
Cache-Aware Timing Analysis of

Streaming Applications

Samarjit Chakraborty1 Tulika Mitra1 Abhik Roychoudhury1 Lothar Thiele2

1National University of Singapore
2Eidgenössische Technische Hochschule Zürich

{samarjit, tulika, abhik}@comp.nus.edu.sg, thiele@tik.ee.ethz.ch

Abstract

Of late, there has been a considerable interest in models, algorithms and method-
ologies specifically targeted towards designing hardware and software for streaming ap-
plications. Such applications process potentially infinite streams of audio/video data or
network packets and are found in a wide range of devices, starting from mobile phones
to set-top boxes. Given a streaming application and an architecture, the timing analysis
problem is to determine the timing properties of the processed data stream, given the
timing properties of the input stream. This problem arises while determining many
common performance metrics related to streaming applications and the mapping of
such applications onto hardware architectures. Such metrics include the maximum de-
lay experienced by any data item of the stream and the maximum backlog or the buffer
requirement to store the incoming stream. Most of the previous work related to esti-
mating or optimizing these metrics take a high-level view of the architecture and neglect
micro-architectural features such as caches. In this paper, we show that an accurate
estimation of these metrics, however, heavily relies on an appropriate modeling of the
processor micro-architecture. Towards this, we present a novel framework for cache-
aware timing analysis of stream processing applications. Our framework accurately
models the evolution of the instruction cache of the underlying processor as a stream
is processed, and the fact that the execution time involved in processing any data item
depends on all the previous data items occurring in the stream. The main contribution
of our method lies in its ability to seamlessly integrate program analysis techniques for
micro-architectural modeling with known analytical methods for analyzing streaming
applications which treat the arrival/service of event streams as mathematical functions.
This combination is powerful since it allows to model the code/cache-behavior of the
streaming application, as well as the manner in which it is triggered by event arrivals.
We employ our analysis method to a MPEG-2 encoder application and our experiments
indicate that detailed modeling of the cache behavior is efficient, scalable and leads
more accurate timing/buffer size estimates.

Keywords: Timing analysis, instruction cache, streaming applications.

1

1 Introduction

Stream processing applications are today widespread in several domains ranging from net-
worked hand-held devices playing streaming audio and video, to mobile phone base sta-
tions and network routers implementing complex packet processing functionality at high
line speeds. However, it is now increasingly being realized that conventional models, lan-
guages and design methodologies developed in the embedded systems domain are often
not well-suited for implementing and analyzing these applications since they do not ad-
equately exploit the notion of a “stream”. To address this shortcoming, recently there
has been a number of developments in the form of new “stream-centric” programming lan-
guages [40], compiler support [10], processor architectures [13, 34] and design methodologies
[20, 23, 27, 43].

1.1 Problem Description

In this paper, we follow this line of development and address the following problem. We are
given a block of code corresponding to an application which processes a stream of data items
or events (the arrival of a data item may constitute an event and henceforth we will only
refer to a stream of events). The events belonging to the stream are typed and the processing
of events of different types requires the execution of different, but partially overlapping parts
of the code. Given the arrival process (or timing properties) of an incoming stream, the
problem is to determine the timing properties of the processed stream. Since the execution
times of events depend on their types, incoming events might often have to wait since the
processor might be busy processing earlier events. Hence, the timing properties of the
processed stream might be very different from those of the incoming stream.

Such timing properties might be specified in the form of a period in case the incoming
stream is periodic, or it might consist of a period and a jitter, or a minimum seperation
time between the arrival of two consecutive events. A detailed discussion on other possible
specifications of timing properties of event streams and their relationship with each other
may be found in [30, 33]. In this paper we will resort to a very general specification
of the timing properties of event streams, using the concept of arrival curves. We shall
formally define arrival curves later in this paper; here it might suffice to say that most of
the commonly studied models of event streams from the real-time systems literature (e.g.
periodic, periodic with jitter, sporadic, etc.) can be shown to be special cases of arrival
curves.

The above timing analysis problem lies at the core of determining many common per-
formance metrics related to streaming applications, the mapping of such applications onto
hardware architectures, their code layout in the memory, etc. It is easy to see that by
relating the timing properties of the processed stream with that of the incoming stream,
it is possible to accurately estimate performance metrics such as the minimum buffer size
required to store the incoming stream (which is equal to the maximum possible backlog of
unprocessed events) and the maximum delay experienced by any event from its arrival till
the time it is completely processed.

2

Figure 1: (a) Task graph corresponding to a simple software-based router which processes packets
of two different types. (b) A processor with an instruction cache, on which the code (for example,
that shown in (a)) processing an event stream is executed. Incoming events are stored in a buffer of
size B, which is read by the processor.

Assuming that the worst case execution time (WCET) associated with each event type is
given and is a constant, this timing analysis problem was addressed in [3], where the timing
properties were specified using arrival curves. However, this problem becomes significantly
more complicated if we take into account the fact that the WCET involved in processing
events of even the same type might vary. This is because the sequence of previously processed
events determine the state of the processor’s micro-architecture (such as its cache), which
affects the execution time involved in processing any subsequent event. Hence, the WCET
associated with any event might vary considerably, depending not only on its type but
also on the exact sequence of prior events. The main contribution of this paper over [3]
is in modeling the effects of the instruction cache in solving the timing analysis problem.
We show that this leads to considerably tighter bounds on the worst-case delay and buffer
requirements. Our experimental results based on an MPEG-2 encoder application show
that ignoring the effects of the instrucion cache leads to worst-case delay estimates that
are more than 60% higher than those obtained by modeling the cache. The corresponding
estimate on the buffer size requirement is more than 62% higher. For applications with
higher cache reuse across different event types, or for different cache sizes and code layouts,
the differences in these estimates can be even more significant. This clearly establishes the
need for micro-architecture modelling in the timing analysis of streaming applications, even
when such analysis is carried out at the system-level.

1.2 A Running Example

To see where the above-mentioned performance estimation problem may be used, consider
a streaming application processing a stream of events where each event is either real-time

3

(i.e. with hard deadlines on processing time) or non real-time (with no constraints on
processing time). One example of such a streaming application is a software based router
processing Voice-over-IP (VoIP) packets (with deadlines on processing time) and other
packets. Moreover, some of the code processing the two types of packets may be common.
The task graph for such a router appears in Figure 1(a) and the system model is shown in
Figure 1(b). The arrival of any packet causes an interrupt, which is processed by the receive
packet task. This is followed by packet header parsing and classification, after which the
packet type is known and based on this type the code corresponding to either the right or
the left hand side of the task graph is executed. The incoming stream of events get stored
in a FIFO buffer of size B, which is read by the processor running the stream processing
application, such as the software-based router shown in Figure 1(a).

We are given the arrival process or the timing properties of possible incoming streams to
be processed. Since we are interested in the timing properties of a class of arrival patterns,
rather than one concrete instance of a stream (or a trace), the specification provides bounds
on the on the arrival process. For example, in the case of our router, the maximum rate
at which packets arrive would typically be bounded. Such a bound might be specified
in the form of the maximum possible bursts allowed over different time interval lengths,
and a long-term arrival rate of the packets. In the communication networks domain, such
a specification is based on the theory of network calculus [7, 14] and is called an arrival
curve. We use these arrival curves to describe the input timing properties of our streaming
application.

Given a setup such as the one described above, in this paper we solve the timing analysis
problem by obtaining tight bounds on the WCET incurred in processing any event by
the streaming application. Towards this, we take into account all possible sequences of
events that might be processed prior to processing of any event in question, and how such
possible sequences might modify the state of the instruction cache. As part of the problem
specification, we are given a mapping of the different memory blocks corresponding to the
code processing the events, onto a cache. We are also given a specification of the possible
sequences of events that might arrive, for example, in the form of a finite state transition
system. In other words, such a transition system describes the possible compositions of
an event stream in terms of the different event types. Such a specification can be used
to rule out certain sequences of arrivals, for example, that there can not be more than 10
consecutive VoIP packets. This enables us to rule out certain “worst-case” cache states and
thereby bound the WCET in processing packets of a particular type.

Broadly speaking, our method proceeds as follows. First, we analyze the cache behavior
of the code processing each event type. This is done by a least fixed-point computation on
the control flow graph of the code processing each event type. The fixed point computation
is required due to the (potential) presence of loops in the control flow graph. It yields the
possible cache contents at each location of the control flow graph in an abstract fashion.
We then use the results of our cache analysis to find the “minimum common code usage”
across events. To explain this issue, consider the task graph in Figure 1(a). The code
processing receive packet and header parsing/classification tasks are common to both event

4

types. If an event is processed starting with an empty cache, there will be cold misses1 in
the instruction cache. However, if the code for any of these two tasks are not displaced by
the subsequent tasks (encryption, VoIP processing, route lookup/CRC) then we can avoid
some cache misses starting from the second event in an event stream.

The preceding presents a simple (even trivial) example of how cache analysis can be
used to accurately estimate processing times of events in an event stream. In our method,
we consider a transition system which captures all possible event arrival sequences; thus
the edges of the transition system are annotated with event types. We then compose this
transition system with the results of cache analysis of event types (which captures the
possible cache states after each event). This composition yields a larger transition system
which captures event arrival sequences as well as inter-dependencies across events due to the
shared cache. A key issue here is to develop safe and efficient heuristics to limit the blow-
up in size of the composed transition system. Finally, we analyze the composed transition
system to find out maximum processing time of any allowed sequence of k consecutive events
for any positive integer k. This function is composed with the arrival curve which captures
the maximum number of event arrivals over a certain time interval. Thus by relating the
worst-case processing time of k events with the time interval over which at most k events
can arrive, we obtain the worst-case delay of any event, i.e., the maximum delay experienced
by an event from its arrival to end of processing. The worst-case buffer requirement (the
minimum buffer size to guarantee absence of overflow of the buffer containing waiting events)
is also obtained in a similar fashion.

In summary, we present an accurate performance analysis method for typed event
streams. Our analysis takes into account the possible event arrival sequences as well as
the platform on which the code processing the events is executed. In particular, we show
how the cache usage of streaming application can be taken into account to yield safe and
precise delay/buffer estimates. Experimental results from the MPEG-2 encoder applica-
tion validate our method by showing that it is important to consider the cache behavior of
streaming applications for accurate performance analysis.

Organization The rest of this paper is organized as follows. The next section summarizes
related literature. In Section 3 we present an overview of our performance estimation frame-
work along with a running example. We then proceed to discuss the different components
of our core analytical estimation framework: cache modeling (Section 4) and analysis of
event streams using arrival curves (Section 5). Improvements to the core analytical frame-
work appear in Section 6 and experimental results are discussed in Section 7. The paper
concludes in Section 8 with discussion on possible future extensions of our technique.

1Misses due to first access of a memory block.

5

2 Related Work

In this section we review literature on performance analysis of event streams, and cache
behavior analysis in real-time systems.

2.1 Works on Analysis of Event streams

Our work builds upon the system-level timing analysis methods for event streams studied in
[3, 4, 31, 32]. Although, these papers also deal with end-to-end delays experienced by event
streams and the computation of maximum buffer fill levels, their focus is on multiprocessor
architectures and the modeling of resource sharing. They do not consider an extended task
model and do not focus on the distinction between different event types, as we do in this
paper. More importantly, none of these papers consider the role of the processor micro-
architecture on the execution time of the different events. Note that in many cases on-chip
buffer/memory is available only at a premium because of its stringent area requirements. In
such cases (e.g. in portable multimedia players) an accurate estimation of delay and buffer
requirements is essential, and therefore calls for an appropriate modeling of the processor
micro-architecture.

Some of the recent works in system-level performance analysis have analyzed typed event
streams. The focus here is to avoid taking the WCET of each event (since it involves too
much pessimism), and instead consider the possible event arrival sequences. In this respect,
these works have a goal similar to our paper. However, the event stream specifications
they consider are often coarser leading to less accurate analysis. In particular, Wandeler
et. al. [44] consider type-rate curves; a type-rate curve is a function which given a constant
k, returns the minimum (or maximum) number of occurrences of an event type among k
consecutive events. In comparison, our typed event streams are described using an event
transition system and an arrival curve. The event transition system captures the possible
event arrival sequences more accurately than the type-rate curves and the arrival curve links
up the event arrival sequences to the arrival times.

The work of [45] is closer to ours. This analysis method takes in an event automaton
and an arrival curve as in our method. However, the processing unit is also modeled as an
automaton which makes the analysis difficult to adopt in practice. Even though in principle
we could consider the effect of micro-architectures by modeling the processing unit as a huge
automation, such a modeling places an immense burden on the system designer. Instead, in
this paper we demonstrate how state-of-the-art micro-architectural analysis methods (such
as cache analysis) can be tightly integrated with event stream analysis without the designer
having to explicitly model the effects of cache as an automaton.

2.2 Relationship to Works on WCET Analysis

The work reported in this paper is related to the problem of statically analyzing the Worst-
case Execution Time (WCET) of a program, which is an important problem in the domain
of real-time and embedded software design. Note that WCET analysis techniques (see [24]

6

for a survey of the area) are conservative, that is, they compute an upper bound on the
program’s actual worst case execution time. Usually this involves a path analysis to find
out infeasible paths in the program’s control flow graph, and micro-architectural modeling.
Both path analysis and micro-architectural modeling have been studied extensively [9, 17,
19, 26, 29, 36, 39] because of the inherent importance of deriving WCET estimates for
schedulability analysis. However, we are not aware of any work specifically on the WCET
analysis of streaming applications. In fact, most of the previous work on WCET analysis
consider the uninterrupted execution of a program, which is similar to processing a single
event in our setup. In this paper, we compute the WCET of a stream of events, where, to
estimate the processing time of any event we consider the micro-architectural state resulting
from the processing of previous events.

For multiple tasks executing on a processor (thereby sharing a cache), additional com-
plications are introduced in the performance analysis. In particular, we need to measure
the inter-task cache effects — the indirect effect of one task on another due to the shared
cache.

2.3 Works on Cache Management in Real-Time Systems

Several strategies have been proposed in the real-time systems community to ensure predi-
cate execution of real-time tasks in the presence of caches. These works can be categorized
as follows.

• Novel architectures to support predictable execution

• Compiler controlled caches and strategies for managing them

• Analysis techniques to bound inter-task cache effects

In the first category, the work of Lee et. al. [16] proposes a novel prefetching based
memory architecture as an alternative to instruction caches. The prefetch scheme proceeds
in two modes — real-time (where the prefetching tries to reduce WCET) and non real-time
(where the prefetching tries to reduce average case execution time). However, adopting
these solutions involve non-trivial changes to the processor running the real-time tasks.

In the second category, there exists a body of research work in the area of cache parti-
tioning and cache locking. These works either try to partition the cache between the tasks
(thereby eliminating any cache inteference) [35] or pre-load the cache with memory blocks
thereafter locking its contents [28, 42]. The cache contents may be locked for the entire life-
time of execution or changed at specific execution points (for example pre-emption points).
This line of work focuses on efficient algorithms to decide the memory blocks to be locked
into the cache. Another proposed approach is to change the memory layout of the tasks so
as to reduce inter-task cache effects [8].

The third category of work involves no changes to the compiler/architecture and is clos-
est in flavor to our method. These works develop analysis methods to determine maximum
preemption costs when multiple tasks share a processor. This is often referred to as the

7

cache related preemption delay (CRPD) [15, 26, 37, 41]. Some of these works have consid-
ered the effect of multiple pre-emptions [37] and integrated the CRPD analysis to develop
an accurate polynomial scheduling method [38]. The aim here is to estimate the maximum
number of additional cache misses incurred by a low-priority task when it resumes execution
after getting preempted. Clearly, this requires an analysis of possible cache states in the
low-priority task before and after its preemption. In this paper, our setup does not involve
preemption of events. However, conceptually our analysis bears interesting similarities to
CRPD analysis. In particular, to estimate the execution time and buffer fill levels of a
stream of events (which is captured by our finite state transition system specification), we
statically analyze the cache states before and after each event in the stream. This can be
exploited to give tighter WCET bounds as compared to the situation where we estimate
the WCET of any event type in isolation without considering the initial micro-architectural
state(s).

We should emphasize at this point that our technique is a static analysis technique and
is not a trace based simulation (i.e., we always capture the various possible cache states
as a stream of events is processed). Essentially we capture the minimum commonality in
memory block usage between the processing code of different events. This commonality
may be exploited across the processing of two events of the same event type or even across
the processing of events of different event type (because some of the processing tasks may
be common across event types). Thus, in a broad sense, what our performance analysis
tries to capture (reduction in processing time of an event due to certain memory blocks
being present in the cache from past events’ execution) is the opposite of CRPD analysis
(which tries to capture the increase of execution time of an event due to certain memory
blocks being replaced from the cache by pre-empting events). Moreover, we have tightly
integrated our cache modeling (which determines “minimum common cache usage” across
events) with powerful state-of-the-art event stream analysis methods [3] to yield an accurate
performance analysis technique for streaming applications.

3 Overview

In this section, we present a formal problem specification followed by an overview of the
main steps involved in our cache-aware timing analysis method.

3.1 Problem Specification

Our problem specification consists of the following components.

1. A task graph, such as the one shown in Figure 1(a), which models the streaming
application and the corresponding program or code. This application executes on a
single processor.

2. The specification of the event stream to be processed by the application is composed
of two parts. All events are typed. We denote the alphabet of event types using Σ.

8

T0

T1

T2 T3

T4

a b

m2
m3
m4
m5
m6
m7

T0
T1

T2

T3

T4

m1

m8

c1
c2
c3
c4

Path (a): T0 T1 T2 T4
Path (b): T0 T1 T3 T4

Task Graph

Code layout

Cache

Memory

a

a b

T = 50

T = 50 T = 60

Transition system

S0 S1

Figure 2: Input specification corresponding to our running example.

• The first part of the stream specification is a transition system T which captures
all possible sequences of event types that might occur in the stream. T can either
be determined by analyzing the device or the system which generates the stream,
or by analyzing a sufficiently large number of representative input streams.

• The second part of the stream specification is concerned with its timing proper-
ties. Towards this, we are given a function ᾱ : R

≥0 �→ Z
≥0, which bounds the

maximum number of events that can arrive within any time interval of a given
length. We will refer to ᾱ as an arrival curve. It may also be noted here that this
specification is more general than the event models traditionally studied in the
real-time systems literature, such as periodic, periodic with jitter or the sporadic
event model [1, 2, 25] (see [3, 4] for further details).

3. For each event type in Σ, we are given the execution path through the task graph of
the application. We are also given the worst case execution time for each event type
assuming an empty cache state before the processing of the event starts.

4. Code layout of the application, i.e., the mapping of the different memory blocks of
the application onto the cache blocks.

5. Cache configuration and cache miss penalty.

Example As a running example, consider the task graph shown in Figure 1(a), implement-
ing a simple software-based router, as our streaming application. It processes two different

9

types of packets: VoIP packets, which have real-time constraints on their processing time,
and packets which need to be encrypted without any constraints on their processing time.
The processing of any VoIP packet follows the right hand side path in this task graph and
the processing of all other packets follows the left hand side path in this graph. Figure 2
shows this task graph in an abstract fashion. The two paths in the task graph of Figure 2
correspond to the processing of non-real-time and real-time event types: let us call them a
and b respectively. Thus, we have the following inputs to our timing analysis problem.

• The event type alphabet Σ = {a, b}.

• The transition system T capturing the possible arrival sequences of events appears in
Figure 2. The alphabet of this transition system is Σ. Note that it does not capture
all infinite strings over Σ = {a, b}. In fact, it captures the constraint that between
two bursts of events of type b, at least two events of type a must arrive. The value
T on each edge of the transition system shows the WCET for processing that event
assuming an empty cache before the processing of the event starts.

• We need to specify the arrival curve ᾱ for the event stream. In this simple example,
we use the arrival curve ᾱ to specify a bursty arrival process, with up to four events
arriving within any time interval of length less than 150 time units. In other words, if
we consider any concrete (timed) trace of an arrival process, and slide a “window” of
length one along this trace, then for any position of this window at most four events
will be recorded inside the window. Similarly, if the window is of length 150, then for
any position of this window at most eight events will be recorded inside the window.

• The execution path through the task graph corresponding to each event type is shown
in Figure 2. The path for event a consists of tasks 〈T0, T1, T2, T4〉 and that of event
b consists of tasks 〈T0, T1, T3, T4〉.

• Figure 2 also shows code layout for the task graph. The tasks are laid out in memory
in the sequence 〈T0, T1, T2, T3, T4〉. Task T0 uses the memory blocks m1,m2, task
T1 uses the memory blocks m3,m4 and so on. The code layout implicitly specifies
the mapping of the memory blocks to the cache blocks. For example, given a direct-
mapped cache consisting of 4 cache blocks as shown in the figure, it easy to see how
the different memory blocks are mapped to the cache blocks.

Given the above, we would like to compute the maximum number of backlogged events
(i.e., the maximum buffer size required) and the maximum delay experienced by any event.
As discussed earlier, the main difficulty in this problem arises from the fact that the WCET
of any event depends on the state of the cache, and hence on all the events that arrive
prior to this event. Of course, to estimate the cache behavior, we also need the code for the
individual tasks T0, T1, T2, T3, T4. Instead of giving details of the code for each task, we
just give their usage of memory blocks. Only this information is relevant for determining
their cache states. Note that the memory block usage given below is consistent with Figure 2.

10

The interesting case is for task T4, where the usage is memory block 7 or memory block 8;
this can happen due to a conditional branch.

Task Memory Block Usage
T0 Mem. Block 1
T1 Mem. Block 2
T2 Mem. Block 3 followed by Mem. Block 4
T3 Mem. Block 5 followed by Mem. Block 6
T4 Mem. Block 7 or Mem. Block 8

The cache configuration assumed is a direct mapped cache with four cache lines. There-
fore, memory blocks 1, 5 map to cache line 1, memory blocks 2, 6 map to cache line 2, and
so on. Using the memory block usage of the individual tasks we can find out the following

• the possible cache states at the end of processing of event a or event b (in our cache
modeling presented later, we will refer to these as Reaching Cache States of an event
or RCS), and

• the possible first references to cache blocks during the execution of event a or event b
(in our cache modeling presented later, we will refer to these as Live Cache States of
an event or LCS).

Using the above summaries of cache behavior for each event, we link the evolution of cache
states due to an event’s processing with the arrival of events (which is specified by the
arrival curve ᾱ).

Now, recall that our arrival curve allows for up to two bursts (of four events each)
within a time interval of 150 time units. For estimating the maximum buffer fill level, it
is important to check whether the processing of events arriving in a burst is completed by
the time a second burst of events arrive. In this example, we show that such a check can
be intricately linked to the effects of cache. With the given input specification, we used our
timing analysis framework to observe that the delay/buffer size estimates are quite sensitive
to the code layout, the cache miss penalty value and the cache configuration. For example,
given the current layout and assuming a cache miss penalty of 5 time units, we get the
following delay and buffer size estimates:

WCD = 226, WCB = 6

In this case,there exist certain arrival patterns (such as a(b)ω) where all the events in the
first burst can not be processed by the time the second burst arrives.

If we now increase the cache miss penalty to 15 time units, with everything else in the
input specification remaining unchanged, the estimates get substantially altered:

WCD = 145, WCB = 4

In this case, all the events in the first burst are guaranteed to be processed by the time the
second burst arrives. Hence, the maximum buffer level is equal to the number of events in

11

Figure 3: Overview of cache-aware timing analysis for streaming applications.

a single burst (which is four in this case). At first sight, the reduction in the WCD/WCB
estimates due to an increase of the cache miss penalty may appear to be counter-intuitive.
However, this means that there is substantial re-use of memory blocks across events in the
event streams (allowed by the event transition system T in our example). Hence, the actual
time required to execute individual events in an event stream is much lower than the WCET
estimates of each event assuming an initial empty cache.

Furthermore, changes in code layout and cache configuration can also make non-trivial
changes in estimates. By simply changing the code layout to 〈T0, T1, T2, T4, T3〉 (from
〈T0, T1, T2, T3, T4〉), we observed that the WCB estimates are less sensitive to changes in
cache miss penalty in this case. These results confirm our main observation that micro-
architectural modeling is important for accurate timing analysis of stream processing appli-
cations. It might be possible to reason about the effects we discussed above in the case of
this simple example, without resorting to our proposed analytical framework. However, for
realistic code and cache sizes our framework will help to uncover counter-intuitive effects of
the code layout and the processor architecture.

3.2 Analysis Technique

Our cache-aware timing analysis technique consists of three main steps as shown in Figure
3. The first step is the cache modeling to find out the cache state at the end of a given
event sequence. Given this information, we modify the transition system to capture the
different execution time of the same event type corresponding to different cache states
(arising due to the different event sequences that can lead to the same state in the transition
system). Finally, we compute the timing properties of the processed event stream by taking
into account the arrival curve and the modified transition systems. The next two sections
describe these steps in more details.

12

4 Cache Modeling

In this section we show how to compute the WCET involved in processing a single event
of any specified type, and the state of the cache after the processing of this event. In
Section 5, we will then make use of this result to solve our timing analysis problem and
compute the maximum backlog and delay experienced by a stream of events. The basic
technique presented in Section 4.1 bears some similarity with the method used for computing
cache related preemption delays in [26]. However, as already pointed out in Section 1, in
this paper we do not consider task preemptions—we deal with a single stream, and events
from this stream are processed to completion in a first-come-first-serve manner. This is
elaborated in Sections 4.2 and 5.

4.1 Cache States

To describe our cache modeling, we first present the notion of cache states. By “cache
state”, we refer to the contents of all the cache blocks. For simplicity of exposition, in this
paper we only consider direct-mapped caches. However, the techniques we present below
can easily be generalized to set-associative caches; we discuss this issue later in this section.
Let M denote the set of all memory blocks. For a direct mapped cache with n blocks, a
cache state is a vector c of n elements c[0], . . . , c[n − 1] where c[i] = m if the cache block
i holds the memory block m. If the ith cache block does not hold any memory block, we
denote this as c[i] =⊥. Hence, a cache state is a vector of length n, where each element
of the vector belongs to M ∪ {⊥}. We assume that any operation � over M ∪ {⊥} can
be applied to the cache states, by applying this operation pointwise to its elements. For
example, if � is a binary operation over M ∪{⊥} and c, c′ are cache states then c� c′ = c′′

denotes c′′[i] = c[i]� c′[i] for all 0 ≤ i < n. To compute the WCET that might be incurred
in processing an event, and the state of the cache after this event is processed, we will rely
on the following two functions.

Definition 4.1 (Reaching Cache States) The reaching cache states of an event σ, de-
noted as RCS (σ), is the set of possible cache states when the end of the last basic block
corresponding to any of the execution paths associated with the processing of σ is reached.
We suppose that the cache is initially empty.

Definition 4.2 (Live Cache States) The live cache states of an event σ, denoted as
LCS (σ), is the possible first memory references to cache blocks via any execution path as-
sociated with the processing of σ.

RCS(σ) and LCS(σ) can then be computed as follows. Let τ(σ) be the task graph
associated with the processing of an event type σ, i.e. τ(σ) contains only the basic blocks
and the control-flow relevant to σ. Therefore, the basic blocks in τ(σ) are a subset of all the
basic blocks in our stream processing application which processes all event types. Further,
some of the basic blocks in τ(σ) might also be in τ(σ′), which is the task graph for another
event type σ′. Examples of such common basic blocks are those in the nodes receive packet,

13

header parsing & classification and route lookup & CRC computation in the task graph in
Figure 1(a). Note that each of the nodes in this task graph might contain multiple basic
blocks, conditional branches and also loops.

Now, let Bσ be the set of basic blocks appearing in τ(σ). Without loss of generality, we
can assume that there is a unique start and end basic block in the control flow represented
by τ(σ). With each B ∈ Bσ we associate the variables RCSIN

B and RCSOUT
B and initialize

them as follows:
RCSIN

B = ∅ and RCSOUT
B = genB

For any basic block B, genB = [m0, . . . ,mn−1], where mi = m if m is the last memory block
in B that maps to cache block i and ⊥ if no memory block in B maps to cache block i.
Hence, genB records all the memory blocks introduced into the cache due to the execution
of B. The change in the cache state due to B is then captured by the equations:

RCSIN
B =

⋃
p∈pred(B)

RCSOUT
p (1)

RCSOUT
B = {r ⊕ genB | r ∈ RCSIN

B } (2)

Here, pred(B) is the set of all basic blocks in τ(σ) which are predecessors of B, and the
operation ⊕ is defined over memory blocks as:

m⊕m′ def
=

{
m′ if m′
=⊥
m otherwise

If the control flow represented by τ(σ) is acyclic, then we can obtain RCS(σ) directly from
the above equations. In particular RCS(σ) = RCSOUT

end(σ) where end(σ) ∈ Bσ is the unique
end basic block in the graph τ(σ). However, if the control flow in τ(σ) contains loops, the
set of equations derived from Eqs. 1 and 2 will be recursive. Hence, we compute the values
of RCSIN

B and RCSOUT
B as a least fixed point for each basic block B. After the fixed point

is reached, we set RCS(σ) = RCSOUT
end(σ).

The computation of LCS(σ) is similar to computing RCS(σ). As before, we associate
variables LCSIN

B and LCSOUT
B with each basic block B in τ(σ) and initialize them as

follows:
LCSOUT

B = ∅ and LCSIN
B = genB

Here, genB = [m0, . . . ,mn−1] where mi = m if m is the first (instead of the last) memory
block in B that maps to cache block i and ⊥ if no memory block in B maps to cache block
i. The rest of the procedure is the same as in the case of computing RCS(σ), expect for
the fact that Eqs. (1) and (2) are replaced by the equations:

LCSOUT
B =

⋃
s∈succ(B)

LCSIN
s and LCSIN

B = {l ⊕ genB | l ∈ LCSOUT
B }

where succ(B) is the set of all basic blocks in τ(σ) which are successors of B. Again, we
solve these recursive equations by performing a least fixed-point computation. After a fixed
point is reached, LCS(σ) is set to LCSIN

start(σ) where start(σ) ∈ Bσ is the unique start basic
block in the graph τ(σ).

14

RCS(σ) is therefore the set of possible cache states after the processing of any event
of type σ, and LCS(σ) captures the possible usages of a cache state at the start of the
processing of an event of type σ.

4.2 Computing the WCET of a Single Event

We first define two operations on cache states, namely merge and equality. The merge of
two sets of cache states X and Y is defined as X⊕Y = {x⊕y | x ∈ X ∧ y ∈ Y } where x⊕y
is calculated over cache states by applying the operation ⊕ (defined earlier over memory
blocks) to the individual elements of the cache states. Thus we have

x[i]⊕ y[i] def
=

{
y[i] if y[i]
=⊥
x[i] otherwise

The equality of two sets of cache states X and Y is defined as X�Y = {x�y | x ∈ X ∧ y ∈
Y } where,

x[i]� y[i] =
{

1 if x[i] = y[i]
0 otherwise

For a cache with n blocks, X � Y is a set of boolean vectors of length n. Observe that for
any two cache states x ∈ RCS(σ) and y ∈ LCS(σ′), x�y records the “useful” cache blocks
for some execution path in the processing of σ′, due to the prior processing of σ. Using
this observation, we will now show how to obtain a more accurate estimate on the WCET
involved in processing an event, compared to the case where the initial cache state before
processing the event is considered to be empty.

Let us consider the processing of a sequence of consecutive events 〈σ1, · · · , σN 〉. For
simplicity, we use σi to refer to both an event and its type, and the actual meaning should
be clear from the context. In the absence of cache state modeling, i.e. with a completely
empty cache, let us assume that the WCET of σN is given by the function WCET (σN ,⊥),
where ⊥ denotes the set of cache states that contains only an empty cache. However, if
the task graphs τ(σ1), . . . , τ(σN) share some common memory blocks and the effects of the
cache is taken into account, then our estimate of the WCET of σN can possibly be improved.
More specifically, the WCET of σN will be reduced if during the processing of the events
〈σ1, · · · , σN−1〉 some memory blocks are left in the cache, which are then referenced by
τ(σN). We next show how to compute this reduced WCET using the merge and equality
operators defined above.

If we start with a set of cache states cs, and process a sequence of events 〈σ1, · · · , σN−1〉,
then the set of possible cache states after this sequence of events is processed can be given
by the function

NSTATE(〈σ1, · · · , σN−1〉, cs) = cs⊕RCS(σ1)⊕ . . .⊕RCS(σN−1)

Note that the operator ⊕ is associative. Now, if the event σN is to be processed, then
the set of possible useful cache blocks for σN is given by the function

useful(σN , NSTATE(〈σ1, · · · , σN−1〉, cs)) = NSTATE(〈σ1, · · · , σN−1〉, cs)� LCS(σN)

15

Figure 4: Effect of cache state on the number of cache misses for an event type.

In other words, the function useful returns a set of boolean vectors. In any vector be-
longing to this set, a “1” in the position of any cache block indicates that the contents of this
cache block might be used while processing σN , while a “0” indicates otherwise. Therefore,
based on this set of boolean vectors, our revised estimation of the WCET of σN is given
by WCET (σN , cs

′), where the set of cache states is cs′ = NSTATE(〈σ1, · · · , σN−1〉, cs).
Clearly,

WCET (σN , cs
′) = WCET (σN ,⊥)− penalty ·min {|v| : v ∈ useful(σN , cs

′)} (3)

where penalty is the cache miss penalty associated with any memory block and |v| denotes
the number of 1s in the boolean vector v, i.e. |v| =

∑n−1
i=0 v[i]. Note that WCET (σN , cs

′) <
WCET (σN ,⊥) since WCET (σN ,⊥) denotes the execution time of σN assuming all first
accesses to memory blocks result in cache misses. However, in defining WCET (σN , cs

′) we
take into account that at least min {|v| : v ∈ useful(σN , cs

′) of the first accesses result in
cache hit.

Example We now illustrate cache re-use through a simple example. Consider two event
types a and b (as in Figure 1, 2). Given the LCS and RCS of a, b — we show how cache
re-use can be drastically altered for different sequences of events. The LCS and RCS for
event types a and b are given in Figure 4. The figure also shows the number of memory
blocks that can be re-used for each possible 2-event sequences. For example, after execution
of event a, the cache state consists of memory blocks m1, m2, m7 and m8. If this is followed

16

Figure 5: Constructing the transition system T ′ for our example.

by another event a, then the second event can reuse memory blocks m1 and m2 without
incurring cache miss for these memory blocks. Surprisingly, the sequence 〈a, b〉 results in
maximum reuse for this example, whereas the sequence 〈b, a〉 results in zero re-use.

5 Timing Analysis of Event Streams

In this section we will make use of our cache-based estimation of the WCET of a single event
to solve our timing analysis problem. More specifically, we use this estimate to accurately
compute the maximum delay and backlog experienced by a stream of events.

5.1 Constructing Modified Transition System

Recall from Section 3 that we are given a transition system T = (S, S0,Σ,Ψ) which captures
all possible sequences of event types that might occur in a stream. Using the cache modeling
technique described in Section 4, and the transition system T , we derive a transition system
T ′ = (S′, S′

0, D
′,Ψ′) which captures all possible evolutions of the cache state, as a stream

of events is processed. Each state s′ ∈ S′ is a tuple (s, cs) where s ∈ S and cs is a set
of possible cache states at s. A transition from (s1, cs1) to (s2, cs2) belongs to Ψ′ if and
only if there exists a transition s1

σ→ s2 in T and cs2 = NSTATE (σ, cs1). The set of initial
states S′

0 contains all tuples (s,⊥) where s ∈ S0. Finally, any transition ψ from (s1, cs1)
to (s2, cs2) in Ψ′, where s1

σ→ s2, is annotated with WCET (σ, cs1). We denote this as
D′(ψ) = WCET (σ, cs1). The construction of T ′ is formally specified by Algorithm 1.

Example Figure 5 shows the transition system T ′ for our running example. Each state
in the transition system T ′ is now annotated with the corresponding cache state. The color

17

Input: Transition system T = (S, S0,Σ,Ψ) and the functions NSTATE and WCET ;
Output: Transition system T ′ = (S′, S′

0,D
′,Ψ′);

Q← S′ ← S′
0 ← D′ ← Ψ′ ← ∅ ;

for all s ∈ S0 do
enqueue(Q, 〈s,⊥〉) ;
S′ ← S′ ∪ {〈s,⊥〉} ;
S′

0 ← S′
0 ∪ {〈s,⊥〉} ;

end for
while Q
= ∅ do
〈s, cs〉 ⇐ dequeue(Q) ;
for all transitions s σ→ s′ ∈ Ψ do
cs′ ← NSTATE (σ, cs) ;
if 〈s′, cs′〉 /∈ S′ then

enqueue(Q, 〈s′, cs′〉) ;
S′ ← S′ ∪ {〈s′, cs′〉} ;

end if
Ψ′ ← Ψ′ ∪ {〈s, cs〉 σ→ 〈s′, cs′〉} ;
D′(〈s, cs〉 σ→ 〈s′, cs′〉)←WCET (σ, cs) ;

end for
end while

Algorithm 1: Constructing the transition system T ′.

coding shows how a state/transition in T maps to multiple states/transitions in T ′. For
example, processing an event b takes 60 cycles in the original example. Now we notice that
the preceding event can be of type a or b. If the preceding event is of type a, then we
can save 4 cache misses (see Figure 4) and hence 20 cycles (assuming 5 cycle cache miss
penalty). However, if the preceding event is of type b, then we can only save 2 cache misses,
i.e., 10 cycles. Thus the state S1 in the original transition system generates two states in
T ′ and also two transitions corresponding to the processing of event b.

5.2 Timing Analysis

Recall from Section 3 that we are also given a function ᾱ, which bounds the maximum
number of event arrivals over any time interval. More specifically, ᾱ(Δ) is the maximum
number of events that can arrive over any time interval of length Δ. ᾱ(Δ) therefore specifies
the timing properties of a class or family of arrival processes of event streams that are
to be processed by the streaming application. To compute similar bounds on the timing
properties of any processed stream and the maximum delay and backlog (which is a measure
of the maximum buffer requirement) experienced by any input event stream, we need to
compute the maximum processing requirement arising from the ᾱ(Δ) events. Towards this,
let us define a function γ(k) whose argument is an integer k and it returns the maximum
processing time that can be demanded by any sequence of k consecutive events belonging
to the stream.

We now show how to compute the function γ. Consider our transition system T ′, where

18

Input: Transition system T ′ = (S′, S′
0,D

′,Ψ′), function pred(s) which returns all predecessors of
the state s ∈ S′, and an integer n;

Output: γ(k) for all 1 ≤ k ≤ n;
ws(k)← −∞ for all s ∈ S′, 1 ≤ k ≤ n;
ws(0)← 0 for all s ∈ S′;
for k = 1 to n do

for ∀ s ∈ S′ do
if |pred(s)| > 0 then
ws(k)← maxp∈pred(s){wp(k − 1) +D′(p→ s)}

end if
end for
γ(k)← maxs∈S′{ws(k)}

end for

Algorithm 2: Computing γ(k).

each transition ψ from (s1, cs1) to (s2, cs2) represents the processing of an event of the type
σ, where s1

σ→ s2 ∈ T . The annotation on each such transition, i.e. D′(ψ), denotes the
maximum processing time of the event σ, given that the cache state before the start of this
processing is cs1. Hence, γ(k) is the weight of the maximum-weight path of length k in the
transition system T ′. Given any k, γ(k) can thus be easily computed by finding the single
source longest paths (of length k) for all vertices in T ′; the single-source longest path for a
given vertex is computed by standard dynamic programming methods. Algorithm 2 shows
how to compute γ(k) for all integers 1 ≤ k ≤ n, where n is an input to this algorithm.

It is easy to see that the function α(Δ) = γ(ᾱ(Δ)) therefore represents the maximum
processing requirement that can arise from the event stream within any time interval of
length Δ, for ∀Δ ≥ 0. Using the results derived in [3], it is possible to show that worst
case delay WCD (i.e. the maximum length of time between the arrival of any event and
the time when it is completely processed) experienced by any event stream whose arrival
process is bounded by ᾱ(Δ) is given by:

WCD = sup
Δ≥0
{ inf

τ≥0
{τ : α(Δ) ≤ Δ + τ}}

Intuitively, WCD can be interpreted as the maximum horizontal distance between the curve
α(Δ) and the straight line representing the processor availability (see Figure 6).

To compute the maximum backlog, we first need to define a function γ−1, which can be
considered as the pseudoinverse of the function γ that we already defined above. We define,
γ−1(Δ) = infk≥0{k : γ(k) ≥ Δ}. Hence, γ−1(Δ) returns the minimum number of events
that can generate a processing requirement of Δ. In other words, at least γ−1(Δ) events
from the stream are guaranteed to be processed within a time interval of length Δ. Within
this time interval, at most ᾱ(Δ) events might arrive. Hence, the backlog generated within
this interval is ᾱ(Δ) − γ−1(Δ). Therefore, the maximum or worst case backlog WCB is
given by:

WCB = sup
Δ≥0
{ᾱ(Δ)− γ−1(Δ)}

19

Δ

α(Δ)

Δ

WCD

execution
time

Figure 6: Computing the worst case delay WCD experienced by an event stream.

As in the case of computing WCD, intuitively, WCB can be interpreted as the maximum
vertical distance between the curves ᾱ(Δ) and γ−1(Δ) (see Figure 8).

To compute the timing properties of the processed stream, let us denote using ᾱ′(Δ)
the maximum number of processed events that can possibly be seen at the output of the
processor (see Figure 1(b)) within any time interval of length Δ. ᾱ′(Δ) is therefore exactly
of the same form as ᾱ(Δ) which bounds an input stream. Again, using the results derived
in [3], it may be shown that

ᾱ′(Δ) = sup
τ≥0
{ᾱ(Δ + τ)− γ−1(τ)}

The bounds on the timing properties of any processed stream and the maximum delay
and backlog that we computed above, are more accurate compared to those computed in
[3], where the effects of the processor’s instruction cache was not taken into account. This
difference primarily stems from the use of the transition system T ′ in computing the function
γ(k). In contrast to this, the results in [3] rely on a significantly simpler approach of scaling
the function ᾱ(Δ) by a constant representing the (same or constant) processing time per
event, in order to obtain the function α(Δ).

6 Improvements to the core framework

The running time of the algorithm presented so far would depend on the number of states in
the transition system T and the number of cache states generated from our application and
its code layout in the instruction cache. For many realistic problem instances, the number
of such cache states might be very large, thereby our algorithm incurring a high running
time. To get around this problem, there are three possible techniques that we can adopt
(they are not mutually exclusive).

1. Partially constructing the transition system T ′.

20

2. Instead of computing γ(k) for all values of k, exploit the fact that γ(k) becomes
periodic beyond a certain value of k.

3. Note that the computation of WCD , WCB , as well as ᾱ′ requires an iteration over
all Δ ≥ 0. To avoid such an iteration over an unbounded range, we can approximate
the functions ᾱ(Δ) and γ(k) by a sequence of linear segments. Using such an approx-
imation, we can then compute a Δmax such that it would be sufficient to iterate only
till this value for the computation of WCD , WCB and ᾱ′.

Note that while the first and the third techniques mentioned above will lead to a (safe)
approximation of WCD , WCB and ᾱ′, the second technique will not lead to any loss of
accuracy in our estimation of these quantities.

6.1 Partial Construction of T ′

Constructing the cache state annotated transition system T ′ is computationally expensive.
This is because for each state s in the transition system T we need to compute the possible
cache states with which s can be reached; each of these contribute to a state in T ′. Assuming
a direct mapped cache with k cache lines and the program code of all event types spread
over n contiguous memory blocks, the number of possible cache states is �(n/k)�k. This
leads to an obvious blowup in the number of states of T ′. To avoid this blowup, we can
construct T ′(U), an approximation of T ′; we assume that U is a pre-defined constant.

The basic idea for defining the approximation of T ′ is as follows. Clearly, a cache state is
a function of the finite (but unbounded) execution history of events. We make the following
observations about cache state evolutions.

• Given a bound U , the bounded execution history of the last U events may not be able
to distinguish between different cache states, and

• a cache state can be reached with various event histories.

Our partial construction of T ′ is based on these two observations. In the transition system
T ′ discussed earlier, each state of T ′ is of the form (s, cs). In the construction of T ′(U),
each state of this transition system is of the form (s, cs, seq) where s and cs are as defined
in Section 4; seq is sequence of length at most U over the event alphabet Σ denoting the
last U events (if less than U events have occurred, then seq contains fewer events). At first
sight, our definition of the states of T ′(U) seems to blowup the state space even further (as
compared to the full construction of T ′). However, our construction of the transitions of
T ′(U) is such that the reachable state space of T ′(U) is sparse.

We now describe the construction of T ′(U). For this purpose, we use the algorithm
for constructing T ′ (i.e. Algorithm 1) but with two important modifications. The major
modifications in the construction of T ′(U) as compared to the construction of T ′ are as
follows. First of all, when we construct the destination states for a state (s, cs, seq) for event
σ, apart from applying NSTATE on cs, we also need to define NSTATE on seq. Since the

21

sequence associated with a state captures the last U events, we define the following. Note
that ◦ denotes concatenation, and seq = 〈σ1, σ2, . . . , σU 〉.

NSTATE (σ, U, seq) =
{
seq ◦ σ if |seq| < U
〈σ2, . . . , σU , σ〉 if |seq| = U

Secondly, the check for whether a state (s′, cs′, seq′) exists in S′′ is done differently. The
logical disjunction in this membership check performs two kinds of state merging. The two
sources of state merging exploit our two main observations about the cache state evolution.

• Two states (s′, cs′, seq′) and (s′, cs′′, seq′) are merged. This is the main source of size
reduction in the construction of T ′(U) since we are merging two states of T ′.

• Two states (s′, cs′, seq′) and (s′, cs′, seq′′) are merged. This ensures that the state
space size of T ′(U) is guaranteed to be bounded by the state space size of T ′.

The modified algorithm for constructing the transition system T ′(U) appears as Algorithm
3.

As we are no longer maintaining exact cache states in T ′(U), we need to show that a
safe upper bound on WCET is obtained by analyzing T ′(U) as opposed to T ′. If the WCET
associated to an event σ at a certain cs does not decrease by removing the first event σ1 from
the event sequence that leads to cs, we can guarantee that analyzing the partially unrolled
transition system T ′(U) yields safe WCET bounds. Therefore, the following condition must
be satisfied by the function WCET (σ, cs).

WCET(σ, cs) ≤WCET(σ, cs′) for all σ, where
cs = NSTATE(〈σ1, σ2, . . . , σn〉,⊥) and cs′ = NSTATE(〈σ2, . . . , σn〉,⊥)

That is, starting with an empty cache, executing σ after σ1, σ2, . . . , σn should not pro-
duce more cache misses than executing σ after σ2, . . . , σn. This is indeed the case for direct
mapped as well as set-associative caches with common replacement policies such as LRU.
To see that this is indeed the case, consider the cached execution of an event σ under two
different histories σ1, σ2, . . . , σn and σ2, . . . , σn. What can be the effect of σ1 on the execu-
tion of σ? The memory blocks of σ1 which are replaced by σ2, . . . , σn, clearly have no effect
on σ’s execution. On the other hand, if some memory blocks of σ1 do not get replaced by
σ2, . . . , σn, these memory blocks of σ1 can only reduce the cache misses in σ’s execution.

6.2 Computing γ

Recall from Section 5 that γ(k) is the weight of the maximum-weight path. Our computation
of the maximum delay and backlog experienced by a stream requires the computation of
γ(k) for k = 1, . . . , n, where the value of n would depend on the range of Δ over which we
need to iterate. Here, we would like to point out that it is sufficient to compute γ(k) for all
k ≤ n0 (for some n0). Typically, n0 would be much smaller than the maximum value of k
for which we will need to determine γ(k) during our computation of WCD and WCB , and
n0 would only depend on the transition system T ′.

22

Input: Transition system T = (S, S0,Σ,Ψ), the functions NSTATE and WCET and a positive
integer U

Output: Transition system T ′(U) = (S′′, S′′
0 ,D

′′,Ψ′′);
Q← S′′ ← S′′

0 ← D′′ ← Ψ′′ ← ∅ ;
for all s ∈ S0 do

enqueue(Q, 〈s,⊥, ε〉) ; S′′ ← S′′ ∪ {〈s,⊥, ε〉} ;
S′′

0 ← S′′
0 ∪ {〈s,⊥, ε〉} ;

end for
while Q
= ∅ do
〈s, cs, seq〉 ⇐ dequeue(Q) ;
for all transitions s σ→ s′ ∈ Ψ do
cs′ ← NSTATE (σ, cs) ;
seq′ ← NSTATE (σ,U, seq) ;
if (〈s′, cs′, 〉 /∈ S′′) ∨ (〈s′, , seq′〉 /∈ S′′) then

enqueue(Q, 〈s′, cs′, seq′〉) ;
S′′ ← S′′ ∪ {〈s′, cs′, seq′〉} ;

end if
Ψ′′ ← Ψ′′ ∪ {〈s, cs, seq〉 σ→ 〈s′, cs′, seq′〉} ;
D′′(〈s, cs, seq〉 σ→ 〈s′, cs′, seq′〉)←WCET (σ, cs);

end for
end while

Algorithm 3: Constructing the transition system T ′(U)

Figure 7: An example transition system T ′ (weighted graph) and the function γ(k) corresponding
to this transition system, for different values of k.

The above observation stems from the fact the the weight of the maximum-weight path
of length k in a graph eventually becomes periodic with increasing k, beyond a certain value
of k (see [6] and [12]). Let us denote this period as p, and the increment in the sum of
the edge weights within this period as q. Given a graph, the values of p and q depend on
the number of edges and the sum of the weights in the cycle with the maximum mean (i.e.
the sum of the weights divided by the number of edges). Both, p and q can be efficiently
determined (see [12]).

Therefore, γ(k), for increasing values of k, is made up of a prelude of length n0 followed

23

by a periodic continuation. For any k ≥ n0, γ(k) is given as:

γ(k) = γ((n0 − p) + (k − n0) mod p) + �k − n0 + p

p
�q (4)

The value of n0 can be determined by computing γ(k) on T ′ for all 1 ≤ k ≤ n with
a sufficiently large choice of n, and testing for periodicity. Towards this, we test if Eqn. 4
holds for the last p values of γ(k) from k = n, with p and q determined from the cycle in T ′

with the maximum mean weight. For this test, we set n0 = n − p + 1 and check if Eqn. 4
holds for all n0 ≤ k ≤ n0 + p− 1.

As a simple example, let us consider the weighted graph shown in Figure 7, corresponding
to a transition system T ′. Figure 7 also lists γ(k) for different values of k, corresponding
to this graph. Clearly, the cycle in this graph with the maximum mean weight has a cycle
length of 2. Hence, p = 2, and q corresponding to this cycle is 2 + 3 = 5. From the list of
different values of γ(k), it may be seen that n0 = 6. Hence, Eqn. 4 in the case of this graph
may be formulated as: for all k ≥ 6,

γ(k) = γ(4 + (k − 6) mod 2) + �e− 4
2
�5

Therefore, in the case of this graph, γ(k) only needs to computed for k < 6. For any k ≥ 6,
γ(k) can be computed in constant time.

6.3 Approximating ᾱ and γ

Note that in general, ᾱ and γ can be arbitrary functions. In this subsection we show that
by approximating ᾱ and γ using affine functions, it is possible to derive a Δmax such that
it is sufficient to restrict our iteration of Δ only till this value, for the computation of the
maximum delay and backlog experienced by a stream. In other words, the computation of
WCD and WCB can now be given by:

WCD = sup
0≤Δ≤Δmax

{ inf
τ≥0
{τ : α(Δ) ≤ Δ + τ}}

WCB = sup
0≤Δ≤Δmax

{ᾱ(Δ)− γ−1(Δ)}

The approximation of any given ᾱ and γ using affine functions involves the selection of
constants rᾱ, sᾱ, rγ and sγ , such that the following two inequalities hold:

ᾱ(Δ) ≤ rᾱ + Δ · sᾱ, ∀Δ ∈ R
≥0

γ(k) ≤ rγ + k · sγ , ∀k ∈ Z
≥0

Now recall from Section 5 the definitions of the functions α and γ−1. Using our approx-
imations of ᾱ and γ, it is possible to derive affine bounds on α and γ−1 as well. These are
given by:

α(Δ) ≤ rα + Δ · sα, ∀Δ ∈ R
≥0

γ−1(Δ) ≥ rγ−1 + Δ · sγ−1 , ∀Δ ∈ R
≥0

24

Figure 8: Computing Δmax from the affine bounds on γ−1 and ᾱ.

where,

rα = rγ + rᾱsγ , sα = sᾱsγ , rγ−1 = −rγ
sγ

and sγ−1 =
1
sγ

From our computation of the maximum backlog, WCB , experienced by a stream, it is
easy to see that Δmax can be the Δ-intercept of the intersection point of the affine bounds
on α and γ−1 (see Figure 8). Such a Δmax is therefore given by:

Δmax =
rγ + rᾱsγ

1− sᾱsγ

The same value of Δmax can also be obtained from the computation of WCD , the
maximum delay experienced by any event of the stream, by computing the intersection
point of the affine bound on α with the straight line representing the processor availability.

Using the affine bounds on ᾱ and γ, it is also possible to bound on WCD and WCB as
follows:

WCD ≤ rγ + rᾱsγ ; WCB ≤ rᾱ + max{rγsᾱ,
rγ
sγ
}

The function ᾱ′ can also be similarly bounded. Although these bounds are computationally
simpler, in general they are not as tight as those derived in Section 5.

7 Experiments

Our prototype implementation of the timing analysis framework consists of three parts,
each of which correspond to the three steps shown in Figure 3. The first part consists of a
cache state analyzer, which was implemented in C.

Figure 9 shows how these three parts are connected together to form a tool chain, along
with the necessary inputs to each of these three parts.

25

Figure 9: Design flow of our timing analysis framework.

We have implemented our timing analysis framework (the results derived in Section 5)
using the Mathematica toolkit [22]. The main motivation behind using Mathematica is that
it supports symbolic computations, using which it is possible compute WCD , WCB and ᾱ′

(when α, ᾱ and γ−1 are represented as a sequence of linear segments, not necessarily only
affine) without resorting to “pointwise” computations. Given the streaming application and
the program path in this application for each event type, we first identify the code for each
event type. The code for each event type, the cache configuration and the code layout are
provided to a cache state analyzer (implemented in C). This analyzer produces the Reaching
Cache States (RCS) and the Live Cache States (LCS) for each event type (Definitions 4.1
and 4.2). We then provide this LCS/RCS information, as well as the transition system T
and the arrival curve ᾱ(Δ) to our Mathematica program. The outputs of this program are
estimates of the worst case delay (WCD), worst case buffer fill level (WCB) and bounds on
the timing properties of the processed streams ᾱ′. The detailed design flow of our framework
is shown in Figure 9.

We now present a realistic case study to illustrate how the estimated timing properties
of an application are affected when the instruction cache is modeled using our proposed

26

Figure 10: Application scenario: MPEG-2 encoder in a video phone.

Figure 11: Transition system T specifying the possible frame patterns according to which a raw
video stream is encoded.

27

Figure 12: The MPEG-2 encoder’s code layout in the memory and the sequence of tasks executed
for each of the three different frame types, I, B and P.

framework. This case study also serves to validate our framework and shows that our
modeling of the cache behavior is efficient and scales to handle real-life setups.

Our application consists of an MPEG-2 encoder running on a device such as a Personal
Digital Assistant (PDA) or a mobile phone, that has a small movie camera attached to it.
Many of these devices today have general-purpose processors running a light-weight operat-
ing system and multiple applications. In our setup, the input to the encoder application is
a constant bit-rate raw video stream and its output is a 64×64 pixel MPEG-2 encoded clip.
We assume that such a clip would be played out at the rate of 30 frames per second, which
in turn determines the sampling rate of the camera capturing the video. Our setup is shown
in Figure 10. The raw bitstream is stored in a small on-chip buffer, which is read out by
the processor running the encoder application. Since the computational workload involved
in encoding each macroblock is dependent on the data being encoded, it is highly variable.
Hence, the fill-level of the on-chip buffer varies over time and it is important to choose an
appropriate buffer size at design time, especially since on-chip buffers are expensive and
occupy a significant fraction of the chip area.

We modeled an encoder application with five tasks. These are forward search (FS),
discrete cosine transform (DCT), quantization (Q), inverse quantization (IQ), and inverse
discrete cosine transform (IDCT). The memory layout of these tasks appears in Figure 12.
We consider a direct-mapped instruction cache with 64 cache lines and 64 bytes block size.

The incoming raw bitsream is encoded into a sequence of I, B and P frames, where
possible patterns of I, B and P are determined by the transition system given in Figure 11.
This transition system is determined by the implementation of the encoder application.
Given that the frame resolution in our case is 64 × 64 pixels, each frame is composed of
16 macroblocks, each of size 16 × 16 pixels. The encoding of macroblocks constituting

28

different frame types requires a different sequence of tasks getting executed. For example,
all macroblocks belonging to an I-frame requires the tasks DCT, Q, IQ and IDCT to be
executed. This task set, along with the task sets corresponding to B and P frames are listed
in the table below.

Frame Type Task Set
I-Frame DCT, Q, IQ, IDCT
P-Frame FS, DCT, Q, IQ, IDCT
B-Frame FS, DCT, Q

The worst-case execution times of the five different tasks (in terms of number of processor
cycles), when processing macroblocks of different frame types are given in the table below.
These numbers were obtained with an instruction cache miss penalty of 100 cycles.

FS DCT Q IQ IDCT
I 0 23204 12624 5177 16061
P 285918 23307 15919 7258 15943
B 134601 23307 11656 0 0

As a sequence of macroblocks gets processed (or encoded), different tasks get executed
following the pattern given by the transition system in Figure 11. Note that for any two
macroblocks belonging to different frame types, there is a significant overlap between the
tasks that get executed.

The worst-case delay and buffer size with the processor frequency set to 105 MHz and
an instruction cache penalty of 100 cycles is shown in the table below.

Maximum delay experienced by any macroblock
With Cache Modeling 28 ms

Without Cache Modeling 44 ms
Estimated minimum buffer size required

With Cache Modeling 13.30 macroblocks
Without Cache Modeling 20.68 macroblocks

8 Discussion

In this paper we presented a framework for accurate timing analysis of streaming appli-
cations by taking into account the micro-architectural features of the processor running
such an application (more specifically, the effects of the instruction cache). The frame-
work we presented can be used to evaluate important performance metrics in the context of
designing stream processing applications and architectures. These include buffer size and
delay/response time analysis.

We note that there has been a lot of recent interest in accurately modeling the effects
of correlations between different computation and communication tasks in the context of

29

performance analysis of embedded systems (see [11] and the references therein). However,
we are not aware of any work which models the effects of the correlation between different
tasks/events on the execution times of these tasks/events. This paper addresses this issue:
it shows how to model the effects of execution context or history to capture the fact that
the execution time of one occurrence of an event might be different from another occurrence
of the same event. This is done by using a novel composition technique which integrates
the specification of the event arrival process (or timing properties) with the specification
of the execution time demand of the event stream. Our performance analysis framework
does fine grained analysis of the execution time of each event instead of taking it as a
constant. Our experimental results from the MPEG-2 encoder application show that our
performance analysis framework can help in uncovering counter-intuitive effects of code
layout and micro-architectural features on the performance of an embedded system running
a streaming application.

We note that the current work is only the “tip of the iceberg” far as integrating micro-
architectural modeling is concerned. We envision lot more work in this direction – integrating
the modeling of set associative caches, complex replacement policies, data cache, branch
prediction and pipelines into the timing analysis of streaming applications. We now briefly
elaborate some of these avenues of future work.

Pipelines and Timing Anomaly One important direction of future work is to consider
the effects of other micro-architectural features (such as pipelines) on the timing analysis
problem. This will require us to resolve several issues. First of all, if we consider more
detailed micro-architectural features, then the number of possible micro-architectural states
at the beginning of an event will certainly blow up. For this purpose, we plan to investigate
the possibility of merging micro-architectural states in a manner similar to our partial
construction of the cache annotated transition system T ′. A more technical issue also arises
in this regard. In this paper, our instruction cache modeling finds the reaching cache states
(RCS) for each event as a least fixed point. The RCS information is then used to find the
possible cache states prior to any event σ in the transition system T ′; this involves another
fixed point computation. Such a decomposition into two levels of fixed-point computation
may not be possible if we consider other micro-architectural features (like pipelines). This
is because of the well-known timing anomaly problem in out-of-order processor pipelines
[21, 18]. As a result, we will need to: (a) replace the occurrence of events in the transition
system T by their control flow graphs, and (b) perform a single fixed point computation on
this graph to find all possible micro-architectural states. The time and space overheads of
such an analysis will be investigated in future to evaluate its practicality.

Extension to set-associative caches The cache modeling described in the paper is
for direct-mapped caches. To extend the notion of cache states, live cache states (LCS)
and reaching cache states (RCS) to set-associative caches, we need the following simple
modifications. First of all, the definition of a cache state can be revised to a vector over
{M ∪ {⊥}}k for k-way set associative caches (where M is the set of memory blocks). Each

30

iteration of the fixed point computation for LCS and RCS also requires a trivial change.
In particular, the binary operation ⊕ over memory blocks needs to lifted to cache sets (of
cardinality k). If m,m′ are cache sets, then m⊕m′ contains:

• all the non-empty cache lines of m′, and

• k − n cache lines of m (according to the replacement policy of the cache) where m′

contains n ≤ k non-empty cache lines.

Clearly, if m and m′ together contain more than k empty cache lines then m ⊕ m′ also
contains empty cache lines. Now which k − n cache lines are chosen from m? That clearly
depends on the replacement policy (such as LRU/FIFO). For the LRU policy, we will choose
the last k − n accessed cache lines of m; for the FIFO policy we will choose the last k − n
cache lines as per their relative entry times (into the cache).

Other specification formalisms Finally, we note that there exist various other spec-
ification formalisms for expressing constraints on event arrivals and service for real-time
systems. One such recent proposal is the Logic of Constraints [5] which can describe perfor-
mance as well as (certain kinds of) functional constraints. The authors of this paper have
studied the expressivity of LOC with respect to well-established formalisms for studying
functionality of event sequences such as Linear-time Temporal Logic (LTL). Instead of com-
paring LOC with LTL, we feel that LOC could be combined with LTL to form a powerful
specification for streaming applications. Thus, LOC could play the role of our arrival curves
whereas LTL properties could be used to describe the event arrival sequences captured by
our event transition system. It would be interesting to study whether the performance
analysis method described in this paper can directly handle such specifications as well.

Acknowledgements

Unmesh Dutta Bordoloi and Cem Derdiyok helped with initial experiments.

References

[1] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-
Time Systems, 24(1):93–128, 2003.

[2] S. Baruah, D. Chen, S. Gorinsky, and A.K. Mok. Generalized multiframe tasks. Real-
Time Systems, 17(1):5–22, 1999.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing system
properties in platform-based embedded system designs. In Proc. 6th Design, Automa-
tion and Test in Europe (DATE), pages 190–195, Munich, Germany, March 2003.

31

[4] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sagmeister. Performance
evaluation of network processor architectures: Combining simulation with analytical
estimation. Computer Networks, 41(5), 2003.

[5] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Logic of constraints: A quantitative
performance and functional constraint formalism. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 23(8), 2004.

[6] G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot. A linear-system-theoretic view
of discrete-event processes and its use for performance evaluation in manufacturing.
IEEE Transactions on Automatic Control, 30(3):210–220, March 1985.

[7] R. Cruz. A calculus for network delay, Parts 1 & 2. IEEE Transactions on Information
Theory, 37(1), 1991.

[8] Anupam Datta, Sidharth Choudhury, Anupam Basu, Hiroyuki Tomiyama, and Nikil
Dutt. Satisfying timing constraints of preemptive real-time tasks through task layout
technique. In IEEE International Conference on VLSI Design, 2001.

[9] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD
thesis, Uppsala University, Sweden, 2002.

[10] M.I. Gordon et al. A stream compiler for communication-exposed architectures. In 10th
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2002.

[11] M. Jersak, R. Henia, and R. Ernst. Context-aware performance analysis for efficient
embedded system design. In Proc. 7th Design, Automation and Test in Europe (DATE),
2004.

[12] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309–311, 1978.

[13] B. Khailany et al. Imagine: Media processing with streams. IEEE Micro, 21(2):35–46,
2001.

[14] J.-Y. Le Boudec and P. Thiran. Network Calculus - A Theory of Deterministic Queuing
Systems for the Internet. LNCS 2050, Springer, 2001.

[15] C-G. Lee et al. Analysis of cache-related preemption delay in fixed-priority preemptiv
e scheduling. IEEE Transactions on Computers, 47(6), 1998.

[16] M. Lee et al. A dual-mode instruction prefetch scheme for improved worst case and
average case program execution times. In IEEE International Real-Time Systems Sym-
posium (RTSS), 1993.

[17] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing analysis by modeling caches,
speculation and their interaction. In ACM Design Automation Conf. (DAC), 2003.

32

[18] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for software
timing analysis. In IEEE Real-time Systems Symposium (RTSS), 2004.

[19] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded software with
instruction cache modeling. ACM Transactions on Design Automation of Electronic
Systems, 4(3), 1999.

[20] P. Lieverse, T. Stefanov, P. van der Wolf, and E.F. Deprettere. System level design
with Spade: an M-JPEG case study. In ICCAD, 2001.

[21] T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled micro-
processors. In IEEE Real-Time Systems Symposium (RTSS), 1999.

[22] Mathematica 5, Wolfram Research.
http://www.wolfram.com/products/mathematica/index.html.

[23] A. Maxiaguine, S. Künzli, S. Chakraborty, and L. Thiele. Rate analysis for streaming
applications with on-chip buffer constraints. In ASP-DAC, 2004.

[24] T. Mitra and A. Roychoudhury. Worst-case execution time and energy analysis. In
Compiler Design Handbook (2nd Edition). CRC Press, 2007.

[25] A.K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Transactions
on Software Engineering, 23(10):635–645, 1997.

[26] H.S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache related
preemption delay. In CODES+ISSS, 2003.

[27] A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf, and E.F. Deprettere.
Exploring embedded-systems architectures with Artemis. IEEE Computer, 34(11):57–
63, 2001.

[28] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in
multitasking hard real-time systems. In IEEE Real-Time Systems Symposium (RTSS),
2002.

[29] P. Puschner and C. Koza. Calculating the maximum execution time of real-time pro-
grams. Journal of Real-time Systems, 1(2), 1989.

[30] K. Richter and R. Ernst. Event model interfaces for heterogeneous system analysis. In
Proceedings of the Design, Automation and Test in Europe Conference (DATE). IEEE
Computer Society, 2002.

[31] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance
verification. IEEE Computer, 36(4), 2003.

[32] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for heterogeneous
multiprocessor soc. In IEEE Real-Time Systems Symposium (RTSS), 2003.

33

[33] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for schedul-
ing analysis in platform design. In Proceedings of the Design Automation Conference
(DAC). ACM, 2002.

[34] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P. Gang-
wal, and A. Timmer. A heterogeneous multiprocessor architecture for flexible media
processing. IEEE Design & Test of Computers, 19(4):39–50, July-August 2002.

[35] J.E. Sasinowski and J.K. Strosnider. A dynamic programming algorithm for
cache/memory paritioning for real-time systems. IEEE Transactions on Computers,
42(8), 1993.

[36] A.C. Shaw. Reasoning about time in higher level language software. IEEE Transactions
on Software Engineering, 1(2), 1989.

[37] J. Staschulat and R. Ernst. Multiple process execution in cache related preemption
delay analysis. In ACM International Conference on Embedded Software (EMSOFT),
2004.

[38] J. Staschulat and R. Ernst. Scheduling analysis of real-time systems with precise
modeling of cache related preemption delay. In Euromicro Conference on Real-Time
Systems (ECRTS), 2005.

[39] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analysis. Journal of Real Time Systems, May 2000.

[40] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming
applications. In Proceedings of the 11th Conference on Compiler Construction, LNCS
2304, pages 179–196, 2002.

[41] H. Tomiyama and N. Dutt. Program path analysis to bound cache-related preemption
delay in preem ptive real-time systems. In ACM Intl. Symp. on Hardware-Software
Codesign (CODES), 2000.

[42] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-time systems.
In International Real-Time Systems Symposium (RTSS), 2003.

[43] V.D. Živković, P. van der Wolf, E.F. Deprettere, and E.A. de Kock. Design space
exploration of streaming multiprocessor architectures. In IEEE Workshop on Signal
Processing Systems (SIPS), San Diego, California, 2002.

[44] Ernesto Wandeler, Alexander Maxiaguine, and Lothar Thiele. Quantitative character-
ization of event streams in analysis of hard real-time applications. Real-Time Systems,
29(2), 2005.

[45] Ernesto Wandeler and Lothar Thiele. Abstracting functionality for modular perfor-
mance analysis of hard real-time systems. In Asia and South Pacific Desing Automation
Conference (ASP-DAC), 2005.

34

