
Proofs by Program Transformations�

Abhik Roychoudhury1, K. Narayan Kumar1;2, C.R. Ramakrishnan1, I.V. Ramakrishnan1

1 Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794, USA
fabhik,kumar,cram,ramg@cs.sunysb.edu

2 Chennai Mathematical Institute
92 G.N. Chetty Road
Chennai, India
kumar@smi.ernet.in

1 Introduction

Logic program transformation systems are often described as a collection of unfolding, folding and goal replacement
transformation rules. Given a program P , a logic program transformation system derives a sequence of programs P =
P0; P1; : : : ; PN , such that for all 0 � i < N , Pi+1 is obtained from Pi by application of one of the above rules.
Logic program transformation systems are usually proved correct by showing that all programs in the transformation
sequence P0; P1; : : : ; PN are equivalent under a suitable semantics, such as the least Herbrand model semantics for
definite programs.

An unfold/fold transformation system for definite logic programs was first described in a seminal paper by Tamaki
and Sato [25]. Since then their system has been substantially extended and expanded [1, 8, 12, 24, 26] and applied to
practical problems of importance (e.g., see [2, 4, 14, 18]). An excellent survey of research on this topic appears in [16].

Unfold/fold logic program transformation systems have been extensively used for program synthesis and program
optimization. However, relatively little work has been done on using such systems for constructing proofs. Hsiang and
Srivas [10] extended Prolog’s evaluation with “limited forward chaining” to perform inductive theorem proving. This
limited forward chaining step is in fact a restricted form of folding: only the theorem statement (which is restricted to
be conjunctive) can be used as a folder clause. Kanamori and Fujita [11] used the original Tamaki-Sato unfold/fold
transformation system [25] to facilitate the construction of induction proofs of theorems about the original program.
However, this method performs conjunctive folding using only a single non-recursive clause, and does not perform goal
replacement. Proietti and Pettorossi [19, 17] use Tamaki-Sato style unfolding and folding rules (the extension of [25] to
disjunctive folding, as described in [8]) to prove the equivalence of two atoms. Their motivation is to use these equivalence
proofs for program synthesis.

The need for permitting goal replacement and folding using multiple recursive clauses arises in the construction of
induction proofs for automated verification of parameterized concurrent systems. A parameterized system, such as an
m-bit shift register or a token ring of m processes, constitutes an infinite family of finite-state systems, one for each
value of m. With finite-state model checking [5], a well-known technique used in automated verification, one is limited
to verifying particular instances of such systems (such as a 16-bit shift register). Techniques for automated (or semi-
automated) construction of explicit induction proofs is central to the verification of parameterized concurrent systems.

In this paper, we examine how unfolding, folding and goal replacement transformations can be used towards automat-
ing the construction of such induction proofs. In [22] we proposed an abstract unfold/fold transformation framework for
definite logic programs. We also constructed SCOUT,1 a concrete instance of the framework, that is strictly more powerful
(in terms of transformation sequences permitted) than other unfold/fold transformation systems proposed in the literature.
SCOUT combines the stratification-based Tamaki-Sato system in [26] with the counter-based Kanamori-Fujita system
in [12] thereby obtaining a single system that strictly subsumes either of them. For each clause of any program in a
transformation sequence, the SCOUT system maintains approximate counters thereby allowing disjunctive folding using
recursive clauses (for details, refer [22]).

�The work of Abhik Roychoudhury, C.R. Ramakrishnan and I.V. Ramakrishnan was partially supported by NSF grants CCR-9711386 and EIA-
9705998. The work of K. Narayan Kumar was partially supported by NSF grant CDA-9805735.

1SCOUT stands for Strata and COunter based Unfold/fold Transformations.

1

In order to use SCOUT as a proof system, a second look at the goal replacement transformation is necessary. Goal
replacement, where semantically equivalent goals are interchanged, creates more opportunities for folding. This enables
one to construct more complex proofs that arise in the verification of parameterized concurrent systems. There are two
immediate problems with integrating goal replacement in an automated proof system. First, the identification of equivalent
goals must be based on some syntactic (or analysis-based) criteria, since semantic equivalence is, in general, undecidable.
Secondly, the conditions under which goal replacement is permitted by the transformation system are usually specified
in terms of uncomputable measures such as the size of the shortest ground proofs of atoms in the original program. We
need to distill these conditions into those that are testable at transformation time. To this end, we introduce Syntactic
Goal Replacement, a testable goal replacement rule. This enables us to use program transformations for semi-automated
deduction. We illustrate the power of SCOUT and Syntactic Goal Replacement by deriving an induction proof for an
example distilled from verification of parameterized concurrent systems. The example shows the utility of the more
general folding rule of SCOUT as well as the need for Syntactic goal replacement.

2 A Program Transformation System for Constructing Proofs

In this section, we present the transformation rules which will be used to establish induction proofs of universally quanti-
fied formulas. First, let us look at the following example to illustrate the kind of properties we intend to prove. Consider
the program P0 given below.

thm(X) :- gen(X), test(X).
gen([]).
gen([0|X]) :- gen(X).
canon([]).
canon([1|X]) :- canon(X).

test(X) :- canon(X).
test(X) :- trans(X,Y), test(Y).
trans([0|X], [1|X]).
trans([1|T],[1|T1]) :- trans(T,T1).

Any list consisting of only 0’s is generated by gen while the test predicate checks whether a given list can be
transformed (through finite number of applications of trans) into a string consisting of only 1’s. The trans predicate
transforms a string by converting the leftmost occurrence of 0 in the string to 1. The property that we would like to
establish is 8 X gen(X)) test(X).

Now, from the definition of thm in P0 we see that 8 X thm(X), gen(X) ^ test(X). Thus, if we can establish
that 8 X thm(X) , gen(X) then we can conclude that the formula 8 X gen(X)) test(X) is true. One way to
establish 8 X thm(X) , gen(X) is to show that the above program P0 is equivalent to some program PN in which
the semantic equivalence of thm(X) and gen(X) can be inferred from the syntax of the program. For example, if the
clauses for thm in PN were :

thm([]).
thm([0|X]) :- thm(X).

then we would be able to infer that 8 X thm(X), gen(X). This is because the clauses of gen(X) and thm(X), even
though not syntactically identical, have identical “recursive structure” (we formalize this notion later in this paper).

We demonstrate the equivalence of two programs by showing that one of them can be transformed into the other by
repeated application of the unfolding, folding and goal replacement transformation rules. In order to use such transforma-
tion rules for automated deduction, the test for applicability and the application of the rules must be automated. Moreover
when more than one transformation rule is applicable (as is typically the case), control strategies are needed to decide
which rule to apply. In this paper we address only the first issue.

2.1 The SCOUT system

We assume that the predicate symbols appearing in a transformation sequence P0; P1; : : : ; PN are a-priori partitioned
into n strata, such that a predicate from stratum j is defined in the initial program P0 using only predicates from strata
� j. We also assume that for any two n-tuples of integers = h1; : : : ; ni and 0 = h01; : : : ;

0
ni, we say > 0

if is lexicographically greater than 0. Addition and subtraction of n-tuples are defined as follows: + 0 = h1 +
01; : : : ; n + 0ni and � 0 = h1 � 01; : : : ; n � 0ni. We now define

Definition 1 (Characteristic Vector) Let P be a program such that the predicate symbols of P are partitioned into n

strata. Let A be any atom in the Herbrand Base of P . Then, the characteristic vector of A is ch(A) = hw1; : : : ; wni
where wj = 1 if the predicate symbol of A is in stratum j and 0 otherwise.

2

Thus the characteristic vector of an atom A is simply an encoding of the stratum in which the predicate symbol of A be-
longs. We now describe the unfolding and folding rules of SCOUT [22]. For any transformation sequence P0; P1; :::; PN
each clause C in program Pi is annotated with a pair of stratified counters. In other words, every clause C 2 Pi in a
transformation sequence is annotated with a pair (ilo(C);

i
hi(C)), where ilo(C);

i
hi(C) 2 Z

n and ihi(C) � ilo(C).
We assume that every clause C � A:� A1; : : : ; Ak in the initial program P0 is annotated with the pair (ch(A); ch(A)).

Rule 1 (Unfolding) Let C be a clause in Pi and A an atom in the body of C. Let C1; :::; Cm be the clauses in Pi whose
heads are unifiable with A with most general unifiers �1; :::; �m. Let C 0

j be the clause that is obtained by replacing A�j
by the body of Cj�j in C�j (1 � j � m).
Then, assign Pi+1 := (Pi � fCg) [fC 0

1; :::; C
0
mg. Also, set i+1

lo (C 0
j) = ilo(C) + ilo(Cj) and i+1

hi (C 0
j) = ihi(C) +

ihi(Cj). The annotations of all other clauses in Pi+1 is inherited from Pi. 2

Rule 2 (Folding) Let C1; :::; Cm be clauses in Pi of the form Cl � A:� Al;1; :::; Al;nl
; A0

1; :::; A
0
p and D1; :::; Dm be

clauses in Pj (j � i) of the form Dl � Bl:� Bl;1; :::; Bl;nl
satisfying :

1. 81 � l � m: 9�l: 81 � k � nl: Al;k = Bl;k�l where �l is a substitution.
2. B1�1 = B2�2 = ::: = Bm�m = B

3. D1; :::; Dm are the only clauses in Pj whose heads are unifiable with B.
4. 81 � l � m �l substitutes the internal variables of Dl to distinct variables which do not appear in fA;B;A0

1; :::; A
0
pg

5. 81 � l � m
j
hi(Dl) < ilo(Cl) +

P
1�k�p ch(A

0
k)

Then, assign Pi+1 := (Pi � fC1; :::; Cmg) [fC
0g where C 0 � A:� B;A0

1; :::; A
0
p. Also set

i+1
lo (C 0) = min1�l�m(ilo(Cl) �

j
hi(Dl)),

i+1
hi (C 0) = max1�l�m(ihi(Cl) �

j
lo(Dl)). The annotations of all other

clauses in Pi+1 is inherited from Pi. 2

The unfolding and folding rules transform a program P i with annotated clauses to another program Pi+1 with anno-
tated clauses. One key feature of the folding rule is that it permits disjunctive folding of recursive clauses. As discussed
later, such folding is common in the proofs of verification of parameterized concurrent systems.

The goal replacement transformation allows semantically equivalent atoms to be interchanged. To present this rule,
we will need the following definitions. For any conjunction of atoms A1; : : : ; An we use the notation vars(A1; : : : ; An)
to denote the set of variables occurring in A1; : : : ; An.

Definition 2 (Ground Proof of an Atom) Let T be a tree, each of whose nodes is labeled with a ground atom. Then T
is a ground proof in program P , if every node A in T satisfies the condition : A:� A1; :::; An is a ground instance of a
clause in P , where A1; :::; An (n � 0) are the only children of A in the tree T .

Definition 3 (Weight of a Proof) Let T be a ground proof in program P of some ground atom A 2 M(P). Then, the
weight of T is w(T) = hw1; : : : ; wni where wj is the number of nodes in T whose predicate symbol is in stratum j.

Thus the weight of a given ground proof simply accounts for the number of nodes in the proof tree, for each stratum.

Definition 4 (Weight of an Atom) Let P0 be the initial program of a transformation sequence and A 2 M(P0) be a
ground atom. Then the weight of A, denoted w(A), is the weight of the lexicographically smallest proof of A in P0. Thus,
8A w(A) � ch(A).

Note that when the number of strata is 1, the weight of a ground atom A denotes simply the size of the shortest ground
proof of A in P0.

Rule 3 (Goal Replacement) Let C be a clause A:� A1; : : : ; Ak; G in Pi, and G0 be an atom such that vars(G) =
vars(G0) � vars(A;A1; : : : ; Ak). Suppose
1. for all ground instantiation � of G;G0 we have

(i) Pi ` G� , Pi ` G0� (ii) � � w(G�) � w(G0�) � �0

2. ilo(C) + � +
P

1�j�k ch(Aj) > h0; : : : ; 0i

Then Pi+1 := (Pi � fCg) [fC 0g where C0 � A:� A1; : : : ; Ak; G
0. Also set i+1

lo (C 0) = ilo(C) + � and
i+1
hi (C 0) = ihi(C) + �0. 2

3

Note that although we replace a single atomG by another atomG0 , we can replace conjunctions of atoms using a sequence
of definition, folding, goal replacement and unfolding transformations. However, the above rule allows replacement in the
body of only one clause in program Pi. It would be interesting to study how we can extend this rule to perform multiple
replacements simultaneously in Pi without compromising correctness (as discussed in [3]).

Rules 1,2,3 are concrete instances of the transformation rules presented in [22]. Hence, the correctness proof of [22]
directly yields the following correctness result w.r.t. least Herbrand model semantics. For any definite logic program P ,
let M(P) denote its least Herbrand model.

Theorem 1 [22] Let P0; P1; : : : ; PN be a sequence of definite programs where Pi+1 is obtained from Pi by unfolding
(rule 1), folding (rule 2) or goal replacement (rule 3). Then 8 0 � i � N we have M(Pi) = M(P0).

2.2 Syntactic Goal Replacement

Unlike the unfolding and folding rules, applicability of goal replacement rule (rule 3) is not testable. Moreover to apply
this rule, we need to compute suitable �; �0 which are bounds on the difference between the weight of replaced and
replacing atoms. We now formulate a testable version of the goal replacement rule. To do so, we need a nontrivial
computational mechanism to check the semantic equivalence of two given atoms purely based on syntax. We must
also identify testable conditions that imply the untestable restrictions on weights of atoms required by the general goal
replacement rule. The notion of syntactic equivalence described below addresses the first issue, while the definition of the
syntactic goal replacement rule resolves the second issue.

Syntactic Equivalence Consider the following example program P

p(X) :- r(X).
p(X) :- e(X,Y), p(Y).
r(X) :- b(X).

q(X) :- s(X).
q(X) :- e(X,Y), q(Y).
s(X) :- b(X).

r(X) and s(X) are equivalent since the clauses defining them have identical right hand sides. We can now use this
to infer that q(X) and p(X) are equivalent. Note that even though the clauses of p(X) and q(X) are not syntactically
identical, the “recursive structure” of these clauses is the same. We formalize this notion in the definition given below.

Definition 5 (Syntactic Equivalence of Atoms) Let�=P be an equivalence relation on the set of predicates of a program
P and let A = p(t1; : : : ; tk) and B = q(t01; : : : ; t

0
k) be two atoms. Then atoms A and B are said to be syntactically

equivalent w.r.t. to the relation �=P , denoted A �=P
atom B, if we have p �=P q and (t1; : : : ; tk) is a variant of (t01; : : : ; t

0
k)

Definition 6 (Syntactic Equivalence of Predicates) An equivalence relation �=P on the set of predicates of P is said to
be a syntactic equivalence relation if whenever p �=P q we have:
1. The predicates p and q belong to the same stratum.
2. Let the clauses of predicates p and q in program P be fC1; : : : ; Cmg and fD1; : : : ; Dmg respectively. Then, for all
1 � i � m we have :
(i) Ci is a variant of Di when all predicate symbols in Ci and Di are replaced with the same predicate.
(ii) Let Ci and Di be of the form H :� B1; :::; Bk and H 0:� B0

1; :::; B
0
k respectively. Then for all 1 � l � k Bl

�=P
atom B0

l.

It is easy to see that the family of syntactic equivalence relations is closed under union. Thus there is a largest syntactic
equivalence relation �P . The relation �P can be computed as the greatest fixed point of a functional derived from the
conditions of definition 6. In practice, in order to show that p �P q one often computes a smaller syntactic equivalence
relation. This is because p �P q if and only if p �=P q for some syntactic equivalence relation �=P . Also, for two atoms
A and B we say A �P

atom B if and only if A �=P
atom B for some syntactic equivalence relation �=P .

Thus, given two atoms A and B and a program P , we can check whether A �P
atom B automatically. In the example

program fragmentP given above, the the relation �=P= f(p; q); (r; s)g[Id, where Id is the identity relation, is a syntactic
equivalence relation. Therefore p(X) �=P

atom q(X) and hence p(X) �P
atom q(X).

Note that we can straightforwardly generalize our definition of syntactic equivalence to define syntactic equivalence
of subgoals. Thus, we can then make inferences like p(f(X)) � q(X) based on the syntax2. The details appear in [21] and
will be incorporated into the full version of this paper.

2With definitions 5, 6 we can only infer p(f(X)) � q(f(X)) if p � q.

4

We establish the following lemma about ground proofs of syntactically equivalent atoms. Thus, if two atoms G and
G0 are syntactically equivalent in program P , then for every ground proof of a ground instance of G in P there is a ground
proof (of equal weight) of the corresponding ground instance of G 0 in P .

Lemma 1 (Proofs of syntactically equivalent atoms) For any ground proof T of a ground atom G� in program P if
G �P

atom G0, then there is a ground proof T 0 of G0�� (where the substitution � renames the variables of G to the
corresponding variables of G0) in P s.t. w(T) = w(T 0), i.e. the weights of T and T 0 are equal.

Proof : By induction on the size of proof T . 2

We now introduce the notion of relevant clause set of an atom. Intuitively, it is a conservative estimate (i.e. a superset)
of the set of clauses which are used in the proof of some ground instance of the atom.

Definition 7 (Relevant Clause Set) Let A be an atom and P a program. Let reach(A;P) denote the set of predicates
which are reachable from the predicate of A in the predicate dependency graph3 of P . Then, the relevant clause set of A
in P (denoted rel(A;P)) is the set of clauses of the predicates in reach(A;P).

We now define the Syntactic Goal Replacement rule. For any clause C, hd(C) denotes the head atom of C.

Rule 4 (Syntactic Goal Replacement) LetC be a clause in Pi of the formA:� A1; :::; Ak; G and consider another clause
C 0 (not in Pi) of the form : A:� A1; :::; Ak ; G

0 such that
1. G and G0 are syntactically equivalent i.e. G �Pi

atom G0, and vars(G) = vars(G0) � vars(A;A1; : : : ; Ak)
2. The clauses in rel(G0; P0) are never modified in the transformation sequence P0; P1; : : : ; Pi i.e. rel(G0; P0) =
rel(G0; Pi).
3. For each clause D 2 Pi ilo(D) � ch(hd(D)).
4. Let Cli(G) be the clauses in Pi whose heads unify with the atom G. We define
� = minD2Cli(G) (

i
lo(D)� ch(hd(D))). We must have ilo(C) + � +

P
1�j�k ch(Aj) > h0; : : : ; 0i.

Then, assign Pi+1 := (Pi � fCg) [fC 0g where C 0 is A:� A1; :::; Ak; G
0. Also, set i+1

lo (C 0) = ilo(C) + � and
i+1
hi (C 0) = ihi(C) + �0 where �0 = h1; 0; : : : ; 0i. 4

2

Special case of Goal Replacement Syntactic Goal Replacement (rule 4) can be proved to be a special case of the Goal
Replacement transformation of rule 3. Note that since G �Pi

atom G0 and vars(G) = vars(G0), therefore by lemma 1
we have 8� Pi ` G� , Pi ` G0�. We also have ilo(C) + � +

P
1�j�k ch(Aj) > h0; : : : ; 0i. Thus, to show that

Syntactic Goal Replacement is a special case of Goal Replacement, it is sufficient to prove that whenever Syntactic Goal
Replacement is applied to clause C to replaceG by G0 we have 8� � � w(G�)�w(G0�) � �0. Since �0 = h1; 0; : : : ; 0i,
therefore �0 is lexicographically greater than the weight of any ground atom; hence w(G�) � w(G 0�) � �0. Finally,
conditions (2) and (3) of the Syntactic Goal Replacement rule ensure that 8� w(G�) � w(G0�) � �. A formal proof
showing that rule 4 is a special case of rule 3 can be found in [21].

Applicability of rule 4 is testable and the clause annotations of the new clause C 0 can be effectively computed
since we have conservatively estimated the value of �; �0. Note that in rule 4 we have set �0 to h1; 0; : : : ; 0i. This will
prevent the new clause C 0 from being used as a folder later in the transformation sequence. However, our choice of �
satisfies � � h0; : : : ; 0i and therefore we will always have i+1

lo (C 0) � ilo(C). Thus, C 0 can participate in future folding
transformations as one of the folded clauses. Also, note that a tighter value of � 0 is hard to obtain. This is because we need
to satisfy w(G�)�w(G0�) � �0 for any ground substitution �. The proof sizes of G� and G 0� could be monotonic on the
instantiation of some variable of G;G0 and � could be constructed to instantiate that variable to larger and larger ground
terms, thereby ruling out a tighter value of � 0.

From the correctness of the unfolding, folding and goal replacement rules (theorem 1), we obtain the following
correctness result.

Theorem 2 (Correctness of Unfolding, Folding, Syntactic Goal Replacement) Let P0; P1; : : : ; PN be a sequence of
definite logic programs where Pi+1 is obtained from Pi by unfolding (rule 1), folding (rule 2) or syntactic goal replacement
(rule 4). Then 8 0 � i � N we have M(Pi) = M(P0).

3The predicate dependency graph of a program P has the predicate symbols of P as its vertices, and there is an edge from predicate p to predicate q

if q occurs in the body of a clause of p in program P .
4Note that 1 is only a notational convenience. It represents a value that exceeds the weights of all atoms. Formally, this is achieved by extending

the clause annotations by one extra stratum.

5

3 An Induction Proof

We now illustrate the use of our program transformation rules by transforming the generate-test program described at
the beginning of Section 2 to the desired form. The program P0 is given below. In P0, all predicates are in the same
stratum and the lower and upper clause measures are set to 1 for all clauses. In the following, the clause annotations
(ilo(C);

i
hi(C)) for any clause C 2 Pi are shown in parentheses beside clause C. Recall that we want to prove the

universally quantified formula 8 X gen(X)) test(X).

thm(X) :- gen(X), test(X) (1,1)
gen([]). (1,1) test(X) :- canon(X). (1,1)
gen([0|X]) :- gen(X). (1,1) test(X) :- trans(X,Y), test(Y). (1,1)
canon([]). (1,1) trans([0|X], [1|X]). (1,1)
canon([1|X]) :- canon(X). (1,1) trans([1|T],[1|T1]) :- trans(T,T1). (1,1)

Unfolding the only clause of thm/1 several times we obtain :

thm([]). (4,4)
thm([0|X]) :- gen(X), canon(X). (6,6)
thm([0|X]) :- gen(X), trans(X,Y), test([1|Y]). (6,6)

We now introduce the definition :

test1(Y) :- test([1|Y]). (1,1)

and fold the occurrence of test([1|Y]) in the last clause of thm/1 to obtain :

thm([]). (4,4)
thm([0|X]) :- gen(X), canon(X). (6,6)
thm([0|X]) :- gen(X), trans(X,Y), test1(Y). (5,5)

Unfolding the definition clause of test1/1 several times and then folding (using the definition clause of test1/1
as the folder) we get :

test1(Y) :- canon(Y). (3,3)
test1(Y) :- trans(Y,Z), test1(Z). (2,2)

Note that test1(Y) and test(Y) are syntactically equivalent, since the clauses of test/1 are :

test(X) :- canon(X). (1,1)
test(X) :- trans(X,Y), test1(Y). (1,1)

We therefore apply Syntactic Goal Replacement in the last clause of thm/1 to obtain the following :

thm([]). (4,4)
thm([0|X]) :- gen(X), canon(X). (6,6)
thm([0|X]) :- gen(X), trans(X,Y), test(Y). (6;1)

We can now fold the above clauses of thm/1 using the clauses of test/1 as the folder. Note that we are folding
using multiple recursive clauses as the folder. Thus, we obtain :

thm([]). (4,4)
thm([0|X]) :- gen(X), test(X). (5;1)

Finally, we fold using the clause of thm/1 in P0 as folder to obtain the program Pfinal

thm([]). (4,4)
thm([0|X]) :- thm(X). (4;1)
gen([]). (1,1) test(X) :- canon(X). (1,1)
gen([0|X]) :- gen(X). (1,1) test(X) :- trans(X,Y), test(Y). (1,1)
canon([]). (1,1) trans([0|T],[1|T]). (1,1)
canon([1|X]) :- canon(X). (1,1) trans([1|T], [1|T1]) :- trans(T,T1). (1,1)

The atoms thm(X) and gen(X) are now syntactically equivalent (refer definition 6). Thus, M(Pfinal) j= 8 X thm(X)
, gen(X). Since M(Pfinal) = M(P0) thereforeM(P0) j= 8 X thm(X), gen(X). By definition of thm(X) in P0,
this means that M(P0) j= 8 X gen(X)) test(X). Thus, by using SCOUT and Syntactic Goal Replacement, we have
constructed a nontrivial induction proof.

6

Verification of Parameterized Concurrent Systems The above proof is illustrative since it is structurally similar to
the proofs that arise in the verification of concurrent systems. In fact, using the transformation rules of SCOUT and
the Syntactic Goal Replacement rule in a similar fashion we verified properties like liveness of a m-bit shift register,
correctness of a m-bit carry-lookahead adder etc. Thus, in the problem of verification of liveness of a m-bit shift register
: the predicate gen represents the encoding of the m-bit shift register while the predicate test represents the encoding
of the liveness property that we verify. To accomplish the proof of liveness for any m, we perform a folding step using
test as the folder similar to the above example. Moreover, as in the above example, the proof of liveness also involves
application of the Syntactic Goal Replacement rule to replace a specialized version of test. This corresponds to proving
that the liveness property holds in a process Q iff the property holds in a sub-process of Q. The verification examples are
not shown here due to space considerations. Some of them are available in [23], and they will be incorporated in the full
version of this paper.

Interestingly, recent advances in logic programming based model-checking [7] open up the possibility of using logic
program transformations for the verification of parameterized concurrent systems. The XMC model-checker [20], built
on top of the XSB tabled logic programming system [27], can verify finite-state systems specified using value-passing
CCS [15] and formulas expressed in modal mu-calculus [13]. XMC’s space and time performance is competitive with
hand-coded (in C/C++) model checkers such as the Concurrency Factory [6] and SPIN [9] from Bell Labs. Essentially, the
XMC model-checker performs verification of finite-state concurrent systems through controlled and efficient unfolding.
By using meta-programming facilities of logic programming, one can implement deductive techniques (achieved through
folding and goal replacement transformations) and thereby integrate them tightly with algorithmic model checking (which
is done by applying unfolding). This indicates that a unfold/fold logic program transformation framework holds promise
as a framework for integration of algorithmic and deductive verification in general, and verification of parameterized
concurrent systems in particular.

References

[1] C. Aravindan and P.M. Dung. On the correctness of unfold/fold transformations of normal and extended logic
programs. Journal of Logic Programming, pages 295–322, 1995.

[2] A. Bossi, N. Cocco, and S. Dulli. A method of specializing logic programs. ACM TOPLAS, pages 253–302, 1990.

[3] A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs. Journal of Logic and Computa-
tion, 6(1):79–120, February 1996.

[4] D. Boulanger and M. Bruynooghe. Deriving unfold/fold transformations of logic programs using extended OLDT-
based abstract interpretation. Journal of Symbolic Computation, pages 495–521, 1993.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using temporal
logic specifications. ACM TOPLAS, 8(2), 1986.

[6] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Concurrency Factory: A development environment
for concurrent systems. In Proceedings of the Seventh International Conference on Computer Aided Verification
(CAV ’96), Vol. 1102 of Lecture Notes in Computer Science, pages 398–401. Springer-Verlag, 1996.

[7] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan, A. Roychoudhury, S.A.
Smolka, and D.S. Warren. Logic programming and model checking. In Proceedings of PLILP/ALP, LNCS 1490,
pages 1–20, 1998.

[8] M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause programs. In Proceedings of
PLILP, LNCS 844, pages 340–354, 1994.

[9] G. J. Holzmann and D. Peled. The state of SPIN. In Proceedings of the Seventh International Conference on
Computer Aided Verification (CAV ’96), Vol. 1102 of Lecture Notes in Computer Science, pages 385–389. Springer-
Verlag, 1996.

[10] J. Hsiang and M. Srivas. Automatic inductive theorem proving using Prolog. Theoretical Computer Science’, 54:3–
28, 1987.

7

[11] T. Kanamori and H. Fujita. Formulation of Induction Formulas in Verification of Prolog Programs. Proceedings of
International Conference on Automated Deduction (CADE), pages 281–299, 1986.

[12] T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with counters. In USA-Japan Seminar on
Logics of Programs, 1987.

[13] D. Kozen. Results on the propositional �-calculus. Theoretical Computer Science, 27:333–354, 1983.

[14] M. Leuschel, D. De Schreye, and A. De Waal. A conceptual embedding of folding into partial deduction : Towards
a maximal integration. In Joint International Conference and Symposium on Logic Programming, pages 319–332,
1996.

[15] R. Milner. Communication and Concurrency. International Series in Computer Science. Prentice Hall, 1989.

[16] A. Pettorossi and M. Proietti. Transformation of logic programs, volume 5 of Handbook of Logic in Artificial
Intelligence, pages 697–787. Oxford University Press, 1998.

[17] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using unfold/fold proofs. Journal of
Logic Programming, to appear, 1999.

[18] A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while specializing logic programs. In Proceed-
ings of POPL, pages 414–427, 1997.

[19] M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold proofs. In Proceedings of Logic Program
Synthesis and Transformation, pages 141–158. Springer-Verlag, 1994.

[20] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Terrance Swift, S.A. Smolka, and D. S. Warren. Efficient
model-checking using tabled resolution. Proceedings of Computer Aided Verification (CAV), 1997.

[21] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan. A generalized unfold/fold
transformation system for definite logic programs. Technical Report 98/37, Dept. of Computer Science, SUNY
Stony Brook, 1998.

[22] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan. A parameterized unfold/fold
transformation framework for definite logic programs. To appear in proocedings of Principles and Practice of
Declarative Programming (PPDP), 1999.

[23] A. Roychoudhury, C.R. Ramakrishnan, I.V. Ramakrishnan, and S.A. Smolka. Automated verification of parame-
terized systems by extending tabled resolution. Technical report, Department of Computer Science, SUNY Stony
Brook, Available at http://www.cs.sunysb.edu/�abhik/transform/papers.html, 1998.

[24] H. Seki. Unfold/fold transformation of general logic programs for well-founded semantics. In Journal of Logic
Programming, pages 5–23, 1993.

[25] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Proceedings of International Conference
on Logic Programming, pages 127–138, 1984.

[26] H. Tamaki and T. Sato. A generalized correctness proof of the unfold/ fold logic program transformation. Technical
report, Ibaraki University, Japan, 1986.

[27] XSB. The XSB logic programming system v1.8, 1998. Available from
http://www.cs.sunysb.edu/�sbprolog.

8

