
Real-Time Systems manuscript No.
(will be inserted by the editor)

Static Analysis of Multi-Core TDMA Resource Arbitration

Delays

Timon Kelter · Heiko Falk · Peter Marwedel ·
Sudipta Chattopadhyay · Abhik Roychoudhury

Received: date / Accepted: date
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Case Execution Time (WCET) is needed to guarantee the safety of a system. For
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rectly be applied to multi-core scenarios, where the different cores may interfere with

each other during the access to shared resources like for example shared buses or

memories. For the arbitration of such resources, TDMA arbitration has been shown

to exhibit favorable timing predictability properties. In this article, we review and

extend a methodology for analyzing access delays for TDMA-arbitrated resources.

Formal proofs of the correctness of these methods are given and a thorough exper-

imental evaluation is carried out, where the presented techniques are compared to

preexisting ones on an extensive set of real-world benchmarks for different classes of

analyzed systems.
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1 Introduction

With the rising importance of multi-core systems in the processor market, including

the embedded systems or cyber-physical domain, there is a growing need for tools to

verify the timing behavior of such systems, and as such the WCET. For embedded

systems, this may be the most important metric, because they often must work under

real-time conditions where a response must be delivered in a predefined time. There-

fore, fine-grained WCET analyses have been developed for single-core systems in

the last decade [Wilhelm et al (2008)], resulting in a variety of commercially avail-

able tools. In contrast, only first proposals exist for multi-cores. One of the major

difficulties in analyzing the WCET for multi-core platforms is that programs running

on different cores may interfere with each other, for example during accesses to a

common shared bus which connects the cores to a shared main memory. A possible

approach to resolve these interferences is to implement a Time Division Multiple Ac-

cess (TDMA) bus arbitration protocol which assigns a fixed-length time slot to each

core in round robin fashion. The TDMA arbitration scheme allows to derive a simple

upper bound for the bus access delay which can be incurred by a single access. As

we will show, this bound is only a rough overestimation. In [Kelter et al (2011)], a

new type of analysis was presented which safely bounds the access time for TDMA-

arbitrated resources with high precision and moderate analysis times. In this article

we provide

– A detailed review of the method from [Kelter et al (2011)]

– Formal proofs of its correctness

– Introduction of TDMA-composability which is a property of a system that will

allow us to analyze systems with short schedules and high variabilities which can

be hardly analyzed using the unmodified method from [Kelter et al (2011)]

– A detailed evaluation on real-world benchmarks

The first approaches to multi-core WCET analysis only modeled the shared re-

sources to some extent. [Suhendra and Mitra (2008)] and [Zhang and Yan (2009)] an-

alyzed the effects of a shared L2 cache without considering the interference on a

shared bus that is used to access the shared cache. [Zhang and Yan (2009)] provides

a bound on the number of additional cache misses due to the inter-core interference,

whereas [Suhendra and Mitra (2008)] eliminates the interference altogether by ex-

ploring different scenarios of locking and partitioning the shared cache. A similar

approach is pursued by [Hardy et al (2009)], where cache bypassing is used to elimi-

nate the cache conflicts between different cores.

[Gustavsson et al (2010)] investigates a totally different approach, where the whole

multi-core system is modeled as a set of timed automata. The WCET is obtained

by proving special predicates through model checking. This approach allows for a

detailed system modeling, but does not scale very well as all system states have

to be explored in the course of the WCET analysis, leading to a state explosion.

[Lv et al (2010)] enhances this approach by combining model checking with abstract

interpretation of cache states to increase the performance of the proposed analysis.

For analyses that include the shared bus, the choice of the bus arbitration method

is crucial. [Pitter and Schoeberl (2010)] compared the predominant arbitration meth-
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ods and TDMA arbitration resulted as the most predictable method, because it allows

to derive an upper bound on the delay that any access to the shared resource may

incur until it is granted. Unfortunately this bound is not tight in general. To provide

a better access time estimation, [Andrei et al (2008)] tries to determine the precise

time at which every single memory access takes place. The bus access delay estima-

tion is then performed separately for each access. The main problem is, that accesses

in loops with an iteration count of i can potentially have i different access times as-

sociated to the same memory access. Therefore, the analysis has to unroll all loops

virtually to determine the access times for each access individually, which makes the

analysis runtime dependent on the loop iteration counts.

[Chattopadhyay et al (2010)] circumvents this costly unrolling by aligning each

loop head execution to the first TDMA slot during the analysis. However, this arti-

ficial alignment of each loop iteration results in an additional penalty term to be added

in WCET estimation. Therefore, the analysis proposed in [Chattopadhyay et al (2010)]

is far more efficient but also less precise than [Andrei et al (2008)]. We have intro-

duced a new type of analysis in [Kelter et al (2011)] which is a compromise between

precision ([Andrei et al (2008)]) and analysis speed ([Chattopadhyay et al (2010)]).

In this article we will review and extend this new analysis and show that it is even

able to outperform [Andrei et al (2008)] in terms of precision in some cases.

Finally, [Pellizzoni et al (2010)] derives the worst-case bus delays in a multi-core

system analytically with the help of memory traffic arrival curves. This approach is

different from ours since we do not require such curves.

A different direction in timing analysis is the adaption of multi-core hardware to

exhibit better predictability properties. [Paolieri et al (2009)] proposed a multi-core

architecture in which safe measurements of the WCET are possible in a dedicated

processor mode, and [Mische et al (2010)] developed a superscalar SMT processor,

in which a single hard real-time task is able to execute with no interference, e.g. with

exactly the same timing as in a single-core processor. The rest of the CPU time is then

assigned to the remaining (soft real-time) tasks. These approaches are orthogonal to

ours since we focus on estimating the WCET of tasks on existing hardware platforms.

The rest of this article is organized as follows: Section 2 introduces the system model

used in the analyses and Sections 3 and 4 introduce the overall analysis framework

as well as the general analysis concepts, respectively. Section 5 presents the analyses

and their correctness proofs and introduces TDMA-composability as a new com-

posability class to support the timing analysis of multi-cores. The evaluation of the

analyses for different composability classes is given in Section 6. Finally, we provide

a summary of our results and give directions for future work in Section 7.

2 System and Application Model

In the following, we present the model of the hardware and software of the system

that we want to analyze. We state which prerequisites are needed for the analyses and

which application scenarios are covered.



4 Timon Kelter et al.

Fig. 1 An example for a bus access which is maximally delayed.

2.1 Modeled Hardware

We assume a system architecture where nc ≥ 2 cores are present in a single processor.

Each of the cores is working on a constant frequency and has an in-order pipeline

and a private L1-Cache. All the cores are connected to a shared TDMA-arbitrated

memory bus with a uniform TDMA slot size of sl cycles per core. The bus is used to

access a shared L2-Cache, which itself is linked to the main memory. The bus, the L2

cache and the main memory may be located on-chip or off-chip.

Definition 1 In a scenario with nc cores each having a TDMA time slot of length sl

cycles, a single bus access can incur a maximum bus access delay of

Dmax = ((nc −1)sl)+(e−1) (1)

cycles for a bus access which occupies the bus for e cycles.

Example 1 This maximum delay is encountered when the access request is issued

e− 1 cycles before the end of the executing core’s slot. The bus cannot be granted

then, since the access would span into the slot of the next core. An example for this

scenario is shown in Figure 1 for 2 cores, where core 1 issues a request “ACC” which

gets delayed by Dmax cycles.

On the other hand, the bus access is granted instantly, if the access request is issued

when the bus is assigned to the executing core for at least e remaining cycles, i.e.

if access “ACC” from the example of Figure 1 is issued during the time steps 0 to

sl − e. Thus, an important problem is to determine tighter bounds on the durations of

bus accesses. Dmax cycles, as mentioned, is a valid but highly overestimated bound.

We do not allow split transactions on the bus, therefore, for the maximum dura-

tion T max of a bus transaction, T max ≤ sl must hold. An access to the TDMA bus may

incur a variable delay, depending on when the access is performed, but the delay can-

not exceed Dmax cycles. As mentioned in the introduction, this bound is not tight in

general. Due to T max ≤ sl and Dmax ≥ ((nc −1)sl), Dmax will at least be (nc −1) times

as big as T max. Thus, the bus access delay is the factor with the greatest variability

and also with the greatest potential for overestimations during WCET analysis. This

underlines the need for precise analyses of the bus access delays. In this article, we

will provide such an analysis using a fixed TDMA schedule. The optimization of the

TDMA schedule itself is out of the scope of the article.
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All the caches in the considered system are non-inclusive and use the least-

recently-used (LRU) replacement policy. The cache hierarchy can be easily extended

e.g. with more private cache levels, because we apply the generic framework from

[Hardy and Puaut (2008)] to determine which accesses from cache level i − 1 hit

cache level i. We only model instruction caches and thus assume that data accesses

occur via a different bus and do not interfere with the instruction accesses in any other

way. The integration of a data cache analysis into our analysis would remove these

restrictions. We do not allow self-modifying code hereby removing the need to deal

with cache-coherency in our model. Also, all shared libraries are duplicated for each

core that uses them.

2.2 Input program model

While Section 2.1 presented our assumed hardware model, this section will introduce

the model of the input programs / tasks. We start with a definition of the basic unit of

execution, the basic block.

Definition 2 A basic block b = (i1, . . . , ik) is a sequence of instructions which may

only be entered at i1 and only be exited at ik. In addition, b must also either not contain

any instruction which potentially accesses the shared bus, or the block contains only

a single instruction.

This definition does not conform with the usual definition of basic blocks, but this

is motivated by the needs of our analysis as we will see in Section 4. Note that we

consider calls as “exiting the block” and thus a call terminates a block.

Definition 3 A function f = (B f ,b
start
f ,bexit

f ) is a user-defined set of basic blocks B f

together with a starting block bstart
f at which the execution of the function starts and an

exit block bexit
f at which the function is left. For each loop L in a function, we require

the minimum and maximum loop iteration counts Bmin
L and Bmax

L to be given. Each

function f has an intraprocedural control flow graph G f = (B f ,E f ), which for all

b1,b2 ∈ B f contains an edge (b1,b2) ∈ E f if immediate flow of control from b1 ∈Vf

to b2 ∈Vf is possible.

Definition 4 A task t = (Ft , f t
start) consists of a set of functions Ft and a start function

f t
start (usually called main) which is executed when the task starts.

Definition 5 The interprocedural control flow graph (IPCFG) Gt = (Vt ,Et) of a task

t has

Vt =
⋃

f∈Ft

B f (2)

Et =
⋃

f∈Ft

E f ∪Ecall (3)

where for every call from a basic block bcall ∈ B f1 from function f1 ∈ Ft to f2 ∈ Ft

there is an edge (bcall,b
f2
start) ∈ Ecall and a respective return edge (bexit,bsucc) ∈ Ecall
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with bexit ∈Bexit
f2

. bsucc ∈B f1 is the unique successor block of the call block in function

f1. The source node of the graph is vsource
Gt

= b
f t
start

start . We require functions to be non-

recursive, therefore Gt will be loop-free.

Definition 6 A path through a control flow graph G = (V,E) is a sequence of nodes

P = (v0,v1, . . . ,vn) such that (vi−1,vi) ∈ E for all i ∈ {1, . . . ,n}. The notation v → w

is used to describe an arbitrary path from v to w. The time that is takes the given

platform to execute a path P is denoted as et(P).

Definition 7 The Worst-Case Execution Path (WCEPt ) of a task t is a path b
f t
start

start →

b
f t
start

exit through Gt with maximum et(P) among all such paths P. The Worst-Case Exe-

cution Time (WCETt ) of task t is equal to et(WCEPt).

We require our input tasks to be well-structured, which we will detail in the fol-

lowing. To formally define this term, we first need the notion of dominance and back-

edges:

Definition 8 For a given control flow graph G =
(

V,E,vsource
G

)

, a node u ∈ V dom-

inates a node v ∈ V iff u ∈ P holds for every path P =
(

vsource
G , . . . ,v

)

. A back-edge

(u,v) ∈ E is an edge where v dominates u.

With these terms, we can define the reducibility of a control flow graph. Our

definition follows the one in [Muchnick (1997)].

Definition 9 A control flow graph G =
(

V,E,vsource
G

)

is reducible iff E can be parti-

tioned into the disjoint sets EF (forward edge set) and EB (backward edge set), such

that (V,EF) forms a directed acyclic graph in which each node can be reached from

the source node, and the edges in EB are all back-edges.

In the following, we will use well-structured as a synonym for reducible. This is

motivated by the fact that in a reducible control flow graph, loops can be unambigu-

ously identified and back-edges can be unambiguously mapped to their correspond-

ing loops [Muchnick (1997)]. Since we will need to identify loops in our analyses,

we require the interprocedural control flow graphs of our input tasks to be reducible.

The whole input is then given as an acyclic task graph with a fixed mapping of

tasks to cores. Each edge (x,y) in the task graph denotes that task y can start execu-

tion only after task x has finished. We use fixed-priority, non-preemptive scheduling.

A preemptive scheduling would require the integration of a cache-related preemption-

delay (CRPD) analysis [Altmeyer et al (2010)] which is out of the scope of this arti-

cle.

3 Analysis Framework

The analyses are implemented inside the CHRONOS timing analyzer framework from

[Chattopadhyay et al (2010)]. Figure 2 shows the analysis process. The framework
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Fig. 2 The analysis framework

first analyzes the cache behavior of each task in isolation and then computes the

maximum possible cache interference in the shared L2 cache. This interference in-

formation is used to update the worst-case cache states of the individual tasks. The

cache analysis assigns to each single access one of the following categories for each

cache level:

AH “Always Hit”

AM “Always Miss”

PS “First Miss” / “Persistent”

UNKNOWN “Unknown Behavior”

PS means that the first execution of the instruction suffers a cache miss, but ev-

ery following execution hits the cache, which is most useful for instructions in-

side of loops. For details on the cache analysis, the interested reader is referred to

[Chattopadhyay et al (2010)], since we are only using its results here. In the next

analysis step, the cache information is used to compute BCET1 and WCET values

per task. This module (marked in bold in Figure 2) contains WCET analyses which

we examine in this article. After the tasks’ BCETs and WCETs were computed, the

system’s worst-case response time (WCRT) is determined. This process repeats as

long as the task interference changes, e.g. due to altered task lifetimes, which in turn

may lead to more precise WCETs. In the following, we will focus on the determina-

tion of single task WCETs with given cache states as this is our main contribution.

Nevertheless, all presented analyses are applicable to the computation of BCETs as

well.

1 Best-Case Execution Time
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4 Static Analysis of TDMA Offsets

The analyses presented in this article build upon concepts which are heavily used

in the analysis of other architectural features. To establish the link to those existing

analyses, we first give a short overview of existing static analysis techniques. We also

demonstrate why those techniques are not sufficient for TDMA access delay analysis.

4.1 Abstract interpretation in timing analysis

A static timing analysis is usually composed of a microarchitectural analysis and a

path analysis [Wilhelm et al (2008)]. The microarchitectural analysis is responsible

for determining abstract hardware states which describe the possible concrete hard-

ware states at every basic block entry. This microarchitectural analysis is normally

based on abstract interpretation, a technique for static program analysis, which can

provide safe approximations of program or, in this case, hardware states. In the past,

it was successfully employed to analyze cache, branch prediction and pipeline be-

havior. With these hardware states, a basic block’s WCET can be computed, which

in turn can be fed into the path analysis to compute the longest path through the

program.

As we have seen in Section 2, the execution time of a bus access heavily de-

pends on the time at which the access is made. Thus, we will try to determine or at

least approximate that time in the following analyses, to be able to more precisely

predict how long it will take for the bus accesses to execute. After our definition of

basic blocks (see Definition 2), a basic block can either consist of multiple non-bus-

accessing instructions or of a single potentially bus-accessing instruction. The infor-

mation whether an instruction potentially accesses the shared bus can be extracted

from the cache information. In our case, it may access the bus when it may access

the L2 cache. This means that the WCET of basic blocks following our definition is

either fixed (no bus access) or variable (bus access) which will simplify the analysis.

The basic blocks execute in-order, since we required an in-order pipeline. A gener-

alization of our concepts to out-of-order execution is possible, but is omitted for the

sake of presentation clarity2.

Since every possible bus access forms a basic block of its own, it is now sufficient

to be able to approximate the starting time of all basic blocks, to obtain bounds on

the times at which the bus is accessed. The abstract hardware states which are used

by our analyses thus must model a set of time instants at which the execution of a

basic block may start. Note that the bus access delay does not depend on the absolute

time at which the access is performed, but only on the position of the access inside

the cyclic TDMA schedule (compare Figure 1).

Definition 10 The absolute time in the analyzed system is measured in processor

cycles, since we assume a processor with constant clock frequency. An absolute point

2 In case of out-of-order pipelines, the analysis which we will present in the following would need to

consider all orders in which the instructions of basic blocks can possibly be executed in separation and

merge this information afterwards to get a valid overapproximation.
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(a) Offset interval

(b) Offset set

Fig. 3 Different abstract representations for possible start offsets of a basic block

in time in an execution is given as t ∈ N0 which means the t-th clock cycle after the

start of the system. An offset o can be computed from an absolute point in time t as

o = (t mod ncsl).

To approximate the bus access delay it is therefore sufficient to approximate the

offsets instead of absolute times. To be able to model the fact that a block can be

entered with more than one offset we devise two offset representations:

– An offset interval I = [omin,omax]
– An offset set O = {o1,o2, . . . ,on}

The set of all possible offset intervals (offset sets) is denoted as I+ (O+). These

offset representations are the abstract hardware states that will be used in the analyses.

Example 2 An example for the different representations can be found in Figure 3.

While Figure 3(b) shows the offset set representation with the represented offsets

marked in gray, Figure 3(a) presents the same offset information, again marked in

gray, for the offset interval representation.

Obviously, the set representation is more precise, but it also requires greater effort

to maintain the sets during the analysis, thus leading to a typical tradeoff between

analysis precision and analysis duration. In the following, we will only use the set

representation to keep the presentation clear, but all of our algorithms can also be

applied based on the offset interval representation.

With our notion of basic blocks and the results from the other microarchitec-

tural analyses which yield WCET values for the blocks without bus accesses, we

can formulate the offset analysis as a classical dataflow analysis [Aho et al (2006),

Cousot and Cousot (1979)]. The dataflow analysis requires a transfer function ub :

O+ → O+ which returns the offsets which result after the execution of a given basic

block b and a join function m : O+×O+ → O+ which merges the states at control

flow joins in the control flow graph. Given the set ETb ⊆ N of possible execution

times of b and either an offset set S or an offset interval I, we have

ub (O) =











offexecute if b never accesses the bus

offexecute ∪offaccess if b may access the bus

offaccess if b always accesses the bus

(4)
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with

offexecute = {(o+ e) mod slnc|o ∈ O,e ∈ ETb} (5)

offaccess =
{

(o+Φp (o,e)+ e) mod slnc|o ∈ O,e ∈ ETb

}

(6)

where offexecute (Equation 5) denotes the offsets resulting from the execution of the

block’s instruction in the pipeline and offaccess (Equation 6) denotes those which re-

sult from the instruction execution and a succeeding bus access. Since we have re-

quired all instructions which potentially access the bus to form a basic block of their

own, any block for which we have to compute offaccess will only consist of a single

instruction. The Φp (o,e) function returns the time for which a bus request has to wait

until it is granted, when the bus request is issued by core p ∈ {0, . . . ,nc −1}, begins

at offset o ∈ {0, . . . ,ncsl −1} and needs e ∈ {1, . . . ,T max} cycles to complete after

the bus access was granted. In the TDMA arbitration we can define Φp (o,e) as:

Φp (o,e) =











sl p−o if o < sl p

0 if sl p ≤ o ≤ sl(p+1)− e

slnc −o+ sl p else

(7)

In Equation 7, the first case corresponds to an access before the current core’s slot,

the second case is an access inside the current core’s slot and the third case handles

an access after the current core’s slot.

To show the correctness of the offset update function ub we define a TMDA hy-

perperiod as follows:

Definition 11 A TDMA hyperperiod is an absolute time interval [ta, te) with ta mod ncsl

and te = ta +ncsl

The following lemma shows, that our update function ub correctly models the

offset progression for a single execution of the basic block b.

Lemma 1 For any O ∈ O+, ub(O) contains the offsets of all absolute time instants t

such that t is the first cycle after the execution of basic block b, starting at an offset

o ∈ O.

Proof If a particular execution of the basic block does not access the bus, offexecute

from Equation 4 contains all possible resulting offsets, since ETb is the set of all

possible running times then. If the particular execution of the block does access the

bus, the block only consists of a single instruction, according to Definition 2. offaccess

contains the possible offsets of the first cycle t after the execution of the basic block

for any starting offset o ∈ O and runtime e ∈ ETb. Since the only difference between

offexecute and offaccess is the application of the Φp function, we show this by examining

the three cases from Equation 7:

– In the first case, the access has to be delayed until the start of core p’s slot in the

current TDMA hyperperiod.

– In the second case, the access can be granted immediately, since the bus is allo-

cated to core p and will be allocated to p for at least e cycles.
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– In case three, the access cannot be served in the current TDMA hyperperiod and

thus must be delayed to the next TDMA hyperperiod (as shown in Figure 1).

By taking the union over all possible starting offsets o ∈ O and execution times e ∈
ETb in Equation 6, the Lemma follows for this case, too. ⊓⊔

Note that ETb may for example model the fact that we have a block with variable-

latency instructions or a block whose L2 instruction memory access was classified as

UNKNOWN. The join function m is defined as:

m(O1,O2) = O1 ∪O2 (8)

We generalize m to take n arguments instead of just two by defining

∀n > 2 : m(O1, . . . ,On) = m(O1, . . . ,On−1)∪On (9)

Analogously, we generalize ub to sequences q = (b1,b2, . . . ,bn) of basic blocks by

setting

n = 1 : u(b1) (O) = ub1
(O) (10)

∀n > 1 : u(b1,b2,...,bn) (O) = ubn

(

u(b1,b2,...,bn−1) (O)
)

(11)

Definition 12 A b-trace for a basic block b in the interprocedural control flow graph

of a task t is a path from b
f t
start

start to b. The set of all b-traces is called Qb.

Definition 13 The Meet-Over-All-Paths (MOP) solution to the problem of determin-

ing the possible offsets with which a basic block b may be entered when the sur-

rounding task is started with offsets S, is given as

OMOP
b (S) = m

({

uqb
(S) |qb ∈ Qb

})

(12)

Theorem 1 The MOP solution provides a valid overapproximation of all offsets with

which block b can be entered.

Proof m joins the offsets resulting from the single b-traces which represent all execu-

tion paths leading to b. We must thus only prove that uqb
(S) is an overapproximation

of the offsets which result from the execution of b-trace qb starting with an offset

o ∈ S. This can be proven via induction over the length of qb where the induction step

is made by applying Lemma 1. ⊓⊔

Instead of directly computing the MOP solution, which would be computation-

ally expensive, we can conduct a standard dataflow analysis on the interprocedural

control flow graph of each task. Since our transfer function u is monotonic and S+ is

a power set, this dataflow analysis will terminate and the result will be equal to the

MOP solution. This follows from the Kleene Fixpoint Theorem and the Coincidence

Theorem [Cousot and Cousot (1979)]. We will not go into more detail here, since this

is a purely technical application of classical dataflow theory and is of no importance

for our own analyses.

Unfortunately, this dataflow analysis will not be very precise, because branches

and loops in the control flow force us to repeatedly merge the offset information,
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which quickly leads to results where a block can be reached with arbitrary offsets. In

this situation, we cannot provide a better estimation than the pessimistic assumption

that each bus access is delayed by Dmax cycles. The imprecision that stems from

branches can be reduced through the offset set representation which allows to track

the offset development in more detail. Loops pose a bigger problem. They can only

be handled effectively with the concept of contexts in the analysis.

4.2 Abstract hardware states and contexts

Usually, the hardware states presented in Section 4.1 are computed in a context-

insensitive way, meaning that the abstract interpretation computes states which are

valid for all execution contexts of a basic block, where an execution context denotes

a certain loop iteration or calling context. This can be observed e.g. in Equation 12,

where we merge the offset information over all b-traces. This behavior is insufficient

for some analyses like e.g. the cache analysis, where the first loop iteration may have

a significantly different cache behavior than the following ones. For this purpose,

analysis contexts were introduced, which describe the hardware states for a certain

execution context. The known methods for dealing with contexts during bus access

duration analysis are the following:

– The loop is virtually unrolled by a factor equal to its loop bound and thus, each

loop iteration is explicitly analyzed [Andrei et al (2008)]. This method, called full

virtual unrolling is very precise but also very inefficient for larger loop bounds. It

results in the analysis of Bmax
L analysis contexts, each of which represents exactly

one execution context.

– The analysis is performed for a fixed offset o, and a delay is added that represents

the maximum additional delay that can occur due to execution with offsets s 6= o.

This is the approach pursued by [Chattopadhyay et al (2010)], and we will refer to

it under the name fixed-alignment approach. It results in a single analysis context

which represents all Bmax
L execution contexts.

– We analyze 1 ≤ x ≤ Bmax
L contexts to provide a compromise between analysis

duration and analysis precision. This is the approach from [Kelter et al (2011)]

which is based on the analysis of TDMA offsets as presented above, and which

we will review and extend in the next sections.

5 Computing Loop Offset Bounds

Our approach is based upon the observation that for each loop iteration which

starts from a given set of offsets, we can compute the set of offsets in which the

iteration may terminate. Therefore, our goal is to track the development of the TDMA

offsets of the loop header block and thus to provide more precise offset bounds than

by using the data flow analysis from Section 4. This requires:

– A structural analysis to find loops in the CFG, and to build a directed acyclic

graph (DAG) from each loop or function body. Nested loops are represented as
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while condition do

if condition then

code with long runtime

else

code with short runtime

end if

end while

(a) Loop code

(b) TDMA offset progression for a single iteration

Fig. 4 Mapping of a start offset to possible end offsets for a single loop iteration

single nodes in the surrounding DAG. Due to this, we required our input tasks to

be reducible in Section 2.

– An analysis that computes the set of offsets that may be reached when a loop

body is executed once with given starting offsets.

The overall analysis will then proceed in a hierarchical way, starting at the begin-

ning of the task entry function and descending into called functions or loops only

when they are discovered in the CFG. The structural analysis is already present in

the CHRONOS framework, whereas a single-iteration offset analysis is presented in

Section 5.1. Section 5.2 then introduces the core analysis which combines the single-

iteration results into a complete loop WCET.

5.1 Determination of offset results for single iterations

As mentioned, we are interested in determining the offsets that can be reached after

a single execution of the loop body finishes. This will be called a loop iteration in

the following, in contrast to a loop execution which denotes the (possibly) repeated

execution of the loop body until the loop condition is false. It is important to note, that

a loop iteration, starting from a single, given offset may end at different offsets, e.g.

due to variability in the runtime of instructions, due to UNKNOWN cache accesses

or due to different paths through the loop.

Example 3 The case of different paths through a loop is exemplified in Figure 4. The

loop is shown in Figure 4a, and Figure 4b shows two TDMA hyperperiods. The start

offset is shown on the left hand side and the possible result offsets are shown on

the right hand side of Figure 4b. The top arrow represents a loop iteration of length

3sl cycles whereas the bottom one represents a loop iteration of length ncsl cycles

which corresponds to the two branches of the if-statement in the loop code shown

in Figure 4a. Thus Figure 4b shows that a single iteration of the given loop with start

offset set {(nc −2)sl} may only end with one of the offsets in {1sl ,(nc −2)sl}.

In the following, an analysis which is able to compute such offset results for

single loop iterations is presented. In this analysis, each basic block is seen as a
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Algorithm 1 AnalyzeBlock

Require: block b, offsets Oin

1: if b is head of inner loop linner then

2: return AnalyzeLoop (linner,Oin)
3: else

4: wcet = 0

5: if b consists of bus access instruction then

6: for all offset o ∈ Oin,e ∈ ETb do

7: wcet = max (wcet,Φp (o,e)+ e)
8: end for

9: else

10: wcet = max(ETb)
11: end if

12: result = 〈wcet,ub (Oin)〉
13: if b is terminated by call to function f then

14: tmp = AnalyzeFunction ( f ,result.o f f sets)
15: result = 〈tmp.wcet + result.wcet, tmp.o f f sets〉
16: end if

17: return result

18: end if

transformation function which maps input offsets Oin (either an offset set or an offset

interval as explained in Section 4.1) to resulting offsets Oout and produces WCET

values which are valid for the given Oin. Algorithm 1 shows the analysis of single

basic blocks. Function calls (lines 13 - 16) or blocks which represent inner loops (line

2) are handled by specialized analysis functions. Note that function calls terminate

basic blocks in our model. The WCET and offsets which result from bus accesses

(lines 4 - 12) or simple instructions (line 10) are computed with the known ETb values

and Φp and ub functions from Section 4.1, where p is the core which executes the

currently analyzed task.

Each DAG analysis, on either a function or a loop body, then composes the single-

block results in topological order and forms its own WCET and offset result out of

them. Algorithm 2 shows this for the case of a single loop iteration, where bsink and

bheader are the sink and header node of loop l, respectively and pred (bi) returns the

set of predecessor blocks for block bi. By supplying the starting offsets to the loop

iteration analysis (lines 3 - 4), this information becomes part of the analysis context,

as explained in Section 4.2. The iteration analysis then analyzes the behavior of each

single block (lines 9 - 11) and propagates the results to the successor blocks (lines 6

- 7). Finally the results per loop iteration are summarized (line 13). The analysis of

functions in “AnalyzeFunction” (Algorithm 3) works analogously as “AnalyzeLoop-

Iteration”. As stated, recursive calls must be converted to standard loops before our

analysis can handle them.

Theorem 2 For a given interprocedural control flow graph of a task t and given

starting offsets Oin, the results w ∈ N and O ∈ O+ as computed by Algorithm 3 for

function f start
t are overapproximations of the WCET and the resulting offsets of any

execution of t which starts with an offset o ∈ Oin.

Proof We cannot present the full proof at this point, since we have not yet presented

the “AnalyzeLoop” function. Nevertheless we will introduce the structure of the proof
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Algorithm 2 AnalyzeLoopIteration

Require: loop l, offsets Oin

1: for all blocks bi of loop l in topological order do

2: if bi = bheader then

3: wStart = 0

4: oStart = Oin

5: else

6: wStart = maxbd∈pred(bi) (wFinish [bd ])
7: oStart = m({oFinish [bd ] | bd ∈ pred (bi)})
8: end if

9:
〈

wcetbi
,Obi

〉

= AnalyzeBlock (bi,oStart)
10: wFinish [bi] = wStart +wcetbi

11: oFinish [bi] = Obi

12: end for

13: return 〈wFinish [bsink] ,oFinish [bsink]〉

Algorithm 3 AnalyzeFunction

Require: function r, offsets Oin

1: for all blocks bi of function r in topological order do

2: if bi = bstart
r then

3: wStart = 0

4: oStart = Oin

5: else

6: wStart = maxbd∈pred(bi) (wFinish [bd ])
7: oStart = m({oFinish [bd ] | bd ∈ pred (bi)})
8: end if

9:
〈

wcetbi
,Obi

〉

= AnalyzeBlock (bi,oStart)
10: wFinish [bi] = wStart +wcetbi

11: oFinish [bi] = Obi

12: end for

13: return 〈wFinish [bsink] ,oFinish [bsink]〉

here and add the missing parts later. We prove the proposition by structural induction

over the interprocedural control flow graph.

Base case: The smallest possible graph is a single basic block. Therefore, we

have to prove the proposition for a single basic block to give the induction base case.

According to Definition 2, the basic block either consists of a single instruction which

accesses the bus, or of multiple instructions which do not access the bus.

– A basic block with a bus access

In this case, the returned WCET is a valid overapproximation since we compute

the maximum over all possible completion times as returned by Φp + e.

– A basic block without a bus access

In this case, the returned WCET is a valid overapproximation since we maximize

over the given ETb values.

The correctness of the offset result follows from Lemma 1, since the result is com-

puted through a single application of the transfer function u.
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(a) Sequence (b) If-Then (c) If-Then-Else (d) Proper

Fig. 5 Sequential structural patterns

(a) While loop (b) Natural loop (c) Self loop

Fig. 6 Cyclic structural patterns

Induction step: The induction step must consider the possible structures which

can appear in the CFG. We required our interprocedural control flow graphs to be

reducible in Section 2. A reducible control flow graph can be inductively defined with

the patterns shown in Figures 5 and 6. Every graph which adheres to Definition 9,

which includes our control flow graphs, can be constructed using those inductive

patterns [Muchnick (1997)]. In the patterns, the circles indicate reducible subgraphs.

For the induction step, we can assume that the proposition was already shown for

the subgraphs. We then must prove that the proposition is also true for the depicted

graphs as a whole. This is done by looking at the different cases:

– Sequential patterns

According to the induction hypothesis, the WCET and offset results for the sub-

graphs are valid overapproximations. For the sequential case shown in Figure 5a

we add up the WCETs and combine the offset results in lines 9 to 11 of Algo-

rithm 3. This obviously yields overapproximations for the whole sequence.

For the case of branches as shown in Figure 5b and 5c, we compute safe overap-

proximations, since we take the maximum WCET of any path leading to the end

block in line 6 of Algorithm 3. Similarly, we merge the result offsets of all paths

reaching the end block in line 7 of the same algorithm.
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The last sequential case as shown in Figure 5d is a combination of an if-then

with a sequence. Therefore, the correctness for this case follows from the same

arguments as in those cases.

– Cyclic patterns

The possible cyclic patterns are shown in Figure 6. We omitted patterns for loops

which contain break or continue statements, since the generalization to these

cases is a pure technicality. The induction step for the case of loops has to be

supplied when the analysis function “AnalyzeLoop” was presented. ⊓⊔

For the analysis of complete loop executions (all iterations) in “AnalyzeLoop”,

we need to combine the context-sensitive single iteration results to form an overall

loop WCET and offset result. This will be discussed in the next section.

5.2 Deriving full loop WCETs

To implement “AnalyzeLoop” for a given loop l and starting offsets Oin,l , full un-

rolling could be performed by analyzing all iterations and supplying the offset results

from one iteration as inputs to the next one. Alternatively, only a single iteration can

be analyzed, with a forced alignment at the TDMA schedule border and an added

alignment penalty as suggested in [Chattopadhyay et al (2010)]. Section 4.2 already

mentioned that our goal is to avoid these two approaches, because they are computa-

tionally too expensive or lose precision, respectively. In this section we present and

review two methods from [Kelter et al (2011)] which present a compromise between

those two extremes.

In the following sections we will use wcetLB
l (O) and uLB

l (O) to denote the (safe)

WCET and offset results of a single loop iteration starting at an offset o ∈ O as com-

puted by Algorithm 2. In the proofs of correctness of the proposed “AnalyzeLoop”

functions, we can use the induction hypothesis from Theorem 2, that wcetLB
l (O) and

uLB
l (O) compute valid overapproximations.

Our analyses will concentrate on the case of natural loops (see Figure 6b). Self

loops (see Figure 6c) are a special case of a natural loop which consists of a single

basic block. For while loops (see Figure 6a), the loop condition is evaluated one more

time before the loop is exited, which must be accounted for in the analysis. Since this

a purely technical issue, we will omit this in the following.

5.2.1 Global Convergence Analysis

Starting with the initial offset information O1
in = Oin,l we iteratively analyze single

loop iterations i ∈ {1,2, . . .} and record the WCET wceti = wcetLB
l

(

Oi
in

)

and offset

result Oi
out = uLB

l

(

Oi
in

)

. With the merge function m from Section 4.1 the offset in-

puts Oi
in for iteration i are then computed as m

(

Oi−1
in ,Oi−1

out

)

. The analysis stops after

iteration j when either j = Bmax
l or O

j
in = O

j+1
in is true. In the first case, we have

hit the loop bound and thus have performed full unrolling implicitly, therefore this
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is the undesired case. In the second case, we have reached a fixpoint of the starting

offsets and thus the result from iteration j stays valid for all following iterations. In

total there cannot be more than min
(

Bmax
l ,ncsl

)

iterations, which is the number of

possible offset values. The final loop WCET can then be easily computed as:

wcetl
(

Oin,l

)

=

(

j

∑
i=1

wceti

)

+(Bmax
l − j) ·wcet j (13)

The offset result for the loop is equal to the offset result from iteration j, because

this result stays valid for all following iterations.

Lemma 2 For two offset sets O1 and O2 with O1 ⊆O2 we observe that wcetLB
l (O1)≤

wcetLB
l (O2) and uLB

l (O1)⊆ uLB
l (O2). For wcetLB

l this can be derived from the mono-

tony of Φp and for uLB
l it can be derived from the monotony of the m and ub functions.

Thus, wcetLB
l and uLB

l are monotone.

Theorem 3 For given starting offsets Oin,l , the global convergence analysis com-

putes safe overapproximations of the loop WCET and result offsets.

Proof This proof handles the case of cyclic patterns in the proof of Theorem 2 and

thus is a plug-in for this proof. If we would set Oi
in = Oi−1

out in the analysis, then we

would perform a fully unrolling analysis, which would be unlikely to converge at any

time step before the loop bound. The safeness of this fully unrolling analysis then

follows from the safeness of the single-iteration analysis which we can assume since

this is the induction hypothesis from Theorem 2. We use Oi
in = m

(

Oi−1
in ,Oi−1

out

)

, there-

fore in our algorithm Oi
in ⊇ Oi−1

out holds. Lemma 2 implies that the WCET and offset

results which we compute per iteration are overapproximations of the real WCET

and offsets. This proves the correctness of the algorithm for the first j loop iterations.

Then we have two cases:

– j = Bmax
l

In this case, all loop iterations were analyzed and thus the correctness of the

analysis was shown for all loop iterations.

– O
j
in = O

j+1
in

In this case, since O
j
in is a safe overapproximation of the offsets in loop iteration

j and O
j+1
in = uLB

l

(

O
j
in

)

is a safe overapproximation of the offsets in loop itera-

tion j+ 1, the loop can never be entered with offsets o /∈ O
j
in in any succeeding

iteration k > j. Therefore the offset and WCET results for the j-th iteration are

safe overapproximations for all Bmax
l − j remaining iterations. ⊓⊔

5.2.2 Graph Tracking Analysis

The global convergence analysis is superior to a static unrolling insofar, that it im-

plicitly unrolls the loops selectively, as long as new information can be obtained.

Nevertheless, this still relies on the idea of unrolling the first j iterations and han-

dling the rest of the iterations under a single analysis context. The drawback is that

cyclic progressions of offsets cannot be captured by the analysis.
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Fig. 7 An example offset graph

Example 4 Consider e.g. a loop in which all even iterations start with offset x and all

odd iterations start with offset y ≥ x, because only the even iterations have to wait for

the TDMA bus access, whereas the odd iterations can then proceed with direct bus

access. The global convergence analysis will analyze the first two iterations ( j = 2),

compute O
j
in = {x,y} and use this offset information for all following iterations. This

is clearly valid, but still imprecise.

The example shows the need to handle cyclic contexts which do not distinguish

the first j execution contexts from the remaining ones, but which distinguish groups

of execution contexts which repeat cyclically. In our case, a cyclic context consists of

all iterations starting with offset o, which leads to slnc contexts. Thus, we can identify

a cyclic context via the offset which it represents.

To obtain the final timing results using cyclic contexts, we construct a weighted,

directed graph from the contexts and compute the loop WCET by solving a flow

problem on that graph.

Definition 14 An offset graph G= (V,E,c) consists of a set of nodes V = {v+,v−}∪
Voff with source v+, sink v−, context nodes Voff =

{

v0, ...,vslnc

}

, of a set of edges

E = Eenter ∪Eexit ∪Etransition and of a weight function c : E → N. We have

Eenter =
{

(v+,vx) | x ∈ Oin,l

}

(14)

Eexit =
{

(vx,v
−) | x ∈ [0,slnc]

}

(15)

For all edges e ∈ (Eenter ∪Eexit) we set the weight c(e) to 0. Etransition is then con-

structed by iteratively analyzing single iterations. For each iteration i, we compute

wceti = wcetLB
l

(

Oi
in

)

and Oi
out = uLB

l

(

Oi
in

)

. O1
in is set to Oin,l and for the other itera-

tions Oi
in = Oi−1

out applies. After the analysis of each iteration we extend Etransition by

all edges e = (vi,vo) with i ∈ Oi
in,o ∈ Oi

out and c(e) = wceti. We stop the iteration

analyses when we reach an iteration where no edge is added or when i = Bmax
l .
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Example 5 An example for such a graph is given in Figure 7 where the first iteration

starts with offset s and the succeeding iterations alternate between starting offset x

and y as sketched in Example 4.

The offset graph can then be used to obtain the final loop WCET by solving a

dynamic flow problem [Skutella (2009)]. In contrast to standard flow problems, dy-

namic flow problems have an explicit notion of time built into the problem formula-

tion. Based on the offset graph, we can derive two different dynamic flow problems:

one for determining the WCET and one for the resulting offsets. The basis of the

problem formulation is a flow function x : E ×T → N, which specifies for each edge

e = (u,v) the amount of flow x(e, t) which leaves u at the discrete time instant t. This

flow arrives at v at time t +τ (e) where τ (e) is the constant runtime of the edge. Con-

ceptually, in our graph, a single time step of the flow problem corresponds to a single

iteration of the loop, which implies T =
{

0, ...,Bmax
l

}

. Thus, a flow of x(e, t) = 1

through an edge e = (v,w) ∈ Etransition represents the loop iteration t which starts at

offset v and ends at offset w and has a maximum runtime of c(e). Therefore, we set

τ (e) = 1 for all e ∈ Etransition, since these edges model single loop iterations, and we

set τ (e) = 0 for all e ∈ Eenter ∪Eexit , modeling entry into and exit from the loop. Both

dynamic flow problems share a common constraint that ensures that all flow which

enters a node at a time step must leave it in the same step (i.e. there must be one loop

iteration per time step):

∀t ∈ T : ∀v ∈Voff : ∑
e∈δ−(v)

x(e, t − τ (e)) = ∑
e∈δ+(v)

x(e, t) (16)

Here, δ− (v) and δ+ (v) denote the sets of incoming and outgoing edges at node

v ∈V . For the start node v+ and the sink node v− we need to provide explicit bounds

on the flow. We want F units of flow to leave v+ at time 0 and to arrive at v− at time

Bmax
l . The flow of each of the flow units through the graph models a possible loop

execution scenario. F will be set to a specific value in the final ILPs, but since we

will be solving two ILPs we keep the formulation generic first. Therefore, we have:

∑
e∈δ+(v+)

x(e,0) = F (17)

∀e∈δ+(v+) : ∀t ∈ T \{0} : x(e, t) = 0 (18)

∑
e∈δ−(v−)

∑
t∈Tleave

x(e, t) = F (19)

∀e∈δ−(v−) : ∀t ∈ T \Tleave : x(e, t) = 0 (20)

with Tleave =
{

t | Bmin
l ≤ t ≤ Bmax

l

}

(21)

Equations 17 and 18 specify that the F flow units must leave v+ exactly at time

step 0 and Equations 19 and 20 ensure that they must arrive at v− in the time interval

[Bmin
L ,Bmax

L ]. In the time steps in between they must travel along the edges in Etransition.
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Thus, to model the worst-case loop execution scenario we set F = 1 and maximize

the objective function

max ∑
e∈E

∑
t∈T

c(e)x(e, t) (22)

The loop WCET is then given by the value of the objective function. Effectively the

one flow unit that is enforced by F = 1 sums up all single-iteration WCETs and the

maximization ensures that the worst-case iteration path is chosen.

For the offset analysis, we use F = slnc flow units. If K is the (unknown) set

of offsets with which the loop can be left, then we have |K| ≤ slnc since this is the

total number of possible offsets. With F = slnc flow units we can thus model at least

one loop execution scenario which terminates with offset k for each offset k ∈ K.

Therefore, we can compute an overapproximation of K by maximizing the objective

function

max |
{

z | ∃t ∈ Tleave : x
((

vz,v
−
)

, t
)

> 0
}

| (23)

The offsets Oout,l which result after the loop execution are then given as the elements

of the set from Equation 23 with K ⊆ Oout,l .

In the following, we will prove that the results of the graph problem are valid

overapproximations of the WCET and offset results of the loop execution. For an

offset graph G = (V,E,c) we assume the following notations:

– ∀Ex ⊆ E : src(Ex) = {v|(v,w) ∈ Ex}
– ∀Ex ⊆ E : dest(Ex) = {w|(v,w) ∈ Ex}
– Oreal

t is the set of offsets with which the loop header may be entered in the t-th

iteration in any real execution of the loop.

Definition 15 An offset node vn is reachable at time t iff there exists a flow function

x : E ×T →N, subject to the constraints from Equations 16-20 with F = 1 and ∃vm ∈
V : ∃e = (vm,vn) ∈ E : x(e, t − τ (e))≥ 0.

We define reachable(t) = {o|vo is reachable at time t}.

Lemma 3 For a loop l, assume Oin,l is an overapproximation on the set of offsets at

the entry of the loop before the first iteration. We claim that reachable(i) ⊇ Oreal
i is

true for all iterations of the loop.

Proof Let us assume that the construction of the offset graph terminates at iteration

m (thus, m is the last iteration of the construction) and the loop bound is i. We prove

the proposition by induction over the loop bound.

Base case: We can use the outer induction hypothesis, that the offset results com-

puted by the single-iteration analysis are valid overapproximations. With Oin,l being

an overapproximation of the input offsets and i = 1, this already proves the proposi-

tion since only a single loop iteration is modeled then.
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Induction step: Due to the induction hypothesis we know that reachable(i) ⊇
Oreal

i . We must show that reachable(i+ 1) ⊇ Oreal
i+1 holds. To accomplish this, we

assume that there is an offset oerr ∈ Oreal
i+1 with oerr /∈ reachable(i+1). We will show

that this leads to a contradiction.

If such an offset oerr exists, then by definition of Oreal
i+1 there must be a possible

execution scenario A in which the (i+1)-th loop iteration is entered with offset oerr.

Let (a1,a2, . . . ,ai+1) be the offsets with which the first i+ 1 iterations of the loop

are entered in scenario A. Note that this implies ai+1 = oerr. Since we assume that

oerr /∈ reachable(i+ 1), there must be at least two such offsets ap and aq for which
(

vap ,vaq

)

/∈ E. Using the induction hypothesis it follows that ap ∈ reachable(i) and

thus that p = i and q = i+1.

Since ap is reachable in the graph, there must have been a construction iteration

j < min(m, i) with ap ∈ O
j
out and ap /∈ O

j
in where offset ap was reached for the first

time. In construction iteration j+1 we add all edges E j+1 =O
j
out ×O

j+1
out to the graph.

Since O
j+1
out = uLB

l

(

O
j
out

)

and ap ∈ O
j
out , it follows that aq ∈ O

j+1
out since uLB

l yields a

safe overapproximation of the offsets and offset ap is followed by offset aq in scenario

A. Therefore, we have
(

vap ,vaq

)

∈ E which is a contradiction. ⊓⊔

Theorem 4 Let us assume Oreal
in,l is the set of offsets with which loop l may be entered

in the first iteration. Given that Oin,l ⊇ Oreal
in,l , the graph tracking analysis always

computes an overapproximation of the total execution time of the loop.

Proof We prove this by induction on the loop bound Bmax
l .

Base case (Bmax
l = 1: In this case, the objective function (Equation 22) simply

takes the maximum of c(e) where e ∈ Etransition and src(e) ∈ Oin,l . Note that for any

e ∈ Etransition, c(e) represents the worst-case execution time of one loop iteration

(computed by Algorithm 2) starting at offset src(e). Therefore, maxsrc(e)∈Oin,l
c(e)

precisely represents the WCET of the first loop iteration. For Bmax
l = 1 the ILP target

function (Equation 22) is equal to this maximization, which proves the base case.

Induction step: We assume that the WCET computation is sound for loop bound

Bmax
l = n. We shall show that the computation is also sound for loop bound Bmax

l =
n+ 1. Let us assume that the actual WCET of the entire loop l with n iterations is

denoted by WCET (l,n). On the other hand, the actual WCET of the n-th iteration of

the loop is denoted by WCETiter(l,n). According to the graph tracking analysis, we

compute the WCET of the loop with n+1 iterations as

max ∑
e∈E

∑
t∈T

c(e)x(e, t) (24)

where E is the set of all edges in the offset graph and T = {0, . . . ,n+1}. However,

max ∑
e∈E

∑
t∈T

c(e)x(e, t) = max ∑
e∈E

∑
t∈T ′

c(e)x(e, t)+max ∑
e∈E

c(e)x(e,n+1) (25)
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where T ′ = {0, . . . ,n}. By induction hypothesis, we have

max ∑
e∈E

∑
t∈T ′

c(e)x(e, t)≥WCET (l,n) (26)

From Lemma 3 we know that reachable(n+ 1) ⊇ Oreal
n+1. If an offset node is not

reachable in iteration n+1, then it cannot contribute to Equation 25, therefore

max ∑
e∈E

c(e)x(e,n+1) = max ∑
e∈{(v,w)∈E|v∈reachable(n+1)}

c(e)x(e,n+1) (27)

≥ max ∑
e∈{(v,w)∈E|v∈Orealn+1}

c(e)x(e,n+1) (28)

=WCETiter(l,n+1) (29)

Inserting Equation 29 and 26 into Equation 25 provides the induction step. Thus, the

proposition is proven. ⊓⊔

Theorem 5 Computation of Oout,l is sound. More precisely, Oout,l predicted by the

graph tracking analysis always overapproximates the set of offsets with which a loop

may be left.

Proof We are sending slnc flow units through the graph. Each one of these units

models an independent execution of the loop. Each of these modeled executions (say

they are numbered with i ∈ {1, ...,ncsl}) will exit the loop with some offset oend,i.

The unknown set of all possible exit offsets is K. What we must show, is that K ⊆
{oend,i|i ∈ {1, ...,ncsl}}.

What we maximize in Equation 23 is the cardinality of the set of offsets with

which the slnc flow units exit the loop. By Lemma 3 the reachable offsets in the flow

graph are an overapproximation of the reachable offsets in the real loop execution

for all iterations j ∈ {1, ...,Bmax
l }. Therefore, if the loop can be left in iteration k ∈

{Bmin
l , ...,Bmax

l } with offset ole f t during a real loop execution, then it is possible to

construct a flow with one flow unit i which starts at v+ at time 0 and takes the edge

e = (vole f t
,v−) at time step k, thus oend,i = ole f t for a given ole f t .

Up to this point we have then shown, that for each exit offset ole f t ∈ K we can

construct a flow with one flow unit that exits the loop with this offset. It is also possi-

ble that we get flows which end with offsets oerr /∈ K, but that is no problem since we

only require an overapproximation of the offsets. If we now assume that we compute

a solution Oout,l with an offset k ∈ K and k /∈ Oout,l , then we can easily show that this

is a contradiction:

1. |Oout,l |= slnc

In this case, the set Oout,l represents all possible offsets, therefore an offset k /∈
Oout,l cannot exist.

2. |Oout,l |< slnc

In this case, there must be at least two flow units i and j with oend,i = oend, j , since

we used F = ncsl flow units in total. Since k ∈ K holds, there exists a valid flow f

through the graph which exits the loop with offset k (as shown in paragraph 2). If

we let one of the flow units, say i, follow that flow f instead of the flow which it
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followed in the original solution, then we get a new solution to the flow problem

in which |Oout,l | is increased by 1, compared to the previous solution. Since the

original solution to the flow problem must have been maximal with respect to

|Oout,l |, this is a contradiction. ⊓⊔

Like for the global convergence approach, we can now use the graph tracking

analysis as a plug-in for the offset analysis framework from Section 4.

Corollary 1 The analysis framework, using the graph tracking analysis, provides

overapproximations of the WCET of any task t executed with starting offset Oin,t on

our assumed platform.

Proof Theorems 4 and 5 provide the missing induction step case for the proof of

Theorem 2. The WCET for the f start
t function is the WCET of the task. Following

Theorem 2, our analysis framework together with the graph tracking analysis pro-

duces valid WCET overapproximations for this function and thus also for the task.

⊓⊔

Using either the global convergence or the graph tracking analysis, the analysis

of tasks as a whole now only requires the offset information at the entry point of

the task, which is provided by the overall analysis framework through the known

processor mapping and task dependencies. All internal offset information, and with

this, the WCET of the task, can then be computed through the presented framework.

5.3 Recovering from diverged offset information

In all of the presented analyses the quality of the results depends on the precision

of the computed offset information. If e.g. the information is, that a block is entered

with an single offset o, then uncertainties in the basic block analysis, such as vari-

able execution times and cache accesses categorized as UNKNOWN may lead to

multiple offsets which which the block may be left. Thus the information about the

current offset is then less precise at the block exit. Repetitive merges of offset in-

formation, like in Algorithm 2 and 3 and in the global convergence analysis lead to

further losses in offset information (still they are needed to obtain valid overapproxi-

mations). Once the analysis has reached a state, where a block b may be reached with

any offset o ∈ Omax = [0,ncsl −1], then this will propagate to the successor blocks

since ub(Omax) (Equation 4) is equal to Omax then. These effects are able to slowly

degenerate the offset information - we will also call this process offset divergence.

In the following, we will provide a first step towards an improvement of the analysis

which will allow us to regain knowledge about the offsets even after the offset infor-

mation has diverged. To be able to recover from divergence we need to make some

assumptions about the analyzed machine model.

Definition 16 A multi-core hardware platform is said to be TDMA-composable if

the arbitration delays that occur during the accesses to a shared resource do influence

neither
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– the execution time of instructions which do not access the shared resource, nor

– the time that a single access to the shared resource takes (excluding the arbitration

delay).

TDMA-composability in the sense given is a weaker form of timing composabil-

ity [Wilhelm et al (2009)] which in general denotes the partial or full absence of

timing anomalies. The following are examples for systems falling into the three cat-

egories:

– Fully timing-composable In-order pipeline, no branch prediction, no caches

In such a reduced setup no timing anomalies can occur, since each instruction is

executed in-order without any disturbance from other hardware units.

– TDMA-composable In-order pipeline, branch prediction, private caches

The combination of branch-prediction / speculation and caches can cause timing

anomalies as shown in [Reineke et al (2006)] but the duration of a TDMA bus

access has no influence on the branch predictor or cache state of the individual

cores as long as there are no shared caches. Therefore this system is TDMA-

composable, but not fully timing-composable.

– Non-composable Out-of-order pipeline, branch prediction, shared caches

In this system the execution time of basic blocks may shrink when TDMA ac-

cess duration increases, since other instructions may be executed before the wait-

ing TDMA-access instruction (out-of-order). Therefore this system is neither

TDMA-composable nor fully timing-composable.

It should be noted that the fixed-alignment approach [Chattopadhyay et al (2010)]

implicitly requires a TDMA-composable system in its proof of correctness. In the

following, we will generalize the mechanism behind the fixed-alignment approach

and show that it can be used to enhance the precision of the offset bound analyses for

TDMA-composable systems.

Lemma 4 (Offset Relocation Lemma) Given a control flow graph G = (V,E) and

a path P through that CFG, two executions of the path P, one starting at TDMA

offset o1 and the other starting at TDMA offset o2 with all other states of hardware

components being identical between the two executions, will lead to a divergence in

execution time of at most ncsl cycles between the two execution scenarios if a TDMA-

composable platform is used.

Proof We can view the execution of the path P as a sequence S = (s0, . . . ,si) where

each s j ∈ P is either an accesses to the shared resource or a block of local compu-

tations. We therefore define a set of accesses A and a set of “processing” blocks B

such that ∀s ∈ S : s ∈ A⊕ s ∈ B, where ⊕ is the logical exclusive OR. For each access

s j ∈ A we define the time from the access request to the access grant as ωi and the

time that it takes to perform the access as γi. Similarly we define the runtime of each

block si ∈ B as αi. Note that with our current assumptions, we know that αi and γi are

constant among the two execution scenarios since the system is TDMA-composable,

thus the possible change in the ωi values does not influence the execution times of

the local computations or the resource access itself.

To simplify our computations below, we allow blocks in B to have length 0, that

is αi = 0. In this way, we can ensure that each pair of accesses is separated by a block
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of computation, though this block may have length 0 (∀ j ∈ 0, . . . , i−1 : s j ∈ A ⇔
s j+1 ∈ B). Without loss of generality, we assume s0 ∈ A.

The arbitration delay ω j that an access s j ∈ A incurs, will change among the

two execution scenarios. The arbitration delay that is incurred by access s j in the

execution scenario starting at offset o1 (o2) will be denoted by ω1
j (ω2

j ), respectively.

In the same way, we will refer to the point in time at which the access request is

issued in the two scenarios as β 1
j and β 2

j . What we would like to prove now, is:

∀ j ∈ {0,2,4, . . .} : |β 1
j −β 2

j | ≤ ncsl (30)

Note that this implies the Lemma no matter whether si ∈ A or si ∈ B. For si ∈ A

we can apply Equation 30 with j = i immediately, and for si ∈ B the Lemma follows

from Equation 30 with j = i−1 and the constant runtime of si.

To prove Equation 30 we first define the dependencies among the β and ω values,

which are as follows:

∀ j ∈ {0,2,4, . . .} : β j = β j−2 +ω j−2 + γ j−2 +α j−1 (31)

∀ j ∈ {0,2,4, . . .} : ω j = Φp (β j mod ncsl ,γ j) (32)

In Equation 31 the access request time for s j is computed as the sum of

– β j−2 - the request time of the last access (in s j−2)

– ω j−2 - the arbitration delay that this request incurs

– γ j−2 - the access duration itself

– and α j−1, the duration of the consecutive block of computation s j−1

The value for ω j is then easily derived in Equation 32 from β j with the usual TDMA

arbitration computation via the known Φp function (see Equation 7). These depen-

dencies are valid for both execution scenarios since they model the execution of the

path P. The only variability comes from the accesses to the shared resource, for which

the waiting time ω j is computed using the known Φp function (see Equation 7). To

initialize the computation, we have β 1
j = o1 and β 2

j = o2. We prove Equation 30 by

induction over the sequence S. In the proof, ∆ j is used as a shorthand for |β 1
j −β 2

j |.

Base case ( j = 0): In this case, we have ∆ j = |o1 −o2| ≤ ncsl by definition of β 1
j and

β 2
j .

Induction step ( j−2 → j): By inserting the definitions of β j into ∆ j we obtain:

∆ j = |
(

β 1
j−2 +ω1

j−2 + γ j−2 +α j−1

)

−
(

β 2
j−2 +ω2

j−2 + γ j−2 +α j−1

)

| (33)

= |
(

β 1
j−2 +ω1

j−2

)

−
(

β 2
j−2 +ω2

j−2

)

| (34)

= |
(

ξ 1
j−2 −ξ 2

j−2

)

| (35)

where ξ j is a shorthand for β j +ω j, i.e. the time when the access is granted. Obvi-

ously, ∆ j only depends on the access request times and waiting times of the preceding

resource access. Via the induction hypothesis we know that ∆ j−2 ≤ ncsl , that is, in

both execution scenarios the preceding access is requested in a window of size ncsl
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Fig. 8 Illustration of proof scenario for the Relocation Lemma.

cycles. What we then have to show is, that both accesses are granted in a new win-

dow of size ncsl cycles. Figure 8 illustrates a scenario from the perspective of the

second core in a configuration with three cores in total. Three TDMA hyperperiods

are shown in the Figure. The gray areas are those where an access request from core

two will have to wait, and the white ones are the areas where an access request from

core two will be granted immediately. Due to the cyclicity of the TDMA schedule it

is sufficient to assume that β 1
j−2 ∈ [3sl ,6sl) and to place β 2

j−2 at positions which are

at most ncsl cycles away from β 1
j−2. We then have to prove that ∆ j ≤ ncsl holds. We

will examine the individual cases with the help of the example, since it is more intu-

itive. The notation could nevertheless be generalized to describe the cases in a fully

abstract way (in this case only the position and size of the white boxes will change in

all hyperperiods).

– β 1
j−2 ∈ [3sl ,4sl): This case is marked as 1) in Figure 8 and obviously we then have

to wait for the core’s slot, thus ξ 1
j−2 = 4sl . If β 2

j−2 is in another gray area, then ξ 2
j−2

will be either 1sl , 4sl or 7sl . If β 2
j−2 is in a white area, then it follows that ξ 2

j−2 ∈
[

1sl ,2sl − (γ j−2 −1)
)

∪
[

4sl ,5sl − (γ j−2 −1)
)

. In all cases, |ξ 1
j−2 − ξ 2

j−2| ≤ ncsl

holds.

– β 1
j−2 ∈

[

4sl ,5sl − (γ j−2 −1)
)

: In Figure 8 this case is marked as 2) and since the

access can be granted immediately here, we have ξ 1
j−2 ∈

[

4sl ,5sl − (γ j−2 −1)
)

.

If β 2
j−2 is in a gray area, then ξ 2

j−2 will be either 4sl or 7sl . In this case, |ξ 1
j−2 −

ξ 2
j−2| ≤ ncsl directly holds. For the case that β 2

j−2 is in a white area, the Lemma

follows from the induction hypothesis that |β 1
j−2−β 2

j−2| since in this case ξ j−2 =
β j−2.

– β 1
j−2 ∈

[

5sl +(γ j−2 −1),6sl

)

: This case (3) in Figure 8) is symmetrical to the

first one.

Since in all these cases |ξ 1
j−2 − ξ 2

j−2| ≤ ncsl holds and we known from Equation 35

that ∆ j = |
(

ξ 1
j−2 −ξ 2

j−2

)

|, the induction step is complete and the lemma is proven.

⊓⊔

During the analysis, in the case that we run into a situation where we no longer

have useful offset information at a basic block, we can use the Offset Relocation

Lemma. To do this, we add a code block after line 12 in Algorithm 1, which does the

following:

1. Check whether
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– b is a block which consists of a bus accessing instruction and

– whether ∃o ∈ Oin,e ∈ ETb : Φp(o,e) = Dmax is true

2. In case that these checks succeed, set result = 〈wcet +ncsl ,{sl p}〉 (with p ∈
[0, . . . ,nc −1] being the index of the current core)

For the single access this heuristic will not yield an improvement in analysis preci-

sion, but successive accesses may profit from the increased precision of the offset

information. This is especially useful in systems with short TDMA schedules or in-

structions with variable latencies etc. since these properties will lead to a quick di-

vergence of the offset bounds. With the help of the Offset Relocation Lemma these

diverged bounds can be restored with little cost. Note that this is only a heuristic, we

could also apply the Lemma at arbitrary other program points. With the heuristic, we

are no longer overapproximating the set of possible offsets. Nevertheless, we are still

generating safe WCET overestimations and the analysis is still guaranteed to termi-

nate, which we will both show in the following. Figure 9 shows the scenarios that we

have to distinguish in the following. In each subfigure, we applied the offset reloca-

tion heuristic at the gray blocks, all white blocks have their offsets computed without

offset relocation. The solid arrows mark the WCEP, whereas the dashed arrows rep-

resent control-flow edges which are not part of the WCEP P = (b1,b2, . . . ,bn). We

consider a single application of the heuristic at a block bA and distinguish three cases:

– The WCEP contains bA: This case is illustrated in Figure 9a with bA = b1. Since

we applied the heuristic, we added a penalty of ncsl cycles to bA’s WCET. Thus,

through Lemma 4 the correctness of the computed WCET follows.

– The WCEP does not contain bA: This case is shown in Figures 9b and 9c with

bA = bo1. Then, the application of the heuristic may only affect the WCET results

due to merged-in offset information, when there is a path in the CFG from bA to

any node bw on the WCEP P = (b1,b2, . . . ,bn), e.g. path (bo1,b2) in Figures 9b

and 9c. This can only lead to additional offsets in the offset set of bw. Again we

have two cases:

– If there is no further node by ∈ Ptail with Ptail = {bi|w ≤ i ≤ n} ⊆ P where the

heuristic was applied too (e.g. as in Figure 9b), then these additional offsets

will only make the WCET results for the blocks in Ptail less precise, but they

do not endanger their safeness. This is guaranteed since the conventional up-

date function (see Equation 4), which is then applied for all blocks in Ptail,

is linear and thus all original offsets, coming from blocks on the WCEP, are

conserved.

– If such a node by does exist (e.g. b3 in Figure 9c), then the application of the

heuristic renders the offset set with which by is reached irrelevant, since the

offset result for by will be {sl p} anyways. Therefore the correctness of the

WCET also follows in this case.

Note that the heuristic application of the Offset Relocation Lemma breaks the

linearity of the update function. As an example for this, consider a basic block b

with a guaranteed bus access of 2 cycles duration in a system with 2 cores and

slot length 5. From the point of view of the first core, ub ({3,5}) = {5,2} whereas

ub ({0−9}) = {2} with applied relocation to offset 0. This non-linearity can lead

to effects, where a more detailed representation and analysis, e.g. offset-set-based,
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(a) Relocation applied on

WCEP

(b) Relocation applied out-

side of WCEP

(c) Relocation applied out-

side of and on WCEP

Fig. 9 Different scenarios for applying the offset relocation heuristic

can have worse results than a less detailed one, e.g. offset-interval-based. Example 6

shows this counter-intuitive behavior on a simplified real-world CFG from the Pa-

pabench benchmark.

Both the Global Convergence and the Graph Tracking analysis are still guaranteed

to terminate when used with the offset relocation heuristic. The original termination

arguments - the finiteness of the set of possible offsets and the finiteness of the offset

graph, respectively - are not affected by the heuristic and thus still hold.

Example 6 Such a counter-intuitive result, triggered by the non-linearity, is shown in

Figure 10. The code shown between the dashed horizontal lines could for example

be a loop body that is analyzed repeatedly during the global convergence loop off-

set analysis. In this case, the upper half of the figure shows the analysis of the first

iteration and the lower half of the figure shows the analysis of the second iteration

of the loop. The analysis run A (shown in light gray on the left side) starts with the

information that the top block may be entered with offsets {0, . . . ,9} and obtains a

WCET of 14+10(X −1) if the relocation heuristic is applied. X is the loop bound of

the analyzed loop in this case. In contrast, the analysis run B (shown in dark gray on

the right side) starts with the offset information {2} which is obviously more precise

than the information that run A has and obtains a WCET of 12X if the relocation

heuristic is not applied. Obviously for all X ≥ 3 analysis run A will produce a more

precise WCET result than analysis run B, though it started with more imprecise offset

information.

This shows that if we allow the application of the Offset Relocation Heuristic in the

analysis of a TDMA-composable system, it may happen that we obtain worse results

for more precise input offsets. Thus, in these analyses it may be not worthwhile to

maintain a highly-precise offset representation as e.g. offset sets since they may even

worsen the results. Note again that the correctness of the analysis is not endangered

by this phenomenon. As we have shown above, this is a mere observation on the

precision of the analysis.
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Fig. 10 An example of counter-intuitive analysis results due to the application of the

relocation lemma heuristic in a 2-core system with sloth length 5.

5.4 Offset analysis in architectures without timing anomalies

Timing anomalies are a phenomenon which complicates WCET analysis. According

to the definition from [Reineke and Sen (2009)] a system shows timing anomalies

whenever local worst-case behavior does not necessarily lead to global worst-case

behavior, thus for example whenever a cache hit instead of a cache miss does trigger

the global worst-case behavior. This may be the case e.g. on systems with instruction

prefetching and speculative execution [Reineke et al (2006)]. In the static analysis

of systems with timing anomalies it is not feasible to prune the search space of the

analysis [Reineke and Sen (2009)]. Therefore, in a cache analysis for a system ex-

posing timing anomalies we may not assume an UNKNOWN access to be a cache

miss (AM), but instead we must then consider both possibilities, a hit and a miss, in

the analysis. On systems without timing anomalies (termed fully timing-composable)

we can safely assume the local worst-case (AM) to increase the analysis performance

and precision.

Timing composability can be seen as a stronger form of TDMA-composability,

since it requires all hardware components to have local, bounded effects on the tim-

ing. We can exploit timing composability in a similar way as TDMA-composability.

In a fully timing-composable system, we may reduce the offset result of any up-

date operation to the offset o which is reached by the local worst-case path to in-

crease the analysis precision, because this local worst-case path must be part of the

global worst-case path. This does result in a non-linear update function just like in
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the TDMA-composable case but counter-intuitive analysis effects (see end of Sec-

tion 5.3) are not very likely to happen, since the non-linearity is not associated with

an extra cost here.

5.5 Extensions for further micro-architectural analyses

In an analysis that includes more microarchitectural features like branch prediction

and pipelining, the computed overapproximations of the hardware states must be-

come part of the analysis context, in addition to the offset information. For the global

convergence analysis, this means that a global overapproximation of the hardware

states at the loop header is built and used in the analyses. For the offset graph, every

context node must be annotated with an overapproximation of the hardware states

with which the node may be entered, including cache, pipeline and branch prediction

states. In such a scenario, the graph must be iteratively refined until

1. no more edges are added, and

2. the hardware states on all nodes have converged.

Alternatively, it is also possible to construct only a single, global overapproximation

of the hardware states, depending on which degree of precision is required.

6 Experimental Results

In the following, the different approaches to bus-aware WCET analysis are com-

pared. As mentioned, we have implemented our approaches based upon the code

from [Chattopadhyay et al (2010)] which enables a precise comparison. The proto-

type tool analyzes executables compiled for the SIMPLESCALAR platform and in-

cludes a thorough cache analysis. Unfortunately, no pipeline or branch prediction

analysis is integrated, so all instruction latencies are set to 1 cycle. Section 5.5 nev-

ertheless introduced the general concept of how to perform such an integration. It

can be expected that the classification of the approaches with respect to precision and

analysis time stays the same even after additional microarchitectural analyses were

integrated, since the number of analysis contexts is directly dependent on the analysis

type as explained in Section 4.2. The number of contexts in turn has the biggest in-

fluence on the analysis precision and duration. All experiments were run on an Intel

Xeon E5630 machine with 8 cores at 2.53GHz and 20GB of main memory under De-

bian Linux. Concerning the solution of the dynamic flow problems during the graph

tracking analysis, we used the CPLEX ILP solver in the experiments.

6.1 Implementation tweaks

Some points in the implementation were adapted for best performance and precision.

Since they do not contain any new concepts but nevertheless have an influence on the

analysis time and precision, we just list them here briefly.
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– Graph tracking ILP timeout

For the graph tracking approach we specified an ILP timeout of 60 seconds. The

offset ILPs are very hard to solve for those cases where all edges in the offset

graph have nearly the same WCET, since the ILP branch and bound algorithm

then cannot prune any part of the search tree. In addition, the obtained preci-

sion for those cases is not much better than the precision of the global conver-

gence approach. Therefore, we revert to global convergence if the time limit is

exceeded. In addition, if a timeout occurs for a loop L analyzed with incom-

ing offsets Otimeout, we store |Otimeout| and if L is analyzed again with incoming

offsets Oother where |Oother| ≥ |Otimeout|, then we use the global convergence im-

mediately.

– Detailed graph tracking

During the graph tracking analysis (compare Section 5.2) we stated that for each

construction step we add all edges e ∈ Oin ×Oout with c(e) = wcetLB
l (Oin). To

increase the precision, we construct the edges exiting from each input offset node

in separation. For each offset ok
in ∈ Oin we add all edges e ∈

{

ok
in

}

× uLB
l

(

ok
in

)

with c(e) = wcetLB
l

(

ok
in

)

. This turned out to be especially useful in the case of

the analysis for non-timing-composable systems, since it may give more precise

WCET results for the individual edges, even when offsets have diverged.

In the following, we will compare against the fixed-alignment approach and the

fully-unrolling approach as mentioned in Section 4.2. These were implemented in

the same framework as the global convergence and graph tracking approaches. The

fixed-alignment approach will use Algorithm 2 once per cache context and add the

respective penalties, whereas the fully-unrolling approach will use Algorithm 2 re-

peatedly by feeding the offset results from iteration i as input offsets into the analysis

of iteration i+ 1 until i = Bmax
l . In this way, the resulting runtimes are comparable

and are not influenced by different implementations of the analyses.

6.2 Benchmarks

The experiments were performed on multiple benchmark sets. On the one hand we

used a subset of the MRTC test bench [Mälardalen WCET Research Group (2012)]

which is a popular test bench for WCET analysis, but only has single-task, single-

core benchmarks. To build a multi-core scenario with these benchmarks, we mapped

each MRTC test case i ∈ [0,23] from Table 1 to core (i mod nc) with priority i, where 0

is the highest priority. On the other hand, we also tested the presented algorithms with

the PapaBench [Nemer et al (2006)] and Debie [European Space Agency (2012)]

benchmarks which are an unmanned aerial vehicle control software and a space de-

bris monitoring software, respectively. These are multi-task benchmarks for which

we mapped the tasks to the individual cores manually. The default system configu-

ration is a 2-core system with 1KB L1 cache (direct-mapped, block size 32 bytes)

and 2KB L2 cache (4-way set-associative, block size 64 bytes). Only for Debie, the

cache configuration was changed to 2KB L1 cache (2-way set-associative) and 8KB

L2 cache to account for the bigger program sizes of Debie. In any case, the L1 hit



Static Analysis of Multi-Core TDMA Resource Arbitration Delays 33

Benchmark LOC sbyte L D ∅B

adpcm 468 12480 18 0 69

bs 79 480 1 0 4

bsort100 74 1024 3 1 100

cnt 72 1552 4 1 40

cover 228 9312 3 0 60

crc 66 1936 3 0 102

edn 196 8000 11 2 61

fdct 148 5088 2 0 8

fft 97 8368 7 2 88

fir 188 1056 2 1 375

insertsort 20 752 2 1 10

jfdcint 165 5424 3 0 26

lms 146 4576 10 0 50

ludcmp 71 4544 11 2 4

matmult 81 1536 5 2 20

mergesort 266 9152 23 3 126

minver 135 6160 17 2 2

ndes 201 6256 12 0 19

nsichneu 2362 63632 1 0 2

qurt 87 1952 1 0 19

select 55 3120 4 2 8

sqrt 42 912 2 0 12

st 98 60528 1 0 1000

statemate 1128 11728 4 0 20

Debie 24528 1622912 39 0 157

PapaBench 4663 200256 10 0 3

Table 1 Benchmark properties

penalty is 0 cycles, the L2 hit penalty is 1 cycle and the main memory access time

is 5 cycles modeling a Flash-based main memory. A more detailed overview of the

used benchmarks is provided in Table 1, including the lines of code LOC (excluding

comments and empty lines), the byte size sbyte of the “text” section of the executable

(excluding startup code), the number of loops L, the maximum loop nesting level D

and the average loop bound ∅B. The Debie and PapaBench benchmarks consist of

35 resp. 32 individual tasks which have a relatively simple structure, especially since

they have no nested loops.

In the following sections, we will have to distinguish 3 different analysis scenar-

ios:

C- Fully timing-composable system

C# TDMA-composable system

C+ Non-composable system

For the C- (C#) case we may apply the reduction to the worst case (Section 5.4) or the

relocation lemma heuristic (Section 5.3), respectively, which is expected to improve

the precision of the results.

Additionally, we have to identify the different analysis methods which we will

name in the following way:
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Fig. 11 Average WCET results when using the worst-case assumption (analysis W)

W Assume worst-case bus access delay of Dmax cycles for each bus access

F Fixed alignment [Chattopadhyay et al (2010)]

OC Offset analysis (Global convergence)

OT Offset analysis (Graph tracking)

U Full virtual unrolling

As a last step, for each analysis we have the choice to run it using offset intervals

(RI) or offset sets (RS). With these 3 components we can form a naming scheme to

identify experimentation scenarios like e.g. C#/OC/RI for an analysis in a TDMA-

composable system with the global convergence analysis based on offset intervals.

When presenting WCET results in the following, we will always present the relative

WCET, i.e. the ratio of the WCET obtained with the currently examined analysis and

of the WCET obtained with analysis U. In addition we will not present results for the

individual benchmarks here, but average values obtained by building the average of

the relative WCETs of all benchmarks from Section 6.2.

6.3 Maximum overestimation

To keep the following diagrams more readable, we first analyze how much impact the

overestimation of the TDMA access duration can have. Therefore, we first present the

relative WCETs obtained with analysis W in Figure 11. The y-axis shows the aver-

age relative WCETs, and the x-axis shows different configurations of core number

and slot length. The results clearly indicate that an analysis of the bus access times

is needed if there is any significant amount of sharing in the multi-core system since

always reverting to worst-case assumptions may lead to overestimations of more than

200%. The fact that the overestimation with respect to U is decreased for less pre-

dictable composability classes (C#,C+) is due to the fact that the results for C#/U and

C+/U are less precise themselves, whereas the results for W stay the same, irrespec-

tive of the composability class.
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Fig. 12 Average WCET results for a fully timing-composable system (C-/RI)

6.4 Fully timing-composable system

Figure 12 shows the average relative WCETs analyzed for a fully timing-composable

system, i.e. with the extension sketched in Section 5.4. These extensions allow a

more precise analysis already, but still the advantage of OC and OT over F ranges

between 1.5% (configuration 〈2,10〉) and 17.5% (configuration 〈2,80〉). Using RS

instead of RI only results in a insignificant improvement of less than 1% here, due

to the mentioned inherent precision of the extensions from Section 5.4. We therefore

do not list results for RS in Figure 12 to increase the readability. The analysis times

as measured on a single core (without exploiting parallelism) are given in Table 2a.

Time results for RS are not given, since as indicated, it does not yield notable WCET

improvements for this composability class. The presented time values only show the

WCET analysis time excluding other analysis phases like CFG reconstruction and

cache analysis. It becomes apparent that OC is just as fast as F while being far more

precise. U and OT are slower, and up to configuration 〈2,40〉 OT outperforms U in

matters of analysis time. For the bigger schedule lengths, the ILP solving times domi-

nate the analysis runtime and make OT less attractive than U. The analysis time of all

analyses increases with the TDMA schedule length since the time needed for the ub

function evaluations (see Equation 4) in “AnalyzeBlock” (Algorithm 1) is dependent

on the number of offsets in the incoming offset set. If there is no clear local worst-

case path, i.e. if all input offsets lead to the same local WCET, then we must track all

possibilities even in the fully timing-composable case. For longer TDMA schedule

lengths these sets are getting bigger then, which implies that more time is needed for

the “AnalyzeBlock” stages. This is the reason why the analysis time grows even for

the U and F cases.

6.5 TDMA-composable system

The C# case, as shown in Figure 13 and Table 2b, shows increased overestimation

ratios and analysis times compared to the C- case. The analysis times for C#/OT/RI

as shown in Table 2b are partially smaller than those for C-/OT/RI, e.g. for configura-
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< nc,sl > U F OC/RI OT/RI

< 2,10 > 3.93 0.00 0.00 0.28

< 2,20 > 4.92 0.01 0.01 0.50

< 2,40 > 7.15 0.01 0.02 2.42

< 2,80 > 10.38 0.04 0.04 26.62

< 4,80 > 13.46 0.16 0.20 60.29

(a) Fully composable (C-)

< nc,sl > U F OC/RI OT/RI

< 2,10 > 4.35 0.00 0.00 0.53

< 2,20 > 4.32 0.01 0.01 0.57

< 2,40 > 6.25 0.01 0.02 3.95

< 2,80 > 10.99 0.05 0.05 25.38

< 4,80 > 17.00 0.19 0.20 54.99

(b) TDMA-composable (C#)

< nc,sl > U OC/RI OC/RS OT/RI OT/RS

< 2,10 > 9.65 0.00 0.00 0.30 1.85

< 2,20 > 20.29 0.01 0.01 2.95 19.16

< 2,40 > 35.30 0.02 0.02 16.19 68.78

< 2,80 > 57.00 0.07 0.08 22.88 148.62

< 4,80 > 79.50 0.24 0.23 29.52 159.41

(c) Non-composable (C+)

Table 2 Aggregated sequential WCET analysis times (runtime on a single core) for

all examined scenarios (in minutes)

tions 〈2,80〉 and 〈4,80〉, which may be surprising at the first sight since the generated

ILPs certainly are not simpler for C#. The reason for this is the ILP solver timeout

mentioned in Section 6.1 which occurs more often for the C# instances, such that the

analysis has to revert to the faster global convergence method more often than in the

C- case.

The expectation that was associated with TDMA-composability was, that for both

precision and analysis time it will range in between C- and C+. Only in this case

TDMA-composability can be useful, since then it will allow a better analysis for

systems which cannot be classified as fully timing-composable. We cannot verify

this expectation in Figure 13 since it only presents WCET values which are relative

to C#/U, but the results for C#/U already use the offset relocation lemma and are

thus different from C-/U. Therefore, Figure 14 shows the sum of the absolute WCET

results for all examined benchmarks for analysis U in different composability classes

which allows to compare the attainable estimation precision of the different classes

against each other. Because of the big differences in the absolute values, the y-axis is

scaled logarithmically. Obviously, the absolute WCET values which are determined

for C# in Figure 14 are much closer to the results of C- than to those of C+. This shows

the potential of TDMA-composability to improve the analysis results for systems

which are not fully timing-composable.
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Fig. 13 Average WCET results for a TDMA-composable system (C#/RI)
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Fig. 14 Absolute WCET result sums for all composability classes

Surprisingly, using RS in the C# case is even slightly worse than RI which can be

explained with the precision anomaly explained in Example 6. Therefore, we again

do not list the results for RS in Figure 13 and Table 2b to keep them more readable.

6.6 Non-composable system

The WCET results for non-composable systems are given in Figure 15 and Table 2c.

As stated in Section 5.3, analysis F is not applicable here, since it requires TDMA-

composable or fully timing-composable systems. OC/RI delivers results with an over-

estimation of 0.8%− 36.4%, which drops to 0.1%− 7.9% for OT/RI. Here, the set

representation RS really improves the results such that OT/RS is 10.2% more precise

than U in the case 〈2,80〉 and 7.5% more precise than U on average. This is possi-

ble, since the unrolling has to merge the offset information after each unrolled loop

iteration, whereas the graph with the extensions from Section 6.1 features a precise

WCET for each single source offset and is able to track their development in more
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Fig. 15 Average WCET results for a non-composable system (C+/RI)

detail. Concerning the runtimes of C+/U, C+/OT/RI and C+/OT/RS, except for the

〈2,10〉 configuration they are probably only feasible for nightly-build analysis or with

parallel computations since the ILP solving can be easily parallelized and also dif-

ferent tasks can be analyzed in parallel. The fact that the runtimes for C+/OT/RI are

less than those for C#/OT/RI in some configurations is again due to the ILP timeout

as already mentioned in Section 6.5.

7 Conclusions

We have reviewed and extended an approach to the WCET analysis of TDMA-

arbitrated shared resources which uses a static analysis of TDMA offsets and cyclic

contexts to determine maximum access delays. We have formally proven the correct-

ness of this analysis and have introduced a new system classification called TDMA

composability which enables more precise analyses for systems which belong to this

class, but are not fully timing-composable. The improved precision of this class, com-

pared to non-composable systems, was empirically shown. We presented a detailed

evaluation of the given analysis methods in different composability classes with a

broad selection of real-world benchmarks and pointed out that different offset rep-

resentations have a strong impact on the achievable precision and analysis time. For

fully timing-composable and TDMA-composable systems, the interval representation

showed superior results, whereas for non-composable systems the set representation

achieves higher precision. The experiments show that the inspected TDMA access

delay analysis methods are able to work as fast as the quickest known method, while

delivering results which are 0.8% to 21.7% more precise on average, depending on

the analyzed system. When precision is the main objective we are even able to outper-

form the most precise known analysis by up to 10.2% in the case of non-composable

systems.

Future plans include the integration of further microarchitectural analyses, spe-

cialized flow algorithms for the graph tracking approach and experiments with differ-

ent platforms.
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