
A Rule-Based Data Standardizer for

Enterprise Data Bases �

Abhik Roychoudhury I.V. Ramakrishnan Terrance Swift

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

fabhik,ram,tswiftg@cs.sunysb.edu

Abstract

Whenever a database permits textual entry of information | for example when

data is copied from a paper form | the database is likely to contain duplicates and

inconsistencies. These duplicates must be removed and inconsistencies resolved in order

to mine the data or to use the data for decision support. We term the domain-speci�c

solution to duplicate and inconsistency removal data standardization. In this paper,

we describe a Name-Address Standardizer, one of a series of standardizers that have

proven critical in creating a new enterprise-level database for the U.S. Customs Service.

The standardizers were used to clean several legacy databases. These standardized

databases were combined into a central database for which data is now standardized

upon input.

In practice, a standardizer uses techniques both from natural language analysis

and from rule-based expert systems. As a result Prolog is highly suitable as a basis for

standardizers. All Customs standardizers were written almost entirely in Prolog and

constitute a large programming e�ort: the Name-Address Standardizer contains about

100,000 lines of code, including generated parse tables and a fact base.

1 Introduction

Most large commercial databases are rife with inconsistencies and duplicate information.
While there is little publically-available documentation to support this claim | businesses
are reluctant to parade their dirty data in public | most programmers recognize this from
their own experience. As one instance, a database for a well-known marketing �rm had,
at last count, seven di�erent values in their sex �eld. As a second instance, consumers

�This paper re
ects the opinions of the authors only, and does not represent policy of the U.S. Customs

Service.

routinely receive duplicate catalogs addressed to variants of their own names. Duplicate
information costs money to store and mail. Inconsistent or duplicate data either prevents
decision support, or undermines its results. Querying such data can become complex and
the cost of updating programs that manipulate dirty data can make an organization less
adaptive to change.

There are many reasons for dirty data. Enterprises often use network or hierarchi-
cal databases management systems which may require data to be stored redundantly for
e�ciency and which do not provide high-level consistency controls. Even when current-
generation relational databases are used, their schemata is often derived almost directly
from that of a legacy hierarchical or network database system, and may preserve redun-
dancy of information. Even if the schema is properly redesigned, the new database often
inherits dirty legacy data, prohibiting the use of many types of integrity constraints and of
consistency preserving triggers.

We term methods that addresses inconsistent or dirty data as standardization methods.
Prolog itself is a superb means of creating standardization tools, and this paper discusses
one such tool, a standardizer for names and addresses found within textual strings. This
name-address standardizer is written almost entirely in Prolog. It was originally developed in
XSB [5] for the U.S. Customs Service, and standardizes data for all imports coming into the
U.S. in real time for a large Enterprise Database. The U.S. Customs Service name address
standardizer is over 100,000 lines of code (see Section 3.3.1) and is currently being recreated
at Stony Brook to standardize data for a large Manhattan investment bank.

Standardizers can be seen as supporting technology formediators funded by the American
Department of Defense over the past several years. While mediators attack the problem
of combining heterogeneous databases, they require standardization methods: to remove
duplicate data and to resolve inconsistent data.

This paper discusses the high-level architecture of the name-address standardizer and
provides examples of its use. This structure of this paper is as follows. Section 2 overviews
the use of the name-address standardizer and of Prolog in general in U.S. Customs Service;
Section 3 discusses the high-level architecture of the name-address standardizer; and Section
4 discusses its functionality from a user's perspective. Finally, Section 5 discusses future
directions for standardization technology currently undertaken at Stony Brook.

2 Data Standardization at the U.S. Customs Service

In 1993, around 20 million entries were �led for cargo imported into the United States,
through about 100 o�cial ports of entry. Accurate accounting of imports is important for
three reasons. First, cargo | whether it is cocaine or mongooses | may be illegal to import.
Secondly, even shipments of legal material are subject to quotas and duties. Finally, from
a more general perspective, the number and kind of imports is valuable as economic data:
vague or inconsistent information about imports lessens the quality of that data.

In 1991, the U.S. Customs Service began development of a series of expert systems to
help their inspectors in prioritizing what shipments to inspect, and to facilitate passage of

2

low-risk imports into the country. One of these, CCTIS [6] has been running continually
in the two largest sea ports, Newark and Los Angeles since 1992. In 1993, a project was
begun to combine with CCTIS another expert system to form the consolidated Automated
Targeting System (ATS). ATS is central to Custom's targeting e�orts; it processes shipments
and assesses their risk in pseudo-real time. ATS has been tested at the U.S. Customs Data
Center, has moved into production, and is now being installed in �eld o�ces.

In order to understand ATS and the role Prolog plays to support it, we present the two
major sources of information to Customs about shipments: manifests and entries. Each
carrier that transports cargo to the country must submit a manifest to Customs. This
manifest contains a collection of bills of lading each of which:

� States the port of lading of the commodity, and the itinerary of the vessel.

� Contains information about the shipper, consignee and notify party for all cargo.

� Textually describes the cargo, its destination, weight, etc.

� Provides a transcription of shipping labels on each container.

Mainframe

M

Q

M

Q

U

E

U

E

DBMS

User

Interface

DBMS

User

Interface

User

Interface

Organizer

Load
M

Q

M

Q

U

E

U

E

Rule

ManagerManifests

Entries

Local Site

Central Site

Stdzrs
Prolog

Figure 1: Top-level architecture of ATS

The manifest is usually delivered to Customs before the arrival of the voyage it describes.
While it contains a few formatted �elds, information in the manifest is mostly free text.
Meanwhile, the U.S. Customs Service also receives entry information about the cargo from

3

importers. A �ler, usually a customs broker or agent, �les a cargo release form stating the
nature of the cargo and that the consignee is ready to receive it. This form covers most of
the information in the manifest, but is compiled by di�erent sources for di�erent purposes.
The data quality in entry forms is better than in manifests, although information from free
text �elds is still needed.

To sum up, the data about cargo comes to Customs both from �lers and from shippers.
Data about the same shipment may arrive asynchronously, and critical parts of this data
reside in unformatted free text. Furthermore, the 20 million or so shipments may expand
into about 100 million customs forms which need to be processed each year. A range of
computational techniques are needed to wade through this morass of data, and ATS is crucial
to extracting and interpreting the information, and in determining whether the sources are
consistent. Figure 1 presents the high-level architecture of ATS. As data is entered into
Customs' central mainframe, it is sent through an ESCON channel to an IBM SP2 running
AIX. The data is entered onto an MQM queue and read by a Load Organizer, written mostly
in C++, which performs a number of functions including correlating bills with entries (a task
which is often not done on the mainframe) and updating the AIX database. Most importantly
from our perspective, the load-organizer calls a series of Prolog standardizers.

� A conveyance standardizer that standardizes textual information about ship names,
voyage numbers,
ight numbers, etc.

� A cargo standardizer which standardizes cargo descriptions as well as shipping labels
from cargo containers.

� A port standardizer which standardizes information about the itinerary of the voyage
or
ight.

� The name-address standardizerwhich standardizes name and address �elds in manifests
and entries.

This paper concerns itself mostly with the name address standardizer which is by far the
most sophisticated of the four standardizers, However, all standardizers share code for the
tokenization phase and the bottom-up parsing phase (Section 3).

The standardized and correlated data from the load organizer is output to another MQM
queue and read by one of a series of rule managers, which evaluate a shipment's risk by
executing a series of 100-200 Prolog rules as well as a neural network. At periodic intervals,
snapshots of the central database are downloaded into local �eld o�ces, where inspectors
view the results of the system through PC-based user interfaces.

While this overview has greatly simpli�ed the actions and architecture of ATS, it demon-
strates that Prolog plays an essential role in a major information management systems for
the U.S. Customs Service. The overview also highlights the central role of standardization:
because a large amount of bill and entry data is textual, it is critical to understand this data
to support the reasoning in ATS.

4

3 Standardizer architecture

Standardizing names and addresses of high-quality data is not di�cult. For instance, if the
delimiter | denotes a carriage return, extracting the company name, and address from the
following string is simple:

ZZZ AUTOPARTS INC | 192 WASHINGTON STREET | EL SEGUNDO CA

The problem begins to be non-trivial when carriage returns have no relation to the format
of the entity string or may even split tokens, as with:

ZZZ AUTOPARTS INC | 192 WASHING | TON STREET EL SEGUNDO CA

Furthermore, the entity name and address may be buried within text,

CONSIGNED TO THE ORDER OF CITIZENS FIRST NATIONAL BANK 201-342-0096

or may be strung together,

1)HENRY I SALUS INC., 2)RICHARD STACK LTD., C/O SEAWIDE BROKERS,ONE

WORLDTRADE CENTRE,SUITE 2606, NEW YORK, N.Y.10048, U.S.A.

To support standardization of such data, the architecture of the name-address standard-
izer resembles that of natural language parsers and consists of four stages:

� An initial tokenization phase which converts the free text record into a stream of
tokens.

� A bottom-up parse which corrects spelling of tokens and is responsible for grouping
designated token sequences to supertokens.

� A top-down frame-oriented parse, which has been implemented using De�nite
Clause Grammars (DCGs).

� A �nal post-processing phase which corrects badly parsed entities and handles in-
consistent or missing data.

3.1 Bottom-up Parser

The bottom-up parse is responsible for any correction and grouping of tokens that can occur
without knowing what portion of the string | say, name or address | is being parsed. The
bottom-up parse performs several functions:

� Explicit Translation. For instance, translating keywords designated in foreign languages
such as 'AEROPORTO' to 'AIRPORT';

� Correcting Mispellings such as correcting 'WISCONSON' to WISCONSIN';

5

� Supertokenization of sequences of tokens. One example of this is grouping the sequence
'SALT','LAKE','CITY' into 'SALT LAKE CITY' a town in Utah. If these tokens were
not grouped, later stages of the parser would have to avoid recognizing 'LAKE CITY',
a town in Pennsylvania, as the city �eld. We call this grouping supertokenization.

� Correcting Line Breaks such as correcting 'WASHING', | , 'TON' to 'WASHINGTON',
where | denotes a line-break carriage return pair.

3.1.1 Explicit Translation and Correcting Mispellings

From a procedural level, correcting mispelled tokens is done in the same manner as explicit
translation. One recurses through a list of tokens transforming tokens that match the �rst
argument of a Prolog table, and taking no action on other tokens. The Prolog table has
entries of the form:

correct('AEROPORTO','AIRPORT').

correct('WISCONSON','WISCONSIN').

While procedurally simple, this solution is brittle: for instance the preceding table will
not correct the token 'WISCONSEN' to 'WISCONSON'. Automatic generation of code to
correct mispellings is needed to address this brittleness and is discussed in Section 3.1.3.

3.1.2 Supertokenization and Correction of Line Breaks

Bottom-up parsing is easily done in Prolog [3]. As an example, consider that San Francisco
and San Lius Obispo are towns in California, while San Luis Potosi is a town (and a province)
in Mexico. A simple approach to supertokenizing these input strings could consist of the
rules:

cf_trans(['SAN','FRANCISCO'|Tail],Tail,'SAN FRANCISCO').

cf_trans(['SAN','LUIS','POTOSI'|Tail],Tail,'SAN LUIS POTOSI').

cf_trans(['SAN','LUIS','OBISPO'|Tail],Tail,'SAN LUIS OBISPO').

In the above representation, the functor cf trans denotes that a \context free" translation
is speci�ed. The �rst argument is the input list, the second is the remainder of the input
list after token recognition, and the third is the recognized token.

The above form is correct, but ine�cient. To improve indexing and reduce shallow
backtracking, we factor it into a parse trie as shown by the code:

cf_trans('SAN',[H|T],Tail,Result):-

cf_trans_san(H,T,Tail,Result).

cf_trans_san('FRANCISCO',Tail,Tail,'SAN FRANCISCO').

cf_trans_san('LUIS',[H|T],Tail,Result):-

cf_trans_sanluis(H,T,Tail,Result).

cf_trans_sanluis('OBISPO',Tail,Tail,'SAN LUIS OBISPO').

cf_trans_sanluis('POTOSI',Tail,Tail,'SAN LUIS POTOSI').

6

All entries that share the token 'SAN'' are grouped into the �rst rule which then calls
cf trans san. Generation of the above rules is performed automatically by the parse-table
generator (Section 3.1.3). We note in passing that creation of a factored parse trie can be
seen as an instance of the general problem of factoring clause heads, and has recently been
explored fully in [1].

Line breaks in the middle of words are handled similarly, by creating a parse table entry
such as

cf_trans(['THAI','|','LAND'|Tail],Tail,'THAILAND').

whose factored form is then added to the parse trie.

3.1.3 Automatically Generating Parse Tables

Clearly, automatic generation of parse tables is critical for the practical use of Prolog in
supertokenization and in correcting mispellings and line breaks. The bottom-up parser makes
a �rst pass at correcting context-insensitive mispellings by generating mispelling tables.
Context-sensitive mispelling checks are handled in the later stages of top-down parse and
post-processing.

Mispelling tables are generated using the concept of minimum edit distance. Minimum
edit distance algorithms generally de�ne as the distance between two strings as the number
of insertions, deletions or replacements needed to transform one string to another. Indexing
into parse tables is necessary for e�cient bottom-up parsing. In this stage we therefore
statically generate a set of possible mispellings that have edit distance 1 from a keyword,
using what is sometimes called a reverse minimum edit distance algorithm [4]. Figure 2
provides a portion of the mispelling table for the token 'CORPORATION'. The mispelling
table contains truncations of a keyword that have �ve letters or more, followed by deletions
of a single token, followed by double occurrences of a token, followed by inversions of two
tokens. Clearly the number of mispellings generated is linear in the length of the keyword.

The generation algorithm is complicated by the fact that that two di�erent keywords
may have common mispellings: both the city 'SOUTHFIELD' in Michagan, and the ship-
ping line 'SOUTHFIELD' may truncate to 'SOUTH'. Since all three of these tokens are
keywords, generating their mispellings may lead to incorrect results. As a result the parse
table generator strips out those mispellings which may transform keywords or which may
con
ict with other transformations.

Corrections for carriage returns and supertokenization can be generated in a similar
manner. Each of these generated predicates are then factored into parse tries as discussed
above. At execution time, the bottom up parser �rst corrects carriage returns, then corrects
mispellings, then supertokenizes, and �nally performs explicit translation.

3.2 Top-down Parser

The goal of the top-down parser is to �ll up an entity frame which in our name-address
domain is abstractly represented by the Prolog term:

7

correct('CORPORATI','CORPORATION'). correct('CORPORAT','CORPORATION').

correct('CORPORA','CORPORATION'). correct('CORPOR','CORPORATION').

correct('CORPO','CORPORATION'). correct('CORPORATIO','CORPORATION').

correct('CORPORATIN','CORPORATION'). correct('CORPORATON','CORPORATION').

correct('CORPORAION','CORPORATION'). correct('CORPORTION','CORPORATION').

correct('CORPOATION','CORPORATION'). correct('CORPRATION','CORPORATION').

correct('CORORATION','CORPORATION'). correct('COPORATION','CORPORATION').

correct('CRPORATION','CORPORATION'). correct('ORPORATION','CORPORATION').

correct('CORPORATIONN','CORPORATION'). correct('CORPORATIOON','CORPORATION').

correct('CORPORATIION','CORPORATION'). correct('CORPORATTION','CORPORATION').

correct('CORPORAATION','CORPORATION'). correct('CORPORRATION','CORPORATION').

correct('CORPOORATION','CORPORATION'). correct('CORPPORATION','CORPORATION').

correct('CORRPORATION','CORPORATION'). correct('COORPORATION','CORPORATION').

correct('CCORPORATION','CORPORATION'). correct('CORPORATINO','CORPORATION').

correct('CORPORATOIN','CORPORATION'). correct('CORPORAITON','CORPORATION').

correct('CORPORTAION','CORPORATION'). correct('CORPOARTION','CORPORATION').

correct('CORPROATION','CORPORATION'). correct('COROPRATION','CORPORATION').

correct('COPRORATION','CORPORATION'). correct('CROPORATION','CORPORATION').

correct('OCRPORATION','CORPORATION').

Figure 2: Portion of the Mispelling Table used by the Bottom-up Parser

frame(Type, entity(Name,Title,Rest),
address(Room,Building,Street,PoBox,Town,State,Country,Zip,Rest),
Telephone,Attention,Other)

For instance the token string

XYZ INC ATTENTION MANUFACTURING DEPARTMENT 4 GATEWAY AVENUE MAPLE NC 27956

Would be parsed as

Entity: (base)

Name: XYZ

Title: INC

Address:

Attn: MFRG DEPT

Str/Dist: 4 GATEWAY AVE

Town: MAPLE

Town: NC

Zip: 27956

The top down parser is structured as an LL(K) parser and coded using DCGs. E�ectively,
each stage of the parse is associated with a given part of the frame into which tokens are
placed by default. In the above example, XYZ is not a recognized keyword, so the top-down
parser begins by assuming that it is parsing an entity name. When the parser encounters the

8

token INC it recognizes that INC may constitute the end of an organization name. Next, the
parser encounters the token ATTN (transformed from ATTENTIONby an explicit transformation
in the bottom-up parse). By default it then enters a state in which it adds unknown tokens
to the Attention �eld, and remains in that state until it hits the number 4 which is the
�rst token of various address elements, including street number. Parsing continues until the
entire string has been consumed, and in this case, requires no post-processing.

The top-down parse also performs context-sensitive correction of mispellings. Figire 3,
illustrates this type of correction in the context of parsing of post o�ce boxes. BP is a French
abbreviation (boite postale) sometimes used for post o�ce boxes. If explicit transformation
of the token BP into the more common 'POB' were done in the bottom-up parsing stage,
it is likely that the name of the company British Petrolium, which sometimes uses the
acronym B.P. would be improperly standardized. To prevent this possibility, the mispelling
is corrected by the portion of code that recognizes post o�ce boxes.

pobox(['POB',Number|Rest]) -->

pobox_1,!,

box_desig(Number,Rest).

pobox(['GEN DELEVERY']) -->

['GENERAL'],['DELIVERY'],!.

pobox_1 --> ['POB'],opt(['BOX']),!.

pobox_1 --> ['PF'],!.

pobox_1 --> ['POST'],opt(['OFFICE']),opt(['BOX']),!.

pobox_1 --> ['BOX'],!.

pobox_1 --> ['CP'],!.

pobox_1 --> ['BP'],!.

pobox_1 --> ['BX'],!.

pobox_1 --> ['POSTAL'],!.

pobox_1 --> ['APARTADO'],opt(['POSTAL']),!.

pobox_1 --> ['B'],['P'],!.

pobox_1 --> ['G'],['P'],!.

pobox_1 --> ['P'],['O'],!.

Figure 3: DCG fragment for Recognizing Post O�ce Boxes in Various Languages

3.3 Post-processing

The top-down parser attempts to disambiguate information by using its present context
plus a short lookahead of the input token stream. Such guesses turn out to be wrong in a
signi�cant minority of cases, and need to be recti�ed in the post-processing phase. As an
example, consider:

ALLIED INDUSTRY PA

9

Perhaps the most natural way for a human to parse this string is to take the organization
name as ALLIED INDUSTRY, the city as empty, and the state as Pennsylvania. However,
Industry is in fact a town in Pennsylvania, and this information may lead us to conclude
that the company name is actually ALLIED. Such post processing is done by rules which have
the (somewhat simpli�ed) form

post_process_entity_name(ea(Rel,entity(Name,Title,Rest),

address(Rm,Bld,Str,Po,City,State,Country,Zp,Rst),

Tel,Attn,Flags,Other),

ea(Rel,entity(Newname,Title,Rest),

address(Rm,Bld,Str,Po,City,State,Country,Zp,Rst),

Tel,Attn,Flags,Other)):-

is_null(City),is_null(State),

last_two(Name,City,State,Newname),

consistent_city_state(Penult,Ult).

This rule can be read as follows. If neither a city nor a state were found during the top-
down parse, the rule checks to see whether the last the last two tokens of the name �eld form
a consistent city state pair. If this is the case, they are stripped from the entity name and
added to the appropriate �elds of the address. Abstracting from the foregoing example, the
fact that no city had been parsed was used to disambiguate the parse. Indeed, when global
information is needed to disambiguate a parse, it is most easily done in the post-processing
stage.

The post-processing phase is also responsible for applying consistency checks on the
output of the top-down parser. These consistency checks are based largely on the following
fact bases:

� 42,000 United States cities with their states, and 5-digit zip codes;

� The 500 largest Canadian cities with their provinces;

� 10,000 additional city-country pairs.

Depending on the fact base used, the post-processing phase can check the validity of a
city country pair, a city, state/province and country, or a city, state/province and zip code.
If the standardizer does not recognize a valid location it attempts to correct the spelling
of the city name using a more aggressive algorithm than permitted in earlier stages. To
take a concrete example, if the city name in the parsed output is PITSBURG, the zipcode is
15123, and the country is US, we determine that the city corresponding to zipcode 15123 is
PITTSBURGH. If the distance is less than a prede�ned threshold (which is a function of the
string length), the misspelled city PITSBURG is transformed to the correct city, PITTSBURGH.
For foreign cities a similar algorithm is used. Suppose LONDO were derived for the city and
GB for the country. In this case, the country is known but not the city. To attempt to correct
the city, the set of cities known to be in the United Kingdom is obtained from the fact base
(e.g. LONDON, MANCHESTER,..). If the putative city (LONDO) has a unique minimum
edit distance from any city in this set, and moreover if that distance is below a prede�ned

10

threshold, the city name is corrected. In the case of the truncated token LONDO a unique
minimum edit distance of 1 is found for LONDON, and the token is transformed.

3.3.1 Prolog Code Summary

Table 1 provides a breakdown of generated and handwritten Prolog code as grouped by
its function in the name-address standardizer. As an aside we note that the conveyance
standardizer, described brie
y in Section 1, contains about 15,000 additional lines of Prolog
code, mostly in generated parse tables and in a specialized fact base. The cargo and port
standardizers each contain about 500 additional lines of Prolog code. All four standardizers
share code whenever possible.

Function Subfunction Clauses Lines
Tokenization 94 412
Bottom-up Parse

Explicit Translation 2362 3857
Mispellings 7725 7725
Carriage Returns 3618 3618
Spaces 10005 10005

Top-Down 724 2082
Post-processing 604 2838
Domain Information

City Information 51898 51898
1165 1165

Other 6087 6087
Control and Utilities 727 1345
Total 91032

Table 1: Prolog Standardizer Code

4 Functionality of the Name-Address Standardizer

Below, we illustrate some of the functionality of the name-address standardizer.

Detecting An Entity in a Text String As mentioned in Section 3 the standardizer
must recognize an entity name buried within a string, for example:

CONSIGNED TO THE ORDER OF CITIZENS FIRST NATIONAL BANK 201-342-6900

Entity: (base)

Name: CITIZEN 1ST NATIONAL BANK

Address:

Telephone: 2013426900

11

This parsing is done by recognizing that the phrase TO THE ORDER OF and its variants
are commonly used in manifests and entries. This phrase and its variants are transformed
into a single token 'ORDER OF' by the bottom-up parse. During the top-down parse, the
DCG productions for entity names take account of 'ORDER OF' and may restart the parse
of an entity name after encountering this token.

As an extreme case, the name-address standardizer may never encounter a true entity
name:

TO ORDER OF THE HOLDER OF ORIGINAL THRU B/L NO. PST-22310 (TO THE ORDER OF SHIPPER)

Entity: (base)

Address:

Detecting Multiple Entities in a Text String The standardizer also must handle input
strings containing multiple names. In a given record, the relationship between the entities
may or may not be speci�ed. If speci�ed, the relation may be have the type care of, on behalf
of dba (doing business as) and several others. If the type of relationship is unspeci�ed, it is
denoted as a sequence. The following example illustrates these concepts.

1)HENRY I SALUS INC., 2)RICHARD STACK LTD., C/O SEAWIDE BROKERS,ONE

WORLDTRADE CENTRE,SUITE 2606, NEW YORK, N.Y.10048, U.S.A.

Entity: (base)

Name: HENRY I SALUS

Title: INC

Address:

org_type = 1 one_more = 1

Entity: (seq)

Name: RICHARD STACK

Title: LTD

Address:

org_type = 1 one_more = 1

Entity: (co)

Name: SEAWIDE BROKER

Address:

Room: SUITE 6202

Str/Dist: 1 WORLDTRADE CTR

Town: NEW YORK

State/Province: NY

Country: US

Zip: 10048

cityxstatexcountry valid

This example illustrates several aspects of standardization. There are three entities in
this sequence, and one of the two relations is speci�ed as a care of relationship. The address
keyword CENTRE is standardized to the abbreviation CTR. The entity SEAWIDE BROKERS has

12

its name changed to reduce duplicates. Because like is always standardized to like, this minor
change in spelling will prove harmless.

The standardizer also has knowledge of �rst names, allowing it to parse out sequences of
personal names in addition to sequences of organization names. In the following example,
the top-down parser catches the pattern of �rst name, last name, new �rst-name, last-name
and infers that there are two entities present. In this case, the standardizer also associates
the address with each name. We stress that this rule is only one of several for extracting
personal names from a sequence.

ELANOR SMITH PETER SMITH JTWROS APT 4-B 175 W 34TH STREET NEW YORK NY 10022

Entity: (base) Entity: (seq)

Name : Name :

First name : ELANOR First name : PETER

Last name : SMITH Last name : SMITH

Title: JTWROS Title: JTWROS

Address: Address:

Room: APT 4 B Room: APT 4 B

Str/Dist: 175 W 34TH ST Str/Dist: 175 W 34TH ST

Town: NEW YORK Town: NEW YORK

State/Province: NY State/Province: NY

Country: US Country: US

Zip: 10022 Zip: 10022

cityxstatexcountry valid cityxstatexcountry valid

Using the Fact Base to Infer and Correct Information In addition to inconsistent
and duplicate information, missing information is also possible. For instance, the following
example shows how the fact base is used to add the proper Canadian Province to a record.

QUICK BUILDERS LTD 400 QUEBEC STREET SASKATOON CA

Entity: (base)

Name: QUICK BUILDERS

Title: LTD

Address:

Str/Dist: 400 QUEBEC ST

Town: SASKATOON

State/Province: SK

Country: CA

cityxstatexcountry valid

We also note that 'CA' can denote California in addition to Canada. However, the
standardizer uses its knowledge that Saskatoon is a Canadian city to disambiguate its use.

In addition, the standardizer also has a capability of correcting wrong country codes. In
the following example, CURACAO was improperly entered as a city in Namibia (ISO code NA)
rather than in the Netherlands Antilles (ISO code AN).

E. MORENO BRANDAO | |P.O. BOX 3037 CURACAO | NA

13

Entity: (base)

Name: E MORENO BRANDAO

Address:

Po: POB 3037

Town: CURACAO

Country: AN

Standardizing Non-English Data The name-address standardizer makes an attempt to
standardize addresses in certain foreign languages, The name-address standardizer is not as
powerful for non-English names and addresses as for English. Still, it is used by Customs for
all data because standardization generally provides an improvement even when the data is
not in English. We provide an example of a successful parse of a Brazilian address. Similar
features have been added for French, Spanish, and German.

ACOS FINOS PIRATINI S.A. RUA CANCIO GOMES, 127-CX POSTAL 2118 SEDE PORTO ALEGRE RS BR

Entity: (base)

Name: ACOS FINOS PIRATINI

Title: SA

Address:

Str/Dist: RUA CANCIO GOMES 127

Po: POB 2118

Town: PORTO ALEGRE

State/Province:

Country: BR

org_type = 1

cityxcountry valid

While many Paci�c rim countries, such as Japan, Korea, China, and Taiwan use English
as a commercial language, the problem of transliteration arises. For instance a particular
Korean port appears as \Pusan" and \Busan" with equal frequency. The name address stan-
dardizer attempts to standardize Korean city names according the the \McCune-Reischauer
romanization" thereby replacing 'PUSAN' for 'BUSAN', 'TAEGU' for 'DAEGU' as in the exam-
ple below. This transliteration is performed automatically according to phonetic rules.

F CHO KWANG LIGHT BULBS IND.CO., 42-32 YIHYEON-DONG, DAEGU, KOREA

Entity: (base)

Name: CHO KWANG LIGHT BULBS IND

Title: CO

Address:

Str/Dist: 42 32 YIHYEON DONG

Town: TAEGU

Country: KR

org_type = 1

For cities on mainland China, the standardizer attempts to use the pin-yin romanization,
but this is done on a city-by-city basis.

14

5 Discussion

We discuss two avenues for extending and improving the architecture of the name-address
standardizer: context-sensitive correction of entity names, and the incorporation of chart
parsing. Both avenues are now under development.

Correction of Entity Names Section 3 outlined an approach in which correction of
tokens becomes more aggressive as contextual information is determined during the course
of the parse. We may term this approach context-sensitive correction, and tests at Customs
indicate that the technique works well for domains that are well-known such as cities. In
the case of cities, bottom-up parse handles certain errors through its misspelling, carriage
return, and supertokenization tables, while the post-processing step handles others through
a minimum edit distance match of a city against other cities in its state or country.

To support each of these features, the standardizer relies on fact bases in Prolog. While
suitable for domains of tens or hundreds of thousands of strings, the present standardizer
architecture cannot easily be extended to maintain a fact base containing millions of strings
as would be needed for a comparable level of correction of entity names for Customs. In
order to perform context-sensitive correction of entity names, an e�cient and robust access
to an external database is required. Nearly all commercial and most research Prolog systems
o�er database interfaces. However, it must be noted that, in general, the quality of these
interfaces is inferior to that of the Prolog systems themselves. For instance, the Oracle
interface for one well-known commercial Prolog has two serious
aws. First, the interface's
mapping of Prolog predicates to database tables is restrictive in that the order of arguments
in a Prolog predicate must be the same as the order of �elds in the corresponding database
table. The result of this restriction is that the Prolog program may need to be substantially
rewritten upon a database change. Second, repeated queries to the database are re-parsed
each time they are executed leading to a signi�cant loss of speed over Oracle's direct Pro*C
interface. Such
aws limit the usefulness of the external database acess.

Addition of Chart Parsing Elements of an address can occur in various conceivable
orders, for instance both

ATTENTION JULIE, ACME STEAMROLLERS, STE 12, 13 WARNER BROS LANE HOLLYWOOD CA

and

ACME STEAMROLLERS, ATTENTION JULIE, 13 WARNER BROS LANE STE 12, HOLLYWOOD CA

are forms of addresses that occur frequently. Using Prolog DCGs to parse such strings
leads to code that is relatively di�cult to maintain. This di�culty arises because the gram-
mar must have left-recursion eliminated in order to terminate, and for each non-terminal,
�rst and follow elements factored to provide e�ciency. Even more seriously, the top-down
parser attempts to eliminate ambiguities as it parses in order to prevent inordinate back-
tracking. In a minority of cases the top-down parse makes the wrong choice in attempting
to eliminate these ambiguities and its mistakes are corrected in the post processor (See the
example in Section 3.3).

15

Ambiguity is common in natural language analysis and is traditionally solved using chart
parsing [2]. If chart parsing were used by the name-address standardizer, an address could be
parsed into all possible elements: street addresses, post-o�ce boxes, telephone numbers, and
so on. Consistent sets of these elements could be gathered and prioritized during the post-
processing phase. In theory the resulting standardizer would be somewhat more declarative
than the present standardizer, and easier to maintain. Tabling in XSB is tightly integrated
with the Prolog engine, so that XSB forms a highly suitable platform for experimenting with
chart parsing in Prolog. Initial incorporation of tabling within standardizers is encouraging,
although a great deal of work remains to fully rewrite the name-address standardizer to use
tabling.

Acknowledgements

Recreation of the Customs' name-address standardizer at Stony Brook was partially funded by Multivariate

Decision Processes, Stony Brook, NY and by NSF grants CCR-9404921, CCR-9510072, CDA-9303181, CDA-

9504275 and INT-9314412.

References

[1] Dawson, S., Ramakrishnan, C. R., Skiena, S., and Swift, T. Principles and
practice of uni�cation factoring. ACM Transactions on Programming Languages and
Systems (September 1996).

[2] Earley, J. An e�cient context-free parsing algorithm. Communications of the ACM
13, 2 (1970), 94{102.

[3] Gazdar, G., and Mellish, C. Natural Language Processing in Prolog. Addison
Wesley, 1989.

[4] Kukich, K. Techniques for automattically correcting words in text. ACM Computing
Surveys (1992), 377{441.

[5] Sagonas, K., Swift, T., and Warren, D. XSB as an e�cient deductive database
engine. In Proc. of SIGMOD 1994 Conference (1994), ACM.

[6] Swift, T., Henderson, C., Holberger, R., Murphey, J., and Neham, E.

CCTIS: an expert transaction processing system. In Sixth Conference on Industrial
Applications of Arti�cial Intelligence (1994).

16

