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Abstract— Message Sequence Charts (MSCs) or Sequence
Diagrams are one of the behavioral diagram types in the Unified
Modeling Language or UML. In system requirements modeling,
MSCs are conventionally used for describing possible system
scenarios. In the recent past, there have been concerted attempts
to develop executable system modeling languages directly based
on MSCs — Live Sequence Charts, Triggered Message Sequence
Charts and Interacting Process Classes, to name a few. In this
paper, we study the problem of model synthesis in these languages
— how to translate informal requirements into formal models.
We also discuss (a) test generation from these formal models, and
(b) how the generated tests can be traced back to the informal
requirements.
Index terms— Computer aided software engineering, Software
requirements and specifications.

I. I NTRODUCTION

Message Sequence Charts (MSCs) or Sequence Diagrams
are widely used by requirements engineers in the early stages
of reactive system design. Conventionally, MSCs are used in
the system requirements document to describescenarios—
possible ways in which the processes constituting a distributed
reactive system may communicate among each other as well
as with the environment. Due to their widespread usage in
requirements engineering, MSCs have been integrated into
the Unified Modeling Language (UML). In UML, they are
popularly known as Sequence Diagrams.

Visually, a Message Sequence Chart (MSC) consists of a
number of interacting processes each shown as a vertical line.
Message communication between the processes are shown as
horizontal or downward sloping arrows. Message communica-
tion can be synchronous (sender and receiver handshake) or
asynchronous (non-blocking send events). In this paper, we
always assume asynchronous message communication since it
is less restrictive. Semantically, an MSC denotes a labeled
partial order of events. This partial order is the transitive
closure of (a) the total order of the events in each process
and (b) the ordering imposed by a message’s communication
— a message is receivedafter it is sent. An example MSC
appears in Figure 1. Based on the partial order denoted by this
MSC, we cannot conclude any ordering between the receive
event of messagem1 and the send event of messagem2.

Since an MSC denotes a single scenario in system execu-
tion, it does not form a complete system description. This
problem can be alleviated by MSC-graphs. Each node of an
MSC-graph is an MSC. Thus, an MSC-graph represents exe-
cution traces formed by unfolding the MSC-graph from initial
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Fig. 1. A Message Sequence Chart (MSC)

state(s) and then linearizing the MSC sequences thus obtained.
The model of MSC graphs is suitable for complete system
descriptions; extended with hierarchy it forms the popular
notation of High-level Message Sequence Charts (HMSCs).
However, we cannot directly construct implementations for
the participating processes by projecting out their behaviors
within the MSCs of an HMSC, due to the presence of “implied
scenarios” [1].

To overcome such problems, executable formalisms di-
rectly based on MSCs have been proposed in recent years.
In particular, the Live Sequence Chart formalism [2], [3]
extends MSCs (which only describe “possible behaviors”)
to describe mandatory behavior. The execution semantics of
an LSC specification is of a centralized nature. In contrast,
the work on Triggered Message Sequence Charts (TMSCs)
[4] allows for a per-process execution semantics. Both LSCs
and TMSCs suppress the computation/control flow within
processes, emphasizing the inter-process communication. The
overall system behavior is captured by expressing temporal
constraints on the relative order of process interactions. To
balance the intra-process and inter-process modeling styles
we have proposed the Communicating Transaction Processes
(CTP) formalism [5] and extended it to process classes via the
Interacting Process Classes (IPC) model [6]. Here, the system
modeling is done at two levels. At the top level, the processes
are described by transition systems; however, the action labels
in these transition systems correspond to guarded (collections
of) Message Sequence Charts.

In this article, we take a fresh look at these different
executable modeling languages based on MSCs. The formal
syntax and semantics of these modeling languages have been
studied in their respective books/papers [2], [3], [7], [5], [6],
[4]. Our goal in this article is to study the suitability of these
modeling languages for modeling various kinds of informal
requirements found in practice. This isdifferent from the
play-in approach advocated in [3] where the user inputs the
requirements by making certain choices and the user choices
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Fig. 2. (A) An LSC universal chart, (B) An execution respecting the universal
chart, and (C) An execution not respecting the universal chart

internally get converted to Live Sequence Charts. In this paper,
we only consider the (more modest but more common) task
of converting an informal requirements document to a formal
specification in a scenario-based modeling language. We also
discuss how fragments of the model (captured by test cases)
can be mapped back to the informal requirements.

In summary, the aim of this article is to initiate and
further study into the issue of relating MSC-based informal
requirements to MSC-based executable models.Currently, the
requirements documents refer to MSCs (which capture inter-
process communication), whereas the design models are given
by state diagrams (capturing intra-process behavior). This
creates a gap which needs to be filled in the manual synthesis
of the design models. We believe that MSC-based executable
design models will be more tightly linked to the requirements
and hence will allow better traceability of models to informal
requirements.

II. MSC-BASED MODELING LANGUAGES

In this section, we summarize three major efforts in building
MSC-based executable languages — Live Sequence Charts
(LSCs), Triggered Message Sequence Charts (TMSCs) and
Interacting Process Classes (IPC).

A. Live Sequence Charts

Live Sequence Charts (LSCs) [2] is a powerful visual for-
malism which serves as an enriched requirements specification
language. Descriptions in the LSC language are executable,
and the execution engine which supports it is called thePlay
Engine. In the Live Sequence Chart (LSC) terminology, each
chart is a concatenation of a pre-chart followed by a body
chart. The notion of concatenation requires some explanation.
Consider a chartPre ◦Body where◦ denotes concatenation.
This means that all processes first execute the chartPre and
then they execute the chartBody; no event of chartBody
takes place before any event of chartPre.

In the LSC language, charts are classified as existential
or universal. An existential chartPre ◦ Body represents the
following property : there exists a reachable state of the system
model from which an outgoing trace executes a linearization of

Pre followed by a linearization ofBody. On the other hand, a
system model satisfies a universal chartPre◦Body iff : from
every reachable state of the system model, if a linearization
of the pre-chartPre is executed, then it must be followed
by a linearization of the body chartBody. In other words,
for any execution trace of the system model, wheneverPre is
executed,Body mustbe executed. Along with the charts being
universal or existential, LSCs also allow locations or events in
a chart to be universal or existential in a similar fashion [2].

An example LSC universal chart, adapted from Harel and
Gery’s rail-car example [8], [2] appears in Figure 2(A). The
requirements specified by this chart should be interpreted as
follows — whenever the control-center instructs a car to
leave for certain destination, the car must eventually start
its cruiser, followed by the cruiser confirming once it gets
started. Figure 2(B) shows an execution which obeys the event
ordering specified by Figure 2(A), while Figure 2(C) shows
an execution which does not obey the Figure 2(A)’s event
ordering. Note that the occurrence of messages which do not
appear in a universal chart (such as the message “engage” in
Figure 2(A)) are not constrained by the chart.

B. Triggered Message Sequence Charts

Triggered Message Sequence Charts (TMSCs) [4] extend
Message Sequence Charts withconditional and partial sce-
narios together with mathematically precise semantics for
execution and refinement. A TMSC is visually similar to an
MSC with events comprising of sending and receiving of
messages amongst processes, and internal actions. However
in addition, all the instances (vertical lines) in a TMSC are
divided into two parts: atrigger and anaction. In any system
execution, if the sequence of events constituting thetrigger
of a process occurs, then subsequent behavior of that process
is restricted to the sequence of events described by itsaction
part. The execution ofaction part following the trigger in
TMSCs, resembles the execution of body-chart following a
pre-chart in a LSC. However, in the case of LSCs all processes
in the chart synchronize at the end of the pre-chart, whereas for
TMSCs the conditional execution is described per-process. An
example TMSC appears in Figure 3(A). The dashed horizontal
line divides each instance into thetrigger (upper half) and
action segments (lower half). According to this TMSC, once
a car receives the ‘setDest’ message from thecontrol-center,
its trigger is complete; it must then ask itscruiser to ‘start’.
Similarly, the cruiser must confirm with message ‘started’
once it has been asked to ‘start’.

The individual TMSCs (such as TM-A and TM-B in Figure
3) can be combined to generate larger and more realistic
specifications (called TMSC expressions), using the process-
algebraic operators: ‘‖’ for parallel composition, ‘∓’ for
delayed choice, ‘;’ for sequential composition1, and ‘recX’
for expressing recursive behavior. The “logical” conjunction
operator ‘∧’ is used to constrain the behavior of one TMSC

1The sequential composition involvesasynchronousconcatenation of MSCs
[9].
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expression with respect to another. The formal semantics of
TMSCs is based on the concept of ‘acceptance trees’, which
also help in defining a mathematically precise notion of one
TMSC expression refining another.

C. Interacting Process Classes

Interacting Process Classes (IPC) [6], model a reactive
system as a network of process classes where processes with
similar functionalities are grouped into a class. For each
process classp, a labeled transition systemTSp captures the
control flow of the objects belonging to that class. However, a
transition label rather than being an individual event such as
a message send or receive, represents the part played by an
object of that class in a short interaction protocol. Since we
depict protocols using MSCs, a transition label thus becomes
a lifeline of an MSC. Hence, each transition label is of the
form γr, whereγ names the interaction protocol (also called
a Transaction in our terminology) andr is the role played by
an object of the class in the transaction.

Formally, a Transaction is a guarded Message Sequence
Chart. If a process classp has a transition labelγr appearing
in its transition system, then this label will correspond to an
object of classp playing the roler in MSC γ. When we
draw the MSCγ, we will often annotate this lifeline aspr to
emphasize that the role played isr and it is being played by an
object of classp. In a transaction, theguard associated with
lifeline pr will specify the conditions that must be satisfied by
an object belonging to the classp in order for it to be eligible
to play the roler. These conditions consist of two components:
(i) a history property of the execution sequence (sequence of
transition labels) that the object has so far gone through (ii) a
propositional formulabuilt from boolean predicates regarding
the values of the variables owned by the object.

Consider the transactionDepartReqAshown in Figure 4(A).
This captures the same interaction which was depicted as
LSC in Figure 2(A). However, in this case the initial receipt
of ‘setDest’ message by acar from the control-centeroc-
curs in a separate transaction: eitherSetDestor SelectDest
(not shown here). Thus, the Car object wishing to play
the lifeline CarSndReq must have last played the lifeline
CarRcvDest in the transactionSetDest or in the transac-
tion SelectDest . This is captured by the regular expression
guard Act?

car .(SetDestRcvDest |SelectDestRcvDest) shown in

Figure 4(A); hereActcar denotes the set of lifelines in which
objects of thecar class can participate in. Thus, regular
expressions are used to specify the history component of a
guard. Snippets of the labeled transition systems of the Car and
Cruiser classes are shown in Figure 4(B) and (C) (occurrences
of the DepartReqAaction label in the transitions systems are
marked in bold).

III. W HICH REQUIREMENTSDOCUMENTS ARESUITABLE

FOR WHICH LANGUAGE?

In this section, we discuss the possible usage of MSCs in
requirements documents and the issues involved in construct-
ing MSC-based executable specifications from these informal
requirements. In the following, we assume that the system
being modeled is a reactive system consisting of several
interacting processes.

A. Documents capturing overall system scenarios via MSCs

One obvious usage of MSCs in requirements is just to
plainly describe system scenarios. In these kind of documents,
usually

• the intra-process control flow for each process in the
system is presented at a very high level using state
machine like notation, and

• snippets of typical interactions between processes (as well
as interactions between processes and environment) are
presented as MSCs.

The informality in these kind of requirements stems from the
per-process state machines not being detailed enough, and all
possible system interactions not being given (only “important”
use-cases are captured).

We have had some experience in system modeling from
such documents, the most notable being the requirements
document ofMedia-oriented Systems Transportor MOST.
The MOST [10] is a networking standard that has been
designed for interconnecting various classes of multimedia
components in automobiles. It is currently maintained by the
“MOST Cooperation”, an umbrella organization consisting of
various automotive companies and component manufacturers
like BMW, Daimler-Chrysler and Audi. It has been designed to
suit applications that need to network multimedia information
along with data and control functions. The processes in this
system consist of a network master and several network slaves.

From our experience in modeling MOST, we found thatthe
hybrid nature of the Interacting Process Classes (IPC) model
makes it suitable for this kind of requirements documents.
In particular, the IPC model captures both state machine like
and MSC like notations — albeit at different levels — the
state machine like notation at the top level and the MSC
like notations at the lower level. Thus, we could obtain the
high-level Labeled Transition Systems (LTSs) of the processes
by elaborating the control flow described in the requirements
document. Similarly, the MSCs appearing in the requirements
documents (system scenarios) will typically be broken into
several MSCs appearing in the IPC model (these are the MSCs
which are mentioned in the action labels of the LTSs). This
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Fig. 4. (A) TransactionDepartReqA, (B) Labeled Transition System snippet of Car class, and (C) Cruiser class

process is of course manual, but the system scenarios in the
requirements document form a useful guide about the alphabet
of MSCs appearing in the IPC model.

Since LSCs/TMSCssuppress intra-process control flow,
obtaining a LSC or TMSC specification from such require-
ments documents involves a higher-level of human ingenuity.
It involves understanding the global control flow from the per-
process control flow described in the documents and encoding
the global control flow as pre-charts of LSCs, or triggers of
TMSCs.

B. Documents describing system behavior as global con-
straints

Certain requirements documents structure the system be-
havior into phases. Usually, these documents model a system
with a central controller which manages the communication
between processes as well as with the environment. The
system behavior is then given from the perspective of the
controller, trying to split its possible behaviors into phases;
for each phase the pre-condition for entering that phase as
well as the actions to be executed in that phase are specified.

We have had experience in developing system specifications
from such documents, the most notable being the weather-
update controller from Center TRACON automation system
(CTAS) tools developed by NASA to manage incoming air-
traffic in busy airports [12]. The weather-update controller in
CTAS consists of a central communication manager (CM)
and several weather-aware clients. The CM manages the
communication of weather updates to the clients. In the CTAS
requirements document2, the requirements are given from the
view-point of the CM describing its behavior under given pre-
conditions. The execution sequence -2.6.2, 2.8.3, 2.8.5, 2.8.8-
of requirements taken from the requirements document, forms
the scenario in which a weather aware client gets successfully
connected to CM. The requirements2.6.2and2.8.5are shown
in Table I. We now give their translation into LSCs, TMSCs
and IPC modeling framework and comment on the relative
effort required in doing so.

2http://scesm04.upb.de/case-study-2/requirements.
pdf

Requirement 2.6.2:The CM should perform the following actions when a
weather-aware client attempts to establish a socket connection to CM...
(a) set the weather-aware client’s weather

status to ‘pre-initializing’
(b) set the weather-cycle status to

‘pre-initializing’
(c) disable the weather control panel ....
Requirement 2.8.5:The CM should perform the following actions when the
Weather Cycle status is ‘initializing’ and the newly connected weather-aware
client has responded yes to the CTASGET NEWWTHR message...

(a) set the Weather Cycle status to
‘post-initializing’

(b) set the weather status of the newly
connected weather-aware client to
‘post-initializing’

(c) it should send a CTAS USENEWWTHR message
to the newly connected weather-aware
client.

TABLE I

Requirements from CTAS weather controller

Requirements of the form shown in Table I can be directly
modeled as LSC universal charts. The pre-condition (marked
in italics above) becomes the pre-chart, and the actions
(marked as (a), (b), (c) above) become the body chart of the
universal chart. A collection of such requirements becomes
a collection of LSC universal charts — readily yielding an
executable system model directly from requirements. The
above two requirements modeled using LSCs appear in Figure
5. In order to represent various weather-aware clients, the
lifeline corresponding to the weather-aware client has been
marked as a symbolic-instance of class ‘WAclient’. This would
allow any object of this class to execute this lifeline, if it
satisfies the the associated condition shown in the bubble:
‘connected = false’, i.e. client is not already connected to the
controller.

For modeling such requirements as IPC or TMSCs, a bit
more work is required. The TMSCs for the above given
requirements appear in Figure 6. Note that for requirement
2.8.5– in the case of LSCs the enabling condition for this
requirement appears in the pre-chart, whereas for TMSCs
we need to explicitly use process-algebraic operators(which
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are part of the TMSC language) to capture the enabling
conditions and model the control flow. Assuming that TMSCs
M1,M2,M3, and M4 model the requirements2.6.2, 2.8.3,
2.8.5, 2.8.8respectively, the complete TMSC specification
would beM1;M2;M3;M4, where operator ‘;’ represents the
asynchronous sequential composition. In case of IPC, roughly
speaking, the body charts in the LSC modeling of such
requirements become the MSCs appearing in the IPC model.
However, again the pre-charts (which can be directly lifted
from such requirements) need to be encoded indirectly. The
pre-charts basically convey which system phase can follow
which phase — a high-level global control flow information.
In the case of the IPC model, this is encoded via the intra-
process control flow as shown by the high-level Labeled
Transition Systems (LTSs) of the processes in the system.
The two requirements shown earlier, together with the related
part of CM’s Labeled Transition System appears in Figure 7.
Obtaining the LTSs for various process classes in this case
needs some additional effort.

C. Documents involving mixture of both

It is conceivable that certain requirements documents em-
ploy a mixture of system scenarios (as MSCs) and global
constraints on system behavior. Works on TMSCs [13] men-
tion the requirements for a medical device involving blood-
pressure measuring/pumping and presents this case as one
where TMSCs may come in handy.

For these cases the IPC model is also directly useful since
the system scenarios are encoded as MSCs appearing in the
high-level LTSs of the processes, and the global constraints
are encoded by the per-process control flow and the regular
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expression guards in MSCs. We modeled the example medical
device monitor of [13] in this manner. Currently, we are
trying to see whether this kind of modeling scales up to more
complicated requirements documents of this nature.

IV. T RACEABILITY OF MODELS TO REQUIREMENTS

We now step back to look at the bigger picture: the role
of MSC-based executable models in model-driven software
development.

A. How MSC-based models fit into software design flows?

Conventionally, model-driven software development starts
with the informal requirements from where a design model
is manually synthesized. From the design model, the code
is generated semi-automatically. Indeed, many UML-based
tools (such as Mastercraft from TRDDC and Rational Rose
from IBM) use the UML models as a guidance for code
generation; the code generation from UML is, by no means,
fully automated. However, the UML models can be used, along
with test specifications, for automated test case generation.
These test cases can be tried out on the semi-automatically
generated code in order to gain confidence in the correctness
of model-code translation. The overall software design flow is
summarized in Figure 8 (a). The broken arrows involve manual
or semi-automated steps, whereas a solid arrow denotes an
automated step.

As shown in Figure 8 (a), the test cases tried out on software
may need to be traced back to the informal requirements. This
is indeed an important issue in many safety-critical application
domains such as avionics. These domains requirecertification
of software, and for the purposes of the certification, the
software needs to be extensively tested. For example, the
highest level of certification for flight-control software — the
DO178-B level A from the Federal Aviation Administration
or FAA — requires a strict criterion for structural testing
of software called Modified Condition/Decision Coverage or
MC/DC criterion. However, even if some offending test cases
are found how does the development team discuss the intended
behavior of these cases with the software design team or
the requirements engineers? Currently, it is done in an ad-
hoc fashion involving an informal dialogue between design-
ers, developers and end-users. To enable more systematic
design/testing of model-driven software, it is important to
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trace test cases back to informal requirements. However,
the test cases are (automatically) derived from the design
models. Thus, if the design models are not tightly coupled
with the informal requirements, backwards traceability of tests
to requirements remains a hard problem.

In Figure 8 (b), we show an alternative design flow for
model-driven software development. In this flow, the code is
automatically generated from the UML design models. Indeed
this is the case in the Rhapsody tool from I-Logix where code
can be generated fully automatically from Statechart models.
Since both the code and the test cases are automatically
generated from the design models, it is therefore meaningless
in this situation to apply the test cases on the automatically
generated code. Indeed, in the design flow of Figure 8 (b), the
test generation and code generation are decoupled from each
other. In such a design flow, the test cases serve acompletely
different purpose — they are used to gain high confidence
in the model itself. Since the model is manually generated
from the requirements, we need to understand whether the
model faithfully captures the requirements. By automatically
generating test-cases from the models, and tracing these tests
back to the requirements — we can gain increased confidence
in the models.

In the preceding, we have discussed two different design
flows for model-driven software development. We observe that
in both of them it is important to trace test cases (generated
from models) to informal requirements. In other words, the
design models should support (a) automated test generation,
(b) traceability of generated tests to requirements and (c) at
least semi-automatic code generation. Existing UML tools
describe of the behavior of any class of active objects via
a State Diagram; the relationship across classes is captured
by a class diagram. For such a design model, automated test
generation is easy — it proceeds by automated exploration
of the State diagrams. However, as discussed earlier, it is
difficult to synthesize the State Diagram models from the
informal requirements (which are often inter-process in nature
being described via MSCs). Conventional MSC-based system
models such as MSC-graphs or HMSCs suffer from the
reverse problem — they can be easily synthesized from the
requirements, but since they are not executable in nature it may
be difficult to synthesize tests which can be directly executed
on the software.

We believe that hybrid design models (like the IPC model)
offer a compromise —

• Since they are executable, we can use them for automated
test generation. The test generation algorithms of course
need to be modified.

• Since MSCs are the building blocks of these models,
they are closely tied to the requirements. In particular,
the MSCs in the system model can be (fragments of )
MSCs appearing in the requirements document so that
test cases generated from the models can be easily traced
back to the requirements.

B. Test generation and traceability

We now outline an MSC-based approach to model-based
test generation and traceability. The aim is not to provide one
crisp solution, but rather highlight the issues that may arise in
such an approach.

Modeling Language:First, we seek to outline the criteria
that the system modeling language should satisfy. We feel that
the system model should be amenable to symbolic execution
— both in terms of symbolically representing data values
as well as process states (when there are many behaviorally
similar processes in the system). Why is symbolic execution
important for model-based testing? We note that model-based
testing typically proceeds by state-space exploration and hence
lossless symbolic representations of the state transition graph
are of immense importance. Moreover, such symbolic state
space representation can enable grouping of similar test cases
into a “symbolic” test case which is also very useful to the
designer. In particular, symbolic execution ofprocess classes
seem to be important for model-based testing of distributed
control systems. In such systems, a process class may capture
a large number of objects of similar behavior; thus, the same
state machine may be used to capture the behavior of many
objects which are grouped into a class (such as thephone
andswitch classes in a telecommunication protocol).

The second issue concerns the granularity of the transitions
for the system model that will be generated from the modeling
language of choice. For MSC-based languages, there can be
at least two choices.

• a transition corresponds to a single event — like a
message send/receive.



• a transition corresponds to an entire Message Sequence
Chart (MSC).

The second choice allows us to neatly define system execution
traces as sequence of MSCs. This is the choice we have taken
in our work, but more discussion is needed on this front. In
our experiments on model-based testing, we have worked with
the Interacting Process Classes (IPC) model. This is primarily
because (a) we have been working with this model for number
of years, (b) the IPC model provides symbolic execution
semantics, and (c) the IPC model describes a transition as
an MSC (rather than an event).

Test Specification and Coverage Criteria:The test criteria
for model-based testing can be one of achieving coverage
or to meet a test specification. For model-based testing, we
feel that new notions of model coverage should be developed
instead of re-using existing notions of code-coverage (which
were originally developed for sequential programs). Thus, if
we have a state-based specification where the behavior of each
class is given by a state diagram, simply achieving coverage of
all the local states in the state machines of the different classes
does notsuffice. The notion of test coverage needs to capture
the interactions across state machines of different classes.

In the context of MSC-based models, this problem seems
to have a natural solution. Consider an IPC system model
where each class is described by a labeled transition system
(LTS) and the action labels of the LTS correspond to MSCs.
Since the MSCs form the units of execution for the entire
system specification (which is given by a set of communicating
LTSs), our test coverage can simply require the test cases to
include all the MSCs appearing in the system specification.
More discussion is needed on alternate notions of coverage in
the context of model-based test generation.

Apart from test coverage, we also need to study how test
specifications can be described. Again, in the context of MSC
based models, we can have the test specification as a sequence
of MSCs (all of which appear in the system specification).
The user gives a sequence of MSCsτ1τ2 · · · τn as the test
specification. At this level of abstraction it is much more
intuitive and easier for the user to design test specifications
corresponding to varioususe casescenarios. The test-case
generation procedure aims at producing one or more test
sequences of the form

τ1
1 · · · τ i1

1 τ1τ
1
2 · · · τ i2

2 τ2 · · · τ in
n τn

This can be viewed as finding a witness trace satisfying the
Linear-time Temporal Logic (LTL) property

F(τ1 ∧ F(τ2 ∧ (. . . (Fτn) . . .)))

We will always generate only finite witness traces (i.e., a finite
sequence of transactions) such that any infinite trace obtained
by extending our finite witness trace will satisfy the above-
mentioned LTL property.

Experiments:We now present some initial experiments
on test case generation from MSC based system models. The
examples used are standard reactive control systems from

different application domains like avionics and rail-network
control. For our initial experiments, we modeled a simple
telephone switch drawn from [14]. Next we modeled the rail-
car system whose behavioral requirements have been specified
using Statecharts in [8] and using Live Sequence Charts in
[2]. We have also modeled the requirement specification of
two other systems - one drawn from the rail transportation
domain and the other being a weather controller which is
part of an air traffic control system (seehttp://scesm04.
upb.de/case-studies.html for more details of these
examples). The example from rail transportation domain is a
railway shuttle system, where various shuttles bid for orders
to transport passengers between various stations on a railway-
interconnection network. The weather update controller [12] is
an important component of theCenter TRACON Automation
System (CTAS), automation tools developed by NASA to
manage high volume of arrival air traffic at large airports.

Examples # Classes # MSCs Max. # Local States in any class

Phone 6 16 8
Railcar 12 31 16
Shuttle 4 29 28
CTAS 3 21 20

TABLE II

MODELING SUMMARY

For our experiments, we made the following choices. We
chose IPC [6] as the modeling language. A test case speci-
fication is a sequence of MSCs appearing in the IPC model,
and it is met by any global execution (which is a sequence of
MSCs) containing the test case specification as a subsequence.
Detailed modeling of our examples in the IPC model can be
accessed from the web-site [11]. In Table II, we give some
statistics about the modeling of these examples.

We compared the size of test-suite and test generation
times with corresponding numbers where the test generation
is performed byconcretemodel execution (i.e., the state of
each active object is maintained separately). All experiments
were performed on a machine with 3GHz CPU and 1 GB of
memory. The results appear in Table III.The results serve as
a measure of the importance of symbolic execution for model-
based test generation.For each test specification, the state-
space of the models were explored (using both symbolic and
concrete execution semantics) inbreadth-first mannerup to a
given depth, and the total number of all possible witness-traces
corresponding to the given test specification were recorded
within that exploration tree. The time to generate the test cases
is much lower in symbolic execution as compared to concrete
execution. More importantly, using symbolic execution we can
group together many behaviorally similar tests into a single
test case. For example in the first test specification of the Tele-
phone Network example (see Table III), 560 concrete test cases
are grouped into 70 symbolic tests. Note that the number of
concrete tests in Table III is not always an exact multiple of the
number of symbolic tests. This is because different symbolic
tests may be blown up into different number of concrete tests.



Example Test Exploration # Witnesses Exec. Times(sec)
spec. # Depth S C S C

Telephone 1 5 70 560 1 28
Network 2 8 12 80 7 138

(5 phones) 3 9 12 80 17 212
RailCar 1 18 6 — 380 > 10 min.
(6 cars, 2 15 32 — 19 > 10 min.

3 terminals) 3 15 62 — 19 > 10 min.
Automated 1 15 5 11 0.7 15

Shuttle 2 15 9 18 0.72 15
(5 shuttles) 3 17 2 5 2 63

Weather 1 20 5 129 0.1 2.5
Controller 2 20 2 3 0.1 2.5
(10 clients) 3 25 3 7 0.15 12

TABLE III

COMPARING SYMBOLIC AND CONCRETE TEST GENERATION, S≡
SYMBOLIC , C≡ CONCRETE

Finally, we tried out our notion of MSC coverage for the IPC
modeling of the four example controllers mentioned in Table
III. Again, the MSC coverage was conducted for symbolic
execution of the model.If we try to achieve MSC coverage by
concrete execution, the test-suite construction does not even
terminate in reasonable time for most examples even with
variations of the search strategy.Using symbolic execution
of the IPC model, coverage was achieved within 20 seconds
for all the examples (on a machine with 3GHz CPU and 1
GB of memory). The test-suite sizes thereby produced ranged
from 10 to 700.

Tracing back to requirements:We found that require-
ments which are given in a declarative form (i.e., as a set
of temporal constraints restricting order of events) can be
relatively directly mapped to MSCs. This is the case for
the CTAS weather controller [12] from NASA. Here, the
individual requirement rules directly convert to LSC universal
charts or to MSCs appearing in an IPC system model. Now
note that our tests are sequences of MSCs, where the MSCs
appearing in the tests are drawn from the system model. Since
the MSCs in the system model directly map to requirement
rules, this makes the task of mapping back tests (generated
from models) to informal requirements easier. On the other
hand, in many cases informal requirements are given in a more
operational manner. The requirements may contain MSCs
giving overall system scenarios involving several processes;
moreover, the high-level behavior of each process may be
given by a state machine. An example of such requirements
is the MOST protocol from automotive domain [10] described
earlier. In this case, the MSCs in the requirements document do
not directly correspond to the MSCs in the executable system
model. So, when we have a test case (i.e., a sequence of MSCs
taken from the system model), it may involve several MSCs
in the requirements document. Clearly, this can occur when
the requirements engineer had not envisioned “improbable”
test cases (not captured as system scenario MSCs in the
informal requirements, but found by exploration of the formal
models). Tracing tests back to requirements is difficult in such
situations. This remains an topic of our future work.

Overall Summary:In summary, our proposal for model-
based test generation/traceability is as follows.

• System Model: An executable MSC based modeling lan-
guage which helps us link requirements to formal models.

• Test specification: A sequence of MSCsτ1, . . . , τn where
for all i, τi is an MSC appearing in the system model.

• Test case:A sequence of MSCs from system model.
• Meeting a Test specification:Any test case which contains

the test specification as a subsequence.
• Achieving Test Coverage:A set of test cases (test-suite)

which contains all MSCs appearing in the system model.

V. D ISCUSSION

In this paper, we have studied three different scenario-based
system modeling languages — Live Sequence Charts (LSCs),
Triggered Message Sequence Charts (TMSCs) and Interacting
Process Classes (IPC). Specifically, we have looked at the
issue ofsynthesizing formal modelsin these languages from
informal specification documents. We have also studied the
issue of generating test cases from these models and tracing
these tests back to the informal requirements.

Scenario-based modeling languages are important in the
context of UML-based system modeling. Traceability of test
cases derived from such models is an exciting research topic
of practical value. Different ways of modeling and analyzing
timing constraints in such scenario-based modeling languages
is another exciting research direction worth pursuing.
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