
Symbolic Execution of Behavioral Requirements

Tao Wang, Abhik Roychoudhury, Roland H.C. Yap, and S.C. Choudhary

School of Computing, National University of Singapore, Singapore 117543.
{wangtao,abhik,ryap,shishirc}@comp.nus.edu.sg

Abstract. Message Sequence Charts (MSC) have traditionally been
used as a weak form of behavioral requirements in software design; they
denote scenarios which may happen. Live Sequence Charts (LSC) ex-
tend Message Sequence Charts by also allowing the designer to specify
scenarios which must happen. Live Sequence Chart specifications are
executable; their simulation allows the designer to play out potentially
aberrant scenarios prior to software construction. In this paper, we pro-
pose the use of Constraint Logic Programming (CLP) for symbolic exe-
cution of requirements described as Live Sequence Charts. The utility of
CLP stems from its ability to execute in the presence of uninstantiated
variables. This allows us to simulate multiple scenarios at one go. For
example, several scenarios which only differ from each other in the value
of a variable may be executed as a single scenario where the variable
is left uninstantiated. Similarly, we can simulate scenarios with an un-
bounded number of processes. We use the power of CLP to also simulate
charts with non-trivial timing constraints. Current works on MSC/LSCs
use data/control variables mainly for ease of specification; they are in-
stantiated to concrete values during simulation. Thus, our work advances
the state-of-the-art in simulation and checking of MSC based software
requirements.

1 Introduction

Message Sequence Charts (MSCs) [16] have traditionally played an important
role in software development. MSCs describe scenarios of system behaviors.
These scenarios are constructed prior to the development of the system, as part
of the requirements specification phase. MSCs can be used to depict the in-
teraction between different components (objects) of a system, as well as the
interaction of the system to the external environment (if the system is reactive).
Syntactically, a MSC consists of a set of vertical lines, each vertical line denoting
a process (or a system component). Computations within a process are shown
via internal events, while any communication between processes is denoted by a
uni-directional arrow (typically labeled by a message name). Figure 1(a) shows
a simple MSC with two processes; m1 and m2 are messages sent from p to q and
a is an internal action.

The main limitation of MSCs is that they only denote a scenario which may
occur. In other words, an MSC only captures an existential requirement: some
execution trace (behavior) of the system contains a linearization of the events in



qp
m1

m2

a

write(A,D)

PI Mem

mem[A] := D
ack(A,D)

(a) (b)

Fig. 1. (a) A simple MSC, and (b) MSC with variables

the MSC. They do not capture universal requirements, that is, temporal proper-
ties which must hold in all behaviors of the system. To fill this gap, Damm and
Harel recently proposed an important extension of MSCs called Live Sequence
Charts (LSCs) [5]. In the LSC formalism, a chart may be marked as existential
or universal. Each chart consists of a pre-chart and a body chart. An existential
chart is similar to a conventional MSC. It denotes the property: the pre-chart
followed by the body chart may execute in some run of the system. A universal
chart denotes the following property: if the pre-chart is satisfied in any execution
trace of the system, then the body chart must be executed.

The LSC formalism serves as an important extension of MSCs; it allows us
to describe the set of all allowed behaviors of a reactive system. A collection
of universal charts can serve as a complete behavioral specification: any trace
(over a pre-defined alphabet) which does not violate any of the universal charts
is an allowed behavior. Furthermore, LSC based behavioral specifications are
executable. The advantage of simulating LSC specifications via a play engine
is obvious: it allows the user to visualize/navigate/detect unintended behaviors
which were mistakenly allowed in the requirements. These unintended behaviors
are called “ violations” since they denote an inconsistency in the overall require-
ments specification (i.e. one requirement “violates” another). A full description
of the LSC language and the accompanying execution engine (called the play
engine) appears in the recent book [10].

Executing behavioral requirements prior to system development however
needs to consider the fact that the requirements are often at a higher level
than the implementation. Concretely, this may boil down to the behavioral re-
quirements not specifying: (a) data values exchanged between objects, or (b) the
number of objects of a process class. Figure 1(b) shows a chart with variables.
In this chart, processor I requests main memory to write value D in address
A. The main memory performs this task and sends an acknowledgment. This
chart uses two kinds of variables: A and D are variables appearing in events;
I is a variable representing a process instance (the instance of the processor in
question). In fact, if we want the requirements to contain the values of these
variables, this leads to an arbitrarily large (potentially unbounded) number of
scenarios. Furthermore, these scenarios are structurally “similar” and can be
specified together. To avoid this problem, the authors of the LSC formalism
extend the LSC specification language [13]. Each vertical line in a chart now
denotes a group of objects rather than a concrete object. Furthermore, data



exchanged between objects can be depicted by variables (rather than concrete
values), thereby enabling value-passing. This allows us to specify several similar
scenarios using a single chart, as shown in [13]. However, [13] uses the formal
variables mostly for concise specification; they are instantiated to concrete val-
ues during simulation. This does not allow symbolic execution, that is, executing
several similar scenarios together.

In this paper, we propose the use of Constraint Logic Programming (CLP)
for symbolic simulation of LSC based behavioral requirements. We leverage on
the constraint processing capabilities of a CLP engine in several ways. Unifica-
tion in the CLP engine captures value passing, and is used as a solver for equality
constraints. More general constraints (such as inequalities) are used to symboli-
cally represent values of data variables, groups of objects, and timing. Also note
that the search strategy of LSC simulation involves resolving non-determinism,
since several events may be enabled at a given point during simulation. Thus, a
LSC simulator may have to make “choices” among enabled events. These choices
need to be searched to detect “violations” (i.e. inconsistencies) in the specifica-
tion. A logic programming engine provides natural support for such search via
backtracking (this is not fully supported in the existing LSC play engine [8]).

We note that CLP has been shown to be useful for symbolic representation
of sets of system states [6]. Use of CLP for symbolic simulation of event based
systems has been investigated in [14]. There have also been recent uses of CLP
for animation/simulation of formal specifications (e.g. [4]).

Contributions We now summarize the main contributions of the paper.

– We develop a methodology and toolkit for symbolic execution of Live Se-
quence Charts, a visual language for describing behavioral requirements.
We exploit three different features of LSCs for symbolic execution. First,
data variables (such as D in Figure 1(b)) can remain partially instantiated.
Secondly, control variables (such as the instance I in Figure 1(b)) can also
remain partially instantiated during simulation. This allows us to directly
simulate a process with unboundedly many instances. Thirdly, time is main-
tained as a collection of constraints instead of a fixed value (for the simula-
tion of charts with timing constraints). By keeping the variables symbolic,
we achieve the simulation of many different concrete runs in a single run.

– We do not realize concrete objects which are behaviorally indistinguishable.
This approach contrasts with the work of [13] which blows up a class of ob-
jects in the specification to finitely many concrete objects during execution.

– The search strategy of our tool is derived from a logic programming based
search engine; hence it can naturally backtrack over choices. This allows
us to search for violations (i.e. inconsistencies) in behavioral requirements.
Since requirements are specified at a high-level, they are likely to have non-
determinism even if the implementation is deterministic.

Our simulation engine for LSCs is implemented on top of the ECLiPSe con-
straint logic programming system [7].



Section Organization The rest of the paper is organized as follows. Section
2 provides an overview of LSCs. Section 3 describes how a CLP engine is suit-
able for executing LSCs with data variables (of potentially unbounded domain).
Section 4 describes the use of our engine for simulating LSCs with unbounded
number of process instances. Section 5 explains the simulation of charts involv-
ing timing constraints. Section 6 describes the implementation of our engine and
experimental results. Finally, section 7 concludes the paper with discussion and
future work.

2 Live Sequence Charts

Live Sequence Charts (LSCs) [5] is a powerful visual formalism which serves as an
enriched requirements specification language. Descriptions in the LSC language
are executable, and the execution engine which supports it is called the Play
Engine [10]. In this section we summarize the existing work on LSCs. We start
with MSCs, show how they are extended to LSCs, and then briefly describe
existing work on play engine.

2.1 Message Sequence Charts

Message Sequence Charts (MSCs) [1, 16] are written in a visual notation as
shown in Figure 1(a). Each vertical line denotes a process which executes events.
Semantically, a MSC denotes a set of events (message send, message receive and
internal events corresponding to computation) and prescribes a partial order over
these events. This partial order is the transitive closure of (a) the total order of
the events in each process (time flows from top to bottom in each process) and
(b) the ordering imposed by the send-receive of each message (the send event
of a message must happen before its receive event). The events are described
using the following notation. A send of message M from process P to process Q
is denoted as 〈P !Q, M〉. A receive event by process Q to a message M sent by
process P is denoted as 〈Q?P, M〉. An internal event A executed by process P is
denoted as 〈P, A〉. As mentioned earlier, the message M as well as the processes
P , Q can contain variables. Variables transmitted via messages can appear in
internal events as well.

Consider the chart in Figure 1(a). Using the above notation, the total order
for process p is 〈p!q, m1〉 ≤ 〈p!q, m2〉 ≤ 〈p, a〉 where e1 ≤ e2 denotes that event e1
“happens-before” event e2. Similarly for process q we have 〈q?p, m1〉 ≤ 〈q?p, m2〉
For the messages we have 〈p!q, m1〉 ≤ 〈q?p, m1〉 and 〈p!q, m2〉 ≤ 〈q?p, m2〉. The
transitive closure of these four ordering relations defines the partial order of the
chart. Note that it is not a total order since from the transitive closure we cannot
infer that 〈p!q, m2〉 ≤ 〈q?p, m1〉 or 〈q?p, m1〉 ≤ 〈p!q, m2〉.

2.2 Universal and Existential Charts

In the Live Sequence Chart (LSC) terminology, each chart is a concatenation of
a pre-chart followed by a body chart. The notion of concatenation requires some



explanation. Consider a chart Pre ◦ Body where ◦ denotes concatenation. This
means that all processes first execute the chart Pre and then they execute the
chart Body; no event of chart Body takes place before any event of chart Pre. In
the terminology of Message Sequence Charts, a LSC is a synchronous concate-
nation of its pre-chart and body-chart [2]. Following the notational convention
of LSCs, we always show the pre-chart inside a dashed hexagon. The body chart
of a universal chart is shown inside a rectangular box. All examples shown in
this paper are universal charts. Now let us consider the chart in Figure 3. The
process r cannot send the message m1(X) before the pre-chart is finished. Note
that this is required even though r does not take part in the pre-chart. This re-
striction is imposed so that the body chart is executed only when the pre-chart
is successfully completed.

In the LSC language, charts are classified as existential or universal. A system
model M satisfies an existential chart Pre◦Body if there exists a reachable state
of M from which an outgoing trace executes (a linearization of) Pre followed
by (a linearization of) Body. On the other hand, a system model M satisfies a
universal chart Pre◦Body if : from every reachable state of M if a (linearization
of) the pre-chart Pre is executed, then it must be followed by (a linearization
of) the body chart Body. Thus, for any execution trace of M , whenever Pre is
executed, Body must be executed.

Along with universal/existential charts, LSCs also allow locations or events in
a chart to be universal or existential in a similar fashion. Indeed our CLP based
simulation engine works for the whole LSC language with existential/universal
charts as well as existential/universal chart elements (such as location, condition
etc). For details on syntax of the LSC visual language, the reader is referred to
[5]. Automata based semantics of the language appear in [12].

2.3 The Play Engine

A LSC based system description can serve as a behavioral requirements spec-
ification. It specifies the desired inter-object relationships in a reactive system
before the system (or even an abstract model of it) is actually constructed. It
is beneficial to simulate the LSC based behavioral requirements since it detects
inconsistencies and under-specification. LSC based descriptions of reactive sys-
tems can be executed by providing an event performed by the user. The LSC
simulation engine then computes a “maximal response” to this user-provided
event, which is a maximal sequence of events performed by different components
of the reactive system (as a result of the user-provided event). This maximal
response to the user-provided event is called a super-step (see [10], Chapter 5).
Simulation then continues with the user providing another event. In the course
of simulation, pre-charts of given universal charts are monitored. If the pre-chart
of a universal chart is successfully completed, then we generate a “live copy” –
a copy of the body chart. During simulation, there may be several live copies of
the same chart active at the same time. Such copies may be “violated” during
simulation; this happens when the partial order of the events appearing in the



body chart is violated, or any condition which must be satisfied is evaluated to
be false.

To see how this happens, consider the example in Figure 2 consisting of
two universal charts. When the user turns on the host, a live copy of both the
charts are created. Subsequently the temporal order of events in one of these
copies is bound to be violated during simulation. In other words, simulation
detects an inconsistency in the temporal properties denoted by the two universal
charts of Figure 2. This is called a violation in the LSC literature [10]. In the
rest of the paper, we discuss how to support symbolic execution of LSCs with
variables and/or constraints for the purposes of simulation (finding one violation-
free behavior).

red

red

green

on

displayhostuser

green

on

displayhostuser

Fig. 2. A LSC specification with “violations”

3 Data Variables

In this section, we describe how the symbolic execution engine of a Constraint
Logic Programming (CLP) system (such as ECLiPSe [7]) can be used to ex-
ecute Live Sequence Charts. We start with the handling of data variables (i.e.
variables appearing in chart events). When dealing with such variables, a dis-
tinction needs to be made between the LSC specification and the execution of
LSC specifications. Even though variables can appear in the LSC specification,
it is possible to develop an execution mechanism which avoids all variables. This
can be achieved by requiring all variables to be bound during execution. Thus,
the variables are used for ease of specification. On the other hand, if we use a
CLP engine as the LSC execution engine this can lead to a symbolic execution
mechanism for LSCs. We have pursued this avenue.

Data variables correspond to variables appearing in (and transmitted via)
messages. Typically, a data variable appearing in a chart will appear at least
twice ; this allows for propagation of data values. For example, in Figure 1(b)
the data variables A and D appear multiple times. If the underlying engine of
these chart specifications cannot execute with uninstantiated variables, then the
first occurrence of each variable needs to be distinguished. This is the occurrence
which binds the variable to a value. This can be problematic since no unique
“first occurrence” of a variable may exist in a chart (the events of a chart are



only guaranteed to satisfy a partial order). For example, consider the chart
in Figure 3 with three processes p, q and r. The two send events 〈p!q, m(X)〉
and 〈r!q, m1(X)〉 are incomparable according to the partial order of the chart.
If we chose one of them to be the first occurrence then the execution engine
can demand that this first occurrence binds X; other occurrences of X simply
propagate this binding. To solve this problem, [13] suggests fixing one of the
events as the first based on the geometry of the chart.

m1(X)

rqp
m0

m(X)

m2(X)

Fig. 3. Non-unique first occurrence of a data variable

For any data variable, fixing any particular occurrence as the first occurrence
constrains the partial order of the chart. In other words, it lets the simulation
engine play out only certain behaviors allowed by the chart. A CLP based exe-
cution engine will naturally avoid this problem. In our engine, value passing be-
tween variables is supported by CLP’s unification. Given a LSC specification, its
simulation involves identifying enabled events, executing them and checking for
violations of chart specifications. In Figure 3, both 〈p!q, m(X)〉 and 〈r!q, m1(X)〉
are initially enabled and our simulation engine can choose to execute either of
them. More importantly, if it chooses to execute 〈p!q, m(X)〉, it does not require
X to be bound at all. This constitutes a truly symbolic simulation, where many
charts (which only differ in the value of variable X) are simulated together.

4 Control Variables

LSCs have been extended to use symbolic process instances [13]. A symbolic
process in a chart represents a parameterized process class which at run-time
produces several instances or objects. In other words, these classes always pro-
duce finitely many instances at run-time; but there is no a-priori bound on the
number of instances. The identification number (or the parameter) of the in-
stances is a control variable. As per the LSC language, we allow such control
variables (denoting the instance number) to be existential or universal. Existen-
tially quantified control variables are handled like data variables; they may be
bound to a particular instance via execution. Universally quantified control vari-
ables however represent many possible process instances, and need to be handled
differently.

Consider a process p(X) where the instance number X is universally quan-
tified. Since p(X) in general represents unboundedly many instances, we need



to disambiguate messages to and from p(X). We use constraints on X for this
purpose. Consider a message from process p(X) to process q(Y ) where both X
and Y are universally quantified. We require such messages to be of the form
c(X), M, c′(Y ) where M is the message content and c, c′ are constraints on X, Y
respectively. The domain of the constraints c and c′ depends on the type of X and
Y . The variables representing instance numbers are integers, and we will consider
only unary inequality and equality constraints (i.e., interval constraints).1

X = 3, alloc(Direction)

lift(X)controlleruser

req(Direction), X > 2

req(Direction)

Fig. 4. A chart with universally quantified control variable (X in this case)

An Example We consider the universal chart shown in Figure 4. In this chart,
lift(X) represents a class of instances with X being a universally quantified con-
trol variable. The pre-chart consists of the user process requesting movement in a
specific direction (up or down). This is captured by the variable Direction. Dur-
ing execution, the user will give a concrete request, say req(up). Hence Direction
will be unified to up. Now, the user’s request is conveyed to the controller process
which forwards this request to only some of the lifts. In this chart, it forwards
the request to all lifts whose instance number is greater than 2. One of these
lifts responds to the controller; which lift responds is captured by the constraint
X = 3. In Figure 5, we illustrate a symbolic simulation strategy applicable to
parameterized process classes by simulating the example of Figure 4. To nota-
tionally distinguish the progress in simulation from the specification of a body
chart, we use bold boxes in Figure 5. Initially there is only one copy of the lift
process denoted as lift(X); this represents all lifts. Since the pre-chart does not
involve the lift process, there is only one copy of the chart after the execution of
the pre-chart. Now, when the controller forwards the message req(Direction) it
forwards it to only lifts with instance number greater than 2. Thus, the existing
live copy is destroyed and two separate copies are created: one with lift(X) s.t.
X ≤ 2, and the other with lift(X) s.t. X > 2. In other words, the two sepa-
rate copies of lift(X) are created in a demand-driven fashion, based on the chart
execution. Finally, when the message alloc(Direction) is sent, the live copy cor-
responding to lift(X) s.t. X > 2 is discarded to create two fresh live copies. The
1 Bigger classes of general constraints can be handled using the underlying CLP en-

gine’s constraint solver but even this unary restriction is already quite expressive.



user controller lift(X)

useruser lift(X),X>2controller controller

req(up)

req(up)

req(up)

req(up)

req(up)

alloc(up)

req(up)

req(up)

lift(X),X>3controlleruserlift(X),X=3controlleruser

req(up)

lift(X), X < 2

Fig. 5. Simulation of a Chart with Control and Data Variables

simulation strategy sketched above is truly symbolic. Separate copies of process
instances are not created unless required by the messages in the chart.

Formal description of our approach In general, our simulation strategy
works as follows. At any time in execution for a parameterized process p(X), let
the domain of X be divided into k ≥ 1 mutually exclusive partitions so far. Each
of the partitions is associated with a constraint on X, which is in fact an interval
constraint; let the intervals corresponding to the k partitions be I1, . . . , Ik where
for all 1 ≤ j ≤ k we have Ij = [lj , uj ] (the lower and upper bounds of the
interval). Now, consider a message send from p(X) or a message receive into
p(X), with associated interval constraint c(X). Let Ic = [lc, uc] be the interval
corresponding to c(X). Any live copy Ij (where 1 ≤ j ≤ k) satisfies one of the
following four cases.

– Case 1 : If lj ≤ uj < lc ≤ uc or lc ≤ uc < lj ≤ uj (Ij and Ic are dis-
joint intervals), then the copy for Ij is not progressed with the new message
send/receive.

– Case 2: If lc ≤ lj ≤ uj ≤ uc (Ic contains Ij) then the copy for Ij is progressed
with the new message send/receive.

– Case 3: If lj ≤ lc ≤ uc ≤ uj (Ij contains Ic) we discard the live copy for Ij

and replicate it to create three live copies [lj , lc − 1], [lc, uc] and [uc + 1, uj ].
The live copy [lc, uc] is progressed with the new message send/receive, while
the other two are not progressed.

– Case 4: Otherwise, either lj < lc ≤ uj < uc or lc < lj ≤ uc < uj (but
not both). We discard the live copy corresponding to Ij and replicate it to



create two new live copies: (a) for the portion of Ij common to Ic, which
is progressed with the message send/receive and (b) the portion of Ij not
common to Ic, which is not progressed. Thus, if lj < lc ≤ uj < uc, we create
live copies for [lc, uj ] (common to Ic) and [lj , lc − 1]. If lc < lj ≤ uc < uj we
create live copies for [lj , uc] (common to Ic) and [uc + 1, uj ].

In case 3, the behaviors of the live copies for [lj , lc − 1] and [uc + 1, uj ] are
identical; we could maintain a single live copy for them. Indeed we do so in
our implementation by maintaining a set of intervals for each live copy, instead
of a single interval. This is a straightforward extension of the above simulation
strategy and we omit the details.

Key idea in our approach Our simulation strategy can handle LSC descrip-
tions containing parameterized process classes. The key idea of our approach
is to not maintain all of the concrete instances of a process class explicitly (as
is done in the play engine of Harel and Marelly [10, 13]). In other words, their
play engine [10] uses universal control variables only for concise specification;
these variables are instantiated into all possible values during simulation. In-
stead, we maintain the values of a control variable symbolically via constraints.
In particular, a process class gets split into subclasses during simulation based
on behaviors. Each subclass is annotated with a constraint, which in general can
represent unboundedly many instances (corresponding to unboundedly many
control variable values). Instances which are behaviorally indistinguishable are
grouped into a subclass. As a simple example, consider the instances lift(1) and
lift(2) in Figure 4. Their behaviors are indistinguishable from each other; hence
it is not necessary to maintain such instances separately during simulation.

5 Timing Constraints

LSCs are used as a full-fledged requirements specification language for reactive
systems. Reactive systems often involve real-time response to external stimulus;
thus a requirements specification of such systems may contain timing constraints.
Consequently, the LSC specification language also allows timing constraints to
appear in charts. Primarily this involves the addition of a global variable Time
(representing a global clock) which is visible to all processes. Several other global
variables Ti may appear in the chart which capture the time value at a certain
snapshot of the chart’s execution. For example consider the universal chart in
Figure 6(a) obtained from [9, 10]. This chart specifies that the light must turn on
between 1 and 2 time units after the switch is turned on. Note that even though
T1 := Time is an internal computation it manipulates global variables.

The existing play engine of Harel and Marelly [9] simulates LSCs with timing
constraints as follows. The simulator starts with Time = 0 and waits for external
stimulus. Once the stimulus arrives, the simulator freezes time and computes a
“maximal response” of the system as before (that is, a maximal sequence of
events which get enabled after the external stimulus arrives). These events are



turn(on)

click(on)

lightswitchuser

Time <= T1 + 2

Time >= T1 + 1

T1 := Time

on

qpuser

ba

Time > 4Time > 1

(a) (b)

Fig. 6. (a) LSC with timing constraints (b) Choice in evaluating timing constraints

assumed to take zero time. After the system response, the simulator again allows
time to progress. Note that in the presence of timing constraints, certain events in
the chart may be stuck which would have otherwise been enabled. For example,
in Figure 6(a), after the pre-chart is completed, the light has to wait for time to
progress by at least one time unit.

The above simulation strategy is not symbolic in the sense that all constraints
on Time are reduced to tests when they are evaluated. Furthermore, time is
explicitly progressed (by the simulator’s own clock or by user specified ticks)
so that these tests can be evaluated to true. We now describe our approach for
simulating LSCs with timing constraints.

Our Approach We take a different approach in our CLP based simulation en-
gine; we do not force progress of time. Instead, each occurrence of the Time vari-
able (encountered during simulation) is captured as a different variable Timei

in our simulation engine. Thus initially, we have Time0 = 0; the next occur-
rence of Time during the simulation is denoted as the variable Time1 where
Time1 ≥ Time0. Since our variables are assign-once variables, therefore the flow
of time in Time is captured by a sequence of variables

Time0, T ime1, T ime2 . . .

Suppose that we have introduced timing variables Time0, . . . , T imei at any point
during simulation. Any event/condition containing the global variable Time in-
troduces a new variable Timei+1. We introduce the constraints

– Timei+1 ≥ Timej where j ≤ i is any index such that the event/condition
involving Timej “happens-before” the event/condition involving Timei+1

in the partial order of the chart. In practice, we only introduce a transitive
reduction of such constraints (e.g. while introducing the variable Time2, if
we introduce Time2 ≥ Time1 and we already have Time1 ≥ Time0, the
constraint Time2 ≥ Time0 is redundant).

– a constraint from the event/condition involving Timei+1 by replacing Time
with Timei+1 in the event/condition.

Timing constraints appearing in LSCs translate to constraints (not tests) on the
Timei variables during simulation.



Examples Let us revisit the universal LSC of Figure 6(a). Initially, we set
Time0 = 0. The user provides the stimulus 〈user!switch, click(on)〉. The sim-
ulator then executes 〈switch?user, click(on)〉. The internal action involving the
update of T1 is now executed. Since this is the first occurrence of Time af-
ter Time0, we introduce the constraint T1 = Time1 ∧ Time1 ≥ Time0. Now,
we encounter the “hot condition” Time >= T1 + 1. In LSC terminology [5],
a hot condition is a condition whose falsehood leads to the violation of the
chart; it is analogous to an assertion at a program point. Instead of explicitly
progressing time, we introduce another Timei variable which will be able to
satisfy this condition and let the simulation proceed. Thus, we introduce the
constraint Time2 ≥ T1 + 1 ∧ Time2 ≥ Time1. We then execute the events
〈light!light, turn(on)〉 and 〈light?light, turn(on)〉. Finally, we need to evaluate
the hot condition Time <= T1 + 2. The time at which this hot condition is
evaluated refers to a potentially new time, since time might have increased since
Time2. So, we introduce a constraint Time3 ≤ T1 + 2 ∧ Time3 ≥ Time2.

Note that when several hot conditions involving Time are blocking simula-
tion, we do not affix any order on the times at which they are evaluated. As a
trivial example, consider the universal chart in Figure 6(b). In this chart we will
accumulate the following constraints during simulation.

T ime0 = 0 ∧ T ime1 ≥ T ime0 ∧ T ime1 > 1 ∧ T ime2 ≥ T ime0 ∧ T ime2 > 4

Time1 and Time2 correspond to the time of evaluation of the hot conditions
in processes p and q. Note that Time1 and Time2 are incomparable. This is
because the chart’s partial order does not specify any ordering on the evaluation
of these conditions.

user host display
on

green

T1 := Time

(a) (b)

Time > T1−3Time >= 2

Time <= 1

user host display
on

green

Fig. 7. (a) A LSC with inconsistent timing constraints (b) A LSC requiring symbolic
representation of time

Clearly, for LSCs with timing constraints, additional violations are possible
during simulation if the timing constraints are inconsistent with the monotoni-
cally increasing flow of time. Our simulation engine will detect and report such
violations. For example consider the universal chart of Figure 7(a). Initially, we
start with Time0 = 0 and execute the pre-chart of the LSC. A live copy of the



chart is now created, and we need to satisfy the hot condition Time >= 2. This is
achieved by adding the constraint Time1 ≥ 2 ∧ Time1 ≥ Time0. The simulator
then sends and receives the green message and tries to satisfy the hot condition
Time <= 1. This again introduces a new variable Time2 and constraints on this
variable. At this point the constraint store becomes:

T ime0 = 0 ∧ T ime1 ≥ T ime0 ∧ T ime1 ≥ 2 ∧ T ime2 ≥ T ime1 ∧ T ime2 ≤ 1

The constraint store is now inconsistent (since it implies Time2 ≥ 2 ∧ Time2 ≤
1), giving a violation.

Additional power of our approach The symbolic representation of time flow
in our simulator allows us to simulate more LSC descriptions. Let us consider
the universal chart in Figure 7(b). It says that after the host is turned on by the
user, the host should send a green message to the display; furthermore, the green
message should be received within 3 time units of being sent. This example LSC
description cannot be simulated in the play engine of [9] simply because the hot
condition Time > T1 - 3 refers to a variable T1 which is uninstantiated. So, the
play engine of [9] will get blocked waiting for T1 to get instantiated. However,
T1 cannot get instantiated unless the green message is sent and received; thus
the play engine of [9] will be deadlocked forever. On the other hand, our play
engine will evaluate the hot condition Time > T1-3 by adding the constraint
Time1 > T1 − 3 ∧ Time1 ≥ Time0. This will allow the simulation to proceed
and constraints on T1 will be accumulated subsequently.

6 Implementation

We have used the ECLiPSe constraint logic programming system to develop a
symbolic simulation engine for LSC descriptions. Our engine supports data vari-
ables in processes, control variables (to support many instances of a process) as
well as timing constraints. The natural support for backtracking in a ECLiPSe

engine makes it convenient to perform automated simulation of various allowed
behaviors in a LSC description. Whenever a violation is detected, the simulator
reports the trace of the illegal path, and backtracks to find a violation free path.
Our current implementation supports simulation of both existential and uni-
versal charts. Existential charts are simulated in a manner somewhat similar to
pre-charts. In other words, they are monitored and progressed in each super-step
but their violation is not reported.

Examples simulated using our tool We have used our tool for automated
simulation of some LSC examples (including the examples given in this paper and
in [5, 13]). Three of them are non-trivial and are described below. In [5], the
authors presented LSC description of an automated rail-car system with several
cars operating on a cyclic path with several terminals. We simulate the LSC for
the rail-car system using our ECLiPSe implementation. This LSC involves 7
classes, 19 messages, 11 conditions, 1 assignment and other control structures



like subchart and if-then-else structures. We also simulate portions of a netphone
example which has appeared in literature. In particular, [13] describes a model
of a telephone network system with LSCs. We have simulated two use cases of
this system; these are the only two use cases whose full description is publicly
available [10, 13]. One use case specifies the protocol for initial set-up of the
identification number of various phones in a telephone network. It contains 4
LSCs, with 4 classes, 7 messages, 3 conditions and other operations. The other
user case describes part of the conversation establishment protocol. It consists
of 3 LSCs, with 5 classes, 11 messages, 6 conditions and other operations.

Timings and Web-site For all our examples, detection and simulation of
one violation free path takes less than 0.1 second. The timings are obtained by
running ECLiPSe on top of SUN OS 5.8 in a SunFire 4800 machine with 750
MHz Ultra Sparc III CPU (only one processor was used in the experiments).

Existing works on LSCs/play engine present the rail-car and netphone ex-
amples, but do not report timings for their simulation. Hence, a performance
comparison is problematic. However more important than a performance com-
parison is to check whether our simulator provides tolerable levels of efficiency
to the user. Our timing of less than 0.1 second for simulating non-trivial LSC
examples (like the rail-car example of [5]) seems to indicate that our simulator
is reasonably efficient. In other words, the symbolic execution mechanism does
not compromise efficiency in a significant way. Our prototype simulator toolkit
is available from the following web-site (along with description of our examples)
http://www.comp.nus.edu.sg/~wangtao/symbolic_simulator_engine.htm

Possible Improvements So far, our focus has been in building a constraint
based engine for symbolic simulation of LSCs. We have concentrated less on the
user-interface issues, such as how a LSC is provided as input to the simulator.
Currently, our simulator takes in textual input (describing a LSC), and we lack
a full-fledged Graphical User Interface (GUI) to input LSC descriptions. In con-
trast, the play engine of Harel et. al employs a sophisticated play-in approach
[10] which allows the user to input LSCs without fully drawing them. In future
we will work on integrating the play-in approach as a front end to our simulator.

7 Discussion

Message Sequence Charts (MSCs) are widely used as a requirements specifica-
tion of inter-object interactions prior to software development; they constitute
one of the behavioral diagram types in the Unified Modeling Language (UML)
framework [3]. We note that the recent years have seen a spurt of research ac-
tivity in developing/analyzing complete system specifications based on MSCs –
[2, 5, 11, 15] to name a few. LSC is one such visual language with an execution
engine. LSC based executable specifications are useful since they allow simula-
tion/analysis of requirements early in the software design cycle. Our work in this
paper is geared towards using CLP technology for symbolic execution of such



behavioral requirements. In future, we plan to apply our ideas for simulating
descriptions written in other executable specification languages based on MSCs
(e.g. the Communicating Transaction Processes (CTP) modeling language [15]).

References

1. R. Alur, G.J. Holzmann, and D.A. Peled. An analyzer for message sequence charts.
In Intl. Conf. on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), LNCS 1055, 1996.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
International Conference on Concurrency Theory (CONCUR), LNCS 1664, 1999.

3. G. Booch, I. Jacobsen, and J. Rumbaugh. Unified Modeling Language for Object-
oriented development. Rational Software Corporation, 1996.

4. M. Butler and M. Leuschel. ProB: A model checker for B. In Formal Methods in
Europe (FME), LNCS 2805, 2003.

5. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1), 2001.

6. G. Delzanno and A. Podelski. Model checking in CLP. In International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS), 1999.

7. ECLiPSe. The ECLiPSe Constraint Logic Programming System, 2003. Available
from http://www-icparc.doc.ic.ac.uk/eclipse/.

8. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Intl. Conf. on Formal Methods in Computer Aided Design (FM-
CAD), 2002.

9. D. Harel and R. Marelly. Playing with time: On the specification and execution
of time-enriched LSCs. In IEEE/ACM Intl. Symp. on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2002.

10. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

11. J.G. Hendriksen, M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Message se-
quence graphs and finitely generated regular MSC languages. In International
Colloquium on Automata, Languages and Programming (ICALP), 2000.

12. J. Klose and H. Wittke. An automata based interpretation of Live Sequence Charts.
In Intl. Conf. on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), 2001.

13. R. Marelly, D. Harel, and H. Kugler. Multiple instances and symbolic variables
in executable sequence charts. In Intl. Conf. on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA), 2002.

14. S. Narain and R. Chadha. Symbolic discrete event simulation. In Discrete Event
Systems, Manufacturing Systems and Communication Networks, 1994.

15. A. Roychoudhury and P.S. Thiagarajan. Communicating transaction processes. In
IEEE Intl. Conf. on Appl. of Concurrency in System Design (ACSD), 2003.

16. Z.120. Message Sequence Charts (MSC’96), 1996.


