
Expressing and Checking Intended Changes via
Software Change Contracts

Jooyong Yi, Dawei Qi, Shin Hwei Tan, Abhik Roychoudhury
School of Computing, National University of Singapore, Singapore

{jooyong,dawei,shinhwei,abhik}@comp.nus.edu.sg

ABSTRACT
Software errors often originate from incorrect changes, including
incorrect program fixes, incorrect feature updates and so on. Cap-
turing the intended program behavior explicitly via contracts is thus
an attractive proposition. In our recent work, we had espoused the
notion of “change contracts” to express the intended program be-
havior changes across program versions. Change contracts differ
from program contracts in that they do not require the programmer
to describe the intended behavior of program features which are
unchanged across program versions. In this work, we present the
formal semantics of our change contract language built on top of
the Java Modeling Language (JML). Our change contract language
can describe behavioral as well as structural changes. We evalu-
ate the expressivity of the change contract language via a survey
given to final year undergraduate students. The survey results en-
able us to understand the usability of our change contract language
for purposes of writing contracts, comprehending written contracts,
and modifying programs according to given change contracts. Fi-
nally, we discuss the tool support developed for our change contract
language. The tool support enables (i) test generation to witness
contract violation, as well as (ii) automated repair of certain tests
which are broken due to program changes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract; D.3.1 [Programming Languages]: For-
mal Definitions and Theory—Semantics, Syntax

General Terms
Experimentation, Languages, Reliability

Keywords
Software changes, Dynamic checking, Test generation, Test repair

1. INTRODUCTION
Programmers often toil for hours or even days to find the root-

cause of a single pernicious “bug” or observed error. What makes
debugging so difficult? The difficulty in debugging primarily comes
from the lack of capture of intended program behavior. Whenever

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

a test case fails, it is due to an “unexpected” observable event —
an unexpected output, or a program crash. Yet, what is “expected”
from the program is hardly ever formally captured.

Program contracts, or Design by Contract programming [3,4,14]
provide an alternative in this regard since they recommend writing
contracts to express intended program behavior. Contracts may ap-
pear in the form of pre- and post-condition of methods, as well as
invariant properties whose correctness is preserved by the method
execution. However, this puts the task of writing contracts squarely
on the programmer. This typically leads to lack of widespread
adoption of program contracts by programmers [18].

In our recent short paper [21], we have espoused the notion of
“change contracts” where the intended behavior of program changes
are expressed in a customized change contract language. Change
contracts focus only on the program changes and their intended
semantic effect. We believe this eases the task of writing contracts
for several reasons. First of all, program behavior that is unchanged
across versions does not need to be captured. Secondly, while con-
tracts describing the intended behavior of a program typically cap-
ture the intended input-output relationship in a program, change
contracts also retain the flexibility of describing the output-output
relationship across program versions. Thus, it can describe proper-
ties like

whenever in > 0 holds, out′ == out+ 1

or even a property like

whenever out > 0 holds, out′ == out+ 1

where in denotes input, out′ denotes output of the updated pro-
gram version and out denotes output of the previous version. As we
show, such descriptions are likely to be more concise than a usual
program contract of the form whenever ϕ(in) holds, out′ == f(in)

where ϕ(in) is a constraint on the input, and the function appli-
cation f(in) captures the intended input-output relationship in the
changed program version. Both ϕ(in) and f(in) can often be fairly
complicated. The additional flexibility of relating the program out-
puts across program versions often leads to concise and intuitive
change contract specifications.

In this paper, we study the expressivity/usability of our change
contract language via a detailed user survey as well as by develop-
ing a change-contract based infra-structure to help locate failed/bro-
ken tests. The contributions in this paper are now stated in the fol-
lowing paragraphs.

Our change contract language is built on top of the Java Mod-
eling Language (JML) [4]. Unlike the conventional program con-
tract languages which typically provide pre/post condition of meth-
ods — we describe how the post-conditions of the same method in
two consecutive versions relate to each other, under certain pre-
conditions. Exceptional behavior, as well as structural changes

previous system S //
file changes

change contract

commit message

// updated system S′

(a) The overview of a change contract configuration

Bug 51668 - <junitreport> broken on JDK 7 when a SecurityManager is set
Fails with: "Use of the extension element ’redirect’ is not allowed when the se-
cure processing feature is set to true." It turns out to apply to any environment in
which there is a system security manager set. JDK 7’s TransformerFactoryImpl
constructor introduced:

i f (System.getSecurityManager() != null) {
_isSecureMode = true ; _isNotSecureProcessing = false ;

}
which conflicts with <redirect:write>.

(b) A sample Bugzilla report for software Ant

/ / f i l e : XMLResultAggregator. jml
package org.apache. tools .ant . taskdefs.optional . junit ;

public class XMLResultAggregator extends Task implements XMLConstants {
/∗@ changed_behavior

@ requires System.getSecurityManager() != null &&
@ System.getProperty(" java.runtime.version") . startsWith("1.7") &&
@ getDestinationFile () . exists () == false ;
@ when_signaled (BuildException e) e.getMessage() .contains(
@ "Use of the extension element ’ redirect ’ is not allowed " +
@ "when the secure processing feature is set to true . ") ;
@ signals (BuildException e) false ;
@ ensures getDestinationFile () . exists () ;
@∗/

public void execute() throws BuildException;
}

(c) A change contract corresponding to the bug report in (b)

/ / f i l e : SourceTypeBinding. jml
package org.eclipse . jdt . internal .compiler.lookup;

class SourceTypeBinding extends ReferenceBinding {
/∗@ changed_behavior

@ requires method.parameters. length > 0;
@ when_ensured method.parameterNonNullness[0] .booleanValue() ==>
@ isNonNull(method.sourceMethod() .arguments[0]) == false ;
@ ensures method.parameterNonNullness[0] .booleanValue() ==>
@ isNonNull(method.sourceMethod() .arguments[0]) == true ;
@∗/

public MethodBinding resolveTypesFor(MethodBinding method) ;

/∗@model boolean isNonNull(Argument arg) {
return (arg.binding. tagBits & TagBits.AnnotationNonNull) != 0; } @∗/

}
(d) A core-developer-level change contract

Figure 1: The overview and examples of change contracts

(such as introduction or removal of parameters/fields etc) and con-
ditional refactoring (i.e., refactoring under a certain condition) are
also supported. We present in § 3 our change contract language
along with its syntax and formal semantics.

To evaluate possible field usage of change contracts, we con-
ducted a survey of sixteen (16) final year undergraduate students in
a senior year course at the National University of Singapore. The
survey was administered as a mini-test with 20 questions lasting 60
minutes, accounting for 10% of grade in the course. The students
participating in the survey had no prior background of program
contracts or change contracts or JML. They were only provided one
tutorial on these topics in a single week’s lesson. The questions in
the survey involved comprehending/writing change contracts and
modifying code based on change contracts for small programs, as
well as fragments of real-life programs. The results from the survey
point to the possible ease of using our change contract language —
with an overall correct answer rate of 92% from the respondents, in
less than one hour for 20 questions.

Finally, we develop tool support to help find tests which lead to
violations of a given change contract. We modify Randoop [17] to
generate only tests that satisfy one of two necessary conditions for
change contract violation; the other condition is checked while run-
ning those generated tests. We also provide tool support for repair-
ing tests which are broken due to structural changes across program
versions. We present experimental evaluation results summarizing
the size of the change contracts, time to find the first test (if any),
and whether change contract violation (if any) is detected. All the
results are obtained from the well-known software project Ant. The
experiments point to the efficacy of our tool support for checking
violations of change contracts.

2. OVERVIEW
Figure 1(a) shows how change contracts are to be configured in

the history of a software system. Change contracts are to be main-
tained along with file changes and commit messages in a version
control system such as Git and Mercurial. While file changes rep-
resent actual code changes, change contracts capture the underlying
intended changes.

Figure 1(c) shows an example of a change contract for the ex-
ecute method of software Ant [1]. It almost looks like a typical
JML annotation except that it uses a couple of extra keywords such
as “changed_behavior” and “when_signaled”. While the meaning
of those keywords is described in § 3 in detail, changed_behavior
indicates that its following contents are for a change contract, not
for a program contract, and when_signaled is used to describe the
output condition of the previous version method while signals can
be used for the output condition of the updated version. While
when_signaled and signals are for abnormal termination that sig-
nals an exception, output conditions for normal termination can be
described with when_ensured and ensures. Meanwhile, to describe
the shared input condition of the previous/updated versions, a re-
quires clause is used.

Notice that a change contract is provided as a separate file, in-
stead of annotating the program files. The change contract in Fig-
ure 1(c) is the contents of a contract file XMLResultAggregator.jml,
and it describes behavioral changes between two consecutive ver-
sions of Java file XMLResultAggregator.java.

The change contract of Figure 1(c) is a counterpart of a verbal
description given in a bug report of Figure 1(b). This bug re-
port describes (i) an observed symptom (i.e., “Fails with: "Use
of the extension ...”) and (ii) necessary conditions to reproduce
that symptom (i.e., “broken on JDK 7 when a SecurityManager
is set”). A change contract expresses those descriptions program-
matically. In our example, the above symptom is described with
a when_signaled clause to specify that a behavior change is neces-
sary when a BuildException is signaled in the previous version along
with the error message described in that when_signaled clause.

Meanwhile, a requires clause is used to describe the necessary
condition to reproduce the symptom. Its predicate expresses, using
the standard methods of Java, the two conditions to reproduce the
symptom, (i) a SecurityManager is set and (ii) JDK version is 7.
In addition, it is also assumed that the destination XML file that
is supposed to be generated after a successful run of the execute
method (i.e., the target method of the above change contract) does
not yet exist.

Once a symptom and reproduction conditions are recognized,
one may wish to change the behavior in a specific way. In the
case of the above example, it is obvious that the same exception
should not be signaled in the updated version. Instead, (i) the ex-
ecute method should terminate normally and (ii) the destination
XML file should be successfully generated. Notice in the above
change contract that these two intentions are expressed with the
signals clause (by using false as a predicate) and ensures clause,
respectively.

While the level of the intentions expressed in our first change
contract example is close to the one of an end-user, lower level
intentions made by core developers of software can also be ex-
pressed in a change contract. Figure 1(d) shows such a low-level
change contract for the resolveTypesFor method of Eclipse JDT
(Java Development Tools) [11]. This change contract equivalent
to the JDT’s Bugzilla report number 388281 expresses the inten-
tion to fix the mismatch between method.parameterNonNullness[0]
(a boolean value) and method.sourceMethod().arguments[0] (a bit-
mask). The when_ensured clause of Figure 1(d) describes that the
bitmask was not properly set in the previous version; the following
ensures clause specifies that, in the updated version, the bitmask
should be properly set instead.

We use a model method, isNonNull, in Figure 1(d) to improve
the readability of a change contract. A model method is essentially
an extra specification-purpose method whose execution does not
alter the functional behavior of the program in a noticeable way. In
JML upon which our change contract language is based, a model
method is described between “/*@ model” and “@*/”. It is often
handy to define a model method and use it in a change contract as
a predicate.

One may argue that existing program contract languages such
as JML can already express the behavior described in the above
examples. Indeed, one can write JML specifications correspond-
ing to Figure 1(c) and Figure 1(d) without using change contract’s
when_signaled and when_ensured clauses. Instead, one can calcu-
late the weakest pre-condition (viz., input condition) under which
the observed symptom (viz., output condition) is bound to be re-
produced, and write in a contract input-output relationship instead
of writing output-output relationship of a change contract.

However, such specifications that solely rely on input-output re-
lationship are, in general, not as intuitive as our change contracts
for the following two reasons. First, while change contracts can
clearly show the symptoms observed in the previous version such
as throwing an exception, program contracts can hardly reveal those
symptoms. After all, program contracts do not distinguish the pre-
vious version form the updated version. Second, it is often the case
that output-output relationship is simpler and thus more compre-
hensible than its equivalent input-output relationship. For example,
in Figure 1(c), imagine calculating the weakest pre-condition that
induces at the method exit a BuildException along with the partic-
ular error message. Such a pre-condition can be quite long and
complex depending on how complex the method body is and how
specific the symptom is.

Our change contract can express not only behavioral changes but
also structural changes such as adding a new method parameter.
Such an example will be shown in §3.3.

3. CHANGE CONTRACT LANGUAGE
To express intended program changes, we extend a subset of

JML [4], the de facto lingua franca when giving checkable for-
mal specifications to Java programs. In fact, one of our goals in
designing a change contract language is to be as close to an exist-
ing popular specification language as possible to lower the learning

method-spec ::= spec-case-seq

spec-case-seq ::= spec-case [also spec-case]∗

spec-case ::= changed_behavior clause-seq

clause-seq ::= [clause]∗

clause ::= requires pred; | ensures pred; | signals pred;

| when_ensured pred; | when_signaled (reference-type [ident]) pred;

| when_required pred; | preserves_when pred;

exp ::= ... | \result | \old(exp) | \prev(exp)

param-modifier ::= ... | new_param | old_param

jml-modifier ::= ... | new_field | old_field

Figure 2: Change contract language as an extension to a JML
subset; standard regular expression notation ∗ is used.

barrier, and our syntactic extension to JML is very limited. How-
ever, JML or any other specification languages, to the best of our
knowledge, is not expressive enough to express program changes
across two consecutive versions, and this requires us to propose
non-trivial semantic extensions.

Notes on Expressivity. While the main objective of our change
contract language is to specify behavioral changes that occur be-
tween two consecutive versions of a method, it is also possible to
specify with this language accompanying structural changes such
as adding/deleting method parameters or fields. While our change
contract language captures the relationship among program vari-
able values at the input/output points of the previous/updated pro-
gram versions - it is not powerful enough to express temporal prop-
erties of changes in variable values, as in temporal logics. Lastly,
as in JML, we are concerned only with sequential Java programs,
and do not consider multi-threading.

A change contract is specified above the signature of a methodm
as an annotation between “/*@ changed_behavior” and “@*/”. We
call such a method m the target method of a given change contract.
We require that expressions used in a change contract, including
method calls, must be free of side effects and exceptions. Also,
their execution must terminate. A change contract is maintained as
a contract file (e.g., XXX.jml) separated from Java files.

3.1 Syntax
Figure 2 shows the syntax of our change contract language. The

keywords in bold face are extensions to the standard JML. A change
contract starts with the keyword “changed_behavior” followed by
clauses that describe the pre/post conditions of a common target
method of the previous/updated versions. To describe the pre-/post-
conditions of an updated version, we use the existing JML clauses:
a requires clause for a pre-condition and ensures/signals clauses
for post-conditions; ensures expresses the post-condition at normal
method termination (i.e., termination without throwing an excep-
tion), and signals the post-condition at abnormal method termina-
tion (i.e., termination with an exception thrown). Meanwhile, to de-
scribe the counterparts of the previous version, we introduce addi-
tional clauses: when_required, when_ensured, and when_signaled.
For simplicity, we often use a shorthand notation (ϕ,ψ, θ;ϕ′, ψ′, θ′)

to mean the following full change contract:

/∗@ changed_behavior
@ when_required ϕ ; when_ensured ψ ; when_signaled (T1 x) θ ;
@ requires ϕ′ ; ensures ψ′ ; signals (T2 x) θ′ ; @∗/

In the above, greek letters denote predicates, T1 and T2 represent
exception types (i.e., subtypes of java.lang.Exception), and two in-
stances of variable x are scoped to θ and θ′, respectively. Note that

not all clauses need to be present in a change contract. When a cer-
tain clause is omitted, a default predicate for that clause is used as
will be explained later.

A requires clause often is shared between the previous/updated
versions as a common pre-condition. A when_required clause is
used only when it is necessary to distinguish the pre-conditions be-
tween the previous version and the updated version. For example, if
the pre-condition of the updated version depends on a newly added
method parameter, then the same pre-condition cannot be used for
the previous version. In such a case, the pre-condition of the pre-
vious version can be separately expressed with a when_required
clause.

The keyword \prev constructs a “prev” expression that accesses
the previous-version value from an updated-version context. For
example, one can write “ensures x==\prev(x)+1;” to express the in-
tention that the value of x at the post-state of the updated version
should be greater by one than the value of x at the post-state of the
previous version. Readers familiar with JML could find the simi-
larity between \prev and the \old of JML. While \old makes a value
of a pre-state available at a post-state, \prev makes a value of the
previous version available at the updated version.

It is not unusual in some programs to modify a method signa-
ture or a field when changing (or preserving) the behavior of a
method. Our change contract language can handle common struc-
tural changes such as adding or deleting a method parameter or a
field by using the keywords new_param, old_param, new_field, and
old_field.

3.2 Semantics
3.2.1. Execution Model. It is convenient to conceptually assume
that two versions of a program are run in parallel when consid-
ering the semantics of a change contract between two versions of
a program. Recall that a change contract concerns currently only
sequential programs as JML does, and the introduced parallelism
is not intended to interfere with Java’s multi-threading. The over-
all semantic rule shown in Figure 3(b) clarifies such a parallel ex-
ecution model. Given two commands, c1 and c2, that represent
the method bodies of the previous and the updated versions re-
spectively, we assume that they are run in parallel as denoted with
c1 || c2.

Nonetheless, not all parallel executions c1 || c2 are interesting to
the users of a change contract. For example, given a change con-
tract, ensures \result==\prev(\result)+1, of a method m(int x), one
would expect the increase of the return value only when the same
integer value for parameter x is given to both versions. Roughly
speaking, input equality between the two versions needs to be as-
sumed when considering a change contract. However, naive input
equality is not enough for two reasons. First, the above parameter
x may not be of a primitive type but of a subtype of Object. If that
is the case, simple reference comparison is inappropriate. Second,
the method signatures of the two versions are not necessarily the
same. For example, a user may want to add a new parameter to a
method.

To address the first issue, we compare object graphs instead of
object references. Conventionally, two graphs are considered iso-
morphic if there is a unique one-to-one correspondence between
the vertexes and edges of the two graphs. If, in addition, all the
one-to-one corresponding vertexes that represent primitive values
of the two object graphs contain the same values, the two object
graphs are considered isomorphic. We extend this notion of iso-
morphism to the program state level. A program state consists of a
store σ and a heap h, and two program states, (σ1, h1) and (σ2, h2),
are considered isomorphic if for all variables x that commonly exist

c ∈ Cmd v ∈ Value
def
= Location ∪ . . .

σ ∈ Store
def
= Variable

fin→ Value

h ∈ Heap
def
= Location

fin→ (Field
fin→ Value)

(a) Semantic domains

(σ1, h1) ≈ (σ2, h2) h1⊥h2

〈c1, (σ1, h1)〉 ⇓c (σ′1, h
′
1) 〈c2, (σ2, h2)〉 ⇓c (σ′2, h

′
2)

〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h
′
1, σ
′
2, h
′
2)

(b) An overall semantic rule that describes our parallel execution
model; for explanation, refer to §3.2.1.

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h′1, σ′2, h′2) 〈E, (σ′1, h′1)〉⇓e v
ensures ` 〈\prev(E), σ′1, h

′
1, σ
′
2, h
′
2〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h′1, σ′2, h′2) 〈E, (σ1, h1)〉⇓e v
requires ` 〈\prev(E), σ′1, h

′
1, σ
′
2, h
′
2〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h′1, σ′2, h′2) 〈E, (σ2, h2)〉⇓e v
ensures ` 〈\old(E), (σ′1, h

′
1, σ
′
2, h
′
2)〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h′1, σ′2, h′2) 〈E, (σ1, h1)〉⇓e v
ensures ` 〈\old(\prev(E)), (σ′1, h

′
1, σ
′
2, h
′
2)〉 ⇓e v

(c) Semantic rules for \prev(E) expressions; for explanation, refer to
§3.2.2.

〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h
′
1, σ
′
2, h
′
2)

(σ1, h1) ` ϕ (σ′1, h
′
1) ` ψ ∨ (σ′1, h

′
1) ` θ

(σ2, h2) ` ϕ′ (σ′2, h
′
2) ` ψ′ ∧ (σ′2, h

′
2) ` θ′

〈c1 || c2, (σ1, h1, σ2, h2)〉 ` (ϕ,ψ, θ;ϕ′, ψ′, θ′)

(d) An inference rule for a change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′); the sec-
ond and the third lines correspond to the update condition and the
change condition, respectively; for explanation, refer to §3.2.3.

Figure 3: Semantic rules for given two method bodies, c1 and
c2, of the previous and the updated version, respectively; ⇓e
and ⇓c represent reduction relations of big-step operational se-
mantics for expressions and commands, respectively.

in the domain of σ1 and σ2, the two object graphs that σ1(x) and
σ2(x) respectively refer to are isomorphic to each other. Note that
heaps, h1 and h2, are consulted if necessary when constructing ob-
ject graphs. Also note that, as usual, the receiver of an object (i.e.,
this) is considered an implicit parameter of a non-static method.

To address the second issue concerning structural changes, we
exclude during comparison of object graphs method parameters and
fields that are not in common between two versions. For example, if
a method parameter is added to an updated version, then that added
parameter is not compared between the two versions. Similarly,
fields that are newly added to the updated version or deleted from
the previous version do not contribute to the construction of object
graphs.

Overall, we say that two states are isomorphic modulo structural
changes if these two states are isomorphic when ignoring variables
and fields that are not in common between the two versions. We
denote such isomorphic states modulo structural changes with no-
tation (σ1, h1) ≈ (σ2, h2). Notice that our overall semantic rule in
Figure 3(b) has (σ1, h1) ≈ (σ2, h2) in its premise to force isomor-
phic inputs. For simplicity, we will simply say that two states are
isomorphic omitting “modulo structural changes”.

We impose one more restriction on our parallel semantics. Ex-
ecuting two versions of a method in parallel should not interfere
with each other. Recall that we use parallelism only for the pur-
pose of analyzing behavioral changes across versions. To guaran-
tee non-interference, we maintain a disjoint heap for each version
of a method. More precisely, the domains of the two heaps, h1 and
h2, are forced to be disjoint, and we denote such a constraint with
h1⊥h2 as shown in the premise of our overall semantic rule (i.e.,
Figure 3(b)).

Once two input states, (σ1, h1) and (σ2, h2), satisfy the isomor-
phism condition (i.e., (σ1, h1) ≈ (σ2, h2)) and the heap disjointness
condition (i.e., h1⊥h2), the two versions are run in parallel in an
obvious way without interfering with each other. As a result, we
obtain the reduction relation appearing in the conclusion part of
the rule: 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h

′
1, σ
′
2, h
′
2). Recall that

c1 and c2 amount to the method body of the previous and the up-
dated versions, respectively. Accordingly, input states (σ1, h1) and
(σ2, h2) amount to pre-states of the previous version and the up-
dated version, respectively, and output states (σ′1, h

′
1) and (σ′2, h

′
2),

the post-states of the previous and the updated versions, respec-
tively.

3.2.2. \prev Expression. Our prev expressions can be used in a
change contract to refer to the value of the previous version from
the context of the updated version. The value of \prev(E) is de-
cided depending on where this prev expression appears. If \prev(E)
appears in an ensures clause or a signals clause (i.e., the post-
condition of the updated version), E should be evaluated in the
post-state of the previous version (i.e., (σ′1, h

′
1)). Meanwhile, if

it appears in a requires clause (i.e., the pre-condition of the up-
dated version), E should be evaluated in the pre-state of the pre-
vious version (i.e., (σ1, h1)). Such a difference is captured in the
two topmost rules in Figure 3(c) where notations “ensures `” and
“requires `” designate the clause in which a prev expression ap-
pears. The cases for the signals clause are omitted because they
can be treated identically to the cases for the ensures clause.

Notice that a prev expression, regardless of where it appears,
makes a context switch from the updated version to the previous
version. Such a context switch over a program version made by a
prev expression is orthogonal to the old expression’s context switch
from a post-state to a pre-state.
3.2.3. Update Condition, Change Condition and Inference Rule.
Given a change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′) and two versions of a
program that satisfy 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h

′
1, σ
′
2, h
′
2),

we check if the given change contract is satisfied using the infer-
ence rule shown in Figure 3(d). We write 〈c1 || c2, (σ1, h1, σ2, h2)〉 `
(ϕ,ψ, θ;ϕ′, ψ′, θ′) in the conclusion part of the rule to mean that
change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′) is satisfied in the context of con-
figuration 〈c1 || c2, (σ1, h1, σ2, h2)〉.

In order for a change contract to be satisfied, the pre-condition of
the previous version must be satisfied beforehand at the pre-state of
the previous version. Such a condition is expressed in the premise
part of the rule as (σ1, h1) ` ϕ; we write (σ1, h1) ` ϕ if predicate
ϕ is satisfied at state (σ1, h1).

In addition, one of post-conditions of the previous version (recall
that there are two kinds of post-conditions depending on whether
the target method terminates normally or not) must also be satis-
fied at the post-state of the previous version. Such a condition is
denoted in the inference rule as (σ′1, h

′
1) ` ψ∨ (σ′1, h′1) ` θ. We say

that the update condition is satisfied if the above two conditions
hold true as described in the second line of the inference rule. If
the update condition holds, it means that a given input state (σ1, h1)

triggers in the previous version an execution whose behavior is in-
tended to be changed in the updated version.

Table 1: Rules to fill in omitted clauses with default predicates;
for explanation, refer to §3.2.4.

Omitted clause Context Default predicate

when_ensured
∃when_signaled false
6 ∃when_signaled true

when_signaled
∃when_ensured false
6 ∃when_ensured true

when_required
∃requires ϕ′ ϕ′

6 ∃requires true

requires always true

ensures always true

signals always true

Once the update condition holds, we next check another con-
dition we call the change condition to see if the behavior of the
execution of interest changes as intended. The change condition
is described in the third line of the inference rule. To see if the
change condition is satisfied, we check the following two condi-
tions. First, we check if the pre-condition of the updated version is
satisfied at the pre-state of the updated version (i.e., (σ2, h2) ` ϕ′
of the rule). Note that we can assume that (σ2, h2) is isomorphic
to (σ1, h1) because that is implied by 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c
(σ′1, h

′
1, σ
′
2, h
′
2) in the premise of the inference rule. Next, we check

all the post-conditions of the updated version are satisfied at the
post-state of the updated version (i.e., (σ′2, h′2) ` ψ′∧(σ′2, h′2) ` θ′).
We assume that prev expressions appearing in ψ′ or θ′ are replaced
with their values obtained using their semantic rules explained ear-
lier.

If both the update and the change conditions hold, we conclude
that a given change contract is satisfied under the given input states
of the two versions of a program. Meanwhile, we report a change-
contract violation only if the last condition of the inference rule
does not hold (i.e., ¬((σ′2, h′2) ` ψ′ ∧ (σ′2, h

′
2) ` θ′)) while the

preceding conditions hold.

3.2.4. Default Predicates for Omitted Clauses. We earlier men-
tioned that if a certain clause is omitted, then its default predicate is
used. For example, if there does not appear a when_ensured clause
in a change contract while there appears a when_signaled clause,
an omitted when_ensured clause is implicitly assigned false as its
default predicate because we are in this case interested only in ab-
normal termination of the previous-version method. Imagine a sit-
uation where one wants to deal with only an unexpected exception
(e.g., Figure 1(c)). What if there is neither a when_ensured nor
when_signaled clause in a change contract, and only an ensures
clause containing a prev expression appears as the following?

“ensures \result==\prev(\result)+1;”

If this is the case, we do not assign the same false predicate to the
omitted when_ensured clause because by doing so the \prev(\result)
expression cannot have any value. To address this problem, we
assign a default predicate differently depending on the context fol-
lowing the rules of Table 1. Most rules are straightforward. Let us
explain the case for when_required though. If there is no structural
changes, it is most likely that writers of a change contract would
want to assume the same pre-condition for the previous and the
updated versions. We accordingly assign the predicate of a given
requires clause to the omitted when_required clause.

public class DirectoryScanner implements FileScanner {
/∗@ changed_behavior

@ when_required true ;
@ requires !cs;
@ ensures \ result != null &&
@ \ result .equals(\old (\prev(findFileCaseInsensitive(base, path)))) ;
@ preserves_when cs; @∗/

File findFile (File base, String path, /∗@new_param@∗/ boolean cs) ;
}

Figure 4: DirectoryScanner.jml: a change contract involving
structural changes

3.3 Structural Changes
Consider an example of Figure 4 where a method findFile of the

previous version changes its signature by adding an boolean param-
eter cs (standing for “Case Sensitivity”) at the end. Such a method
signature change can also be accommodated into a change con-
tract; in this example, the new parameter cs is annotated with /*@
new_param @*/. Similarly, the parameter of the previous version
removed from the updated version, if any, is annotated with /*@
old_param @*/

When reading the method signature of a change contract, one can
get the signature of the previous version by including parameters
annotated with /*@ old_param @*/ and non-annotated parameters
while excluding parameters annotated with /*@ new_param @*/.
The signature of the updated version can also be obtained in the
opposite way. Notice that the order of the parameters and parameter
names are preserved in a change contract.

Similarly to parameter changes, field addition and removal are
annotated with /*@ new_field @*/ and /*@ old_field @*/ modifiers.
For example, if one wants to add a new private int-type field f to the
above DirectoryScanner class, then she can add the following in-
side the class declaration of DirectoryScanner of the DirectoryScan-
ner.jml file: “private /*@ new_field @*/ int f;”

As a side note, Figure 4 also shows an interesting combination
of \old and \prev expressions. Notice that in the ensures clause
expression \old(\prev(findFileCaseInsensitive(base, path))) is used.
Using that expression, a side-effect-free method findFileCaseInsen-
sitive can be executed in the context of the pre-state (due to \old) of
the previous version (due to \prev).

3.4 Refactoring
Structural changes are often accompanied by refactoring. Con-

sider the example of Figure 4 where method findFile takes an ad-
ditional boolean parameter cs to indicate the case-sensitiveness.
While the shown change contract describes that the result of find-
File should coincide with the result of findFileCaseInsensitive of the
previous version when cs is false, the expected behavior of findFile
when cs is true is not explicitly described with ensures or signals
clauses. While it is possible to do so, the example uses instead a
simpler clause “preserves_when cs;” to mean the output isomor-
phism, which is defined similarly to input isomorphism, between
the previous and updated versions. A preserves_when clause is to
describe the condition in which behaviors should be preserved.

3.5 Regression Bugs
While intended changes can be expressed and checked through a

change contract, it is also of interest to developers to check if there
is a regression bug. To find a regression bug, one can compare the
output states obtained when isomorphic inputs are given to the two
versions. If the update condition of a given change contract does
not hold, disequality between two output states indicates a regres-
sion bug. Without a change contract, it is difficult to distinguish
a regression bug from software progression even if disequality be-
tween two output states is found.

3.6 Change Contract Composition
In program verification, it is common to reuse the program con-

tracts of the callees (instead of the bodies of them) to verify the con-
tract of the caller. Such a compositional approach is difficult to be
applied to change contracts for the following two reasons. First, we
do not force the users to write change contracts for every method
that is changed. For instance, in our first change contract example
(i.e., Figure 1(c)), method execute’s callees that are changed across
versions do not have to be assigned change contracts. User’s inten-
tion about changes are expressed at the level of the execute method
without constraining the changes of lower level methods. Second,
even if there is a change contract of a callee available, the extent of
its usefulness is limited by innate partial information of a change
contract. A change contract itself does not show how the program
state should change if changes across versions are not intended at
that program state. In such a case, the method body of the previous
version might as well be looked up.

Meanwhile, multiple change contracts can be composed in a dif-
ferent way from the conventional composition of program con-
tracts. In the following, we compose (i) one change contract cc1
that expresses changes of method m between v1 (i.e., version 1)
and v2 and (ii) the other change contract cc2 of m for changes be-
tween v2 and v3.

m
cc1 //

cc1◦cc2

99m′
cc2 // m′′

In theory, one can synthesize a single change contract from a
series of change contracts by applying composition rules of change
contracts. Also, one can detect conflicts between two changes in
history through change contract composition. Two changes conflict
with each other if the change condition of the composed change
contract is false while its update condition is not. Such conflict
detection can be useful when developers unconsciously try to make
changes that are in conflict with previous changes. We do not have
a complete set of change contract composition rules yet, and leave
it as future work.

4. USER STUDY
To evaluate possible field usage of change contracts, we con-

ducted a survey of sixteen (16) final year undergraduate students in
a senior year course (formal verification of embedded software) at
the National University of Singapore in 2012.
4.1 Demographics

We asked seven (7) demographic questions. Almost all respon-
dents responded that they have experience in programming in Java
for certain projects. Only two respondents responded that they had
equivalent experience with another programming language, one with
C++ and the other with Python. Meanwhile, all respondents re-
sponded that they had used neither JML nor any other program
contract languages before. Overall, our participants can be consid-
ered equivalent to entry-level developers who have no background
of program specification.
4.2 Survey Questionnaire

Figure 5 shows two sample questions from our survey question-
naire that encompass diverse question types we describe in this sec-
tion. Each of our questions falls under primarily one of the follow-
ing three types of questions:

(i). Read-Modify (RM) type questions. In this type of questions,
we show a program and its change contract and then ask respon-
dents to modify the program in a way to reflect the given change
contract. This type of question measures how easy it is to compre-
hend change contracts.

Consider the following LazyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
. . .

}

This constructor raises a RuntimeException if method m (i.e., the first
formal parameter of the constructor) does not have its associated code for
its body when this method is expected to have a body. Otherwise, an
object should be created successfully. Remember that a Java method does
not have its body only when it is declared as either an abstract method or
a native method.
The problem of the above LazyMethodGen constructor is that a Run-

timeException is raised even when the given first parameter m represents
a native method. Such behavior of the constructor is buggy because a na-
tive method does not have to have body code. Thus, instead of raising a
RuntimeException, the constructor should create an object successfully.

Q. Based on the above description, write a change contract for the above
constructor.

(a) A question categorized as type W, AspectJ, and B

Consider the following program changes where the previous version at the top
is changed to the new version at the bottom according to the change contract
in the middle.

public class InterTypeMethodBinding extends MethodBinding { . . . }

private MethodBinding /∗@ new_field @∗/ postDispatchMethod;
/∗@ changed_behavior preserves_when !staticRef ;@∗/
public MethodBinding getAccessMethod(/∗@new_param@∗/ boolean staticRef) ;

public class InterTypeMethodBinding extends MethodBinding {
public MethodBinding getAccessMethod(boolean staticRef) {

i f (staticRef) return postDispatchMethod; else return ;
}

}

Q1. Explain in English what the above change contract means.
Q2. Also, fill in the blank of the new version.

(b) A question categorized as type RD (Q1), RM (Q2), AspectJ, and S

Figure 5: Survey question samples. W, RD and RM stand for Write, Read-Describe and Read-Modify, respectively. Also, B and S
stand for behavioral changes and structural changes, respectively. For more details, refer to § 4.2.

(ii). Read-Describe (RD) type questions. Here, we first show
a program and its change contract. We then ask respondents to
describe the change contract in plain English. This type of question
double-checks the comprehensibility of change contracts.

(iii). Write (W) type questions. In this type of questions, we ask
respondents to write a proper change contract that they think can
reflect a given verbal description of desired changes. This type of
question measures how easy it is to write change contracts.

We asked thirteen (13) questions in total (excluding seven demo-
graphic questions). We asked multiple questions for each type of
questions, i.e., 3 for the RM type, 5 for the RD type, and 5 for the
W type. All of these questions were constructed as open questions,
not as multiple-choice questions; respondents were asked, depend-
ing on the type of a question, to write down a change contract (e.g.,
Figure 5(a)), fill in a blank with a program statement or a program
expression (e.g., Q2 of Figure 5(b)), and write down a verbal de-
scription of a change contract (e.g., Q1 of Figure 5(b)).

Each of these thirteen questions shows a fragment of a subject
Java program. We used in total eight distinct Java program frag-
ments; some fragments were re-used for multiple questions.

About the two third of these program fragments (i.e., 5 frag-
ments) were carefully designed by us for this survey. Those frag-
ments include a buggy version of a singly linked list and its ex-
tension to a doubly linked list. To measure the effectiveness to
real-life programs, we also used three fragments of AspectJ that
changed over consecutive versions. We asked four questions using
these AspectJ fragments.

Recall that our change contract language can deal with not only
behavioral changes (B-type changes) but also structural changes
(S-type changes). We distributed both kinds of changes evenly
throughout the questions (i.e., 6 for B-type and 7 for S-type).

Our survey questionnaire can be downloaded at the following
website: http://www.comp.nus.edu.sg/~abhik/CC-survey/
SCC.htm. In addition, the responses of the participants and a sam-
ple answer can be downloaded from the same website.

4.3 Survey Administration
We offered a single tutorial session about change contract to the

survey participants before they took a mini-test two weeks later
(the education materials we used for this tutorial can also be down-

Table 2: Distribution of correct answer rates depending on the
criterion used to categorize questions.

Three Categorization Criteria

Question Type Program Source Change Kind

RM RD W Artificial AspectJ B S

100% 86% 93% 92% 92% 85% 97%

loaded from the aforementioned website). During the test, we mea-
sured the time each student spent filling in the questionnaire. To
encourage the students, we allocated 10% of credit points of the
course for this survey.

While grading the answers to the RD type questions, we occa-
sionally gave a half point when the answered verbal description
about a change contract is neither entirely correct nor entirely in-
correct. No partial points were given for the other types of ques-
tions.

4.4 Survey Results
Table 2 shows the results of our survey with the correct answer

rate for each type of questions. For the correct answer rate of ques-
tion type T , we use the following formula:

(the total sum of scores of the T type questions)
(the total number of the T type questions)× (the total number of students)

The correct answer rate is high throughout all categories, form-
ing the overall correct answer rate at 92% – calculated using the
formula, (the total sum of scores of all questions) / (13 × 16).
Meanwhile, the participants spent on average 53 minutes to answer
a total of 20 questions with the standard deviation being about 3
minutes. To answer each question, it took on average 2 minutes
and 40 seconds. Note that we did not inform the participants that
we were measuring the time.

Overall, our survey results indicate that the participants easily
learned and used change contracts. In our study, the correct an-
swer rate was not affected by whether a subject program is artifi-
cially made or extracted from a real-life program (i.e., AspectJ).
Also, structural changes were more easily handled than behavioral
changes were (97% vs 85%).

5. TOOL SUPPORT AND EVALUATION
Overview of Our Toolset. Figure 6 shows the workflow of our
change contract checker. We check change contracts at runtime.
We run a set of tests generated for the purpose of checking change
contracts, and monitor the executions of the two versions of a pro-
gram to see if there is any change contract violation. The two ver-
sions of a program are instrumented appropriately to support such
monitoring.

Instead of running the two versions of a program in parallel as
described in § 3.2, we run them in a sequential order, i.e., first the
previous version, and the next the updated version while collecting
information necessary to simulate the parallel-execution model of
our change-contract semantics.

Our dynamic checker requires proper tests that (i) execute the
target method and (ii) satisfy the update condition (see §3.2 for its
definition) of a given change contract. We call such a test that satis-
fies the above two conditions a relevant test. We provide a test gen-
erator in our toolset that can collect only relevant tests efficiently.
Recall that the update condition of a change contract involves only
the states of the previous version. Accordingly, our relevant-test
generator considers only the previous system while ignoring the
updated system.

Some of such tests generated based on the previous system may
fail to be compiled in the context of the updated system if struc-
tural changes such as adding a new method parameter are made to
the updated system. If this happens, those broken tests must be re-
paired. We, thus, provide a test repair tool in our toolset that can
repair those tests using the information in a change contract.

As compared to our previous work [21], test generator and re-
pairer are newly added. We also redeveloped our change-contract
checker so that not only program states but also any legal Java
expression values can be monitored. This makes it possible to
check not only “ensures field==\prev(field)+1;” but also “ensures
\result.equals(\old(\prev(findFileCaseInsensitive()));” where the value
of findFileCaseInsensitive() should be monitored.

We now elaborate each of the three components of our toolset
(i.e., dynamic change-contract checking, relevant-test generation,
and test repair), and then report the experimental results.

5.1 Change Contract Checking
To support dynamic checking of change contracts, we use our

custom compiler, an extension of OpenJML [16]. When we com-
pile a Java source file, say C.java, its corresponding change contract
file, C.jml, is also looked up. If that change contract exists, the re-
sulting class file C.class is instrumented with that change contract.
Recall that a change contract is satisfied if the previous and the
updated versions satisfy, respectively, the update condition and the
change condition of that change contract. Accordingly, we instru-
ment the previous and the updated versions differently. For exam-
ple, only at the previous version we need to store in the disk the
boolean value of the update condition of a given change contract.

To align isomorphic inputs between the two versions, the two in-
strumented systems, when encountered with the target method dur-
ing the run, convert input states (i.e., the states of parameters and
the receiver) into XML graphs using XStream [24]. Such XML
graphs can be viewed as object graphs, the data format we assumed
for input isomorphism in § 3.2. Those two XML graphs of the
previous and the updated versions are compared to check input iso-
morphism. We used XMLUnit [23] for this comparison.

In addition to input states, the values of \prev expressions are also
stored in the disk while running the instrumented system of the pre-
vious version. Afterwards, the instrumented system of the updated
version uses these pre-stored values to replace \prev expressions.

previous system

��

previous/updated systems

��
test

generator

relevant
tests // test

repair tool

repaired
tests // change contract

checker

��
change contracts

OO 33

pass/violation

Figure 6: The workflow of our change contract checking

5.2 Test Generation
We extended a popular random test generator, Randoop [17], to

collect only relevant tests. Note that whether a test is relevant is
decided at runtime while Randoop is generating tests. In our initial
experiment, it took too long (almost five minutes in some instance)
for Randoop to start generating relevant tests. We made a couple of
simple changes to Randoop to alleviate the problem.

First, our test generator selects the seed method with a 50%
chance from specified target methods unlike the original Randoop
that selects the seed method from all legal methods that are in the
scope of the tool. As target methods, we used either (i) the target
method m of a change contract if m is public or (ii) public callers
ofm ifm is not public. Such target-method specification can be au-
tomated with the help of static analysis. The reason for assigning a
50% chance to the target methods (as opposed to assigning 100%
chance) is that otherwise Randoop does not consider other method
calls that may be necessary for constituting a relevant test.

The second change we made to Randoop is to address the fol-
lowing problem we found in our initial experiments. It took partic-
ularly long for Randoop to generate relevant tests in a case where
the update condition of a change contract is satisfied only if void-
type methods are called to change the program state properly be-
fore the target method is called. For example, if a target method
is m2(int i), then the unmodified Randoop opts for generating a se-
quence that ends with “m2(var2);” preceded by a sequence of state-
ments that ends with a statement to assign a value to variable var2,
e.g., “var2=m1(var1);”. This statement is again preceded by another
statement to assign a value to var1. Such a style of Randoop’s se-
quence generation tends to exclude void-type-method calls in the
middle of a sequence.

To address the above issue, we intersperse a statement sequence
with random void-type-method calls. We also transform statements
like “var1.m1(); var2.m2();” into “var2.m1(); var2.m2();” to merge
the receivers. We let such a transformation take place with an 80%
chance in our experiments.

Note that generally there is no guarantee that executing a rele-
vant test in the updated system will execute the target method with
isomorphic input because only the previous version was considered
when constructing relevant tests. Obviously, by considering the up-
dated system as well, this problem can be avoided in exchange for
spending more time generating each test. We make a trade-off be-
tween the time cost and the effectiveness of generated tests.

5.3 Test Repair
Consider a change contract whose target method m has differ-

ent parameters in the updated version as shown in the following
change contract fragment: public void m(/*@ old_param @*/ int i,
/*@ new_param @*/ boolean b). Since only the previous system
is looked up when generating relevant tests, those tests fail to be
compiled in the updated system complaining about method signa-
ture mismatches. Our test repair tool repairs such broken tests using
a change contract.

Table 3: The experiment results for our toolset

Change Bug # Contract size Randoop Test generation Test repair Contract checking

Old New Core Extra Tfirst (s) Tfirst (s) # of tests/m # of errors # of fixes # of passes # of violations

0632cd b6c725 51668 4 0 290 5 17 0 0 17 0

c39b90 2f95b7 50515 2 10 0.4 0.4 1 0 0 0 0

32e664 f0e466 49271 4 4 62 9 4 0 0 4 0

a84f2e 1de96b 46172 3 0 32 0.9 58 0 0 6 0

cbda11 9a0689 N/A 2 0 > 300 0.2 252 0 0 0 250

dfa59d de3f32 N/A 5 4 > 300 1 79 0 0 0 79

5bee9d 1532f4 N/A 3 0 1 0.3 762 1239 1239 172 506

1de7b3 626f28c N/A 2 0 5 1 183 263 263 0 183

3a1518 aef2f7 N/A 3 0 0.3 0.2 1209 1832 1832 1209 0

f87075 d17d1f N/A 3 0 0.2 0.2 955 2 2 955 0

First, it is easy to deal with old parameters; they can simply be
removed. Meanwhile, new parameters should be assigned proper
values in repaired tests. Such values can be obtained from the re-
quires clauses of change contracts. In the above example, provided
that the change contract contains “requires !b;”, one can infer that
the value of the new parameter b should be false. In general, by us-
ing automated theorem provers, automatic inference of new param-
eter values should be possible in many practical cases. Currently, in
our tool, only the test transformation is automated while the values
for new parameters and new fields are given by a user.

5.4 Experiments and Evaluation
Table 3 shows the results of our experiments for our toolset con-

ducted on an Intel Core i5 CPU 650 (3.2GHz × 4) processor, 4GB
RAM, running Ubuntu 12.04 (32-bit) Linux. Our subject program
was Ant [1], a popular tool for building Java-based systems. We
chose Ant mainly because it is one of popular real-life open-source
programs, and also we had basic understanding of it. The second
reason is important because if one wants to write a change contract,
the intended change must be understood beforehand.
Three Sources of Change Contracts. We prepared change con-
tracts from three different sources. (I). First, to reflect user inten-
tions as faithfully as possible, we transformed bug reports to change
contracts as we did in the overview section (§ 2). In fact, the first
row of Table 3 corresponds to the example we used in § 2. No-
tice the same bug number (i.e., 51668) shown in the third column.
Meanwhile, the first and the second columns show the first six Git
snapshot IDs of the previous and the updated systems, respectively.
While the the first four rows of the table are collected by trans-
forming bug reports, they are only partially effective in testing our
toolset. Although relevant tests are successfully generated in all
four cases, those tests are either passed or abandoned (isomorphic
input is not found sometimes due to the limit of our tool; see §6.2)
without reporting a change contract violation. (II). To see the effi-
cacy of our toolset in detecting change-contract violations, we used
incorrect program changes of Ant found in our previous study [21].
These four defective cases are shown between 5th and 8th rows of
the table. (III). Lastly, to see the efficacy of our test repair tool,
we additionally collected two structural changes (method parame-
ter additions) from Ant. The two last rows of the table correspond
to these cases. Note that structural changes were also found in two
defective cases.

Contract Size. In each of all the ten cases, only one change con-
tract file is used and its size is shown under the “Contract size”
column of the table. The “Core” sub-column shows the number of
total clauses used in change contracts (e.g., the use of one requires
clause and one when_ensured clause are counted as two), and the
“Extra” sub-column the number of primitive statements used in op-
tional auxiliary model methods (see Figure 1(d) for the example of
a model method).

Results. To see the efficiency of our modified Randoop in gen-
erating relevant tests, we compare the time elapsed until the first
relevant test is found during test generation (we use the notation
Tfirst for this in the table) in the original and the modified Ran-
doop’s. Table 3 shows the Tfirst information in the unit of seconds
(the tenths place value is also shown when the time is less than 1
second) — the first Tfirst column for the original Randoop and the
next one for our modified Randoop. In all cases, our modified Ran-
doop generated the first relevant test 1–1500 times faster than the
original Randoop. In fact, in two cases, the original Randoop failed
to find a relevant test within 5 minutes.

When using Randoop, its Java method pool was mainly pro-
vided through Randoop’s “--classlist” option; the class for which
a change contract was given was used as the main source Randoop
can use to compose tests. In eight cases, we also provided one
or two idiomatic statements (e.g., creating Java’s SecurityManager
or a sequence of statements to execute an Ant script provided in a
Bugzilla report) as additional sources Randoop can use for test gen-
eration. We occasionally (in three cases) informed Randoop about
a constant to use in generating tests (e.g., a string appearing in a
change contract). We always used the same method/constant pools
for the original and our modified Randoop.

We let our test generator collect relevant tests for one minute (the
number of collected tests are shown under the “# of tests/m” col-
umn), and used those tests in checking change contracts. In all four
defective cases (i.e., the 5th to 8th rows), change contract viola-
tions were successfully detected as indicated with the last column.
Also, all the syntactically broken tests (i.e., the last four rows) were
successfully fixed.

Our tool could generate relevant tests successfully for all 10
cases of our experiment, and, by running those tests (after re-
pairing them if necessary), it detected change contract violations
in all 4 cases of incorrect actual program changes of Ant.

6. THREATS TO VALIDITY
In this section, we outline the threats to validity of our user study

and our experiment results.

6.1 User Study
As mentioned earlier, our survey was conducted with only one

group of students taking a particular course of a particular univer-
sity. We, however, also mentioned that our survey participants were
final-year undergraduate students majoring computer science who
can be considered entry-level developers.

Our survey fulfilled its purpose of gauging initial response to
our change contract language; our students easily learned and used
our change contract language. However, given the size of partic-
ipants, a larger-scale study is necessary to confirm our results. In
particular, more sophisticated study is required to see the validity
of several interesting initial observations such as higher correctness
rates in structural changes than in behavioral changes and little dif-
ference between the correctness rates for artificial programs and
real-life programs.

6.2 Experiments
Due to the randomness of Randoop, the numbers between 6th

and 12th columns of Table 3 can be varied each time an experiment
is performed although in our experience the gap was not significant.
In addition, those numbers are also affected by the limitation of our
tool. For example, we found that XMLUnit, a tool we used to check
the isomorphism between inputs, occasionally categorized isomor-
phic inputs as non-isomorphic due to the order-sensitiveness of the
tool in comparing object graphs. Lastly, our experiment results are
confined to a single subject Ant, and we need to conduct experi-
ments with more subjects to generalize the results we obtained to
other cases.

7. RELATED WORK
Design by Contract. Design by contract (DbC) [15] influenced
the design of many program-level specification languages such as
Eiffel [14], JML [4] and Spec# [3]. In DbC, each method has its
contract typically in the form of pre and post conditions. And the
contract in DbC roughly means the following two things. First, a
method has to guarantee its own post-condition whenever its pre-
condition is satisfied. Second, when a method is called, it is the
caller’s responsibility to guarantee the callee’s pre-condition. Such
a concept of a contract is different from the concept of a change
contract. With a change contract, we want to capture the intended
behavioral/structural changes between two program versions rather
than the behavioral contracts within a single program.

Program contracts are typically checked either by extended static
checking (ESC) [2, 7, 8] or runtime assertion checking (RAC) [6].
ESC checks program contracts at compile time. It first generates
verification conditions from program code and accompanying pro-
gram contracts. Afterwards, these verification conditions are dis-
charged via automated theorem provers. Meanwhile, RAC checks
program contracts at run time. It translates program contracts into
executable assertions and weave those assertions into the program
to obtain an instrumented program. Then, by running that instru-
mented program, violation of program contracts can be reported if
one of those assertions fails during the run.

The method we used to check change contracts is on the side
of RAC. While RAC is effective in reporting a contract violation
without false alarms, ESC is also attractive because it can cover
more error cases than RAC can without having to run a program.
In future, we plan to pursue ESC as well.

Regression Testing and Debugging. Regression errors constitute
an important class of errors. Traditionally, it has been interesting to
select and prioritize tests from a large test suite to expose regression
errors efficiently without having to test the entire test suite [5,9,22].
More recently, Jin et al. proposed a method that, given program
changes, automatically generates tests that stress those program
changes [12]. These tests are executed on both the previous and
the updated systems, and afterwards all the observed behavioral
differences between the two versions are analyzed and presented
to the user. Without a specification about intended changes, how-
ever, users have to manually go through all the reported differences
across program versions to validate those differences. We envision
that, by combining change contracts and regression testing, those
manual efforts can be significantly reduced.

Even if a regression error is found, one has to understand why
that regression error took place before fixing it. In this regard, there
have been efforts to debug regression errors [20, 25]. The lack of
formal specifications, however, has hampered extending those re-
search results beyond debugging regression errors. We believe that
change contracts can enable debugging other types of errors related
to software evolution, such as incorrect implementation of a new
feature and incorrect bug fixes.

Semantic Difference Summarization. While change contracts
capture intended behavioral/structural changes across program ver-
sions, there has been work to capture actual changes of program
behaviors (i.e., semantic differences) given two program versions.
Jackson and Ladd [10] suggested a tool that summarizes the com-
parison of the two sets of dependence relations between the input
and output of a C program procedure of the previous version and
the updated version, respectively. For example, if variable x de-
pends on only itself in the previous version whereas it depends
on another variable y in the updated version, one can guess that
program behavior around x would be different between those two
versions. More recently, Person et al. [19] exploited symbolic ex-
ecution to compare program behaviors of the two versions, and as
a result could provide more accurate functional input-output rela-
tions of each version than mere dependence relations. SymDiff [13]
can also do the same, but under the hood, it generates verification
conditions and passes them to an SMT solver.

We believe that comparing these two kinds of changes, i.e., (i)
actual program changes provided by the aforementioned tools and
(ii) intended program changes provided through change contracts
can help with debugging evolving programs.

8. DISCUSSION AND FUTURE WORK
In this paper, we have followed the thesis that program changes

can be easily expressed through change contracts. Writing such
change contracts is often easier and also more intuitive than writ-
ing program contracts not only because one can directly focus on
changes, but also because of the additional flexibility of change
contracts to express intended output-output relationship across pro-
gram versions as well as conventional input-output relationship.
Our user study also indicates positively that change contracts can
be easily learned and used by entry-level developers.

We have also presented that change contracts can be checked
through targeted test generation and runtime checking of instru-
mented programs. We also showed the possibility of using change
contracts for test repair which we plan to refine in the future.

9. ACKNOWLEDGEMENTS
This work was partially supported by Singapore Ministry of Ed-

ucation research grant MOE2010-T2-2-073.

10. REFERENCES
[1] Apache Ant. http://ant.apache.org/.
[2] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.

Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Proceedings of the 4th
International Symposium on Formal Methods for
Components and Objects, pages 364–387, 2006.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In Proceedings of the
2004 Workshop on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, pages 49–69,
2004.

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. STTT, 7(3):212–232, 2005.

[5] Y. Chen, D. Rosenblum, and K. Vo. Testtube: A system for
selective regression testing. In ICSE, pages 211–220, 1994.

[6] Y. Cheon and G. T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In Proceedings of the
2002 International Conference on Software Engineering
Research and Practice, pages 322–328, 2002.

[7] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and
JML. In Proceedings of the 2004 International Workshop on
Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, pages 108–128, 2004.

[8] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. In PLDI,
pages 234–245, 2002.

[9] R. Gupta, M. Harrold, and M. Soffa. An approach to
regression testing using slicing. In Proceedings of the 1992
Conference on Software Maintenance, pages 299–308, 1992.

[10] D. Jackson and D. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Proceedings of
the ’94 International Conference on Software Maintenance,
pages 243–252, 1994.

[11] Eclipse JDT. http://www.eclipse.org/jdt/.
[12] W. Jin, A. Orso, and T. Xie. Automated behavioral

regression testing. In Proceedings of 2010 International
Conference on Software Testing, Verification and Validation,
pages 137–146, 2010.

[13] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo.
SymDiff: A language-agnostic semantic diff tool for
imperative programs. In CAV, pages 712–717, 2012.

[14] B. Meyer. Eiffel: The language and environment. Prentice
hall press, 300, 1991.

[15] B. Meyer. Applying “Design by Contract”. IEEE Computer,
25:40–51, 1992.

[16] OpenJML. http://sourceforge.net/apps/trac/
jmlspecs/wiki/OpenJml.

[17] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for Java. In OOPSLA, pages 815–816, 2007.

[18] D. Parnas. Precise documentation: The key to better
software. In The Future of Software Engineering, pages
125–148. Springer, 2011.

[19] S. Person, M. Dwyer, S. Elbaum, and C. Pasareanu.
Differential symbolic execution. In FSE, pages 226–237,
2008.

[20] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
DARWIN: An approach for debugging evolving programs.
In ESEC-FSE, pages 33–42, 2009.

[21] D. Qi, J. Yi, and A. Roychoudhury. Software change
contracts. In FSE, pages 22:1–22:4, 2012.

[22] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing
test cases for regression testing. IEEE Transactions on
Software Engineering, 27(10):929–948, 2001.

[23] XMLUnit. http://xmlunit.sourceforge.net/.
[24] XStream. http://xstream.codehaus.org/.
[25] A. Zeller. Yesterday, my program worked. Today, it does not.

Why? In ESEC/FSE, pages 253–267, 1999.

