
Cache-Related Preemption Delay Analysis for FIFO Caches

Clément Ballabriga Lee Kee Chong Abhik Roychoudhury
National University of Singapore

{clementb,cleekee,abhik}@comp.nus.edu.sg

Abstract
Hard real-time systems are typically composed of multiple tasks,
subjected to timing constraints. To guarantee that these constraints
will be respected, the Worst-Case Response Time (WCRT) of each
task is needed. In the presence of systems supporting preemptible
tasks, we need to take into account the time lost due to task preemp-
tion. A major part of this delay is the Cache-Related Preemption
Delay (CRPD), which represents the penalties due to cache block
evictions by preempting tasks. Previous works on CRPD have fo-
cused on caches with Least Recently used (LRU) replacement pol-
icy. However, for many real-world processors such as ARM9 or
ARM11, the use of First-in-first-out (FIFO) cache replacement pol-
icy is common.

In this paper, we propose an approach to compute CRPD in the
presence of instruction caches with FIFO replacement policy. We
use the result of a FIFO instruction cache categorization analysis
to account for single-task cache misses, and we model as an Inte-
ger Linear Programming (ILP) system the additional preemption-
related cache misses. We study the effect of cache related timing
anomalies, our work is the first to deal with the effect of timing
anomalies in CRPD computation. We also present a WCRT com-
putation method that takes advantage of the fact that our computed
CRPD does not increase linearly with respect to the preemption
count. We evaluated our method by computing the CRPD with re-
alistic benchmarks (e.g. drone control application, robot controller
application), under various cache configuration parameters. The
experimentation shows that our method is able to compute tight
CRPD bound for benchmark tasks.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords CRPD, FIFO caches, WCRT, timing anomalies

1. Introduction
In real time systems, the execution time of a real time program
must bepredictableandconsistentto ensure reliability and safety
of the system. The Worst Case Execution Time (WCET) of a pro-
gram is a bound on the maximum execution time of the program
over all possible executions. WCET analysis is used to boundthe
WCET of a program to verify that all required timing constraints

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LCTES ’14, June 12–13, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2877-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2597809.2597814

are met. The micro-architecture on which the program executes is
a significant factor in WCET analysis, as a program can have dif-
ferent execution time depending on the underlying hardware. Thus,
the timing bound obtained from WCET analysis is significantly im-
proved by modeling the underlying micro-architecture components
such as caches, pipeline and branch predictor.

Conventionally WCET analysis assumes anuninterruptedse-
quential execution of the program being analyzed. However,in re-
ality many real time systems run in amulti-taskingenvironment,
in which different programs (or tasks) are scheduled to run con-
currently. For system withpre-emptive priority scheduling, a task
can be interrupted by another task which has a higher priority to
run. Therefore, it is impractical to assume that a program isalways
allowed to run uninterrupted. There could be an additional delay
imposed on a running task due to interruption by another task. This
delay is caused by changes to the micro-architectural states of the
system by the interrupting task. For example, the interrupting task
may replace some cache blocks in the caches. Caches are small
but fast memories, used to bridge the performance gap between a
processor and the main memory. Set-associative caches are divided
into fixed-sizesets. Each set can hold up toA different blocks from
the main memory (A is called the cache associativity level). When
a block needs to be added to a cache set that is already full , are-
placement policyis used to determine the evicted block. Caches are
at least an order of magnitude faster than the main memory, thus the
changes to cache content due to an interrupting task is a major fac-
tor in the delay caused by the interruption. This delay is known in
the literature asCache Related Preemption Delay(CRPD). CRPD
analysis techniques have been proposed to put a bound on CRPD.

In this paper we will concentrate on obtaining the bound on
CRPD for set-associative caches withFirst-In First-Out (FIFO)
replacement policy. Traditionally, CRPD analysis bounds the ad-
ditional cache misses introduced by preemptions through the fol-
lowing two factors: (i) number of cache blocks introduced bythe
preempting task (i.e. Evicting Cache Block or ECB), and (ii)num-
ber of cache blocks that may be reused by the preempted task after
preemption (i.e. Useful Cache Block or UCB). Existing work on
CRPD analysis focus on caches with Least Recently Used (LRU)
replacement policy. A study [4] shows that these factors cannot
safely bound CRPD cost for FIFO caches, due to the presence of
unbounded timing effectfor FIFO caches. A single evicted memory
block from cache due to preemption can cause unbounded number
of additional cache misses after the preemption. Thus, the concepts
of ECB and UCB cannot be used to safely bound CRPD cost for
FIFO caches. These concepts do not work for FIFO caches because
they try to bound the number of additional concrete cache misses.
Instead, our CRPD analysis relies on information from the under-
lying cache analysis for computing WCET. We utilizestatic phase
detection[7] technique to obtain the set of memory blocks that are
categorized asalways hitin the cache assuming no preemption. We
solve the maximum number of additional cache misses introduced
by thealways hitblocks as aninteger linear programming(ILP)

problem, given a bound on the total number of preemptions. Our
analysis is safe as we conservatively introduce miss penalty for all
memory blocks not classified asalways hit.

We also studied the possible effects oftiming anomalieson
CRPD analysis in general. Existing CRPD analysis techniques as-
sume an underlying micro-architecture model that is free from tim-
ing anomalies. However, such assumption may render the CRPD
analysis unsound, as the worst-case delay is underestimated. In
this work, we studied three types of timing anomalies exhibited by
out-of-order processors or FIFO caches [13]. We take these timing
anomalies into consideration in our CRPD analysis and show that
our analysis is safe in the presence of these timing anomalies. To
the best of our knowledge, ours is the first work on CRPD analysis
that explicitly handles architectures exhibiting timing anomalies.

We implemented our FIFO CRPD analysis in Chronos [11],
an open source WCET analysis tool. We have tested our analysis
method on several subject programs, and compare the resultswith
a state-of-the-art approach. The state-of-the-art approach to handle
CRPD analysis with FIFO instruction caches is by computing the
CRPD assuming LRU replacement policy, and bound the value for
FIFO policy using the concept ofrelative competitiveness[16].
Our experimental results show that, when compared to current
CRPD analysis technique for FIFO caches, we are able to compute
significantly tighter bound on CRPD cost for all subject programs.

2. Background
FIFO caches CPU caches are generally small in size and they
can be filled up with memory blocks rapidly and frequently. There
needs to be areplacement policyto decide the exact memory
blocks that should be discarded (i.e. replaced by newly inserted
memory blocks) when a cache set is full.First-In First-Outor FIFO
is one such replacement policies. FIFO caches are used in CPU
architectures such as ARM9 and ARM11.

In general, FIFO caches always replace a memory block that has
been in the cache set the longest, as shown in Figure 2 (this figure
assumes that all represented blocks are mapped to the same set).

Figure 2: Effect of a memory sequenceeaaon a cache set for FIFO
policy. First memory accesse causes a cache miss, and blocka
is evicted since it is the first memory block inserted in the cache
set. Similarly for the second memory accessa, blockb is replaced.
There is no change to the cache state when there is a cache hit (as
shown by the third memory access).

Timing anomalies In general, timing anomaly describes a counter-
intuitive observation, in which a local worst case timing behaviour
does not entail a global worst case timing behaviour. Certain micro-
architectural features exhibit timing anomalies. For example, a
cache hit can cause a higher execution time than a cache miss
in a processor with out-of-order execution [13]. This may affect the
soundness of WCET analysis that models the underlying hardware.

Work in [12] and [5] shows that FIFO caches exhibit timing
anomaly due tounbounded timing effect. With FIFO caches, if
some memory block access in a program results in a cache miss,
then the cache miss outcome will not necessarily lead to the maxi-
mal cache miss count for the overall program. An example is shown
in Figure 1. Let us consider that we have a 2-way FIFO instruction
cache. Here, the first access toc is a cache miss in the general case
(i.e. the initial cache state does not contain any block from the ex-
ample). In this case, the overall cache miss count is5. However, if
we alter the initial cache state to make sure that the first access toc
is a cache hit, the overall cache miss count is increased to6.

3. Methodology
In this section, we present our method for CRPD computation in
the presence of FIFO caches. Our method seeks to return a bound
on the number of additional cache misses for a taskT0, which is
preempted by another task up toMPC (Maximum Preemption
Count) times. We assume that the preempting task shares cache
sets withT0. The CRPD ofT0 is simply the maximum number of
additional cache misses (caused by preemption) multipliedby the
cache miss penalty. Our method uses concepts fromstatic phase
detection[7], which is an approach to statically categorize FIFO
instruction cache accesses without considering preemption. We
shall briefly describe static phase detection, then we shallexplain
how our analysis can use the information produced by static phase
detection to compute CRPD.

3.1 Static phase detection

Static phase detectionis a method to statically categorize each
instruction asalways hit, always miss, or not classified, in the
presence of an instruction cache with FIFO replacement policy. The
analysis works by detectingphasesin instruction cache accesses.

Let B be a set of memory blocks that are mapped to the same
cache set, and let|B| be the number of pairwise different blocks
in B. A B-phaseis an access sequence such that(i) |B| ≤ A (A
being the cache associativity) and(ii) all blocks inB and only the
blocks fromB are accessed (i.e.a block can be accessed more than
once in the phase, as long as all blocks fromB are accessed). After
exactly|B| B-phases, it is guaranteed that all the blocks fromB are
loaded in the cache. Therefore, subsequent accesses to blocks inB
are guaranteed to be cache hits.

This allows us to categorize some instructions in a program as
always hit, if those instructions will always be cache hits during
runtime. LetI be an instruction in the program. For all paths in the
control flow graph (CFG) leading toI , if the cache accesses im-
mediately precedingI can be partitioned into|B| B-phaseswhere
B containsI ’s cache block, thenI is classified asalways hit. Con-
versely, if there exists a path leading toI that cannot be partitioned
into |B| B-phaseswhereB containsI ’s cache block, then execu-
tion along this path can lead to a cache miss whenI ’s cache block
is accessed. In this case,I is categorized asnot classified.

3.2 Phase content

Static phase detection does not consider the effect of task preemp-
tion. Any instruction that is classified asalways hitby static phase
detection may cause cache misses in case of preemption. The goal
of our analysis is to bound the number of cache misses occurring
in always hitinstructions due to preemption. We do not take into
account cache misses occurring in instructions classified as always
missor not classifiedunder the assumption that those cache misses
will already be taken into account in the computation of WCET.

Since analways hit instruction has, on all incoming paths, an
access sequence that can be partitioned into|B| B-phases, cache
misses can occur if a preemption disrupt these access sequences.
Thus, the first step of our analysis is to compute thephase content
for all always hitinstructions.

DEFINITION 3.1. (Phase content). The phase content of an in-
structionI , denoted asPC(I), is the minimal set of instructions
such that for any pathp from the program entry point toI , there
exists a sub-pathp′ leading toI that contains only instructions
from PC(I), and whose access sequence can be partitioned into
|B| B-phases whereB containsI ’s cache block.

If a preemption occurs at any instruction inPC(I), the preemp-
tion may disrupt the access sequence leading to instructionI in a
way that causes cache misses forI . An example is shown in Fig-
ure 3. We consider a FIFO cache with an associativity of2. In the

Figure 1: FIFO cache timing anomaly example. For the memory access sequence at the bottom, the entry cache state causes a cache hit for
the first access toc, but this causes the overall cache miss count to be greater than the memory access sequence on top.

Figure 3: Phase contents and equivalence classes

figure, the nodes of the CFG arel-blocks. An l-block is a maximal
sequence of instructions such that each instruction is in the same
basic block, and mapped to the same cache block. As with basic
blocks, it is possible to connectl-blocksusing edges to represent the
control flow. Eachl-block in the figure is labeled withx(y), where
x refers to the node number andy refers to the mapped cache block
set.l-blocks5 and6 are classified asalways hit, because they are
executed after two phases containing cache blocks[a, b]. The figure
shows the phase contents forl-blocks5 and6. If a preemption oc-
curs in the code delimited byPC(5) (resp.PC(6)), an additional
cache miss may occur inl-block5 (resp.l-block6).

3.3 Equivalence classes

Let us definePC−1 as follows:

I ′ ∈ PC−1(I)⇔ I ∈ PC(I ′)

In other words, if a preemption occurs at instructionI , it may cause
additional misses for instructions in the setPC−1(I). Let us define
the equivalence relation∼, as follows:

I ∼ I ′ ⇔ PC−1(I) = PC−1(I ′)

LetSI be the set of all instructions in a program, and let(SI/ ∼) =
{EC1, ..., ECN} be the set ofN equivalence classes defined by
the equivalence relation∼. We also definePC−1(ECk) as the
result of applyingPC−1() function to any instruction inECk.

To bound the maximum number of additional cache misses due
to preemption, we first need to bound, for each equivalence class
ECk ∈ (SI/ ∼), the number of preemptions occurring inside it
(i.e. occurring at an instruction in that equivalence class). We only
need to bound the preemption count for each equivalence class, and
not for each individual instruction. This is based on the observation
that if two instructionsI1 andI2 are in the same equivalence class
EC1, thenPC−1(EC1) = PC−1(I1) = PC−1(I2). This means
that a preemption occurring at eitherI1 or I2 will have the same ef-
fect on the additional cache misses. Then, the bound for additional
cache misses of eachalways hitinstruction can be expressed as a
function of the preemption count for each equivalence class.

Figure 3 shows the partitioning of the CFG according to
the equivalence classes. In this example, the equivalence classes
{EC1, EC2, EC3} are computed based on the phase contents for
l-blocks5 and6 only. A preemption occurring inEC1 (resp.EC3)
may add one cache miss forl-block 5 (respl-block 6), and a pre-
emption occurring inEC2 may add one cache miss for bothl-
blocks5 and6.

3.4 ILP formulation

We bound the additional cache miss count using an ILP system.We
make use of the ILP system computed by the main WCET analysis
(containing, for example, the structural constraints derived from the
program CFG), and we add additional CRPD-related constraints to
it. We first describe how to bound the preemption count for each
equivalence class, and then we show how to express the boundson
the number of cache misses for eachalways hitinstruction.

For each equivalence classECk ∈ (SI/ ∼), an ILP variable
eck is created. This variable represents the number of times a
preemption occurs at an instruction contained in the equivalence
classECk. Theeck variables are bounded as follows:

∑

k∈[1;n]

eck ≤ MPC

MPC is the maximum preemption count of the preempting task.
MPC is a parameter of the analysis, and is considered a constant
from the point of view of the ILP system.

For eachalways hitinstructionIk, an ILP variablexpmk is cre-
ated to represent the number of cache misses (due to preemption)
for Ik. xpmk is created only if the cache set containingIk is also
used by the preempting task (otherwise the preempting task can-
not evict the cache block containingIk). InstructionIk may cause
cache miss only if a preemption occurs at an instruction froman
equivalence classECk such thatIk ∈ PC−1(ECk). Thus, the
number of cache misses forIk can be bounded using the bounds on
the maximum preemption count in each equivalence class:

xpmk ≤
∑

∀j/Ik∈PC−1(ECj)

ecj

Eachxpmk variable must also be bounded by the execution count
of the basic block containingIk. This can be achieved by the
constraintxpmk ≤ xk, wherexk represents the execution count
of the basic block. We assume thatxk already exists in the ILP
system computed by the main WCET analysis.

Finally, the maximum number of additional cache misses due to
preemption is found by solving the following objective function:

maximize
∑

∀k/Ik∈SI

xpmk

We will show a simple example using the CFG in Figure 3.
The additional cache misses due to preemption forl-blocks5 and
6 are represented by ILP variablesxpm5 andxpm6 respectively.
Equivalence classesec1 andec2 contribute additional cache misses
for l-block 5, while equivalence classesec2 and ec3 contribute
additional cache misses forl-block 6. The total preemption count
in all equivalence classes is bounded by the maximum preemption
count,MPC (set to1 in this case). Thus, we have the following
ILP constraints :

xpm5 ≤ ec1 + ec2

xpm6 ≤ ec2 + ec3

ec1 + ec2 + ec3 ≤ 1

Maximizing the number of additional cache misses (xpm5 +
xpm6) with an ILP solver yields the following result:

ec1 = 0, ec2 = 1, ec3 = 0, xpm5 = 1, xpm6 = 1

It shows that the preemption should occur in equivalence classEC2

to cause maximum additional cache miss count (two additional
misses; one forl-block5 and one forl-block6).

3.5 Computing the WCRT

In this section, we will show how to get the Worst-Case Response
Time (WCRT) of a task, based on our CRPD computation method.
We assume afixed-priority preemptive schedulingof a set of pe-
riodic tasks with possibility of nested preemptions. The ILP sys-
tem constructed in section 3.4 can be used to compute the CRPD
between two tasks for any number of preemptions, based on the
MPC parameter. Let us define:

crpd(Ti, Tj , n) = addmiss(Ti, Tj , n) × penalty

crpd(Ti, Tj , n) is the estimated CRPD when taskTj preempts task
Ti for n preemptions (then parameter is optional, and defaults to
1 if omitted). addmiss(Ti, Tj , n) is the bound on the additional
cache misses forn preemptions ofTi by Tj (as computed using
the ILP system, while settingMPC to n). penalty bounds the
increase in execution time when a cache miss occurs.

Traditionally, CRPD is computed for one preemption, and then
this result is multiplied with the preemption count in the WCRT
computation formula. However, that may be pessimistic, since al-
though we haven × crpd(Ti, Tj) ≥ crpd(Ti, Tj , n), in the gen-
eral case we do not haven × crpd(Ti, Tj) = crpd(Ti, Tj , n).
This is because there is a finite number of program points where a
preemption can cause a large number of cache misses. Once these
program points are taken by preemptions, additional preemptions
cannot contribute as much to the CRPD.

In this paper, we discuss on the WCRT computation of a task
using two approaches -Fixed CRPD approachand Iterative ap-
proach. In the former approach, we will have to run the CRPD
computation only once (for one preemption). In the latter approach,
we have to iteratively re-compute the CRPD each time the maxi-
mum preemption count is updated, during the fixed-point calcula-
tion. Each approach has its advantages and drawbacks, as discussed
in the next subsections.

3.5.1 Fixed CRPD approach

In this approach, we compute the CRPD for one preemption, and
use the result as it is done traditionally to compute the WCRT. The
following equation computes the WCRT of taskTi,WCRTTi until
a fixed-point is reached:

WCRTTi = WCETTi

+
∑

∀j∈hp(i)

⌈

WCRTTi

PERIODTj

⌉

(WCETTj + γTi,Tj) (1)

In Equation (1),WCETTi is the computed WCET of taskTi.
⌈

WCRTTi

PERIODTj

⌉

bounds the number of preemptions by taskTj on

taskTi, wherePERIODTj is the period of taskTj . hp(i) con-
tains the set of tasks with higher priority than taskTi. Without
considering nested preemption, we can simply defineγTi,Tj =
crpd(Ti, Tj). If nested preemptions are possible, then this is incor-
rect, because if taskTj preempts a taskTk which in turn preempts
taskTi, then the CRPD ofTj preemptingTk is not taken into ac-
count. To solve this problem, we defineγ function as such :

γTi,Tj = crpd(Ti, Tj) +
∑

∀k/k∈hp(i)∧j∈hp(k)

crpd(Tk, Tj)

This approach has the advantage of being fast (we have to perform
the CRPD computation only once), and easily adaptable to existing
WCRT computation formula. Its main drawback is the introduction
of pessimism.

3.5.2 Iterative approach

It is possible to take into account the real preemption countat each
step of the fixed-point WCRT computation. With an iterative ap-
proach, the WCRT of each task is computed in order of decreasing
priority. For each task, the maximum preemption count (MPC)
by higher-priority tasks is computed, and is fed to the ILP system.
This (intermediate) CRPD enables us to refine the maximum pre-
emption count, and this process is repeated until a fixed-point is
reached. Thus, this method gives a tighter result.

The main drawback of this approach is the analysis time, be-
cause we have to solve an ILP system at each step of the fixed-point
WCRT computation. To mitigate this issue while still maintaining
a relatively tight CRPD bound, it is possible to use ahybrid ap-
proach. The main idea is to use the iterative approach until some
arbitrary time limit is reached. This will produce a temporary (un-
derestimated) CRPD, since the analysis is not finished. Then, from
this temporary value, we can compute the final (safe) CRPD bound
in a non-costly way.

To describe this last step, we make the following observation: an
increase in the maximum preemption count,MPCincrease, leads
to an increase in theCRPD, CRPDincrease. As the maximum
preemption counts get higher, the ratioCRPDincrease

MPCincrease
decreases

(or remains equal). Because of this, the following propertyholds
for all M (whereM is the preemption count):

crpd(T0, T1,M + 1) − crpd(T0, T1,M) ≤

crpd(T0, T1,M) − crpd(T0, T1,M − 1)

Let M1 be the maximum preemption count obtained when the
time limit is reached. Based on the observation made above, for any
M2 greater thanM1, the following property holds :

crpd(T0, T1,M2)− crpd(T0, T1,M1) ≤

(crpd(T0, T1,M1 + 1)−crpd(T0, T1,M1))× (M2 −M1)

Therefore, once the iterative analysis has reached the timelimit,
it is possible to boundcrpd(T0, T1,M2) for anyM2 greater than
M1, by the following value:

crpd(T0, T1,M1)+

(crpd(T0, T1,M1 + 1)−crpd(T0, T1,M1))× (M2 −M1)

This allows us to compute the final WCRT by fixed-point itera-
tion without having to solve a costly ILP system at each step.The
computed WCRT will be tighter than the one computed with fixed
CRPD approach, but less tight than the one computed with fully it-
erative approach. This hybrid approach is described in Algorithm 1.

3.6 Scalability

The ILP constraint generation described in section 3.4 produces a
large number of constraints and variables, which causes a large ILP
computation time. Ideally we want to decrease the number of ILP
constraints and variables. The following observation can be made:
for any l-block (recall that anl-block is a maximal sequence of in-
structions such that each instruction is in the same basic block, and
in the same cache block) containing the sequence of instructions
(I1, I2, ..., In), the effect on cache misses will be the same if a
preemption occurs in[I2; In], independently of the exact instruc-
tion. The reason for this is illustrated in Figure 4. In l-block 2, the
instructionsI2 throughI5 are guaranteed to be cache hits, since
the cache block is loaded inI1. If a preemption occurs at any of
these instructions and evicts the cache block, it will result in one

Algorithm 1 Iterative hybrid computation

1: TL← task list ordered by decreasing priority
2: for i ∈ TL do
3: WCRTi ←WCETi

4: change← true
5: flag ← false
6: while change ∧ (WCRTi ≤ deadlinei) do
7: for j ∈ hp(i) do
8: MPCi,j ← ⌈

WCRTi

PERIODj
⌉

9: if flag then
10: γi,j ← γ0i,j +R × (MPCi,j −MPC0i,j)
11: else
12: γi,j ← crpd(i, j,MPCi,j)
13: end if
14: end for
15: if (time is up) ∧ ¬flag then
16: for j ∈ hp(i) do
17: γ0i,j ← γi,j
18: MPC0i,j ←MPCi,j

19: R← crpd(i, j,MPCi,j + 1)− γ0i,j
20: end for
21: flag ← true
22: end if
23: for j ∈ hp(i) do
24: Sγ ←

∑

∀k/k∈hp(i)∧j∈hp(k)

γk,j

25: γ′
i,j ←MPCi,j ×WCETj + Sγ

26: WCRT i
′ ←WCETi +

∑

∀j∈hp(i)

γ′
i,j

27: end for
28: change← (WCRTi = WCRT i

′)
29: WCRTi ←WCRT i

′

30: end while
31: end for

Figure 4: Preemption point equivalence

preemption-related miss, regardless of the specific instruction that
is executing when the preemption occurs.

Based on this observation, it is possible to generate, for each
l-block Lk, only two xpm variables: variablexpm1 for the first
instructionI1 of the l-block, and variablexpm2 for the second
instruction I2. Both variables are constrained by the expression
xpmI ≤

∑

∀k/I∈PC−1(ECk)
eck as described in Section 3.4. Ad-

ditionally, variablexpm1 is bounded byxpm1 ≤ xk (wherexk

represents the execution count of l-blockLk, which is equal to the
execution count of the basic block containingLk). On the other
hand, variablexpm2 is bounded byxpm2 ≤ xk × |instr(k)− 1|,
whereinstr(k) is the set of instructions in the l-blockLk. This
constraint represents the fact that variablexpm2 counts additional
cache misses not only for instructionI2, but also for all instruc-
tions in the l-block except forI1. This amounts to|instr(k) − 1|
instructions. As such, the maximum additional misses for these in-
structions is|instr(k)− 1| each time l-blockLk is executed.

3.7 Handling timing anomalies

In this section, we will discuss three timing anomalies related to
caches that may affect the safety of CRPD analysis in general.
We shall refer to these timing anomalies asAnomaly 1, Anomaly
2 andAnomaly 3. Anomaly 1andAnomaly 2, as mentioned in [13],
may occur in the presence of an out-of-order processor. Mainly,
a cache hit or miss may cause unexpected timing delay in the
execution of instructions in the pipeline.Anomaly 3came from
work in [3], which show that FIFO caches exhibitdomino effect,
in which a change in the cache state could potentially cause an
unbounded timing delay. Thus, if an additional cache hit or miss
is introduced due to preemption, a safe CRPD analysis should
consider these unexpected timing delays. We also propose some
solutions to handle the identified anomalies. It should be noted that
the solutions are in general applicable to any CRPD analysis, with
certain assumptions on the WCET analysis technique that is being
used. We first state the necessary assumptions.

Assumptions about the WCET analysisLet us assume that a
taskT is defined as its control flow graph,GT = (B,E), where
B = {LB1, ..., LBn} is the set ofl-blocks in taskT , andE is
the set of edges representing control flow between two l-blocks.
TaskT is then represented by an ILP system having a variablecn
(execution count) for each l-blockLBn ∈ B. For each l-block,
two variables exists:thn and tmn, representing respectively the
maximum execution time of that l-block in case of cache hit or
cache miss. The ILP variableschn andcmn represent the number
of cache hits and misses, respectively, for l-block n. For each l-
block n, an ILP constraintchn + cmn = cn is generated. The
WCET andMC functions, to compute respectively the WCET
of the task, and its total cache miss count (preemption-related or
not), are defined as follows:

DEFINITION 3.2. (WCET). The resultWCET (T) is defined as
the maximized objective function

∑

∀k≤n thk×chk+ tmk×cmk,
for the ILP system generated for taskT .

DEFINITION 3.3. (MC). The miss count, notedMC(T) is defined
as the maximized objective function

∑

∀k≤n cmk, for the ILP sys-
tem generated for taskT .

For each of the three timing anomalies, we first give an example
that illustrates the anomalous behaviour, then we proceed to pro-
pose a solution to handle the anomaly.

Anomaly 1: Miss penalties can be higher than expectedThe
cache analysis used in WCET computation usually take cache
misses into account by adding a fixed miss penalty for each miss.
Simply making this miss penalty equal to the memory latency
behind the cache can lead to WCET underestimation. Lundqvist
et al. proved in [13] that in some cases, replacing a cache hitby a
cache miss can increase the execution time by an amount greater
than the memory latency.

Figure 5 shows an example, assuming a processor similar to the
one used in the example in Figure 6. The cache miss while fetching
instruction A causes instructionB to be scheduled later, after

Figure 5: Miss penalty greater than memory latency

instructionC. Since instructionD depends onB, the execution
is delayed by4 cycles (compared to the cache hit scenario), while
the memory latency is only2 cycles.

In order to avoid WCET underestimation due to this anomaly,
we need to compute correctly the miss penalty for each potential
cache miss. A sound way to do that is to compute thethn andtmn

values for eachl-block using a pipeline analysis approach (e.g.the
execution graphmethod [10]). Then, the penalty is computed as
shown in Definition 3.4 to avoid the problem described above.This
penalty should be a sound over-approximation, since computing the
exactthn andtmn values is generally infeasible.

DEFINITION 3.4. (penalty). The miss penalty,penalty(T) is de-
fined for a specific taskT , as:

penalty(T) ≥ max(tmn − thn|n ∈ [1;N])

Anomaly 2: Cache hits can result in worst case timingThe ma-
jority of cache-related analysis for WCET computation assume
that, if the hit/miss classification of a memory access cannot be
determined, the case leading to the WCET is the cache miss. Un-
fortunately, it has been shown by Lundqvist et al. [13] that it is not
always true. In some cases, specifically in the presence of proces-
sors with out-of-order execution, replacing a cache miss bya cache
hit can increase the execution time of an instruction sequence.

An example is shown in Figure 6, assuming an out-of-order exe-
cution processor, and an instruction sequence using three functional
units. In this example, a cache miss while fetching the instruction
A (shown in the lower half of the figure) causes instructionC to
be scheduled earlier. Since instructionD depends onC, this causes
the execution of the instruction sequence to finish one cycleear-
lier compared to the cache hit case. This effect can lead to un-
safe CRPD analysis. For example, let us consider a preemptedtask,
containing a l-blockLBk classified asalways miss. A preemption
can load the cache block ofLBk into the cache, causing cache hit
for LBk. Traditionally, CRPD analysis attempt to bound additional
cache misses, but does not consider any additional cache hits due
to preemption. If the execution time forLBk is greater in case of
cache hits, this effect will not be captured by the CRPD analysis,
potentially leading to an unsafe WCET.

There is a trivial way to prevent WCET underestimation in this
case, and another, more sophisticated way. The trivial way is to
consider allalways missas not classifiedin the WCET analysis
prior to the CRPD computation. This allows us to modify (without

Figure 6: Hit resulting in longer time

any impact on the computed WCET)tmn for each l-block as such:

tmn ← max(tmn, thn) (2)

By doing this, we guarantee thattmn is the worst possible time
for the l-blockn (including the scenario presented in Figure 6).

The other way is to include lost time due to additional cache hits
in the CRPD computation. To do that, we define thehit penaltyas
max(0, tmn − thn), and compute the maximum additional cache
hits in the same way we computed the bound on the additional
cache misses. This is done by modifying our CRPD analysis so
that the phase content,PC(I) is computed for eachalways miss
instructionI (instead ofalways hit), and if a preemption occurs
at an instruction inPC(I), thenI can cause cache hits. We did
not implement the latter method as it makes a difference onlyfor l-
blocksshowing a greater execution time for cache hits. That is quite
rare in our observation, so the increase in precision is negligible.

Anomaly 3: Impact on WCET may not be bounded (Domino
effect) In LRU caches, the effect of a change in cache state is
bounded, because after any sequence of (at least)A different blocks
mapping to the same cache set (on aA-way cache), the whole
set is filled with blocks belonging to this sequence. As shownby
C. Berg et al. [3], this is not true with FIFO caches. With FIFO
caches, a cache state alteration can have unbounded repercussions
in subsequent accesses.

Figure 7 shows an example with a 2-way set-associative FIFO
cache. The edges are labeled with the concrete cache states at that
program point, with the most recently loaded block located on the
left. For the CFG on the left side of the figure, for even iteration
numbers, accesses toa and c are hits; while for odd iteration
numbers, accesses tob are hits, so there is1.5 cache misses on
average per loop iteration. For the CFG on the right, an access
to block x is added. Each cache block access in the loop is now
a cache miss. The additional access to blockx adds, on average,
1.5 cache misses per loop iteration, and this effect is unbounded
(except, of course, by the maximum loop iteration count).

This problem does not occur in our CRPD analysis, since the
cache blocks involved in the domino effect would be categorized
asnot classifiedby the static phase detection step. However, this
observation is not sufficient to ensure that this effect can be safely
ignored in the general case. To handle the problem in the gen-
eral case, we make the following observation: when dealing with
WCET computation, we are assuming that no infinite path exists in
the program. This is guaranteed by additional flow constraints, such
as loop bounds. When computing the effect of a preemption on the

Figure 7: FIFO cache domino effect

miss count, we must take these constraints into account, in order to
get a bounded result. The effect of a preemption on the miss count
is captured byaddmiss (defined in Definition 3.7), which allows
us to ensure a bounded effect.

CRPD soundness We proceed to present a proof to guarantee the
safety of our CRPD analysis. We have definedWCET (T) in Def-
inition 3.2. Let us further introduceWCETPR(T0, T1, p) as the
WCET of taskT0 subject to cache interference due to preemption
by taskT1 at program pointp, as defined in Definition 3.5. Let
us also defineaddmiss(T0, T1) in Definition 3.7, as the bound on
the additional cache misses due to preemption ofT0 by T1. Our
concept of program path in a CFG is defined in Definition 3.6.

DEFINITION 3.5. (WCETPR and MCPR).WCETPR(T0, T1, p)
is the computed WCET of taskT0, such that the cache classifica-
tion analysis is performed on the CFGGT0,T1,p. This CFG results
from the merging of the CFGs ofT0 (preempted task) andT1 (pre-
empting task), connected with call/return edges at programpoint
p. Only the cache classification analysis is computed onGT0,T1,p.
The main WCET analysis is performed onT0 alone. The function
MCPR(T0, T1, p) is defined in a similar way for the miss count
(recall thatMC(T) is defined in Definition 3.3).

DEFINITION 3.6. (path). A program path in a taskT is defined as
a function associating an execution count to each node in theCFG
of T . The functionsWCET , WCETPR, MC, and MCPR
are enhanced to accept a path as the last (optional) parameter.
The effect of this optionalpath parameter is the creation of ILP
constraints∀n, path(LBn) = cn. We also notepath ∈ T if path
is a valid path for the taskT .

DEFINITION 3.7. (addmiss).addmiss(T0, T1) is defined as:

max(MCPR(T0, T1, p, path)−MC(T0, path)|path ∈ T0)

In other words, it is the maximum additional cache miss counted
by the ILP solution, for any possible path through taskT0, and for
any possible program point for preemption by taskT1. This does
not represent the maximum number of additional concrete misses,
but instead it is the difference of miss count as determined by the
analysis. Sinceaddmiss() is computed from the result of the ILP
system, it takes into account the various flow control constraints
that are needed to ensure that no infinite path exists within the
program. Therefore, an implementation ofaddmiss() compatible
with this definition will always yield a finite and safe bound on
the number of additional cache misses, even in the presence of
unbounded domino effect.

The following lemma states that the CRPD is sound if a preemp-
tion does not change the worst-case path for the preempted task.

LEMMA 3.1. Let T0 be a preempted task, andT1 a preempting
task. Then∀path ∈ T0:

∀p,WCETPR(T0, T1, p, path) ≤

WCET (T0, path) + addmiss(T0, T1)× penalty(T0)

PROOF. Let
∑

∀k≤n thk × ch′
k + tmk × cm′

k be the objec-
tive function for computingWCETPR(T0, T1, p, path), and
let

∑

∀k≤n thk × chk + tmk × cmk be the objective function
for computingWCET (T0, path). ch′

k and cm′
k represent the

number of cache hits and misses, respectively, for a l-blockk in
case of preemption. Therefore,WCETPR(T0, T1, p, path) −
WCET (T0, path) is equal to the difference of the maximized
objective functions:

∑

∀k≤n

thk × (ch′
k − chk) + tmk × (cm′

k − cmk)

Since the worst-case path is unchanged by the preemption, wehave
∀k, c′k = ck, and so the above can be rewritten as:

∑

∀k≤n

(cm′
k − cmk)× (tmk − thk)

We need to make the following assumption :

∀n, thn ≤ tmn (3)

Therefore, we have :
∑

∀k≤n

(cm′
k−cmk)×(tmk−thk) ≤

∑

∀k≤n

(cm′
k−cmk)×penalty(T0)

∑

∀k≤n

(cm′
k−cmk)×penalty(T0) ≤ addmiss(T0, T1)×penalty(T0)

Recall thatpenalty(T0) is defined in Definition 3.4.
The following theorem states that the CRPD is sound even if the

preemption changes the worst-case path.

THEOREM3.2. LetT0 be a preempted task, andT1 a preempting
task. Then:

∀p,WCETPR(T0, T1, p) ≤WCET (T0)+

addmiss(T0, T1)× penalty(T0)

PROOF. Let p be any program point inT0, and letwcpath be the
worst-case path forWCETPR(T0, T1, p). Then, the following
properties are true:

1. WCET (T0, wcpath) ≤ WCET (T0), since adding a path
constraints to an ILP system can never increase the result.

2. ∀p,WCETPR(T0, T1, p) ≤WCETPR(T0, T1, p, wcpath),
sincewcpath is the path with the highest WCET

3. ∀p,WCETPR(T0, T1, p, wcpath) ≤WCET (T0, wcpath)
+addmiss(T0, T1)× penalty(T0), from Lemma 3.1

Therefore from (1) and (2), we have∀p,WCETPR(T0, T1, p) ≤
WCET (T0) + addmiss(T0, T1)× penalty(T0).

This result enables us to guarantee that a CRPD analysis willbe
safe even in the presence of timing anomalies, provided thatsome
conditions are respected. Indeed, it is not tied to any specific CRPD
computation method, and can be applied to any existing CRPD
analysis, as long as these propositions are true:

1. The CRPD computed for the preemption of the taskT0 by T1

is a bound onaddmiss(T0, T1)× penalty(T0).

Task Size

senddataautopilot 300
chedkfailsafe 1116

checkmega128value 648
testppm 7876

Fly-by-wire

Task Size

altitudecontrol 1496
climbcontrol 6104
stabilisation 3600
radiocontrol 3600

Autopilot

Table 1: Code size (in bytes) of tasks in Papabenchfly-by-wireand
autopilotmodules

2. penalty and addmiss are compatible with the definitions
found in Definition 3.4 and Definition 3.7.

3. Assumption (3) must be true. This is easily accomplished by
disabling themay cache analysis, and alteringtmn values as
described in Equation 2.

Timing anomalies with our FIFO CRPD analysis In our ap-
proach, we do not do themay cache analysis, and ourpenalty
is computed as defined in Definition 3.4. Furthermore, since our
FIFO CRPD analysis uses an ILP system to bounds the number of
additional cache misses due to preemption for any possible path
and preemption point, this result boundsaddmiss(T0, T1), there-
fore the proof described above applies to our analysis as well.

4. Experimental results
In this section, we give experimental results for our methodby
analyzing a set of representative benchmarks. We implemented
our CRPD analysis framework on top of Chronos [11], an open
source WCET analysis tool. We extended Chronos to support ARM
architecture and all of our chosen benchmarks are compiled as
ARM binaries. In our analysis, we model a single ARM926EJ-S
processor core with a level 1 instruction cache that supports FIFO
replacement policy. We run our analysis for different instruction
cache configurations (associativity level, number of sets,and cache
block size). We use three types of benchmarks:PapaBench[15],
Malardalenbenchmarks [8], and a robot control application [6].

For each benchmark, we compute the bound on the additional
cache misses due to a single preemption for eachtask setconsist-
ing of two tasks: a low priority task, and a high priority task. We
assume afixed-priority preemptive schedulingof tasks. The list of
the analyzed task sets is defined in Table 3. Both the tasks in atask
set will run in the same processor core. We compute the preemp-
tion cost (in term of additional cache misses) with our method, and
compare it to the preemption cost computed with therelative com-
petitivenessmethod [16]. We also plot the average number of addi-
tional cache misses against the number of preemptions, to attempt
to determine the advantage of using the iterativeCRPD computa-
tion, as opposed to computing theCRPD for one preemption and
multiplying it by the preemption count.

4.1 Benchmarks

PapaBench PapaBench is a real-time benchmark based on the
control application of a drone called Paparazzi. It has two modules:
fly-by-wire, and auto-pilot. Each module contains several tasks,
which are large enough for the needs of our experiments.

Mälardalen benchmarks The Mälardalen benchmarks are a set
of programs designed to evaluate WCET analysis methods. Most
Mälardalen programs are too small to be interesting for ourexper-
iments, so we used two of the largest programs in the Mälardalen
benchmarks,compressandadpcm.

Robot Control Application This benchmark is a real-life robot
controller application. This software contains several tasks, such

Task Size

encode (adpcm) 5716
decode (adpcm) 5240
reset (adpcm) 1104

clblock (compress) 2016
output (compress) 1372

Mälardalen benchmarks

Task Size

remote 944
balance 27580

trackandmove 6704

Robot control

Table 2: Code size (in bytes) of tasks in Mälardalen benchmarks
and robot control application

Set Low-priority High-priority

1 senddataautopilot checkfailsafe
2 senddataautopilot checkmega128values
3 senddataautopilot testppm
4 testppm checkfailsafe
5 testppm checkmega128values
6 testppm senddataautopilot

(a) PapaBench (fly-by-wire)

Set Low-priority High-priority

7 altitudecontrol climbcontrol
8 altitudecontrol radiocontrol
9 altitudecontrol stabilisation
10 climbcontrol altitudecontrol
11 climbcontrol radiocontrol
12 climbcontrol stabilisation

(b) PapaBench (auto-pilot)

Set Low-priority High-priority

13 encode (adpcm) decode
14 reset (adpcm) encode
15 clblock (compress) output

(c) Mälardalen benchmarks

Set Low-priority High-priority

16 remote balance
17 remote trackandmove
18 trackandmove balance

(d) Robot control application

Table 3: Task sets definition

asnavigationtask, andbalancetask (to ensure that the robot does
not fall). The tasks are preemptible (balancetask has the highest
priority), and sufficiently large for our experiments.

Table 1 shows the code size (in bytes) for the PapaBench tasks.
Table 2 shows the code size (in bytes) for the tasks from the
Mälardalenbenchmarks and the robot control application.

4.2 Results

For each task set, the bound on the number of additional cache
misses (the misses already present without preemption are not
counted) for a single preemption is computed for each cache con-
figuration. The cache configuration parameters include the associa-
tivity level (from 1 to 4), the cache block size (from16 to 32) and
the set count (from16 to 64). The results are shown for Papabench
in Figure 8 and Figure 9 (forfly-by-wire and autopilot modules
respectively). The results for the Mälardalen benchmarksand the
robot control application are shown in Figure 10 and Figure 11 re-
spectively. The task sets referenced are defined in Table 3.

0

10

20

30

40

50

60

70

80

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

a
dd

iti
on

a
lc

a
ch

e
m

is
se

s

se
t1

se
t2

se
t3

se
t4

se
t5

se
t6

new FIFO CRPD method

relative competitiveness

Figure 8: Papabench (fly-by-wire) experimental results

0

20

40

60

80

100

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

a
dd

iti
on

a
lc

a
ch

e
m

is
se

s

se
t7

se
t8

se
t9

se
t10

se
t11

se
t12

new FIFO CRPD method

relative competitiveness

Figure 9: Papabench (auto-pilot) experimental results

We display results only for each different set count, while aver-
aging the results over the other parameters (cache block size, and
associativity level), because we observe that the results are primar-
ily influenced by the cache set count. The associativity level has
little effect on the results, since increasing the number ofways for
FIFO caches only increases the maximum length of phases to detect
in the static phase detection analysis, however those longer phases
happen rarely in programs. The number of additional cache misses
increases with cache set count, as more cache sets allow for more
blocks to be in the cache at the same time, whicah are potentially
evicted by a preemption. The cache block size has little effect on
the additional cache miss count on average, because while ital-
lows for a greater amount of data in the cache, it does not affect the
maximum count of blocks that can be in the cache.

The results show that the new approach introduces far less pes-
simism, compared with the approach based on relative competi-
tiveness. This gap between the two methods can be attributedto
two main causes. First, since the relative competitivenessbased
approach handles FIFO caches by assuming a LRU cache with a
lower associativity level, and that the resulting miss count must be
multiplied (by a factor depending on the associativity level), it is
reasonable to expect a high miss count. Additionally, our approach

0

10

20

30

40

50

60

70

80

90

16 32 64 16 32 64 16 32 64

a
dd

iti
on

a
lc

a
ch

e
m

is
se

s

se
t13

se
t14

se
t15

new FIFO CRPD method

relative competitiveness

Figure 10: Mälardalen experimental results

0

10

20

30

40

50

60

70

80

90

16 32 64 16 32 64 16 32 64

a
dd

iti
on

a
lc

a
ch

e
m

is
se

s

se
t16

se
t17

se
t18

new FIFO CRPD method

relative competitiveness

Figure 11: Robot experimental results

counts additional cache misses due to preemption only for blocks
that were previouslyalways hit, thus limiting the double-counting
of cache miss significantly.

Sensitivity to number of preemptionsAs mentioned previously
in Section 3, our method can be used either at each iteration in
the WCRT computation (in order to compute the exact number of
added cache misses for each preemption count), or it can be used
to compute the additional misses for one preemption, and multiply
that number by the preemption count at each iteration of the WCRT
computation. The second method is faster (because we do not need
to repeat the computation at each step of the iteration), butit is also
more pessimistic: while the number of preemption increases, less
and less additional cache misses are caused by each preemption.

This effect is shown in Figure 12. We see that for a low num-
ber of preemptions (i.e. less than200), there is not much difference
in tightness between the two approaches (note that the preemption
count is the maximum number of preemptions each time the pre-
empted task is activated, not the total preemption count). As the
preemption count goes up, the difference between the two meth-
ods increases. This threshold increases with the preemptedtask size
(since it increases the number of program points where a preemp-
tion could generate a lots of additional misses).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000 1200 1400 1600

a
dd

iti
on

na
lm

is
ss

e
s

number of preemptions

Iterative approach

Projection from one preemption

Figure 12: Iterative approach vs. standalone CRPD

5. Related work
There has been extensive research focusing on CRPD analysison
LRU caches. Traditionally, CRPD is computed by analyzing(i) the
preempted task [1, 9],(ii) the preempting task [19], or(iii) both
the preempted and preempting tasks [2, 14, 17, 18]. The concept
of useful cache block(UCB) is introduced by [9] for analyzing
the preempted task. UCB is computed for the preempted task, and
represents the cache blocks that are in use by the preempted task
that could cause cache misses if evicted by the preempting task. On
the other hand, the set ofevicting cache block(ECB) is computed
for the preempting task, and represents the cache blocks that may
be evicted by the preempting task. The notion is that a cache set
unused by the preempting task will not cause any eviction of cache
blocks used by the preempted task in the same cache set. Several
approaches combine ECB and UCB to compute the CRPD. An
article by S. Altmeyer et al. [2] gives an overview of these methods,
and shows the strengths and weaknesses of each approach.

C. Burguière et al. [4] have performed a study of other replace-
ment policies (including Pseudo-LRU and FIFO), in the context
of the CRPD. This study finds that in FIFO caches, the bound on
the number of additional misses due to a preemption cannot beex-
pressed in terms of UCB and ECB. C. Berg [3] shows that some
non-LRU cache replacement policies (including FIFO, amongoth-
ers) exhibitdomino effect. This means that for FIFO instruction
caches, an additional cache miss somewhere in a program can mod-
ify the cache state, thus causing further misses later in theprogram,
which in turn can cause even further misses, and so on. As shown
in [3], this effect has a potentiallyunboundedlength (except, of
course, by the length of the program execution). This fact largely
contributes to the infeasibility of the CRPD computation onFIFO
caches using UCB and ECB, as presented in [4].

A work-around for this problem has been proposed in [16] by
using the concept ofrelative competitiveness. Relative competitive-
nessof cache replacement policies allows us to express the bound
on the number of cache misses for a given access sequence and re-
placement policy, in terms of the bound under a different replace-
ment policy. Applied to the CRPD computation for FIFO caches,
computation on relative competitiveness enables us to express the
CRPD for a FIFO cache as a function of the CRPD for a LRU cache
of lower associativity level, and so we can apply the methodsde-
scribed previously (i.e. UCB/ECB analysis) to compute the CRPD
for FIFO caches. The main drawback with this method is the high
over-estimation of cache miss count.

6. Conclusion
We have proposed an approach to handle CRPD in the presence
of an instruction cache with a FIFO replacement policy. Our anal-
ysis computes the additional cache misses due to task preemption
in a safe way, while avoiding the double-counting of cache misses

already taken into account by the underlying FIFO cache catego-
rization method. We have also proposed a set of properties that a
CRPD analysis must satisfy in order to be safe in presence of timing
anomalies, and we shown that our analysis does satisfy theseprop-
erties. Finally, we presented a method to use our CRPD analysis in
the context of WCRT computation, in a way that handles diminish-
ing CRPD contributions as the preemption count increases, provid-
ing tight bounds. We evaluated our analysis on realistic benchmarks
by modeling a real-life ARM processor. The results show thatour
approach provides tight CRPD bounds in comparison to the state-
of-the-art approach.

Acknowledgments
This work was partially supported by A*STAR Public Sector Fund-
ing Project Number 1121202007 - ”Scalable Timing Analysis
Methods for Embedded Software”.

References
[1] S. Altmeyer and C. Burguiere. A new notion of useful cacheblock

to improve the bounds of cache-related preemption delay. InECRTS,
2009.

[2] S. Altmeyer, R. I. Davis, and C. Maiza. Cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive
systems. InRTSS, 2011.

[3] C. Berg. Plru cache domino effects. InWCET, 2006.

[4] C. Burguière, J. Reineke, and S. Altmeyer. Cache-related preemption
delay computation for set-associative caches - pitfalls and solutions.
In WCET, 2009.

[5] F. Cassez, R. R. Hansen, and M. C. Olesen. What is a timing anomaly?
In WCET, 2012.

[6] L. K. Chong, C. Ballabriga, V.-T. Pham, S. Chattopadhyay, and
A. Roychoudhury. Integrated timing analysis of application and
operating systems code. InRTSS, 2013.

[7] D. Grund and J. Reineke. Precise and efficient FIFO-replacement
analysis based on static phase detection. InECRTS, 2010.

[8] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen
wcet benchmarks: Past, present and future. InWCET, 2010.

[9] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling.IEEE Trans. Comput., 47(6),
1998.

[10] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order
processors for wcet analysis.Real-Time Systems, 34(3), 2006.

[11] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos:A timing
analyzer for embedded software.Science of Computer Programming,
2007.

[12] T. Lundqvist. A WCET Analysis Method for Pipelined Micropro-
cessors with Cache Memories. PhD thesis, Chalmers University of
Technology, 2002.

[13] T. Lundqvist and P. Stenström. Timing anomalies in dynamically
scheduled microprocessors. InRTSS, 1999.

[14] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. InCODES+ISSS, 2003.

[15] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. DeMichiel.
Papabench: a free real-time benchmark. InWCET, 2006.

[16] J. Reineke and D. Grund. Relative competitive analysisof cache
replacement policies. InLCTES, 2008.

[17] J. Staschulat and R. Ernst. Scalable precision cache analysis for
real-time software.ACM TECS, 6(4), 2007.

[18] Y. Tan and V. J. Mooney. Integrated intra- and inter-task cache analysis
for preemptive multi-tasking real-time systems. InSCOPES, 2004.

[19] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-
related preemption delay in preemptive real-time systems.In CODES,
2000.

	Introduction
	Background
	Methodology
	Static phase detection
	Phase content
	Equivalence classes
	ILP formulation
	Computing the WCRT
	Fixed CRPD approach
	Iterative approach

	Scalability
	Handling timing anomalies

	Experimental results
	Benchmarks
	Results

	Related work
	Conclusion

