the newly connected weather-aware

. . client has responded yes to the CTBET.NEW.WTHR message...
process control flow described in the documents and encoding
. 6?) set the Weather Cycle status to
the global control flow as pre-charts of LSCs, or triggers ‘post-initializing’
TMSCs. (b) set the weather status of the newly
. . connected weather-aware client to
B. Documents describing system behavior as global con- ‘post-initializing’
straints (c) it should send a CTAS _USENEWWTHR message
] ) to the newly connected weather-aware
Certain requirements documents structure the system be- client.

havior into phases. Usually, these documents model a system
with a central controller which manages the communication
between processes as well as with the environment. The
system behavior is then given from the perspective of the
controller, trying to split its possible behaviors into phases;

for each phase the pre-condition for entering that phase as

well as the actions to be executed in that phase are Speciﬁed.?ec?uirements of the for:’n ﬁhown iﬂ Table | can be direc‘ily

We have had experience in developing system specificatidﬂg_de .Ed as LSC universal charts. The pre-condition (ma'f ed
from such documents, the most notable being the weath _ltalics above) becomes the pre-chart, and the actions
update controller from Center TRACON automation syste _arked as (a), (b), (c) at_aove) become thg body chart of the
(CTAS) tools developed by NASA to manage incoming aiHnlversal chart. A collection of such requirements becomes

traffic in busy airports [12]. The weather-update controller ift collection of LSC umversa! charts — read|ly yielding an
CTAS consists of a central communication manager (C ecutable system model directly from requirements. The

and several weather-aware clients. The CM manages ve two requirements modeled using LSCs appear in Figure

communication of weather updates to the clients. In the CTA; I_n order to rep_resent various weather-awa_re clients, the
requirements documentthe requirements are given from the'teline correspondlqg 1o the weather—aware. client has been
view-point of the CM describing its behavior under given prer—n"’”ke‘j asa ;ymbohcq_nstance of class WAcIu.ent.. Th'S wpu_ld
conditions. The execution sequen@6.2, 2.8.3, 2.8.5, 2.8.8 allow any object of this class to execute this lifeline, if it
of requirements taken from the requirements document, forl?%t'Sf'es tge_ ':chle a}s_somalt_ed (_:ondltlo? sgown n thedbubk;le:
the scenario in which a weather aware client gets successfuﬁynnelfte = false’, I.e. client Is not already connected to the
connected to CM. The requiremer$.2and2.8.5are shown ¢ Ir:1tro er.d i h . IPC or TMSC bi
in Table I. We now give their translation into LSCs, TMSCs ' of Modeling suc requirements as or S, a bit

and IPC modeling framework and comment on the relativB°'® work is require_d. The TMSCs for the above_ given
effort required in doing so. requirements appear in Figure 6. Note that for requirement

2.8.5- in the case of LSCs the enabling condition for this
2http://scesmO4.upb.de/case-study-2/requirements. requirement appears in the pre-chart, whereas for TMSCs
pdf we need to explicitly use process-algebraic operators(which

TABLE |
Requirements from CTAS weather controller
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postlnit

setStatus(prelnit postInit
setStatus(postInit
CTAS_USE_NEW_
cycleStatus = prelnit setStatus(postInit) WTHR
disable CTAS_USE_NEW_WTHR It WCP, CM,,, WAclient,, oM, WAclient,
o machine Requirement 2.6.2 Requirement 2.8.5
(a) Requirement 2.6.2 (b) Requirement 2.8.5 gf{,.pf;jfem ® Transaction R1 @ Transaction 13
Fig. 5. CTAS requirements modeled using LSCs. Fig. 7. CTAS requirements modeled using IPC.
WCP oM WAclient oM WAclient
:‘Dconncctcdz false e expression guards in MSCs. We modeled the example medical
connect = device monitor of [13] in this manner. Currently, we are
. s = 7 tatus = . . . .
<eleStatns = done >  postiuit trying to see whether this kind of modeling scales up to more
sotStatus(preluit) setStatus(postInit) complicated requirements documents of this nature.
cycleStatus = prelnit SR
disable CAS R P IV. TRACEABILITY OF MODELS TO REQUIREMENTS
= = = = = We now step back to look at the bigger picture: the role
(a) Requirement 2.6.2 (b) Requirement 28.5 of MSC-based executable models in model-driven software

development.
Fig. 6. CTAS requirements modeled using TMSCs. . .
A. How MSC-based models fit into software design flows?
Conventionally, model-driven software development starts
are part of the TMSC language) to capture the enablingth the informal requirements from where a design model
conditions and model the control flow. Assuming that TMSCs manually synthesized. From the design model, the code
My, M, M3, and M, model the requirement8.6.2, 2.8.3, is generated semi-automatically. Indeed, many UML-based
2.8.5, 2.8.8respectively, the complete TMSC specificatiomools (such as Mastercraft from TRDDC and Rational Rose
would be My; Msy; Ms; My, where operator ;' represents thefrom IBM) use the UML models as a guidance for code
asynchronous sequential composition. In case of IPC, rouglgigneration; the code generation from UML is, by no means,
speaking, the body charts in the LSC modeling of sudblly automated. However, the UML models can be used, along
requirements become the MSCs appearing in the IPC modgith test specifications, for automated test case generation.
However, again the pre-charts (which can be directly lifteflhese test cases can be tried out on the semi-automatically
from such requirements) need to be encoded indirectly. Thenerated code in order to gain confidence in the correctness
pre-charts basically convey which system phase can follaf model-code translation. The overall software design flow is
which phase — a high-level global control flow informationsummarized in Figure 8 (a). The broken arrows involve manual
In the case of the IPC model, this is encoded via the intrar semi-automated steps, whereas a solid arrow denotes an
process control flow as shown by the high-level Labelemltomated step.
Transition Systems (LTSs) of the processes in the systemAs shown in Figure 8 (a), the test cases tried out on software
The two requirements shown earlier, together with the relatethy need to be traced back to the informal requirements. This
part of CM’s Labeled Transition System appears in Figure i& indeed an important issue in many safety-critical application
Obtaining the LTSs for various process classes in this cagemains such as avionics. These domains readirgfication
needs some additional effort. of software, and for the purposes of the certification, the
software needs to be extensively tested. For example, the
highest level of certification for flight-control software — the
It is conceivable that certain requirements documents eDO178-B level A from the Federal Aviation Administration
ploy a mixture of system scenarios (as MSCs) and globad FAA — requires a strict criterion for structural testing
constraints on system behavior. Works on TMSCs [13] meof software called Modified Condition/Decision Coverage or
tion the requirements for a medical device involving bloodMC/DC criterion. However, even if some offending test cases
pressure measuring/pumping and presents this case as amefound how does the development team discuss the intended
where TMSCs may come in handy. behavior of these cases with the software design team or
For these cases the IPC model is also directly useful sinte requirements engineers? Currently, it is done in an ad-
the system scenarios are encoded as MSCs appearing inhthe fashion involving an informal dialogue between design-
high-level LTSs of the processes, and the global constraimis, developers and end-users. To enable more systematic
are encoded by the per-process control flow and the regutsign/testing of model-driven software, it is important to

C. Documents involving mixture of both
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Fig. 8. Design Flows for Model-driven Software Development

trace test cases back to informal requiremenittowever, We believe that hybrid design models (like the IPC model)
the test cases are (automatically) derived from the desigfier a compromise —

models. Thus, if the design models are not tightly coupled, gince they are executable, we can use them for automated
with the informal requirements, backwards traceability of tests  joqt generation. The test generation algorithms of course
to requirements remains a hard problem. need to be modified.

In Figure 8 (b), we show an alternative design flow for , Since MSCs are the building blocks of these models,
model-driven software development. In this flow, the code is they are closely tied to the requirements. In particular,
automatically generated from the UML design models. Indeed the MSCs in the system model can be (fragments of )
this is the case in the Rhapsody tool from I-Logix where code MSCs appearing in the requirements document so that

can be generated fully automatically from Statechart models. test cases generated from the models can be easily traced
Since both the code and the test cases are automatically pack to the requirements.

generated from the design models, it is therefore meaningless

in this situation to apply .the test cases on the_ automaticaly Test generation and traceability

generated code. Indeed, in the design flow of Figure 8 (b), the i

test generation and code generation are decoupled from eac/é now outline an MSC-based approach to model-based
other. In such a design flow, the test cases servenapletely test generation and traceability. The aim is not to provide one
different purpose — they are used to gain high confidendisp solution, but rather highlight the issues that may arise in
in the model itself. Since the model is manually generaté$ch an approach. _ _ o
from the requirements, we need to understand whether the Modeling Languagefirst, we seek to outline the criteria
model faithfully captures the requirements. By automaticalfiat the system modeling language should satisfy. We feel that
generating test-cases from the models, and tracing these tH¢ssystem model should be amenable to symbolic execution

back to the requirements — we can gain increased confidence Poth in terms of symbolically representing data values
in the models. as well as process states (when there are many behaviorally

In the preceding, we have discussed two different desiglnilar processes in the system). Why is symbolic execution

flows for model-driven software development. We observe thgiPortant for model-based testing? We note that model-based
in both of them it is important to trace test cases (generati&pting typically proceeds by state-space exploration and hence

from models) to informal requirements. In other words, thi9ssless symbolic representations of the state transition graph

design models should support (a) automated test generatidf¢ ©f immense importance. Moreover, such symbolic state
(b) traceability of generated tests to requirements and (c)SH2CE representation can enable grouping of similar test cases
least semi-automatic code generation. Existing UML tool8t0 @ "Symbolic” test case which is also very useful to the
describe of the behavior of any class of active objects VEgSIgner. In particular, symbolic execution mbcess classes

a State Diagram; the relationship across classes is captu’?gﬁm to be important for model-based testing of distributed
by a class diagram. For such a design model, automated f3{rol systems. In such systems, a process class may capture
generation is easy — it proceeds by automated explorati@darge number of objects of similar behavior; thus_, the same
of the State diagrams. However, as discussed earlier, itS}&te machine may be used to capture the behavior of many
difficult to synthesize the State Diagram models from th@PJ€CtS which are grouped into a class (such aspihene
informal requirements (which are often inter-process in natu?é‘d switch clgsses Ina telecommunlcathn protocol). .
being described via MSCs). Conventional MSC-based systemThe second issue concerns the granularity of the transm.ons
models such as MSC-graphs or HMSCs suffer from trfar the system m_odel that will be generated from the modeling
reverse problem — they can be easily synthesized from t@guage of choice. For MSC-based languages, there can be
requirements, but since they are not executable in nature it nfiy/€ast two choices.

be difficult to synthesize tests which can be directly executede a transition corresponds to a single event — like a
on the software. message send/receive.



« a transition corresponds to an entire Message Sequeddéerent application domains like avionics and rail-network
Chart (MSC). control. For our initial experiments, we modeled a simple

The second choice allows us to neatly define system executf§lgphone switch drawn from [14]. Next we modeled the rail-
traces as sequence of MSCs. This is the choice we have takBhsystem whose behavioral requirements have been specified
in our work, but more discussion is needed on this front. ksing Statecharts in [8] and using Live Sequence Charts in
our experiments on model-based testing, we have worked wigh- We have also modeled the requirement specification of
the Interacting Process Classes (IPC) model. This is primarf§f0 other systems - one drawn from the rail transportation
because (a) we have been working with this model for numi@@main and the other being a weather controller which is
of years, (b) the IPC model provides symbolic executiop@rt of an air traffic control system (skép://scesm04.
semantics, and (c) the IPC model describes a transition W-de/case-studies.html for more details of these
an MSC (rather than an event). examples). The example from rail transportation domain is a
Test Specification and Coverage Criterifihe test criteria 'ailway shuttle system, where various shuttles bid for orders
for model-based testing can be one of achieving covera@etransport passengers between various stations on a railway-
or to meet a test specification. For model-based testing, yerconnection network. The weather update controller [12] is
feel that new notions of model coverage should be develop@@ important component of théenter TRACON Automation
instead of re-using existing notions of code-coverage (whigystem (CTAS)automation tools developed by NASA to
were originally developed for sequential programs). Thus, 'flanage high volume of arrival air traffic at large airports.
we have a state-based specification where the behavior of each ,
class is given by a state diagram, simply achieving coverage lgE<2mPies | # Classes] # MSCs | Max. # Local States in any class

all the local states in the state machines of the different class estQi?C”; 162 %‘13 186

does notsuffice. The notion of test coverage needs to captufe Shuttle 4 29 28

the interactions across state machines of different classes. __CTAS 3 21 20
In the context of MSC-based models, this problem seems TABLE Il

to have a natural solution. Consider an IPC system model
where each class is described by a labeled transition system
(LTS) and the action labels of the LTS correspond to MSCs. ) ) )
Since the MSCs form the units of execution for the entire FOr our experiments, we made the following choices. We
system specification (which is given by a set of communicatifig'©Se 'PC [6] as the modeling language. A test case speci-
LTSs), our test coverage can simply require the test casedif§tion is a sequence of MSCs appearing in the IPC model,
include all the MSCs appearing in the system specificatiof?d it is met by any global execution (which is a sequence of

More discussion is needed on alternate notions of coveragdi$Cs) containing the test case specification as a subsequence.
the context of model-based test generation. Detailed modeling of our examples in the IPC model can be

Apart from test coverage, we also need to study how te¥cessed from the web-site [11]. In Table Il, we give some
specifications can be described. Again, in the context of MSEEAtiStics about the modeling of these examples. _
based models, we can have the test specification as a sequent¥® compared the size of test-suite and test generation
of MSCs (all of which appear in the system specification}'.mes with corresponding numbers where the test generation
The user gives a sequence of MSEsy - -7, as the test 'S performed byconcretemodel executionife., the state of
specification. At this level of abstraction it is much mor&ach active object is maintained separately). All experiments
intuitive and easier for the user to design test specificatio§"® Performed on a machine with 3GHz CPU and 1 GB of
corresponding to variousise casescenarios. The test-casgM€mory. The results appear in Table Mhe results serve as
generation procedure aims at producing one or more tésfneasure of the importance of symbolic execution for model-

MODELING SUMMARY

sequences of the form based test generatioror each test specification, the state-
_ _ _ space of the models were explored (using both symbolic and
T T Ty TRy T, concrete execution semantics)breadth-first manneup to a

iven depth, and the total number of all possible witness-traces
8rresponding to the given test specification were recorded
within that exploration tree. The time to generate the test cases
F(ri AF(m A (... (F10)...) is much lower in'symbolic exec.ution as cqmpared 'to concrete

execution. More importantly, using symbolic execution we can

We will always generate only finite witness traces.(a finite group together many behaviorally similar tests into a single
sequence of transactions) such that any infinite trace obtainest case. For example in the first test specification of the Tele-
by extending our finite witness trace will satisfy the abovgshone Network example (see Table Il1), 560 concrete test cases
mentioned LTL property. are grouped into 70 symbolic tests. Note that the number of
Experiments:We now present some initial experimentzoncrete tests in Table Il is not always an exact multiple of the

on test case generation from MSC based system models. Tilnenber of symbolic tests. This is because different symbolic
examples used are standard reactive control systems friasts may be blown up into different number of concrete tests.

This can be viewed as finding a witness trace satisfying tﬁ
Linear-time Temporal Logic (LTL) property



Example Test Exploration | # Witnesses| Exec. Times(sec) i
spec. #|  Depth 5T C 5 c Overall Summgry.ln summary, our proposal for model-
Telephone 1 5 70 560 | 1 28 based test generation/traceability is as follows.
Network 2 8 12 80 7 138 .
(5 phones) 3 9 7T 80 | 17 12 « System ModelAn executable MSC based modeling lan-
RGaiICar ; g 3?2 — 31890 > ig min. guage which helps us link requirements to formal models.
cars, — > min. g .
3 t(erminals) 3 5 T o Test speuﬁpauanA sequence (_)f MSCsl, ..., Tn Where
Automated | 1 15 5] 11 |07 15 for all i, 7; is an MSC appearing in the system model.
Shuttle 2 15 9 18 [072 15 Test A f MSCs f t del
(5 shuttles) [ 3 7 > 5 - =3 « Test caseA sequence of s from system model.
Weather 1 20 5| 129 | 01 25 « Meeting a Test specificatioAny test case which contains
Controller 2 20 2 3 0.1 25 s ;
(10 clients) 3 oE 3 — 5.5 15 the test specification as a subsequence.

« Achieving Test Coveragd\ set of test cases (test-suite)
TABLE Il which contains all MSCs appearing in the system model.
COMPARING SYMBOLIC AND CONCRETE TEST GENERATIONS =
SymBoLic, C = CONCRETE

V. DISCUSSION

In this paper, we have studied three different scenario-based

system modeling languages — Live Sequence Charts (LSCs),

Triggered Message Sequence Charts (TMSCs) and Interacting

Process Classes (IPC). Specifically, we have looked at the
Finally, we tried out our notion of MSC coverage for the IPGssue ofsynthesizing formal modela these languages from
modeling of the four example controllers mentioned in Tabigformal specification documents. We have also studied the
lll. Again, the MSC coverage was conducted for symboligsue of generating test cases from these models and tracing
execution of the modelf we try to achieve MSC coverage bythese tests back to the informal requirements.
concrete execution, the test-suite construction does not evecenario-based modeling languages are important in the
terminate in reasonable time for most examples even wigbntext of UML-based system modeling. Traceability of test
variations of the search strategylsing symbolic execution cases derived from such models is an exciting research topic
of the IPC model, coverage was achieved within 20 secongSpractical value. Different ways of modeling and analyzing
for all the examples (on a machine with 3GHz CPU and timing constraints in such scenario-based modeling languages
GB of memory). The test-suite sizes thereby produced ranggchnother exciting research direction worth pursuing.

from 10 to 700.
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