
Justifying Proofs using Memo Tables

Abhik Roychoudhury
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

abhik@cs.sunysb.edu

C.R. Ramakrishnan
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

cram@cs.sunysb.edu

I.V. Ramakrishnan
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

ram@cs.sunysb.edu

ABSTRACT
Tableau-based proof systems can be elegantly speci�ed and
directly executed by a tabled Logic Programming (LP) sys-
tem. Our experience with the XMC model checker shows
that such an encoding can be used to search for the exis-
tence of a proof very eÆciently. However, the users of a
tableau system are often interested in getting suÆcient ev-
idence (in terms of the tableau proof rules) on why a proof
does or does not exist. In this paper, we address the prob-
lem of constructing such an evidence without introducing
any additional computational overhead to the proof search.
A tabled LP system maintains a memo table of \lemmas"

that were tried and possibly proved during query evaluation.
We propose the concept of justi�er for extracting suÆcient
evidence for the truth or falsehood of literals in a logic pro-
gram, by post-processing the memo tables created during
query evaluation. Based on this logic program justi�er, we
show how to construct evidence for the presence/absence of
tableau in a tableau-based proof system. We provide exper-
imental results showing the e�ectiveness of the justi�er in
constructing succinct evidence of the evaluation performed
by the XMC model checker. Finally we discuss the role of
the justi�er as a programming abstraction for encoding ef-
�cient algorithms as tabled logic programs.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Logic Programming;
D.2 [Software]: Software Engineering; D.2.5 [Software
Engineering]: Testing and Debugging|debugging aids

1. INTRODUCTION
Tableau-based proof systems are used for deductive rea-

soning in a variety of computing applications, including au-
tomated theorem proving [14], and in speci�cation and veri-
�cation of temporal properties of concurrent systems [4, 29,
33]. Such systems are typically presented as a set of proof
rules. Given a set of proof rules and a goal (which is a proof

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP ’00, Montréal, Canada.
Copyright 2000 ACM 1-58113-265-4/00/0009 ..$5.00

obligation), a tableau is a proof tree which is constructed by
repeated application of the rules to the goal.
A successful tableau is a �nite proof tree whose leaves rep-

resent empty goals. Thus, goals with a successful tableaux
are in the least set closed under the application of the proof
rules. Each proof rule is comprised of a (possibly empty)
set of premises, side conditions and a conclusion, and can
be readily encoded as a logic program. The least �xed point
semantics of logic programs ensures that existence of a suc-
cessful tableau for a goal can be checked using query evalu-
ation (using a suitable resolution strategy) over the encoded
program. The XMC model checker [27] shows that such a
check can be done very eÆciently as well.
Checking for existence of a tableau is only a part of the

problem. It is often necessary to construct suÆcient evi-
dence to show the existence or absence of a tableau. This
evidence may be used, for instance, to debug speci�cations
that showed unexpected properties in a veri�cation run.
However, explicit construction of a tableau while search-
ing for a proof can signi�cantly slow down the proof sys-
tem. In this paper, we describe techniques for reconstruct-
ing such evidence after evaluation of the query, using the
results from evaluation itself. Beginning with a fundamen-
tal technique for constructing evidence for logic programs,
we build a framework for presenting the evidence at the level
of the high-level tableau rules themselves. Below, we give a
brief introduction to tabled logic programming and its appli-
cation to tableau construction using a non-trivial but short
example drawn from veri�cation of concurrent systems.

1.1 Encoding and Evaluating Tableau-Based
Proof Systems: An Example

Figure 1(a) shows the proof rules of a tableau system for
the non-bisimilarity relation between the states of two au-
tomata. The non-bisimilarity relation is the complement of
the bisimulation relation in concurrency theory [23]. In a
rule, the premises and conclusion appear above and below
the horizontal line respectively while the side condition ap-
pears on its side.
The automata under consideration are labeled transition

systems: transition from a state s to state s0 on symbol a is
represented by s

a
! s0. Given a pair of automata, the �rst

rule says that state p in one automata is non-bisimilar to
state q in the other automata (denoted by p 6� q) whenever

there exists a transition p
a
! p0 and p0 is non-bisimilar to

every state q0 such that q
a
! q0. The second rule says that

non-bisimilarity is a symmetric relation.
The logic program encoding of this proof system is shown

(1)
p0 6� q01; : : : ; p

0 6� q0n
p 6� q

9a p
a
! p0 ^ fq01; : : : ; q

0
ng = fq0 j q

a
! q0g

(2)
q 6� p

p 6� q

:- table nbisim/2.
nbisim(P, Q) :-

trans(P, A, P1),
forall(Q1, trans(Q,A,Q1),

nbisim(P1,Q1)).
nbisim(P, Q) :- nbisim(Q, P).

(a) (b)

Figure 1: Proof rules for not-bisimilar relation (a), and its encoding as a tabled logic program (b)

in Figure 1(b). In the program, we use the 3-ary trans re-
lation to encode the labeled transition system. The least
model of the logic program will contain nbisim(p,q)when-
ever the states p and q are not bisimilar. However, observe
that if p and q are bisimilar then evaluation of the query us-
ing Prolog-style SLD resolution will not terminate since the
second clause (encoding the symmetry rule) will produce an
in�nite calling sequence.
Tabled resolution techniques, e.g. OLDT [30] and SLG [6],

avoid such in�nite calling sequences by augmenting SLD
strategy with memo tables. At a high level, a tabling sys-
tem evaluates programs by recording subgoals (referred to as
calls) and their provable instances (referred to as answers)
in a table. Clause resolution, which is the basic mechanism
for program evaluation, proceeds as follows. If the subgoal
is already present in the table, then it is resolved against the
answers recorded in the table; otherwise the subgoal is en-
tered in the table and a new proof tree with this subgoal as
the root is initiated. Answers to the subgoal are computed
by resolving it against program clauses using SLD resolu-
tion, and are recorded in the table. Thus tabled evaluation
of a logic program results in a forest of proof trees called the
SLG forest [6]. (Figure 2(b) is the SLG forest generated by
the query :- nbsim(p,q) for the automata in Figure 2(a).)

1.2 From Truth To Proof
The logic program encoding of the proof system is very

concise. However, while it establishes the truth or falsehood
of a goal, the logic programming system provides little or
no information on why the conclusion was reached. This
problem usually falls under the purview of debugging: using
a trace based debugger and its navigation mechanisms (set-
ting breakpoints or spy points, skips, leaps, etc.) to trace
through the proof search itself. There are several salient
problems with this approach.

1. A tracer displays the process of searching for the proof,
and hence shows the exploration of unsuccessful as well
as successful proof paths. In contrast, the user is often
most interested in the �nal proof itself, rather than the
manner in which the search was conducted.

2. The proof search strategy of Prolog, with its forward
and backward evaluation, already makes tracing a Pro-
log execution considerably harder than tracing through
procedural programs. The complex scheduling and
�xed-point computing strategies of tabled resolution
make this hard problem even worse.

3. Tracing repeats, at a slower pace, what the original ex-
ecution did, and hence considerably degrades the per-
formance of a proof system.

4. Trace-based debuggers provide no support for translat-
ing the results of the trace (which is at logic program

evaluation level) to the problem space (e.g., tableau
rule level).

Visual tools [5, 10, 31] can be used to graphically present
the SLG forest and help alleviate the second problem. How-
ever, the other problems are fundamental to the approach
of \watching the system prove a goal" and hence remain.
These limitations raise the following interesting questions.

Can we reconstruct a proof/disproof for a goal after the
evaluation for the goal is complete without reevaluating the
goal? Can the reconstruction be done without impacting
the performance of the initial evaluation? Can the recon-
structed proofs be mapped to the original problem domain:
e.g., to construct the non-bisimilarity tableau for the exam-
ple in Figure 1(a)? In this paper we present techniques that
answer the above questions in the aÆrmative.

1.2.0.1 Proofs by Justification:.
We propose the concept of Justi�er for extracting proofs

from the \footprints" of query evaluation left behind by the
tabled logic programming engine. After query evaluation us-
ing a tabled logic programming system, the call (and answer)
tables contain the lemmas that were tried (and/or proved).
By inspecting the program text with these tables in hand,
we can e�ectively reconstruct a proof (or suÆcient evidence
to show the lack of a proof) for a goal. Since we use precom-
puted results, we avoid searching for proofs through paths
that were unsuccessful in the initial run. Furthermore, we
collect the necessary evidence for presence or absence of a
proof independent of the proof search strategy. Moreover, the
information used for the reconstruction is already computed
by the tabled evaluation engine and is available \for free"|
i.e., without penalizing the original evaluation. Finally, the
reconstruction is done by a logic program, and hence can
be easily con�gured to map proof structures from the logic
programming level to the level of the encoded problem.

1.3 Related Work
Pfenning investigated the idea of constructing proof ob-

jects in a proof system by evaluating an encoding of the
proof system in a meta-language Elf [25]. Speci�cally, Elf
is a Prolog like language whose search automatically con-
structs proofs during query evaluation.
For logic programs, a number of approaches to explain the

results of query evaluation have been proposed in the liter-
ature. Algorithmic debugging techniques [28] explain the
evaluation of a query by tracing the proof search performed
by SLD resolution. Declarative debugging techniques [20,
24] assume a user-provided intended model of the given
program and then attempt to explain the unexpected suc-
cess/failure of a query by �nding a program clause which
is false in the intended model. Assertion based debugging
techniques [18] perform program validation and debugging
by static and dynamic checking of user-provided assertions

q1

q

q2p1

p

b a b

forall(Y, trans(p,a,Y),
 nbisim(q1,Y))

forall(Y, trans(p,A,Y),
trans(q,A,X),

 nbisim(X,Y))

A/a, X/q1

nbisim(q,p)nbisim(p,q)

trans(p,A,X),
forall(Y, trans(q,A,Y),

nbisim(X,Y))

forall(Y, trans(q,b,Y),
nbisim(p1,Y))

nbisim(q,p)

A/b, X/p1

nbisim(p1,q2)

FAIL

nbisim(X,Y))

trans(p1,A,X),
forall(Y, trans(q2,A,Y),

FAIL

FAIL

nbisim(q2,p1)

nbisim(p1,q2)

(a) (b)

nbisim(p,q)

 nbisim(q1,Y))
forall(Y, trans(p,a,Y),

nbisim(q,p)

trans(q,a,q1)

trans(p,a,Y)
fact

fail

p 6� q
?
?
y

q 6� p
?
?
yq

a
!q1; fp0 j p

a
!p0g=fg

fact

(c) (d)

Figure 2: Justifying non-bisimilarity relation : (a) Two non-bisimilar automata (b) Fragment of SLG forest
(c) Justi�cation (d) Tableau extracted from justi�cation

(which are essentially partial speci�cation of the intended
model of the program).
Although justi�cation is similar in spirit to the above ap-

proaches in terms of their objectives it di�ers considerably
from all them. First, it is done as a post-processing step
after query evaluation, and not along with the query eval-
uation (as in algorithmic and assertion-based debugging)
or before query evaluation (as in declarative and assertion-
based debugging). Therefore rather than showing the en-
tire proof search (as in algorithmic debugging), justi�cation
shows only those parts of the computation which led to the
success/failure of the query. Moreover justi�cation does not
demand any creative input from the user regarding the in-
tended model of the program. This is particularly useful
when we have encoded a proof system as a logic program and
we are constructing nontrivial proofs in the proof system via
query evaluation. The intended model of the program might
then be too hard, even impossible to be guessed by the user.
For example in the context of model checking, the intended
model of the program will contain information about which
states of the concurrent system satisfy certain given tempo-
ral properties. Hence it is unclear how such techniques can
be scaled from explaining logic programs to explaining proof
systems encoded as logic programs.
In the context of deductive database programs, [2] ex-

plores the construction of explanations. These explanations
consist of proof trees based on the underlying proof strategy.
Recently, [21] presented the idea of providing explanations
at several levels of abstraction. The explanations are con-
structed using the execution trace of the program. Note
that justi�cation also extracts proofs at di�erent levels of
abstraction. However, the information required for justi�-

cation \comes for free" since they are available in the already
constructed tables.

1.4 Summary of Results

1. Intuitively justi�cation constructs suÆcient evidence
for the success or failure of a query to a tabled logic
program. We formalize this intuitive concept and de-
scribe an eÆcient algorithm for extracting such a jus-
ti�cation from tables created during query evaluation
(Section 2).

2. We show how to derive an evidence for the existence
or absence of a tableau in terms of tableau proof rules,
based on the justi�cation of the logic program that
encodes the tableau system (Section 3).

3. We describe the construction of a evidence generator
for a real-life model checking system (XMC) based on
the justi�er described in Section 2. We provide experi-
mental results (in terms of sizes of proof structures) to
demonstrate the practical utility of justi�ers in model
checking (Section 4).

4. The concept of justi�cation forms a basis for a power-
ful programming abstraction. We discuss this issue in
greater length in Section 5.

2. JUSTIFICATION OF LOGIC PROGRAM
DERIVATIONS

In this section, we describe the fundamental aspects of
constructing a structure, called a justi�cation that explains

the truth value of an answer computed by tabled resolution.
For simplicity of exposition, we begin by de�ning justi�ca-
tion of queries over de�nite logic programs. We discuss how
the de�nition can be extended to evaluation of normal logic
programs under well-founded semantics.

2.0.0.2 Notational Conventions:.
We use P to denote logic programs; HB(P),M(P), M̂(P)

to denote the Herbrand Base and least Herbrand model and
perfect model of P [9] respectively; A and B to denote atoms
or literals; � to denote a set of atoms or literals; � to denote
a conjunction of atoms (a goal is a conjunction of atoms)
or literals; � to denote substitutions; `�' to denote atom
subsumption (A � B for A subsumes B); and C to denote
a clause in a program. For a binary relation R, we denote
its (reexive) transitive closure by R�. 2

Before describing justi�cation, we need to introduce some
preliminary notation for capturing the truth assignments
computed by tabled resolution. The tables at the end of
the resolution are denoted by T = TC [TA, where TC are
the set of atoms stored in call (or subgoal) tables and TA
are the set of atoms stored in return (or answer) tables.

Definition 1 (Truth Assignment). The truth
assignment of atom A wr.t. tables T , denoted �(A;T), is:

�(A;T) =

8<
:

true A 2 TA
false A 62 TA ^ 9A

0 2 TC A0 � A
uncomputed otherwise

We drop the parameter T and write the truth assignment
as �(A) whenever the tables are obvious from the context.
By soundness of tabled resolution, note that when tables T
result from resolving a query over a program P , �(A;T) =
true =) 8�A� 2 M(P) and �(A;T) = false =) 8�A� 62
M(P) for all atoms A.

2.1 Structure of Justification
Let A be an answer to some query in program P , i.e.,

�(A) = true. We can complete one step in explaining this
answer by �nding a clause C such that (i) A uni�es with
the head of C, and (ii) each literal B in the body of C has
�(B) = true. If �(A) = false, we can explain this failure
by showing that for all clauses C whose heads unify with A,
there is at least one literal B in C such that �(B) = false.
We call such one-step explanations as a locally consistent
explanations.

Definition 2. Locally consistent explanation for an atom
A w.r.t. program P and table T , denoted by �(P;T)(A) is a
set of sets of atoms s.t.

1. If �(A) = true:

�(P;T)(A) = f�1; �2; : : : ; �mg, with each �i being a set
of atoms fB1; B2; : : : ;Bng such that:

(a) 8 1 � j � n �(Bj) = true, and

(b) 9 C � A0:� � and a substitution � such that
A0� = A and �� � (B1;B2; : : : ;Bn)�.

2. If �(A) = false:

�(P;T)(A) = fLg, a singleton collection where L =
fB1;B2; : : : ;Bng is the smallest set such that

p :- p.
p :- q.

q.

p :- q, r.
q :- p.

q :- r.

(a) (b)

Figure 3: Example programs

�(p) = f fpg; fqg g
�(q) = f fg g

�(p) = f fqg g
�(q) = f fp;rg g
�(r) = f fg g

(a) (b)

Figure 4: Locally consistent explanations [(a) and
(b)] for example programs in Figure 3(a) and (b)

(a) 81 � j � n �(Bj) = false, and

(b) 8 substitutions � and C � A0:� (B0
1;B

0
2; : : : ; B

0
l),

A0� = A� =) 91 � k � l such that B0
k� 2 L

and 8 1 � i < k �(B0
i�) = true.

We write �(P;T)(A) as �(A) whenever the program P and ta-
ble T are clear from the context. In the above de�nition for
�(A) such that �(A) = true (case 1), the second condition
1(b) states that an explanation in the collection forms an
instance of an r.h.s. of a clause C whose head uni�es with
A. The �rst condition ensures that all atoms in an expla-
nation have a truth assignment of true. When �(A) = false
(case 2), the two conditions 2(a) and 2(b) ensure that for
every clause C whose head uni�es with A (under substitu-
tion �), there is a literal Bk on the r.h.s. of C such that
Bk� has truth assignment false, and every earlier literal in
C has truth assignment true. The restriction of L to be the
smallest such set ensures that L contains only those Bk�
that are speci�ed by condition 2(b).
From De�nition 2, and the soundness of tabled resolution,

it follows that if A is used in resolution then �(A) coincides
with the truth values of all atoms in the sets in �(A).

Theorem 3 (Soundness of �). Let P be a program
and T the tables after resolution of some query to P . Then
8A �(A) 2 ftrue; falseg =) 8 L 2 �(A); B 2 L and
ground substitutions �; B� 2M(P) () A� 2M(P).

Observe that, for an atom A, the di�erent sets in the
collection �(A) represent di�erent consistent explanations
for the truth or falsehood of A. For instance, consider the
programs in Figure 3(a) and the corresponding �'s in Fig-
ure 4(a). That �(p) contains fqg means that the truth of q
alone is suÆcient to (locally) explain the truth of p. In con-
trast, for the program in Figure 3(b), �(q) contains fp; rg
which indicates that to explain the falsehood of q, one needs
to explain the falsehoods of both fpg and frg. In this sense,
one can view the \set of sets" representation of locally con-
sistent explanations as an encoding of the dependencies in
disjunctive normal form.
An answer A is explained by answers fB1;B2; : : : ;Bkg

in �(A) and then (recursively) explaining each Bi. The ex-
planation can be captured by a graph, whose edges are de-
termined by locally consistent explanations. When tabled
resolution �nds that an answer A has �(A) = true, then

p

#
q

#
fact

p
#
q

. &
ancestor r

#
fail

(a) (b)

Figure 5: Justi�cation of p evaluated w.r.t. pro-
grams in Figures 3(a) and (b), respectively

clearly there is a �nite sequence of locally consistent expla-
nations that lead to fact (i.e. an atom B such that fg 2 �(B)
and �(B) = true). We mark such a conclusion by using a
special node labeled `fact'.
Note that not all sequences of locally consistent explana-

tions may be �nite, even for A such that �(A) = true. For
instance, consider the explanation sequences for query p over
program in Figure 3(a). There is an in�nite sequence since
fpg is in �(p). However, such cycles represent \unfounded"
proof paths and hence do not explain why �(p) = true.
Hence, we develop a stronger characterization of what con-
stitutes a justi�cation. Before formally de�ning this notion,
we develop a similar intuition for justi�cation of false liter-
als. For a goal A with �(A) = false, there are two distinct
ways in which tabled resolution reaches this conclusion:
1. there are no clause heads that can unify with the given
goal A: i.e., fg 2 �(A).
2. the goal A depends on itself, without a base case.
We distinguish between these two scenarios by marking the
�rst node as `fail' and the second as `ancestor'.
In summary, we do not use cyclic explanations to justify a

true literal. In contrast, cyclic explanations describe in�nite
proof paths and can be used to justify a false literal. Instead
of explicitly representing these cycles, however, we choose to
keep the justi�cation as an acyclic graph. Formally:

Definition 4 (Justification). A justi�cation for an
atom A with respect to program P and table T , denoted by
J (A;P; T) is a directed acyclic graphG = (V;E) with vertex
labels chosen from T [ffact;fail;ancestorg such that:

1. G is rooted at A, and is connected

2. (B1;fact) 2 E () fg 2 �(B1) ^ �(B1) = true

3. (B1;fail) 2 E () fg 2 �(B1) ^ �(B1) = false

4. (B1;ancestor) 2 E () �(B1) = false^�(B1) = fLg
^ 9 B2 2 L s.t. (B2;B1) 2 E

� _ B2 = B1

5. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = false ()
�(B1) = fLg ^ B2 2 L ^ (B2;B1) 62 E

�

6. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = true =)
9L 2 �(B1) s.t. B2 2 L ^ 8B0 2 L (B0;B1) 62 E�

7. B1 2 V ^ �(B1) = true =) 9 unique L 2 �(B1) s.t.
8B2 2 L (B1;B2) 2 E ^B2 2 T ^ (B2; B1) 62 E

�

The above de�nition uses two sets of conditions for adding
edges from a vertex in the justi�cation graph. The �rst

set is based on �'s, while the second set speci�es the global
constraint that an edge can be added only when no cycles are
created. In the above, rule 1 ensures that only information
relevant to A, the answer being justi�ed, is present in the
graph. Rules 2 & 3 mark the end (leaf) states of derivations.
Rules 4 & 5 ensures that the graph stays acyclic, while still
containing information about cyclic dependencies between
failed answers. Rules 6 & 7 select, among the di�erent sets
in �(B1), one that does not contain an ancestor to B1.
The justi�cation of the truth values of pw.r.t. programs in

Figures 3(a) and (b) are given in Figures 5(a) and (b). Note
that the selection of a single set out of �(B1) for construc-
tion means that the justi�cation is an and-graph. Hence a
justi�cation provides one evidence for the truth or falsehood
of a literal, even though the tabled evaluation may have ex-
plored/provided many more evidences. In the following, we
show the \suÆciency" of a justi�cation: that it contains
enough information to reconstruct a SLD derivation.

2.2 Justification and SLD resolution
We now investigate the relationship between justi�cation

of an atom A in program P and the SLD tree(s) of A in P .
For simplicity of exposition, we consider only propositional
programs. Extension of our results to non-propositional pro-
grams is straightforward. Let P be a program, A 2 HB(P)
and T the table created by evaluating A in P . Our aim is
to show that the justi�cation J (A;P; T) contains suÆcient
evidence for showing truth/falsehood of A in P .
Suppose A 2M(P). Recall that A 2M(P) i� there exists

a successful SLD derivation of A in program P . Then the
justi�cation J (A;P;T) is a directed acyclic graph whose:
(i) nodes are labeled with ground atoms, (ii) root is labeled
with A, (iii) leaves are labeled with fact and (iv) the out-
going arcs of a node denote the application of a clause in
P . Thus, a SLD derivation of A in P can be obtained by
linearizing the justi�cation graph into a sequence of ground
goals (a goal is a conjunction of atoms). Formally:

Lemma 5. Let P be a program, A 2 M(P) and JA a
justi�cation of A in P . Then there exists a successful SLD
derivation of A in P which can be constructed from JA.

Proof Sketch: We construct the SLD derivation l(JA)
where l, the linearization operator is de�ned as follows. Let
G be a directed acyclic graph and let the root of G be A.
Let the children of A in G be B1; : : : ;Bn and the graphs
rooted at B1; : : : ;Bn be G1; : : : ;Gn. Then

l(G) = A! (l(G1) ^ (B2 ^ : : : ^Bn))! : : :! l(Gn)

where for any sequence of goals �1; : : : ; �k and goal � we
have (�1; : : : ; �k) ^ � = �1 ^ �; : : : ; �k ^ � 2

Now suppose A 62M(P). Recall that A 62M(P) i� there
exists a failed SLD tree of A in P , i.e., a SLD tree with
only �nitely failed or in�nite branches. Recall that in a
justi�cation, a false atom is explained by one false body
atom in each of its clause instances. On the other hand, in
a SLD tree a false atom is explained with the clause bodies
of the applicable clauses. Given a justi�cation JA of atom A
in program P , we show the existence a failed SLD tree TA of
A which uses the same evidence as JA. Let the children of
A in justi�cation JA be B1; : : : ;Bn. Then for all 1 � i � n
atom Bi appears in goal �i where �i is the body of one
of the clauses of A. In the SLD tree TA the children of
A are �1; : : : ; �n and we select the atom Bi in goal �i for
resolution (1 � i � n). Continuing in this way, we can

construct a SLD tree TA such that for every �nitely failed
branch of TA the sequence of selected atoms is a root-to-leaf
path in JA and for every in�nite path of TA, the longest
non-repeating pre�x of the sequence of selected atoms is a
root-to-leaf path in JA. Formally:

Lemma 6. Let P be a program, A 62M(P) and JA a jus-
ti�cation of A in P . Then there exists a failed SLD tree TA
of A in P s.t.
(i) for every �nitely failed branch in TA: (A;�1 ^ A1 ^
�01; : : : ; �n^An^�

0
n; fail) s.t. the sequence of selected atoms

is A;A1; : : : ;An, there exists a root-to-leaf path in JA:
(A;A1; : : : ;An;fail).
(ii) for every in�nite branch in TA: (A;�1^A1^�

0
1; : : : ; �n^

An ^ �0n; �n+1 ^ Ai ^ �0n+1; : : :) s.t. 1 � i � n, the se-
quence of selected atoms is A;A1; : : : ;An; Ai; : : : and the
atoms A;A1; : : : ; An are distinct, there exists a root-to-leaf
path (A;A1; : : : ;An;ancestor) in JA.

The connection between justi�cation and SLD resolution is
formally summarized in the following theorem. This theo-
rem establishes that justi�cation contains suÆcient evidence
to explain the truth/falsehood of an atom.

Theorem 7 (Sufficiency of Justification). Let P
be a program, A 2 HB(P) and JA a justi�cation of A. If
A 2M(P) then a successful SLD derivation of A in P can
be constructed from JA. If A 62M(P) then the selected atom
sequence of every path of a failed SLD tree can be constructed
from JA.

2.3 An Algorithm for Justification
Note that edges to ancestor are used to mark cyclic de-

pendencies between failed answers. There is usually a choice
of which dependencies to leave as edges in a justi�cation and
which to mark as ancestor. The optimal solution to this
problem is NP-complete, by reduction from Feedback Vertex
Set [15]. However, optimality itself is relatively unimportant
in this context: the proof search done by the underlying
evaluation engine has a far greater impact on the size of the
justi�cation graph. So we present a linear-time algorithm
to construct a justi�cation, based on depth-�rst-search that
heuristically eliminates \back edges" which contribute to cy-
cles. We describe the algorithm below.
The justi�cation algorithm is given in Figure 6. The al-

gorithm treats the given program P and tables T as global
read-only data structures. It monotonically adds entries to
two other global structures: the justi�cation graph itself (V :
set of vertices, E: set of edges), and a marking (Done) on
the set of vertices in the graph. The initial call to Justify is
made with an empty justi�cation graph and Done initialized
to the empty set.
The recursive algorithm builds the justi�cation graph by

traversing it depth-�rst even as it is constructed. At any
point, note that V is the set of \visited" vertices, and Done
is the set of vertices whose descendents have been completely
explored. The algorithm maintains an important invariant
that for any call, the parameter A is either unvisited, or is
already in Done. This invariant implies that (i) the algo-
rithm terminates, and (ii) no cycles are created in the jus-
ti�cation graph. This invariant can be easily established by
noting that the set V �Done contains exactly those vertices
B that are ancestors to the current vertex A. Moreover, if
every set in �(A) contains a vertex that is an ancestor of
A, then A depends recursively on itself without a base case.

Hence, �(A) = false. This property is used by the algorithm
for placing edges to ancestor.
We de�ne k�(A)k=

P
L2�(A) jLj. Since k�(A)k is bounded

by the size of tables for any A, and there may be at most
k�(A)k outgoing edges from vertex A, the worst-case com-
plexity of the algorithm is O(jT j2). In fact, any justi�cation
algorithm must be O(jT j2) in the worst case as demonstrated
by the example program:

Pworst = fpi :� pj j 1 � i; j � ng

In this program, the justi�cation of any pi is quadratic in the
size of the tables generated by evaluating pi. It should, how-
ever, be noted that �A2T k�(A)k, which is a bound on the
number of edges in a justi�cation graph, is in turn bounded
by the number of resolution steps needed. Hence, justi�ca-
tion time is always bounded by time taken for resolution.

2.3.0.3 Example:.
For the justi�cation graph shown in Figure 2(c), the root

node is nbisim(p;q). �(nbisim(p;q)) = ffnbisim(q;p)gg
Since there is no ancestor nbisim(q,p)we pick this explana-
tion and now recursively invoke Justify(nbisim(q,p)). By
using the �rst clause of nbisim we have �(nbisim(q;p)) =
fftrans(q;a;q1);forall(Y;trans(p;a;Y);nbisim(q1;Y))gg.
We recursively invoke Justify for both of these two true
atoms. These atoms are justi�ed by using predicate trans,
the transition relation for the automata of Figure 2(a).

2.4 Justification for Normal Logic Programs
The notion of justi�cation, as well as the algorithm we

have presented can be easily extended to normal logic pro-
grams evaluated under well-founded semantics [16].
First of all, even for strati�ed programs, we need to con-

sider negative as well as positive literals when de�ning �'s
and justi�cation. We denote negative literals by not(A)
where A is the corresponding positive literal. Truth val-
ues for negative literals is de�ned as �(not(A)) = :�(A).
We de�ne �'s for positive literals as given in De�nition 2;
for negative literals, we de�ne �(not(A)) to be ffAgg: i.e.,
the truth/falsehood of not(A) will be explained in terms of
the falsehood/truth of A. The current statement of The-
orem 3 will remain valid for positive literals provided we
consider the perfect model M̂ (P) instead of the least Her-
brand model M(P); the theorem can be readily extended
to accommodate negative literals. The de�nition of justi�-
cation can be extended by considering not(A) as potential
label for vertices if A 2 T .
Recall that well-founded semantics (WFS) is de�ned over

a three-valued model, where each literal is assigned a truth
value of true, false or unde�ned. SLG resolution [6] and
its implementations represent literals with unde�ned values
as conditional answers and true values as unconditional an-
swers. Hence, we can split the answer table TA into a set
of true (TAt) and unde�ned (TAu) answers. We can now
extend De�nition 1 by setting �(A) = true if A 2 TAt
and �(A) = unde�ned if A 2 TAu . The de�nitions of
�(A) 2 ffalse;uncomputedg remain unchanged.
The most substantial extension to accommodate normal

programs will be the addition of locally consistent explana-
tions for unde�ned literals. To explain why a literal, say A,
is unde�ned under WFS, one needs to show that the for each
clause C in the program whose head uni�es with A, either
(i) the body of C contains a false literal, or (ii) all literals in

algorithm Justify(A : atom)
(* Global: P : program, (V;E): Justi�cation, Done � V *)

if (A 62 V) then (* A has not yet been justi�ed *)
set V := V [fAg
let �A 2 �(A) such that (�A \ V) � Done

if (�A exists) then
if (�A = fg) then

if (�(A) = true) then
set E := E [(A; fact)

else
set E := E [(A; fail)

else (* �A 6= fg *)
for each B 2 �A do

set E := E [(A; Justify(B))
else (* No such �A =) every set in �(A) contains an ancestor of A *)

set E := E [(A; ancestor)
let f�0

A
g = �(A) (* note that �(A) will be false *)

for each B 2 (L0A � (V �Done)) do
set E := E [(A; Justify(B))

set Done := Done [fAg
return A

else (* A has been justi�ed *)
return A

Figure 6: Justi�cation algorithm

the body of C are true or unde�ned. Moreover, there must
be at least one clause of type (ii). Hence the evidence for A's
unde�nedness will be �(A) = fLg provided L = �f [�tu,
where �f is the set of all false literals from clauses of type
(i), and �tu is the set of all literals from clauses of type (ii).
Observe that the �'s of false and unde�ned literals are sin-

gleton sets: there is only one way to justify them. This ob-
servation immediately yields the following simple modi�ca-
tion to the de�nition of justi�cation to accommodate normal
programs: in rules 4 and 5 of De�nition 4 (page) change
the test �(B1) = false to �(B1) 2 ffalse;unde�nedg. In
e�ect, by separating local concerns of explanation to global
concerns of justi�cation, we have been able to accommodate
normal programs by suitably extending the (local) notion of
� alone. Moreover, note that Algorithm Justify (Figure 6)
does not explicitly test for the truth assignment of a lit-
eral for adding edges speci�ed by rules 4{7 of De�nition 4
and hence needs no modi�cation for handling normal logic
programs.

2.5 Justifying in the Presence of Builtins
We have thus far assumed that all predicate symbols in a

program are tabled. Many application programs contain a
mixture of tabled and non-tabled predicates. Justi�cation
of non-tabled predicates presents two immediate problems.
First, justi�cation introduces unacceptable overheads since
the only way to determine the truth value of a goal (e.g.,
to compute �) is to reevaluate the goal. Second, non-tabled
predicates often involve non-logical constructs for which jus-
ti�cation may be diÆcult or even impossible. We use the
following strategy for justifying programs that contain non-
tabled predicates. We �rst ensure that non-tabled predicates
are invoked from existing tabled predicates via new wrapper
predicates, which are also tabled. We then provide justi�ca-
tion rules to reason about the truth value of these wrapper
predicates. In the simplest case, the non-tabled predicates
do not in turn invoke tabled predicates, and the justi�cation
rules will treat the corresponding wrapper predicates as a
database of facts. In more complex cases, the justi�cation

rules will hide the procedural components of the non-tabled
predicates and give a logical view of its functionality.
For example, consider the forall predicate in the non-

bisimulation checking program in Figure 1. This is a user-
introduced wrapper predicate which is tabled. Logically
forall(X,G,H) represents the �rst order formula 8X G)
H. Note that forall(X,G,H) is equivalent to not(g(X),
not(h(X))), where g(X) and h(X) are de�ned in terms of
G and H respectively. Since the equivalent form can intro-
duce loops through negation, the underlying implementa-
tion of forall will typically use non-logical Prolog builtins
such as findall. The use of non-tabled predicates is typi-
cally motivated by such pragmatic considerations. However,
note that since justi�cation is done after query evaluation,
we can consider the logical meaning of these builtins in-
stead of their implementation, at least from the point of
view of justi�cation. For instance, we can choose to justify
forall(X,G,H) in terms of not(g(X), not(h(X))). The jus-
ti�cation rules| the mapping of \nonlogical" predicates to
their justi�able counterparts| are themselves encoded as a
set of Horn clauses.
The wrapper-based scheme for justifying non-tabled pred-

icates works well as long as these predicates do not require
any debugging. This assumption clearly holds for builtins.
For programs containing user de�ned tabled and non-tabled
predicates, we need to combine justi�cation of tabled pred-
icates with trace-based debugging of non-tabled predicates.
Such an integration is a topic of future research.

3. EXTRACTING HIGH-LEVEL PROOFS
So far, we have shown how we can encode a proof sys-

tem (Figure 1(a)) as a tabled logic program (Figure 1(b)),
dispense proof obligations in the proof system by query eval-
uation of the logic program (Figure 2(b)) and construct the
justi�cation graph (Figure 2(c)) from the tables constructed
during query evaluation. The extraction of tableau proofs
(Figure 2(d)) from justi�cation graph is now shown.
For our formalization we de�ne a proof system to be a set

(Logic Program, Query)

Tables

Proof Obligation)(Proof System, π

ϕ

evaluation justification

η

Evidence tree

Justification graph
γ

Figure 7: An architecture for justi�cation

of proof rules; each consists of a set of premises, a side condi-

tion and a conclusion. We denote a rule by 1; : : : ; k
S
�!

where 1; : : : ; k denote the premises, S the side condition
and the conclusion of the rule. Axioms in our proof sys-
tem are denoted as fact �! . We assume that the side
condition of a proof rule is locally testable. We now de�ne
the notion of an evidence tree for a proof obligation in a
proof system as follows:

Definition 8 (Evidence Tree). Evidence tree for an
obligationO in a proof system R, denoted �(O;R), is a �nite
tree T s.t. root of T is O, and for any node in T :

� R ` : Let 1; : : : ; k be the children of . Then

8i; 1 � i � k R ` i, and 1; : : : ; k
S
�! is an

instance of a rule in R whose side condition S is true.

� R 6` : Let 1; : : : ; k be the children of . Then
8i; 1 � i � k R 6` i, and every instance of a rule
in R whose side condition is true and conclusion is
will have a premise 0 s.t. either 0 2 f 1; : : : ; kg
or 0 appears as an ancestor of in T . If no such
f 1; : : : ; kg exists then node has a child \fail".

The conditions in the above de�nition of an evidence tree
are analogous to those imposed in the de�nition of locally
consistent explanation (De�nition 2). Furthermore, as in
the case of justi�cation (De�nition 4), our notion of evidence
also imposes a �niteness restriction. However, note that we
do not retain any explicit indication of cycles in the evidence
tree whereas in the justi�cation graph cycles are kept track
of by maintaining leaves labeled ancestor.
An architecture for justi�cation shown in Figure 7, is an

overview of the interaction between a proof system and its
logic program encoding. We encode the proof rules R and
a proof obligation O as a logic program P and a query Q
respectively using an encoding function '. We point out
that logic programs encoding tableau systems (such as the
ones used in model checking [4, 33]) are strati�ed in gen-
eral. Hence, we assume that the encoding function ' maps
a proof system to a (dynamically) strati�ed logic program
[26]. The semantics of a strati�ed logic program P is given

by its perfect model M̂(P) which is a natural extension of
the least Herbrand model semantics for de�nite programs.
Moreover, the perfect model of any strati�ed program coin-
cides with its unique stable model [17] as well as its 2-valued
well-founded model [16].

Definition 9 (Encoding Function). An encoding
function ' is a mapping from (Proof Obligation � Proof

System) to (Query � Strati�ed Logic Program) such that
for any proof obligation O and proof system R

'(O;R) = (Q; P)) (R ` O , Q 2 M̂(P))

In our non-bisimilarity example, Figure 1 shows the map-
ping ' of the proof system to its logic program encoding.
The non-bisimilarity relation 6� is encoded as the predicate
nbisim. We use other predicates such as trans and forall
to encode the side conditions of the proof rules.
Once the proof obligation and proof system are encoded

as a query and a logic program, we construct the justi�-
cation graph of the query. This is shown as function in
Figure 7 and is computed by tabled evaluation followed by
justi�cation. Finally, we need to map the justi�cation graph
to an evidence tree. This is done via the extraction function
� (see Figure 7). Our de�nition of � is dependent on the
encoding function ' since � in some sense undoes the e�ect
of '. Speci�cally, the e�ect of ' is to map one application
of a proof rule in an evidence tree to several logic program
derivation steps. On the other hand, � maps several steps in
the justi�cation graph to a single node in the evidence tree.
We assume '(O;R) = ('l(O); 'r(R)) = (Q; P). Thus, 'l

is a mapping from proof obligations to ground atoms and 'r
is a mapping from a proof system to a logic program. We
further assume that 'r maps each proof rule to a unique
set of program clauses. Then there exists a partial function
'�1r from program clauses to proof rules s.t. if 'r(�) =
fC1; : : : ; Ckg for some rule � and clauses fC1; : : : ; Ckg then
'�1r (Ci) = � for all 1 � i � k. Given a justi�cation graph J ,
in order to construct an evidence tree we need to locate the
use of those program clauses for which '�1r is de�ned. We
then replace the use of such a program clause C with the
use of the corresponding proof rule '�1r (C). By repeatedly
applying '�1r to justi�cation graph J starting from the root
of J , we obtain �(J). Formally, we de�ne � as follows:

Definition 10 (Extraction Function). Let R be a
given proof system and 'r(R) = P . For any proof obligation
O, let JO denote the justi�cation of query 'l(O) in program
P . Then �(JO) is a tree constructed as follows:

1. the root of �(JO) is O.

2. (a) If 'l(O) 2 M̂(P), let the children of 'l(O) in JO
be obtained by applying program clause C 2 P . Let
O1; : : : ;Ok be the premises in the corresponding proof
rule '�1r (C). Then �(JO1

); : : : ; �(JOk) are the sub-
trees of O in JO .
(b)if 'l(O) 62 M̂(P), let the children of 'l(O) in JO be
body literals from clause instances fC1�1; : : : ; Ck�kg.
For all 1 � i � k, let Oi be a premise of '�1r (Ci)�i
s.t. 'l(Oi) 62 M̂(P). Then the subtrees of O in JO are
�(JO1

); : : : ; �(JOk).

As shown in Figure 7, we construct the evidence of a proof
obligation in a proof system by applying the following steps
in sequence: (a) apply the encoding function ' to map the
proof obligation and the proof system to a query and a logic
program (b) apply function to compute the justi�cation
of the query in the logic program (c) apply the extraction
function � to the justi�cation to obtain the evidence.

Theorem 11. For any proof system R and proof obliga-
tion O, �(('(O;R))) is an evidence tree.

The proof is by induction on size of the computed evidence.
(Details are skipped.)
Let us revisit the non-bisimilarity example. '�1r maps

the �rst clause of nbisim to proof rule (1) and the second
clause of nbisim to proof rule (2) of Figure 1(a). Now,
let us consider the justi�cation constructed for the query
nbisim(p, q) given in Figure 2(c). The �rst step in the
justi�cation of nbisim(p,q) corresponds to an application
of the second clause for nbisim. Using '�1r , we map it to an
application of proof rule (2). Applying proof rule (2) to the
proof obligation p 6� q we obtain the proof obligation q 6� p.
Now, the justi�cation of nbisim(q,p) is done by applying
the �rst clause of nbisim. Again using '�1r we map it to an
application of proof rule (1). Applying proof rule (1) on q 6�
p we obtain no new obligations therefore our evidence tree
construction is completed. The constructed evidence tree is
shown in Figure 2(d).

4. APPLICATION TO MODEL CHECKING
Model checking [8] is an automatic technique for verify-

ing if a �nite-state concurrent system speci�cation satis-
�es a property expressed as a temporal logic formula. In
[27] we had demonstrated the feasibility of using logic pro-
gramming for building exible and eÆcient model check-
ers. In particular, using the XSB tabled logic program-
ming system we developed XMC, a local model checker for
a CCS-like value-passing system speci�cation language and
the modal mu-calculus temporal logic. XMC is written un-
der 200 lines of tabled Prolog code that directly encodes
the semantics of CCS and modal mu-calculus speci�ed as
tableau rules. Despite the high-level nature of XMC's imple-
mentation, its performance is comparable to that of highly
optimized model checkers such as Spin [19] and Mur' [11] on
examples selected from the benchmark suite in the standard
Spin distribution.
Model checking in XMC corresponds to evaluating a top-

level query that denotes the temporal property of interest.
The query succeeds whenever the system satis�es the prop-
erty. To explain the success or failure of the query we use the
XMC justi�er, developed based on the techniques described
in this paper.1 In this section we sketch the application
of justi�cation to logic programming based model checking.
We also provide experimental evidence of the e�ectiveness
of justi�cation in the setting of model checking.
For simplicity of exposition we will use CTL, a branch-

ing time temporal logic [13] to illustrate the application of
justi�cation to model checking. As is usual in CTL model
checking we will assume that the system is speci�ed as a
Kripke structure [22], which is a 3-tuple (S; R;L) with S
denoting the set of states, R the transition relation and L
the valuation function that assigns true=false values to the
atomic propositions associated with the states. For ease of
understanding the material in this section we briey review
the essential aspects of CTL model checking. (See [7] for
an excellent introduction to this topic.)
Conceptually CTL formulas can be viewed as describing

properties over computation trees that are formed by des-
ignating a state in the Kripke structure as the initial state
and then unfolding the structure into an in�nite tree. CTL
formulas are used to specify safety and liveness properties

1The XMC system with the justi�er is freely available from
http://www.cs.sunysb.edu/�lmc.

:- table models/2.

models(S, and(F1,F2)) :- models(S, F1),
models(S, F2).

models(S, ef(F)) :- models(S, F).
models(S, ef(F)) :- trans(S, T), models(T, ef(F)).
models(S, af(F)) :- models(S, F).
models(S, af(F)) :- forall(T, trans(S,T),

models(T, af(F))).
models(S, ag(F)) :- negate(F, NF),

tnot(models(S, ef(NF))).
...

Figure 8: CTL model checker as a logic program

of concurrent systems. They are built from atomic proposi-
tions, ^;_;: and the temporal connectives such as EF,AG,
AF, etc. The path quanti�ersA and E describe the branch-
ing structure in the computation tree. Speci�cally, A is used
in a particular state to specify that all of the paths starting
at that state have some property while E speci�es that the
property holds for some path. The temporal operators de-
scribe properties of a path through the tree. For example, F
(\eventually in the future") operator asserts that a property
will hold at some state on the path whereas the G (\always
globally") operator speci�es that a property holds at every
state on the path.
Figure 8 is a fragment of a CTL model checker encoded

as a tabled logic program. It is a straightforward encod-
ing of the semantics of CTL. Note that models(S, F) is
true whenever S j= F, i.e. S satis�es the temporal prop-
erty F. The trans/2 predicate encodes the transition rela-
tion of the Kripke structure. The tnot/1 is the negation
operation for tabled predicates. The forall/3 is a user-
de�ned predicate for evaluating universally quanti�ed �rst-
order formulae. Thus forall(T, trans(S, T), models(T,

af(F))) denotes the �rst-order formula 8T trans(S;T))
models(T;af(F)). To test if a state s satis�es a formula f,
one simply asks the query :- models(s,f). The answer ta-
bles created during query evaluation are post-processed by
the justi�er to explain the yes/no answer to the query.
Figure 9 illustrates the justi�cation of the CTL formula

AGp that asserts that in every future state along all paths p
always holds. This formula is false for the Kripke structure
in Figure 9(a) whereas it is true for the one in Figure 9(c).
The corresponding justi�cation for both these cases, derived
using the techniques in Section 2, is shown in Figure 9(b)
and Figure 9(d) respectively. Using the techniques in Sec-
tion 3 one can transform the above justi�cation done at the
level of the logic program into one in terms of the tableau
rules for the CTL model checker. Details are omitted.

4.1 Justification in Model Checking
The encoding of the CTL model checker in Figure 8 cen-

ters around two predicates: trans, encoding the transitional
semantics of Kripke structures, and models, de�ning when
a state in the Kripke structure models a given CTL for-
mula. By appropriately rede�ning the trans and models

predicates logic programming based model checkers for other
system description languages and other temporal logics can
be readily obtained. In fact the encoding of the CTL model
checker was obtained in this fashion from our XMC model
checker that is designed for value passing CCS and the modal
mu-calculus temporal logic. More recently, we retargeted
XMC to linear temporal logic (LTL) by rede�ning models

in accordance with the proof system given in [3]. The larger

p

p

p

s0

s1
s3

s2

models(s0, ag(p))

tnot(models(s0, ef(not(p))))

models(s0, ef(not(p))

trans(s0,s1) models(s1, ef(not(p)))

models(s3, not(p))

fact

trans(s1,s3) models(s3, ef(not(p)))

(a) (b)

p

p

p

s0

s1

s2

models(s0, ag(p))

tnot(models(s0, ef(not(p)))

models(s0, ef(not(p))

ancestor

models(s2, ef(not(p))) models(s1, ef(not(p)))

negate(p, not(p))

fact

ancestor

(c) (d)

Figure 9: Example to illustrate justi�cation of model checking queries

implication of the retargeting exercise is that since justi�-
cation is a generic technique for explaining the results of
query evaluation one can similarly generate justi�ers for all
of these retargeted model checkers.
Note that model checkers for both linear time tempo-

ral logic (e.g. SPIN [19]) as well as branching time (e.g.
SMV [22]) present a counterexample to the user whenever
s 6j= f. But no additional feedback is given to the user for
the other case when s j= f. Justi�cation di�ers from them
in two respects. First, it is not restricted to any single tem-
poral logic. It encompasses both linear and branching time
logic. Secondly, it provides evidence not only when a formula
is false but also when it is true. Justi�cation goes beyond
merely giving a yes/no answer to the model checking ques-
tion. It generalizes the traditional notion of counterexample
generation in model checking to evidence generation.

4.2 Experimental Results
We have built a justi�er for our XMC model checker. It

has been in operation for several months now. We have
found it to be useful for quickly spotting bugs in speci�ca-
tions.
In Table 1 we present experimental results contrasting

the sizes of the run-time trace produced by a trace-based
debugger and the evidence produced by the justi�er.2 For
the run-time trace we measure the size of the SLG forest
created during query evaluation in the XSB tabled logic pro-

2The sizes shown were collected by suppressing the explana-
tion of certain predicates not relevant for explanation of the
models query from both the justi�er as well as the tracer.

System Formula SLG Forest Justi�cation
Size Size

meta-lock(2,1) mutex 6400 890
meta-lock(2,2) mutex 103K 14K
i-protocol(1) livelock 83K 2K
i-protocol(2) livelock 602K 13K

Table 1: Experimental Data

gramming system [34]; for justi�cation we measure the size
of the justi�cation DAG. For illustration we use two real-
life protocols: the GNU UUCP i-protocol [12] and the Java
meta-locking protocol [1]. The i-protocol is an optimized
sliding window protocol for �le transfers over serial lines
and is part of the GNU UUCP protocol stack. The Java
meta-locking protocol is an eÆcient protocol, developed by
Sun Microsystems, for synchronizing access to objects by
threads. The k in i-protocol(k) denotes window size k and
the i; j pair in Metalock(i,j) denotes i threads and j objects.
In i-protocol we show the results of �nding a livelock which
requires traversing only a fragment of the state space of the
concurrent system. In meta-locking protocol, we show the
proof size for the mutual exclusion property which requires
traversing the entire state space.
Note that whenever the formula is true the justi�er con-

structs the evidence based on just the path that succeeds
whereas the SLG forest includes all the failing paths. Thus
the di�erence in sizes between the SLG forest and justi�ca-
tion is more dramatic in i-protocol (with livelock present)

where the formula is true than in Metalock where the for-
mula is false. In cases where the formula is false the justi�er
does not use the true literals for evidence thereby contribut-
ing to the di�erence between the two sizes. It is noteworthy
to observe that the di�erence between the two sizes becomes
even more pronounced as the system size increases. This is
because as the system size grows so does the number of both
failing paths as well as literals that succeed.
Justi�er provides succinct evidence that makes it rela-

tively easy to comprehend the results of the model checker.
Since it is constructed as a post-processing step the justi-
�cation DAG is built in its entirety. Hence, by providing
mechanisms to navigate the DAG on-demand the justi�er
provides additional opportunities for the user to inspect only
interesting parts of the justi�cation DAG. Such mechanisms
can include existing techniques from traditional debugging
such as setting break points, leap, etc. The utility of these
techniques has been amply borne out with our own experi-
ence in using the XMC justi�er whose implementation has
incorporated some of them.

5. DISCUSSIONS
We proposed the concept of justi�cation to explain the

success/failure of a query to a logic program. The justi�er
constructs succinct evidence by post-processing the tables
created during query evaluation. We showed how to ele-
vate justi�cation of logic programs to tableau systems and
provided evidence of its utility in model checking.
The concept of justi�cation is also useful in other ap-

plications. Below we discuss its role in programming. In
the evaluation and justi�cation of tableau systems we can
clearly discern two distinct albeit separate phases { a query
evaluation phase where we search for the existence of a suc-
cessful tableau and a justi�cation phase where we construct
evidence based on the outcome of the search. Doing an
existence search followed by a construction process o�ers a
simple yet powerful computing paradigm.
As an example, consider the problem of constructing a

parse tree from context free grammars (CFG). It well known
how to build De�nite Clause Grammar (DCG) parsers for
recognizing CFGs in cubic time (assuming the grammar is
in Chomsky Normal Form). But it is rather diÆcult to con-
struct a parse tree eÆciently without employing complex
encoding tricks [32]. We can readily cast the parse tree
construction of a given string as one of searching for the
existence of a parse tree followed by constructing one if it
exists. In the �rst step, the CFG is encoded as a DCG in
a simple and straightforward manner. Testing if a string is
parseable then corresponds to query evaluation of this DCG
encoding in a tabled logic programming system. If the string
is parseable, then in the second step we construct the evi-
dence of the parse by invoking the justi�er. This results in
the parse tree, which is constructed in linear time. Indeed
we have used our justi�er tool for eÆcient construction of
parse trees for strings in context free grammars encoded as
DCG in the XSB tabled logic programming system [34].
Thus the search and construct paradigm provides an el-

egant programming abstraction that can bring conceptual
simplicity to the formulation and evaluation of certain pro-
gramming tasks. The justi�er makes such a programming
abstraction feasible, by providing an eÆcient implementa-
tion scheme for the abstraction.

6. ACKNOWLEDGMENTS:
This work was partially supported by NSF grants CCR-

9711386, CCR-9876242 and EIA-9705998. We thank David
S. Warren for a preliminary implementation of a justi�er for
propositional programs, and for valuable discussions during
the design of the XMC justi�er.

7. REFERENCES
[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel,

Y. S. Ramakrishna, and D. White. An eÆcient
meta-lock for implementing ubiquitous
synchronization. In Proceedings of OOPSLA, 1999.

[2] T. Arora, R. Ramakrishnan, W.G. Roth, P. Seshadri,
and D. Srivastava. Explaining program executions in
deductive systems. In Proceedings of DOOD, LNCS
760, 1993.

[3] G. S. Bhat, R. Cleaveland, and O. Grumberg. EÆcient
on-the-y model checking for CTL�. In LICS'95,
pages 388{397, San Diego, July 1995. IEEE Computer
Society Press.

[4] J. C. Brad�eld. Verifying Temporal Properties of
Systems. Birkhauser, 1992.

[5] M. Carro, L. Gomez, and M. Hermenegildo. Some
paradigms for visualizing parallel execution of logic
programs. In Intl. Conf. on Logic Programming, 1993.

[6] W. Chen and D.S. Warren. Tabled evaluation with
delaying for general logic programs. Journal of ACM,
43(1):20{74, 1996.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[8] E.M. Clarke, E.A. Emerson, and A.P. Sistla.
Automatic veri�cation of �nite-state concurrent
systems using temporal logic speci�cations. ACM
Transactions on Programming Languages and
Systems, 8(2), 1986.

[9] Subrata K. Das. Deductive Databases and Logic
Programming. Addison-Wesley, 1992.

[10] T. Diaz and E. Lusk. A graphical tool for observing
the behavior of parallel logic programs. In Symposium
on Logic Programming, 1987.

[11] D. L. Dill. The Mur' veri�cation system. In R. Alur
and T. A. Henzinger, editors, Computer Aided
Veri�cation (CAV '96), volume 1102 of Lecture Notes
in Computer Science, pages 390{393, New Brunswick,
New Jersey, July 1996. Springer-Verlag.

[12] Y. Dong, X. Du, Y. S. Ramakrishna, C. R.
Ramakrishnan, I.V. Ramakrishnan, S. A. Smolka,
O. Sokolsky, E. W. Stark, and D. S. Warren. Fighting
livelock in the i-Protocol: A comparative study of
veri�cation tools. In TACAS, volume LNCS 1579,
1999.

[13] E. A. Emerson. Temporal and Modal Logic - in
Handbook of Theoretical Computer Science: Volume
B, Formal Models and Semantics. North-Holland Pub.
Co./MIT Press, 1990.

[14] M. Fitting. Proof methods for modal and intuitionistic
logics. Reidel, 1983.

[15] M. Garey and D.S. Johnson. Computers and
Intractability. Freeman, 1979.

[16] A. Van Gelder, K.A. Ross, and J.S. Schlipf.
Unfounded sets and well-founded semantics for

general logic programs. Journal of the ACM,
38(3):620{650, 1991.

[17] M. Gelfond and V. Lifshitz. The stable model
semantics for logic programming. In International
Conference and Symposium on Logic Programming,
pages 1070{1080, 1988.

[18] M. Hermenegildo, G. Puebla, and F. Bueno. Using
Global Analysis, Partial Speci�cations, and an
Extensible Assertion Language for Program Validation
and Debugging, pages 161{192. 1999.

[19] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279{295,
May 1997.

[20] J.W. Lloyd. Declarative error diagnosis. New
Generation Computing, 5(2):133{154, 1987.

[21] S. Mallet and M. Ducasse. Generating deductive
database explanations. In Proceedings of ICLP, pages
154{168, 1999.

[22] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic, 1993.

[23] R. Milner. Communication and Concurrency.
International Series in Computer Science. Prentice
Hall, 1989.

[24] L. Naish, P.W. Dart, and J. Zobel. The NU-prolog
debugging environment. In ICLP, pages 521{536,
1989.

[25] Frank Pfenning. Logic Programming in the LF logical
framework, pages 149{181. Cambridge University
Press, 1991.

[26] T.C. Przymusinski. Every logic program has a natural
strati�cation and an iterated least �xed point model.
In Principles of DataBase Systems, pages 11{21, 1989.

[27] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V.
Ramakrishnan, S.A. Smolka, T. Swift, and D.S.
Warren. EÆcient model checking using tabled
resolution. In CAV, LNCS 1254, 1997.

[28] Ehud Y. Shapiro. Algorithmic program diagnosis. In
POPL, 1982.

[29] C.P. Stirling and D.J. Walker. Local model checking
in the modal mu-calculus. In Proceedings of
TAPSOFT, LNCS 351, pages 369{382, 1989.

[30] H. Tamaki and T. Sato. OLDT resolution with
tabulation. In International Conference on Logic
Programming, pages 84{98, 1986.

[31] R. Vaupel, E. Pontelli, and G. Gupta. Visualization of
and/or-parallel execution of logic programs. In Intl.
Conf. on Logic Programming, 1997.

[32] D.S. Warren. Programming in Tabled Prolog. Draft
Book : Available at
http://www.cs.sunysb.edu/~warren/xsbbook, 1999.

[33] G. Winskel. Model checking the modal � calculus. In
Proceedings of ICALP, 1989.

[34] XSB. The XSB logic programming system v2.2, 2000.
Available from http://xsb.sourceforge.net/.

