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Abstract Hard real-time systems require absolute guarantees in their execution times.

Worst case execution time (WCET) of a program has therefore become an important

problem to address. However, performance enhancing features of a processor (e.g.

cache) make WCET analysis a difficult problem. In this paper, we propose a novel

analysis framework by combining abstract interpretation and program verification

for different varieties of cache analysis ranging from single to multi-core platforms.

Our framework can be instantiated with different program verification techniques,

such as model checking and symbolic execution. Our modeling is used to develop a

precise yet scalable timing analysis method on top of the Chronos WCET analysis

tool. Experimental results demonstrate that we can obtain significant improvement in

precision with reasonable analysis time overhead.

1 Introduction

Worst-case execution time (WCET) analysis of real-time embedded software is an

important problem.WCET estimates of tasks are used for system level schedulability

analysis. WCET estimation usually involves a program level path analysis (to deter-

mine the infeasible paths in the program’s control flow graph), micro-architectural

modeling (to accurately determine the maximum execution time of the basic blocks),

and a calculation phase (which combines the results of path analysis and micro-

architectural modeling).
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Micro-architecturalmodeling usually involves systematically considering the tim-

ing effects of performance enhancing processor features such as pipeline and caches.

Cache analysis for real-time systems is usually accomplished by abstract interpre-

tation. This involves estimating the cache behavior of a basic block B by consid-

ering the incoming flows to B in the control flow graph. The memory accesses of

the incoming flows are analyzed to determine the cache hits/misses for the memory

accesses in B. Since programs contain loops, such an analysis of memory accesses

involves an iterative fixed point computation via a method known as abstract interpre-

tation. Abstract interpretation is usually efficient, but the results are often not precise.

This is because the estimation of memory access behaviors are “joined” at the control

flow merge points - resulting in an over-estimation of potential cache misses returned

by the method.

In this paper, we develop a cache analysis framework which improves the pre-

cision of abstract interpretation, without appreciable loss of efficiency. We augment

abstract interpretation with a gradual and controlled use of path sensitive program

verification methods (e.g.model checking and symbolic execution). Because of path

sensitivity in the search process, program verification methods are known to be of

high complexity. Hence abstract interpretation based analysis cannot be naively re-

placed with standard program verification methods such as model checking or sym-

bolic execution. Recent works [Lv et al, 2010] which have advocated combination of

abstract interpretation and model checking for multicore software analysis - restrict

the use of model checking to program path level; cache analysis is still accomplished

only by abstract interpretation. Indeed almost all current state-of-the-art WCET an-

alyzers (such as Chronos [Li et al, 2007], aiT [aiT, 2000]) perform cache analysis

via some variant of abstract interpretation. Model checking is usually found to be not

scalable for micro-architectural analysis because of the huge search space that needs

to be traversed [Wilhelm, 2004; Huber and Schoeberl, 2009]. The main novelty of

our work lies in integrating path sensitive program verification methods with abstract

interpretation for timing analysis of cache behavior.

Our baseline analysis is abstract interpretation. Potential cache conflicts identified

by abstract interpretation are then subjected to a path sensitive program verification

method. Our goal is to rule out “false” cache conflicts which can occur only on in-

feasible program paths. Such false conflicts are reported by abstract interpretation

since its join operator (which merges the estimates from paths at control flow join

points) conservatively considers all possible cache conflicts on any path in the con-

trol flow graph. The path sensitive search in program verification naturally rules out

the infeasible program paths and the cache conflicts incurred therein.

One appealing nature of our analysis method is that the results are always safe.

We start with the results from abstract interpretation and gradually refine the results

with repeated runs of program verification. We instantiate our framework with two

different program verification methods - model checking and symbolic execution.

Model checking is a property verificationmethodwhich takes in a system/program

P and a temporal logic property ϕ, where ϕ is interpreted over the execution traces 1

of P . It checks whether all execution traces of P satisfy ϕ. Given a potentially con-

1 We consider only Linear Time Temporal Logic properties here.
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flicting pair of memory blocks, we can model check a property that the pair never

conflicts in any execution trace of the program. If indeed the conflict pair is intro-

duced due to the over-approximation in abstract interpretation - model checking veri-

fies that the conflict pair can never be realized. We can then rule out the cache misses

estimated due to the conflict pair and tighten the estimated time bounds.

Symbolic execution refers to executing a programwith symbolic or un-instantiated

inputs - as opposed to concrete inputs. Symbolic execution may be static (by which

we mean execution of all possible paths in a program) or dynamic (by which wemean

execution of a specific program path). In this paper, we use static symbolic execution

as embodied in the KLEE toolkit [KLEE, 2008].

Most often, a symbolic execution engine relies on the power of constraint solving.

Constraint solving technology has made a significant progress with the advances in

satisfiability modulo theory (SMT). In symbolic execution, a program is executed

with symbolic input values (rather than concrete input values in normal execution).

Since the input values are symbolic, a branch instruction in the program may lead

to multiple execution scenarios, as both the true and false legs of the branch might

be satisfiable. Such multiple execution scenarios are reasoned independently by the

symbolic execution engine. The feasibility of a path at a branch instruction is checked

on-the-fly during the execution by sending a query to the SMT-based constraint solver.

Given a formula ϕ to check at a particular program location, the constraint solver

is also used to check the satisfiability of ϕ whenever the same program location is

visited by any execution scenario during the symbolic execution.

Due to the inherent path sensitive nature of symbolic execution, the spurious

cache conflicts can be eliminated if they are introduced due to the over-approximation

of abstract interpretation. As the SMT technology is continuously evolving, we be-

lieve that the composition of abstract interpretation and symbolic execution leads to

an exciting opportunity for WCET analysis.

Recall that abstract interpretation merges the results from different paths, via the

join function. Thus, abstract interpretation is not necessarily path-sensitive. On the

other hand, the property checked in a single run of program verification (via model

checking or symbolic execution) involves certain cache conflicts identified by abstract

interpretation. The path sensitive search by program verification then detects whether

these conflicts are indeed realizable. Overall, the scalability of our framework is never

in question. Given a time budget T , we can first employ abstract interpretation and

then employ as many runs of program verification as we can within time T . Of course,

given more time, more precise analysis results (in the form of potential cache misses)

are achieved.

Contributions In summary, this paper presents a generic cache analysis framework

based on abstract interpretation and path sensitive program verification methods. In

our previous work [Chattopadhyay and Roychoudhury, 2011], we have designed and

evaluated a generic cache analysis framework based on abstract interpretation (AI)

and model checking. In this paper, we additionally show that an AI-based cache anal-

ysis framework can be extended in a scalable fashion by a systematic use of symbolic

execution - a path sensitive program verification method. As a result, our work in

this paper shows that we can instantiate our analysis framework with different path
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sensitive program verification techniques, such as model checking and symbolic exe-

cution. Moreover, we provide detailed experimental results to evaluate the impact of

our approach on different model checking engines - namely bounded model check-

ing and explicit-state search based model checking. Depending on the time budget for

analysis and the analysis precision required - the framework can be tuned to analyze

cache hit/miss classifications for timing analysis. We further show that the frame-

work can be instantiated with a wide variety of cache analyses - (i) analysis of cache

behavior in a single program, (ii) analysis of cache related preemption delay for a

multi-tasking system where the tasks are running on a single core, and (iii) analysis

of shared caches in multi-cores. Our experimental results on the subject programs

chosen from [Gustafsson et al, 2010] show substantial improvements in the precision

of timing analysis results with limited time overheads. This yields a parameterizable

cache analysis framework for real-time systems which is generic, precise and scal-

able.

Organization The rest of the paper is organized as follows. The next section dis-

cusses the related work. Section 3 introduces a general background on abstract in-

terpretation based cache analyses. Section 4 presents a general description of our

compositional analysis framework using abstract interpretation and path sensitive

program verification methods. Section 5 describes the instantiation of our analysis

framework using model checking, similar to our previous work in [Chattopadhyay

and Roychoudhury, 2011]. In Section 6, we discuss the instantiation of our framework

using symbolic execution - the key contribution of this paper. Section 7 discusses the

implementation details and all the experimental results. We present a few important

extensions of our framework in Section 8 and Section 9 concludes the paper.

2 Related work

Since the initiation of WCET analysis research, cache modeling has been an ac-

tive topic in this area. Initial works used Integer Linear Programming (ILP) [Li

et al, 1999] for modeling intra-task cache conflicts. However, ILP-based approach for

cache modeling faces scalability concerns in terms of analysis time. Subsequently, a

novel WCET analysis approach has been proposed in [Theiling et al, 2000], which

efficiently composes abstract interpretation based micro-architectural modeling and

ILP-based path analysis. The solution proposed in [Theiling et al, 2000] has been

proved scalable and it has also been adopted in commercial tool chain [aiT, 2000].

In multi-tasking system, additional difficulties arise in modeling inter-task cache

conflicts. Inter-task cache conflicts are generated by a high priority task when it pre-

empts a low priority task. The bound on additional cache misses due to preemption

is called cache related preemption delay (CRPD). In last decade, there has been an

extensive amount of research to estimate CRPD [Lee et al, 1998; Negi et al, 2003;

Tan and Mooney, 2007] using abstract interpretation. Recently, two advancements in

CRPD estimation ([Altmeyer and Burguière, 2009] and [Altmeyer et al, 2010]) have

improved and generalized the previously proposed approaches for set-associative

caches.
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With the extensive deployment of multi-core architectures, it has also become

important to adopt the existing cache analysis techniques for multi-cores. Multi core

architectures employ shared resources (e.g. shared cache). Therefore, a few research

groups have already proposed the modeling of shared caches ([Li et al, 2009], [Yan

and Zhang, 2008] and [Hardy et al, 2009]) based on abstract interpretation.

Path sensitive program verification techniques, such as model checking has previ-

ously been explored by the research community in the context of WCET estimation.

The work in [Metzner, 2004] uses model checking alone for cache and path analysis.

However, [Metzner, 2004] does not employ the modeling of other important micro-

architectural features (e.g. pipeline) and it is unclear whether the employed tech-

nique would remain scalable in the presence of pipeline or other micro-architectural

features. In contrast, our technique can easily be integrated with the modeling of

different micro-architectural features (e.g. pipeline). Nevertheless, some recent ad-

vances [Dalsgaard et al, 2010] have employed full model checking based approach

for software timing analysis in pipelined processor. However, [Dalsgaard et al, 2010]

faces some common scalability issues (e.g. state space explosion) in the presence of

caches. In [Wilhelm, 2004] and [Huber and Schoeberl, 2009], it has also been argued

that model checking alone is not suitable for WCET analysis due to the state space

explosion problem.

In summary, abstract interpretation based approach is scalable for cache analy-

sis and it is easy to integrate with other micro-architectural features (e.g. pipeline).

On the other hand, path sensitive program verification such as model checking can

give the most accurate result, but it is difficult to scale in terms of analysis time. A

recent approach [Lv et al, 2010] has therefore looked at the combination of abstract

interpretation and model checking. However, [Lv et al, 2010] uses model checking

for path analysis only; cache analysis is performed by conventional abstract interpre-

tation methods.

In the past few years, symbolic execution has widely been adopted for the func-

tionality testing of software [Godefroid et al, 2005; Cadar et al, 2008]. Such research

progress in the functionality testing has been made possible due to the recent ad-

vances in satisfiability modulo theory (SMT). SMT-based constraint solvers have

been adopted to explore feasible program paths. However, previous works [Gode-

froid et al, 2005; Cadar et al, 2008] have studied symbolic execution mainly in the

context of functionality testing. On the other hand, our work studies the combination

of abstract interpretation and symbolic execution to improve the precision of cache

timing analysis in a scalable fashion.

To summarize, we study the combination of abstract interpretation and path sen-

sitive program verification for different cache analysis to design a scalable and pre-

cise WCET analysis framework. Our proposed framework tries to best combine the

scalability advantage offered by abstract interpretation with the accuracy offered by

path sensitive program verification techniques (e.g.model checking, symbolic execu-

tion). Our analysis can be stopped after anytime during the program verification phase

and the results are always safe. Thus our framework gives the designer a precision-

scalability tradeoff which (s)he can choose to use.
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3 Background

WCET analysis of a single task WCET analysis of a single task is broadly com-

posed of two different phases: i) micro-architectural modeling and ii) path analysis.

Micro-architectural modeling analyzes the timing characteristics of different hard-

ware components (e.g. cache, pipeline, branch predictor) and works at the granular-

ity of basic blocks. As an outcome of micro-architectural modeling, we obtain the

WCET of each basic block in the examined program. On the other hand, path analy-

sis uses the WCET of each basic block as input and searches for the longest feasible

program path. Our baseline implementation employs the separated cache and path

analysis as proposed in [Theiling et al, 2000]. [Theiling et al, 2000] uses abstract

interpretation (AI) for cache analysis and integer linear programming (ILP) for path

analysis. We assume least recently used (LRU) cache replacement policy. Memory

blocks are categorized as all-hit (AH) or all-miss (AM) or unclassified (NC). Cache

analysis is used along with the virtual inline and virtual unrolling (VIVU), as dis-

cussed in [Theiling et al, 2000]. In VIVU approach, each loop is unrolled once to

distinguish the cold cache misses at first iteration of the loop. AH categorized mem-

ory blocks are always in cache when accessed. On the other hand, AM categorized

memory blocks are never in cache when accessed. If a memory block cannot be clas-

sified as either of two (AH or AM), it is considered unclassified (NC). Cache analysis

outcome is used for computing the WCET of each basic block. Finally, longest path

search in a program is formulated as an integer linear program. The formulated ILP

uses the basic block WCETs and structural constraints imposed by program control

flow graph (CFG). Infeasible program path informations are also encoded as separate

ILP constraints using the technique explored in [Ju et al, 2008]. The solution of the

formulated ILP returns the whole programWCET.

Inter-task cache conflict analysis Inter-task cache conflict analysis is required to find

an upper bound on cache misses due to preemption. The bound on cache misses

(or additional clock cycles) due to preemption is called cache related preemption

delay (CRPD). CRPD analysis revolves around the notion of two basic concepts:

useful cache blocks (UCB) and evicting cache blocks (ECB). UCBs are computed by

analyzing the preempted task and ECBs are computed by analyzing the preempting

task. A UCB is a block that may be cached before preemption and may be used later,

resulting in a cache hit in the absence of preemption. The number of UCBs imposes a

bound on CRPD. On the other hand, the preempting task can cause additional cache

misses in a cache set only if it uses the same cache set during its execution. For a

particular cache set, the set of cache blocks used by the preempting task during its

execution is known as ECB for the corresponding cache set. ECBs are used to check

whether a particular UCB could be evicted by the preempting task. We can disregard

all UCBs fromCRPD computation if they could not be evicted by the set of computed

ECBs. Therefore, a combined analysis with UCB and ECB may tighten the CRPD

estimates obtained with UCB alone [Negi et al, 2003]. Recently, two approaches

([Altmeyer and Burguière, 2009] and [Altmeyer et al, 2010]) have improved and

generalized the state-of-the-art CRPD estimation framework ([Lee et al, 1998; Negi

et al, 2003]) for set associative caches. We implement both the techniques proposed
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in [Altmeyer and Burguière, 2009] and [Altmeyer et al, 2010] in our baseline CRPD

estimation framework. Therefore, our baseline implementation captures the current

state-of-the-art AI-based CRPD analysis.

Inter-core cache conflict analysis Inter-core cache conflict analysis computes the

conflicts generated in shared cache. Conflicts in shared cache, on the other hand,

are generated by the tasks running on different cores. Till now, only a few solutions

have been proposed for analyzing timing behaviors of shared cache [Li et al, 2009;

Hardy et al, 2009; Yan and Zhang, 2008]. However, all of them suffer from over-

estimating the inter-core cache conflicts. We use our former work on shared cache

analysis [Li et al, 2009], which employs a separate shared cache conflict analysis

phase. Shared cache conflict analysis may change the categorization of a memory

block m from all-hit (AH) to unclassified (NC). This analysis phase first computes

the number of unique conflicting shared cache accesses from different cores. Then it

is checked whether the number of conflicts from different cores can potentially re-

place m from shared cache. More precisely, cache hit/miss categorization (CHMC)

of m is changed from all-hit (AH) to unclassified (NC) if and only if the following

condition holds:

N − age(m) < |Mc(m)| (1)

where |Mc(m)| represents the number of conflicting memory blocks from different

cores which may potentially access the same L2 cache set as m. N represents the

associativity of shared L2 cache and age(m) represents the age of memory blockm

in shared L2 cache set in the absence of inter-core conflicts. Therefore,N − age(m)
specifically captures the amount of shift that memory block m can tolerate before

being replaced from the cache. We call the term N − age(m) as residual age ofm.

It is worthwhile to mention that our proposed framework only refines the number

of estimated shared cache misses. Nevertheless, accessing a shared cache in multi-

core system is usually accomplished via a shared communication medium (e.g. a

shared bus). Previous works [Pellizzoni et al, 2010; Chattopadhyay et al, 2010; Kel-

ter et al, 2011] have shown the technical challenges in modeling the worst-case delay

of such shared communication medium. On the contrary, our work in this paper aims

to refine the estimation of worst-case cache misses and we do not claim any con-

tribution in reducing the worst-case estimation of communication delay (e.g. delay

arising due to the presence of a shared bus). However, in our previous works [Chat-

topadhyay et al, 2010; Kelter et al, 2011; Chattopadhyay et al, 2012], we have shown

the modeling of both shared caches and shared buses. For shared caches, our previ-

ous works have used the AI-based shared cache analysis [Li et al, 2009]. Since our

proposed framework in this paper gives a more precise outcome of AI-based shared

cache analysis, it can be integrated with our previous works [Chattopadhyay et al,

2010; Kelter et al, 2011; Chattopadhyay et al, 2012] to account the delay arising due

to a shared communication medium.
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4 Overview of the analysis framework

4.1 General framework

Figure 1 demonstrates the general analysis framework. Our goal is to refine different

types of abstract interpretation (AI) based cache analysis through program verifica-

tion techniques. For program verification, we use either static symbolic execution

(SE) or model checking (MC). Cold cache misses are unavoidable and AI-based

cache analysis can accurately predict the set of cold cache misses. However, AI-

based cache analysis suffers from overestimating the conflict misses in a cache. On

the other hand, conflicts in a particular cache set may come from different sources.

We focus on all three types of conflicts which may arise in a cache: first, intra-task

cache conflicts which is created by different memory blocks accessed by a particular

task and mapping into the same cache set. Secondly, inter-task cache conflicts which

is created when a high priority task preempts a low priority task. Finally, inter-core

cache conflicts which is generated in the shared cache by a task running on a different

core. Figure 2 pictorially represents all forms of the above mentioned cache conflicts.
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Even though the basic goal of our framework is cache conflict refinement, the no-

tion of cache conflict may vary depending on the outcome of AI-based cache analysis.

For example, in inter-task cache conflict refinement, initial CRPD analysis produces

a set of ECBs, which can be considered as the set of cache conflicts. On the other

hand, during intra-task and inter-core cache conflict refinement, we get the cache hit

miss classification (AH, AM or NC) of each memory block. A memory block might

be categorized as NC due to its conflicts with more than one memory blocks. There-

fore, by refining one NC categorized memory block into AH, we may reduce more

than one cache conflict pairs, which may in turn result in an improvement of WCET.

In Figure 1, the dotted boxed portion has different implementations for refining

different types of cache conflicts (i.e. intra-task, inter-task and inter-core). The re-

finement of cache conflicts is accomplished iteratively via program verification tech-

niques (symbolic execution or model checking) on a modified code. We rule out the

cache accesses for which AI has generated precise information. Therefore, the refine-

ment phase via program verification works on a very small subset of all cache ac-

cesses. The iterative refinement through model checking or symbolic execution elim-

inates several infeasible paths from the candidate program, resulting in the removal

of several unnecessary conflicts generated in a particular cache set. The iterative re-

finement is continued as long as the time budget permits or all possible refinements

have been verified.

The iterative refinement via program verification only generates a more precise

outcome of the baseline analysis (i.e. abstract interpretation). Therefore, our proposed

framework does not reduce any of the advantages obtained by using abstract interpre-

tation (AI). AI-based analysis has been widely adopted, as such an analysis can easily

be integrated inside a compiler and it can also handle non-compositional architectures

(e.g. in aiT [aiT, 2000] toolchain). Moreover, AI-based cache analysis can easily be

integrated with architectures that exhibit timing-anomalies. Our previous works have

shown such integration for single-core WCET analysis in [Li et al, 2004] and re-

cently, for multi-core WCET analysis in [Chattopadhyay et al, 2012]. Our proposed

framework does not compromise any such advantages offered by AI-based analysis,

rather our proposed framework aims to obtain a more precise cache analysis outcome

to improve the overall accuracy of WCET estimation.

Recall that theWCET analysis process can broadly be categorized into two phases:

micro-architectural modeling and path analysis. The infeasible path exploration by

the program verification is only performed for refining cache conflicts (i.e. during the

micro-architectural modeling phase). For path analysis, our framework encodes the

infeasible path information as separate ILP constraints (for details, refer to [Suhendra

et al, 2006; Ju et al, 2008]). Infeasible path constraints are finally used in the global

ILP formulation for computing WCET. There are two important advantages of our

framework: first, the iterative refinement can be terminated at any point if the time

budget exceeds. The resulting cache conflicts, after a partial refinement, can safely be

used for estimating the WCET or CRPD. Secondly, our framework can be integrated

with other micro-architectural features (e.g. pipeline, branch prediction) and thereby,

not affecting the flexibility of AI-based cache analysis.



10 Sudipta Chattopadhyay, Abhik Roychoudhury

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}

i++;}

}

T

T NT

NT

m4

m2m1

m3

m0

m6m5

Fig. 3 Example program and its corresponding control flow graph (CFG) without the backedge

4.2 A general code transformation framework

Any code transformation for refining various cache conflicts can be represented by a

quintuple 〈L,A,Pl,Pc, I〉 as follows:

– L : Set of conflicting memory blocks in the cache set for which the refinement is

being made.

– A : The property which needs be verified. The property is placed in the form of

an “assertion” clause, which validates A for all possible execution traces of the

modified code.

– Pl : Set of positions in the code where the conflict count would be incremented.

These are the set of positions where some memory block in L might be accessed.

– Pc : Position in the code where propertyA would be placed.

– I : Set of positions in the code to reset conflict count. In case of LRU cache

replacement policy, a memory blockm becomes the most recently used immedi-

ately after it is accessed. Therefore, if we are counting cache conflicts withm, the

conflict count must be reset afterm is accessed.

Any refinement via program verification corresponds to a specific cache set and there-

fore, conflicts are defined for a specific cache set in each code transformation. Con-

sequently, computation of L and Pl depends only on the cache set for which the

conflicts are being refined. On the other hand, A, Pc and I depends on the type of

cache conflict (i.e. intra-task, inter-task or inter-core) being refined.

In subsequent sections, we shall describe the instantiation of the framework in

Figure 1 for refining different versions of cache conflicts (as shown in Figure 2). We

shall also show howA, Pc and I are configured depending on the type of cache con-

flict being refined. We shall primarily discuss the analysis of instruction caches and

we shall assume least-recently-used (LRU) cache replacement policy. The extension

of our framework for non-LRU cache replacement policies and data caches has been

discussed in Section 8.
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For our subsequent discussions, we shall use the example in Figure 3. Parameter

z can be considered as an input to the program. Control flow graph (CFG) of the loop

body and the accessed memory blocks are also shown in Figure 3.

5 Instantiation of the general framework via model checking

In the following sections, we shall first give a general background on model checking

and subsequently, discuss the instantiation of our general framework ( Figure 1 ) via

model checking.

5.1 Recapitulation of Model Checking

Model checking [Clarke et al, 1986] is a state space exploration method for formal

verification of program properties. The general formulation of the model checking

problem is simple, it checks whether a finite state machineM satisfies a property ϕ

M |= ϕ

To explain the use of model checking for program verification we need to explain

how we getM,ϕ and what is means forM to satisfy ϕ.

The finite state machine M is automatically extracted from the program being

verified. Such a finite state machine formally described as a quadruple 〈S, S0,→, L〉
where S is the set of nodes (also called states) in the finite state machine, S0 ⊆ S is

the set of initial states, →⊆ S × S is the set of edges (also called transitions) in the

finite state machine, and L : S → 2AP is a labeling function which maps a given

state s to the atomic propositions true in the state s. The atomic propositions true in

a given state are drawn from AP , the set of all atomic propositions.

The properties verified are temporal logic properties, which constrain ordering

of specific events in program executions. In this work, we are only concerned with

Linear-time temporal logic (LTL). The syntax of LTL properties is recursively defined

as follows

ϕ = true | false | AP | ¬ϕ | ϕ ∧ ϕ | Xϕ | Gϕ | Fϕ | ϕUϕ | ϕRϕ

The formula true is always true and the formula false is never true. Further, the

atomic propositions AP form the basic building blocks of the formula. A LTL prop-

erty is constructed using the following

– Atomic propositions AP

– propositional logic operators

– temporal logic operators X (next), G (globally), F (finally), U (until), R (release).

For this work, the only properties we use are in the form of assertions which

should hold in a control location of the program. For example consider the assertion

C 1 ≤ 0 which should hold in control location loc2 in Figure 5. It corresponds to a

linear time temporal logic property

G(pc == loc2 ⇒ C 1 ≤ 0)
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meaning whenever the program counter variable (denoted pc in the above property)

holds the value “loc2” (i.e., when control location loc2 is reached during program

execution), we must have C 1 ≤ 0). Given an execution trace π of the program, we

can check this property by looking for all the visits to control location loc2 in the

trace π, and then checking whether for each of these visits C 1 ≤ 0 holds true in the

corresponding program state.

Finally, we explain what it means for a finite state machine M to satisfy a given

LTL property ϕ. The semantics of LTL dictates that M satisfies ϕ if and only if all

the execution traces ofM satisfy ϕ. In the context of our example propertyG(pc ==
loc2 ⇒ C 1 ≤ 0)— even if one single trace of state machineM is such that it has a

visit to control location loc2 when C 1 ≤ 0 does not hold – we will say that M does

not satisfy the propertyG(pc == loc2 ⇒ C 1 ≤ 0). Such an execution trace π will

then be considered as a counter-example trace of the property.

5.2 Refinement of intra-task cache conflicts

In this section we describe the refinement of cache conflicts shown in Figure 2(a).

Recall that the memory blocks are classified as AH (all-hit), AM (all-miss) or NC

(unclassified) by [Theiling et al, 2000]. AH and AM are guaranteed categorizations

by AI based cache analysis. Therefore, AH and AM categorized memory blocks do

not have any scope for refinement. On the other hand, AI based cache analysis fails to

give guaranteed information (in this case cache hit or cache miss) for NC categorized

memory blocks. Consequently, we use the model checker to refine the set of NC

categorized memory blocks.

exit

exit

All possible 

refinements 

have been 

checked by 

a model checker

Cache conflicts reported 

by AI to another NC 

categorized memory block

Assertion

(intra−task cache conflicts realized)

is violated

Timeout

Assertion is verified

(spurious intra−task cache conflicts)

NC categorized 

memory blocks

inside some loop
Code transformation

Refinement 

by model checker

Modify hit−miss

categorization

〈L,A,Pl,Pc, I〉

A

A

Fig. 4 Refinement of intra-task conflict analysis

Figure 4 demonstrates the instantiation of our general framework for reducing

the over-estimation in intra-core WCET analysis. As shown in Figure 4, we only tar-

get the NC categorized memory blocks inside some loop. Therefore, we concentrate

only on a few memory blocks whose successful refinement may lead to a reasonable

WCET improvement. For each of the NC categorized memory blocks under consid-

eration, we call our general code transformation framework (as shown in Figure 4).
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void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
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x++;
}

i++;}

}
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int flag_m5 = 0;

int C_1 = 0;

assert(C_1 <= 0);

if (flag_m5 == 0) {
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C_1++;
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flag_m5 = 0;

if (z >= 0) {

while (i < 100) {

void f(int z) {

loc1

loc2

loc3

loc4

Fig. 5 Intra-task cache conflict refinement

The transformed code has an assertion property A which needs to be verified by the

model checker. A successful verification of the assertion propertyA captures the fact

that certain cache conflicts reported by AI were spurious and we can conclude that the

NC categorized memory block can never be evicted from the cache (as pointed by the

“Modify hit-miss categorization” block in Figure 4). On the other hand, the assertion

propertyA is violated when certain cache conflicts reported by AI were realized and

such cache conflicts may lead to the eviction of the NC categorized memory block.

This process is continued until we have checked all the NC categorized memory

blocks inside loops or the time budget exceeds.

Let us assume that we want to refine the categorization of a particular memory

referencemmapping to a cache set i.m becomes the most recently used cache block

immediately after it is accessed. We would like to check whetherm could be evicted

from the cache between any two of its consecutive references. Let us assume Ci

counts the number of unique conflicts in cache set i and N is the associativity of

the cache. Since we use LRU cache replacement policy, it would require at least N

unique conflicts to replace m (from cache set i) after m is referenced. Therefore, if

Ci is less than or equal to N − 1, we can guarantee that m cannot be evicted from

the cache. The model checker is used to check an “assertion” property Ci ≤ N − 1
just before m is referenced. More over, as m is the most recently used cache block

immediately after it is accessed, we need to reset the conflict count Ci after m is

referenced.

We demonstrate our technique through an example in Figure 5. Parameter z can

be considered as a user input. Corresponding control flow graph (CFG) of the loop

body and the accessed memory blocks are shown in Figure 5. For illustration pur-
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poses, assume a direct-mapped L1 cache wherem1 andm5 are mapped to the same

cache set and rest of the memory blocks do not conflict in L1 cache withm1 orm5. A
correct AI-based cache analysis will classify bothm1 andm5 accesses as NC. Figure
5 shows the transformation to refine the NC categorization ofm1. Since the cache is
direct mapped, the refinement ofm1 is possible only if there are no other conflicting

cache accesses between any two consecutive accesses ofm1. VariableC 1 serves the
purpose of counting the number of conflicts. Sincem5 is the only conflicting memory

block, C 1 is incremented before the access of m5. Increment of C 1 is guarded by

condition (flag m5 serves the purpose of guard), so that we count only unique cache
conflicts. The above transformation of code is fully automated and we pass the trans-

formed code to a software model checker. Asm1-m3-m5 is an infeasible path (due to
the conflicting conditions z ≥ 0 and z = −2), a software model checker satisfies the

assertion clause “P1” in Figure 5. Therefore, we conclude that m1 cannot be evicted

from cache. Similarly, using a separate model checker refinement pass, we can also

conclude that m5 cannot be evicted from cache. As marked in Figure 5, our code

transformation framework 〈L,A,Pl,Pc, I〉 is configured as follows: L = {m5}, A
is the “assertion” clause checking the property C 1 ≤ 0, Pl = {loc4}, Pc = {loc2}
and I = {loc1, loc3}.

5.3 Refinement of inter-task cache conflicts

We now show the refinement of inter-task cache conflicts (as shown in Figure 3(b))

and thereby reduce the over-estimation introduced by CRPD analysis. A major source

of over-estimation in CRPD analysis may come from the computation of evicting

cache blocks (ECB). ECB denotes the set of cache blocks possibly touched by the

preempting task. Recall that CRPD depends on the set of useful cache blocks (UCBs)

replaced from cache due to preemption. Whether a UCB could be replaced due to

preemption, on the other hand, depends on the set of ECBs conflicting with it. There-

fore, more precise the set of ECBs, more precise the CRPD we get. If ECB compu-

tation does not take into account the infeasible paths in preempting task, set of ECBs

might be over-approximated. Therefore, over-estimation in CRPD analysis will also

increase. Consequently, we use a model checker for refining the number of ECBs by

eliminating infeasible paths found in the preempting task.

The refinement of ECBs can be represented in Figure 6. Let us assume ECB(i)
represents the number of ECBs computed for cache set i and Ci counts the unique

conflicts (in our transformed code) in cache set i generated by the preempting task .

The refinement of ECBs are performed in an iterative manner. In each iteration, for

all non-zero ECB(i), we try to refine ECB(i) with an immediately smaller value.

More precisely, if ECB(i) = N , we use the model checker to verify an “assertion”

property Ci ≤ N − 1. Note that we need to count the cache conflicts generated by

the entire preempting task. Therefore, the conflict countCi need to be initialized only

once, before any cache blocks accessed by the preempting task and the “assertion”

property Ci ≤ N − 1 is placed immediately before the exit point of the preempting

task. If the model checker successfully verifies the “assertion” propertyCi ≤ N − 1,
we can guarantee that the preempting task cannot generate more thanN − 1 conflicts
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Fig. 6 Refinement of inter-task conflict analysis, ECB(i) denotes the ECB of cache set i

in cache set i. Therefore, we can update ECB(i) with N − 1. After each iteration

(i.e. after checking refinement of ECB(i) with an immediately smaller value for all

cache set i), we re-evaluate the CRPD.

The workflow of refinement, as shown in Figure 6, is not restrictive. More specif-

ically, CRPD need not be evaluated after each iteration. The designer may choose

to wait for all possible refinements and evaluate the CRPD once all refinements by

the MC has been completed. However, evaluation of CRPD after each iteration gives

the designer two advantages: first, (s)he can choose to terminate the MC refinement

process when a tolerable value of CRPD has been obtained and secondly, (s)he can

choose to terminate the MC refinement process if the value of CRPD has not been

changed for a reasonably long number of iterations.

We demonstrate the idea using our example in Figure 7. Suppose, the task in Fig-

ure 7 is a high priority task which may potentially preempt some low priority task.

For sake of illustration, assume a 2-way set associative cache wherem1 andm5 map

to the same cache set i. Therefore, ECB(i) = 2 and the immediate refinement of

ECB(i) would check whether the number of unique conflicts in cache set i is less

than or equal to 1. The transformed code is shown in Figure 7. It checks a property

C 1 ≤ 1 where C 1 counts the number of unique conflicts generated by the preempt-

ing task in cache set i. flag m1 and flag m5 are used as guards, so that C 1 counts
only unique cache conflicts. When the modified code is passed to a software model

checker, it can find out the infeasible path m1-m3-m5 and satisfy the property (i.e.

C 1 ≤ 1). Consequently, we can refine the value of ECB(i) as 1. Since ECB(i)
is refined to a smaller value, some UCBs in the preempted task may not be evicted

from cache set i after preemption, which might in turn lead to a smaller CRPD. As

marked in Figure 7, our code transformation framework 〈L,A,Pl,Pc, I〉 is config-
ured as follows: L = {m1,m5}, Pl = {loc2, loc3},A is the the property C 1 ≤ 1,
Pc = {loc4} and I = {loc1}.
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Fig. 7 Inter-task cache conflict refinement

5.4 Refinement of inter-core cache conflicts

Finally, we describe the refinement of inter-core conflicts generated in a shared cache

(as shown in Figure 2(c)). Recall from Equation 1 that the precision of shared L2

cache analysis largely depends on the accuracy of estimating the term |Mc(m)|. The
model checking pass in our framework refines the setMc(m) by exploiting infeasible
paths in the conflicting task.

Figure 8 demonstrates the instantiation of our general framework for inter-core

conflict refinement. We only target the memory blocks whose categorizations are

changed from AH to NC in a shared cache conflict analysis phase. The code trans-

formation is performed on the task which generates inter-core cache conflicts. In this

case, the assertion propertyA aims to refine the number of inter-core cache conflicts.

If the assertion property A is verified by he model checker, the categorization of a

memory block can be reverted back from NC to AH due to the presence of spurious

inter-core cache conflicts reported by AI (as shown by the block “Modify categoriza-

tion from NC to AH” in Figure 8). On the other hand, if the assertion property A is

violated, the refinement process continues for other NC categorized memory blocks

in the shared cache.

Consider a memory block m mapping to an N -way associative shared L2 cache

set i. Assume that the categorization of memory block m was changed from AH

to NC during the shared cache conflict analysis phase. Disregarding the inter-core

conflicts, assume the maximum LRU age of m in cache set i is denoted by age(m).
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Therefore, if the amount of inter-core conflicts (in cache set i) is bounded by N −
age(m), we can guarantee that m will remain a shared L2 cache hit, despite inter-

core conflicts. Recall thatN−age(m) is called the residual age ofm. Further assume

tc is a task which may generate inter-core cache conflicts and Ci serves the purpose

of counting inter-core conflicts in shared L2 cache set i generated by tc. Therefore,

we use the model checker to verify an “assertion” property Ci ≤ N − age(m).
Identical to inter-task cache conflict refinement, we need to check the total amount of

cache conflicts generated by task tc. Therefore, in our transformed code, we initialize

Ci only once, before any cache blocks accessed by tc and we check the “assertion”

property just before the exit point of tc.

exit

exit

Assertion is violated

(inter−core cache conflicts realized)

Inter−core cache conflicts reported 

All possible 

refinements 

have been 

checked by 

a model checker

Code transformation

Timeout

Assertion is verified
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to NC during shared cache 

conflict analysis

by AI to another NC categorized

memory block
Refinement 

by model checker

Modify categorization 

from NC to AH

〈L,A,Pl,Pc, I〉

A

A

Fig. 8 Refinement of shared cache conflict analysis

Coming back to the example in Figure 3, assume that m1 and m5 map to the

same cache set of a 2-way set associative L2 cache. Further assume that we are trying

to refine the inter-core cache conflicts generated to a task t′ and t′ is running in

parallel on a different core with the task in Figure 3. Consider t′ accesses a memory

block m′, which map into the same shared L2 cache set as m1 and m5. Finally
assume that m′ is an all-miss (AM) or unclassified (NC) in L1 cache, but an all-hit

(AH) in L2 cache with residual age one, in the absence of inter-core cache conflicts.

Previous analysis will compute |Mc(m
′)| as 2 (due to m1 and m5 in the conflicting

task). Since the residual age of m′ is one, the categorization of m′ will be changed

to NC (Equation 1), leading to unnecessary conflict misses. We modify the code to

check whether the number of unique inter-core conflicts is less than or equal to the

residual age of m′. The transformation is similar to Figure 7 where C 1 serves the

purpose of counting unique cache conflicts with m′ in shared L2 cache. The model

checker will satisfy the assertion P2 in Figure 7 due to the infeasible pathm1-m3-m5.
Consequently, we shall be able to derive that the amount of inter-core conflicts with

m′ never exceeds the residual age of m′. Therefore, the categorization of m′ is kept

all-hit (AH). Configuration of our code transformation framework 〈L,A,Pl,Pc, I〉
is identical to the inter-task cache conflict refinement as follows: L = {m1,m5},
Pl = {loc2, loc3},A is the the property C 1 ≤ 1, Pc = {loc4} and I = {loc1}.

Although we show the transformation for a two core system, our framework does

not have the strict limitation of working only for two cores. However, one model
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checker invocation can verify only one task. Therefore, to refine conflicts from X

different tasks t1, t2, . . . , tX running on X different cores, we first employ an addi-

tional compose phase in transformation. The compose phase sequentially composes

t1, t2, . . . , tX (in any order) into a single task T . The infeasible paths in any task

t1, t2, . . . , tX are preserved in task T . Consequently, our code transformation tech-

nique can be applied to T in exactly same manner as described in the preceding to

refine conflicts from t1, t2, . . . , tX . Since the composition is sequential, number of

conflicts are accumulated from all X cores. Model checker refinement passes can

then be carried out on task T .

5.5 Optimizations

To reduce the number of calls to model checker, we cache the verification results. Re-

call that the “assertion” property verified by the model checker was always placed at

the end of conflicting task during inter-task and inter-core cache conflict refinement.

However, during intra-task cache conflict refinement, the position of “assertion” prop-

erty may vary and depends on the position of NC categorized memory block being

refined. Therefore, the following optimization can be applied only during inter-task

and inter-core conflict refinement but not during intra-task conflict refinement.

Model checker results are stored as a triple (set, resultmc, conflicts). The
triple has the following meaning:

– set : Cache set for which the refinement is being made.

– resultmc : Returned result by the model checker. Assume resultmc is one for a

successful verification and zero otherwise.

– conflicts :Number of conflicts in the assertion property. If we verify an assertion

property Ci ≤ N , value of conflicts is N .

In Figure 3(e), we store (1, 1, 1) after the successful refinement (assuming m1 and

m5 map to cache set 1). Assume any other assertion of form Cset′ ≤ N ′ is needed to

be verified, where set′ is the cache set for which the conflicts are being refined. We

search the cached results of form (set, resultmc, conflicts) and take an action as

follows:

– set = set′ ∧ resultmc = 0 ∧ N ′ ≥ conflicts: Assertion failure is returned. If

the refinement previously failed for a less number of conflicts, it will definitely

fail for more conflicts.

– set = set′ ∧ resultmc = 1 ∧N ′ ≤ conflicts: Assertion success is returned. If

the refinement was previously satisfied for more number of conflicts, it must be

satisfied for less number of conflicts.

If none of the entries satisfy the above two conditions, a new call to the model checker

is made. Depending on the outcome, the new result is cached accordingly for future

use.
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6 Instantiation of the general framework via symbolic execution

In Section 5, we have shown the instantiation of our framework using model check-

ing, as also discussed in our previouswork [Chattopadhyay and Roychoudhury, 2011].

In this section, we shall discuss the extension of our compositional analysis frame-

work with a symbolic execution engine. Such an extension is built on our previous

work [Chattopadhyay and Roychoudhury, 2011] and it forms the key contribution of

our work in this paper. As before, we use the abstract interpretation (AI) as a base

analysis. We rule out the set of cache conflicts which are accurately analyzed by

AI. Rest of the cache conflicts are iteratively refined using our code transformation

framework and a symbolic execution engine.

In the following, we first briefly describe the operation of a static symbolic exe-

cution engine.

6.1 Static symbolic execution

Symbolic execution [King, 1976] interprets a program with symbolic input values

(rather than concrete input values). Any expression, whose value depends directly

or indirectly on these symbolic input variables, are treated as symbolic expressions

throughout the execution. At any point of interpreting the program, symbolic exe-

cution maintains a set of execution states. Each such execution state is associated

with a constraint store. The constraint store is a symbolic formula capturing the set

of inputs along which the respective execution state is reached. Let us consider an

execution state which has to interpret a branch instruction. At a branch location, the

symbolic execution must decide which branch to take. If the branch instruction con-

tains a symbolic expression, such a decision making involves constraint solving. If

the constraint solver can decide which branch to take, the execution state proceeds

along the respective branch (without creating any additional execution state). Such an

interpretation of branch instruction is usually called a “nonforking” execution. The

more complex scenario appears when the outcome of a branch instruction cannot be

decided – which means that there is at least one input which satisfy the true leg of the

branch and there is also at least one input which satisfy the false leg of the branch.

In such a scenario, symbolic execution creates two parallel execution states (called

“forking” execution), one for the true leg of the branch (say true state) and the other

for the false leg of the branch (say false state). Assuming that the branch instruction

checks a condition θ and the constraint store of the execution state before branch was

Φ, the constraint store of the true state is updated as Φ ∧ θ and the constraint store

of the false state is updated as Φ ∧ ¬θ. Both the true state and false state inherit the

same computation state before the branch location, but after the branch location, the

two execution states proceed independently.

We shall illustrate the work flow of a symbolic execution engine with the example

in Figure 9. Let us assume that z is an input to the program and therefore, z is marked

as symbolic. If the value of an expression does not depend on any of the symbolic

variables, the expression value is treated as concrete (i.e. input independent). In Fig-
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void f(int z) {

while (i < 100) {

if (z >= 0) {
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Fig. 9 (a) Example program, (b) symbolic execution

ure 9, any update on variable i and x are interpreted as concrete values, as the updates

on i and x are not data dependent on the value of z.

Recall that a constraint store is maintained for each execution state created during

symbolic execution. The constraint store is a symbolic formula on the input variables

which must be satisfied to reach the respective execution state. The constraint store is

the logical formula true at the beginning of the program and is adjusted at each branch

instruction. In example 9(b), the program hits the i < 100 branch instruction first.

Since i is not an input and is initialized 0, only the true leg of the branch instruction

is interpreted.

However, consider the branch instruction z ≥ 0, when being hit for the first time.

At this point, the constraint store is the logical formula true. This branch condition is

sent as a query to the constraint solver to decide the condition outcome (i.e. true or

false). The constraint solver consults the constraint store to decide the outcome of the

branch condition. Since the constraint store is the logical formula true, the outcome

of z ≥ 0 could be both true or false depending on the value of input z. Therefore,

the symbolic execution forks two different execution states for each leg of the branch

instruction. The constraint store at the true leg is updated as z ≥ 0 and the same at

the false leg is updated as z < 0. The content of the constraint store is shown beside
the control flow edges.

Now consider the execution state with constraint store z ≥ 0. When this execution

state hits the branch instruction z == −2, the constraint solver checks the satisfiabil-
ity of the formula z ≥ 0∧ z = −2, which is clearly unsatisfiable. The unsatisfiability
of such formula can be checked very fast by an SMT solver with the theory of linear

integer arithmetic. Therefore, the symbolic execution does not create any execution

state which corresponds to the unsatisfiable constraint store z ≥ 0 ∧ z = −2 (as

marked “UNEXPLORED” in Figure 9(b)).
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When the execution state with constraint store z < 0 hits the branch location

z == −2, both the formulae z < 0∧ z = −2 and z < 0∧ z 6= −2 are satisfiable for
some input. Therefore, the symbolic execution forks two execution states accordingly.

As shown in Figure 9(b), both these execution states inherit the value of x = −1
before the branch location z == −2, however, proceeds independently thereafter to
update x = −2 (for the execution state with constraint store z < 0 ∧ z = −2) and
update x = 0 (for the execution state z < 0 ∧ z 6= −2).

Eventually, only three different execution states are created (as shown in Figure

9(b)) with their respective constraint stores as follows:

– z ≥ 0 ∧ z 6= −2,
– z < 0 ∧ z = −2, and
– z < 0 ∧ z 6= −2

The symbolic execution is terminated when it finishes interpreting all the instructions

in all the three execution states (as shown in the preceding).

6.2 Cache conflict refinement

Symbolic execution has successfully been applied to discover many critical function-

ality bugs [Cadar et al, 2008]. At a high level, our code transformation framework can

be viewed as reducing the problem of cache timing checking to functionality check-

ing. Recall that our code transformation framework contains an assertion property

A to check whether certain cache conflicts in the program are spurious. This asser-

tion property can be checked for validity using symbolic execution. If the assertion

property A is violated at any execution state created by the symbolic execution, the

entire symbolic execution is aborted. Such an abnormal termination of the program

captures the fact that certain cache conflicts (captured byA) can be realized for some

execution of the program and therefore, such cache conflicts are not spurious. On the

other hand, if the symbolic execution is not aborted, we can prove that our introduced

assertion holds over all possible executions of the program. Consequently, the cache

conflict captured by the assertion property is spurious.

We shall demonstrate the refinement process through the example in Figure 10.

Figure 10(a) shows the instrumented code for intra-task cache conflict refinement (we

use the same example from Figure 5). Figure 10(b) shows the cache conflict refine-

ment process via symbolic execution. Figure 10(b) shows that only one execution

state (among all three) can execute the assertion property involving the variable C 1.
As evidenced by Figure 10(b), the execution state interpreting the assertion property

captures an input condition z ≥ 0. Since symbolic execution interprets the program,

at each program point it holds the value of all the registers and memory locations.

At the assertion location, the respective execution state checks whether the currently

stored values satisfy the assertion. SinceC 1 has a value of zero initially, a formula of

the formC 1 = 0∧C 1 ≤ 0 is sent to the constraint solver as a query. If the constraint
solver returns a satisfiable formula, we can conclude that the assertion property holds

for the corresponding execution. Note that C 1 is incremented only for the execution

state which satisfy input condition z = −2. On the other hand, the assertion property
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int flag_m5 = 0;

void f(int z) {

int i = 0;

while (i < 100) {

if (z >= 0) {

int C_1 = 0;

}
x−−;

} else {

C_1 = 0;
flag_m5 = 0;

x++;

}

if (z == −2) {

if (flag_m5 == 0) {

flag_m5 = 1;

C_1++;

}

x−−;

i++;

} else {
x++;

}

}

assert(C_1 <= 0);

loc1

loc3

loc2

loc4

C_1=1

C_1=0

query

UNSATISFIABLE
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Unreachable 
assertion
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Fig. 10 (a) Transformed code for checking cache conflict, (b) checking the assertion during symbolic

execution

is reachable only if the input condition z ≥ 0 is satisfied. As a result, none of the

execution states which increment the variable C 1 can reach the assertion property

(as marked “Unreachable assertion” in Figure 10(b)). Consequently, whenever the as-

sertion property is reached, the same formula (i.e. C 1 = 0 ∧C 1 ≤ 0) is sent to the

constraint solver. Therefore, symbolic execution is never aborted for the example and

we can conclude that the cache conflicts captured by the instrumented code in Figure

10(b) cannot appear in any real execution. Inter-task and inter-core cache conflicts

are also refined in a similar fashion as shown in Figure 10(b).

Note that the symbolic execution engine tries to reason about a program path-by-

path. Due to this path sensitive reasoning process, such a symbolic execution may

generate very precise result compared to an equivalent abstract interpretation based

analysis. Since the sole purpose of our refinement process is to check the inserted

assertion property, the symbolic execution can be aborted as soon as a violation of

the assertion property is reached. As a result, a violation of the assertion is likely to

be checked much more quickly than the validity of the same assertion.

7 Implementation and evaluation

7.1 Implementation using CBMC/SPIN

We have used the Chronos timing analysis tool [Li et al, 2007] in which we have

already integrated the AI-based cache analysis proposed in [Theiling et al, 2000] (for

single core) and [Li et al, 2009] (for multiple cores). Chronos employs detailed micro-
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architectural modeling (superscalar, out-of-order pipeline and branch prediction). We

have also integrated the recently proposed CRPD analysis ([Altmeyer et al, 2010]

and [Altmeyer and Burguière, 2009]) into Chronos. For model checking purposes, we

use C bounded model checker (CBMC) [Clarke et al, 2004] or SPIN model checker

[SPIN, 1991].

SPIN is a linear time temporal logic (LTL) based model checker targeted for ef-

ficient software verification. SPIN can also be used as an exhaustive verifier to prove

several correctness properties of a system. Recall that our proposed code transfor-

mation framework introduces an assertion property to check whether certain cache

conflicts in the code are realizable. Such assertions can be considered as the correct-

ness properties of the transformed code. As a result, we can use the SPIN model

checker for refining cache conflicts in our proposed framework. SPIN provides direct

support for using embedded C code in the specification. As a result, we can use the

SPIN model checker for verifying C programs.

CBMC formally verifies ANSI-C programs through bounded model checking

(BMC) [Clarke et al, 2001]. In the context of our proposed approach, bounded model

checking through CBMC requires some explanation as follows. For a given sys-

tem/program P , BMC unwinds P to a certain depth. After unwinding, a Boolean

formula is obtained that is satisfiable if and only if there exists a counter example

trace. The formula is checked by a SAT procedure. If the formula is satisfiable, a

counter example is produced from the output of SAT procedure. Technically, for a C

program, the unwinding is achieved by unrolling the program loops to a certain depth.

For a given unwinding depth n, CBMC unwinds a loop by duplicating the code of

loop body n times. Each copy is guarded by the loop entry condition and hence, cov-

ering the cases where the loop executes for less than n iterations. The main advantage

of CBMC is that the tool also checks whether sufficient unwinding has been done

and thereby ensures that no longer counterexample can exist. Technically, CBMC

achieves the same by putting an “assertion” (called unwinding assertion) after the

last copy of the unrolled loop. The assertion uses the negated loop entry condition

and therefore, it ensures that the program never requires more iterations. In summary,

if no counterexample is produced by CBMC, it ensures the absence of error in the

program for any execution.

As described in the preceding, CBMC requires unwinding depth (bound) of each

loop. If user does not specify any unwinding depth (loop bound), CBMC tries to

determine the depth automatically. In most of our experiments, CBMC was able to

determine the loop bound automatically. For the cases where CBMC failed to deter-

mine the loop bound, we passed sufficient loop bound for each loop as an input to

CBMC. Recall that CBMC automatically put an “assertion” clause (called an unwind-

ing assertion) after the last unwound copy of a loop. The assertion clause verifies the

negated loop entry condition. Therefore, if insufficient loop bound is provided by the

user, CBMC generates an unwinding assertion violation and the verification process

returns a failure. Consequently, user can give a larger loop bound and rerun CBMC.

However, in our experiments, we initially provided sufficient loop bounds, so that no

unwinding assertion is violated. In our current implementation, CBMC is called as

an external module. Therefore, for each different call of CBMC, the loop unwinding

needs to be performed. Running time of our analysis can certainly improve if we can
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Fig. 11 Implementation framework using model checker (CBMC or SPIN)

restrict the number of loop unwindings. This will require us to make use of CBMC

and Chronos in a single binary executable, which could be explored in future.

Figure 11 gives an overall picture of our implementation framework. The figure

demonstrates one refinement for each type of conflicts. Chronos employs AI-based

cache analysis directly on the executable. We use a utility addr2line which con-

verts an instruction address to corresponding source code line number. The infor-

mation generated by addr2line is used to generate the transformed code. The

transformation of code is entirely automatic. Note that the sole purpose of the trans-

formed code is to prove that certain cache conflicts in the original code are infeasible.

Therefore, the timing effects generated by the original code is entirely independent

of the additional code introduced in transformation. The transformed code contains

an “assertion” property to be verified by the model checker (i.e. CBMC or SPIN).

The model checker either successfully verifies the assertion property or generates

a counter example. We would finally like to point out that the central contribution

of this paper is an efficient composition of abstract interpretation and model check-

ing. Therefore, even though we have used CBMC and SPIN for model checking, our

proposed framework (Figure 1) remains unchanged if we use a model checker that

directly works on the executable (e.g. [Balakrishnan et al, 2005]). Nevertheless, there

are certain advantages of using a model checker like [Balakrishnan et al, 2005]. Since

[Balakrishnan et al, 2005] directly works on the executables, it can capture the effect

of all compiler optimizations. Our technique can be integrated with [Balakrishnan

et al, 2005] to make a more robustWCET analysis framework.
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7.2 Implementation using KLEE

KLEE [KLEE, 2008] is a symbolic execution engine based on LLVM [LLVM, 2003]

compiler infrastructure. KLEE uses the power of satisfiability modulo theory (SMT)

and the SMT-based solvers to explore different paths in a program.

Figure 12 shows our implementation framework using KLEE. The basic structure

of the implementation is same as in Figure 11. The modifications made to use KLEE

have been highlighted in Figure 12. KLEE is a symbolic execution engine based

on the LLVM bitcode format. Therefore, our transformation is made at the level of

LLVM bitcode. Recall that the instantiation of our code transformation framework

depends on the type of cache conflict being refined (i.e. intra-task, inter-task or inter-

core). Therefore, as evidenced by Figure 12, the modified LLVM bitcode depends

on the type of cache analysis being refined via KLEE. KLEE allows to specify as-

sertions, which are checked during the symbolic execution using STP [STP, 2007]

constraint solver. Originally, KLEE ignores the assertions with a warning and con-

tinues symbolic execution. We modify the source code of KLEE to terminate the

symbolic execution as soon as it reaches the violation of some assertion property.

It is important to note that the above checking procedure is entirely different from

CBMC. In CBMC, the checking of an assertion property is captured by a single SAT

formula. The SAT formula takes care of all the different program paths that may

reach the assertion. Therefore, in general, the SAT formula created by CBMC is very

large. On the other hand, KLEE does not check the assertion by a single formula.

KLEE checks the assertion property while interpreting the program. Therefore, each

time the assertion is interpreted, an SMT solver is asked to check the satisfiability of

the assertion. The symbolic and concrete values at the assertion location are used to

validate the assertion property. Note that each interpretation of the assertion captures

a single program path and therefore, the formula checked by the SMT solver is usu-
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ally much simpler than the single SAT formula generated by CBMC. Nevertheless,

an SMT solver is called many times to check the assertion property, whereas CBMC

calls a SAT solver only once.

Since our sole purpose is to check the assertions introduced in the modified code,

we do not need to continue execution if the assertion is violated in some execution

state. As a result, KLEE can usually check the violation of an assertion propertymuch

faster than CBMC.

7.3 Experimental setup

We have chosen programs from [Gustafsson et al, 2010] which are generally used

for timing analysis. Note that the main motivation of our work is to remove spu-

rious cache conflicts, which were introduced due to the infeasible paths. Infeasible

paths are often introduced when auto generating code from a high level modeling

language (e.g. esterel as shown in [Ju et al, 2008]). For evaluation of our frame-

work, therefore, we need a set of tasks which potentially exhibit many paths. Table

1 demonstrates a set of subject programs having multiple paths. Let us call the set

of tasks in Table 1 as conflicting task set. All the program verification passes (i.e.

using CBMC model checker, SPIN model checker or KLEE symbolic execution en-

gine) are used to refine the three different types of cache conflicts (i.e. intra-task,

inter-task and inter-core) generated by the conflicting task set. We use another set of

subject programs from [Gustafsson et al, 2010] as shown in Table 2 during inter-task

and inter-core conflict refinement. We call the tasks in Table 2 as standard task set.

During inter-task and inter-core conflict refinement, we refine the conflicts generated

by conflicting task set on the standard task set. We report our experiences for each

possible combinations of standard and conflicting task set.

Table 1 Conflicting task set

Task Description Lines of C code code size (bytes)

statemate Automatically generated code 1230 52618

from Real-time-Code generator STARC

compress Data compression program 506 13411

nsichneu Simulate an extended petri-net 4225 118351

Table 2 Standard task set

Task Description Lines of C code code size (bytes)

cnt Counts non-negative numbers in a matrix 128 2880

fir Finite impulse response filter 275 11965

fdct Fast discrete cosign transform 214 8863

jfdctint discrete cosign transform on 8× 8 block 324 16028

edn signal processing application 283 10563

ndes complex embedded code 235 7345
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We use the following terminology in presenting the experimental data:

– WCETbase :WCET before any refinement by program verification.

– WCETrefined : WCET after refinement by program verification.

– CRPDbase : CRPD before any refinement by program verification.

– CRPDrefined : CRPD after refinement by program verification.

WCET improvement is computed as
WCETbase−WCETrefined

WCETbase
× 100%. CRPD im-

provement is computed similarly as
CRPDbase−CRPDrefined

CRPDbase
× 100%.

To refer to different verification techniques used in our framework, we shall ad-

ditionally use the following terminologies:

– AI + CBMC : Framework using abstract interpretation (AI) and CBMC model

checker.

– AI + SPIN : Framework using abstract interpretation (AI) and SPIN model

checker.

– AI+KLEE : Framework using abstract interpretation (AI) and KLEE symbolic

execution engine.

Our framework uses the usual 5-stage pipeline (IF-ID-EX-MEM-WB) imple-

mented by Chronos when predicting the WCET value. We fix the L1 cache miss

latency as 6 cycles and L2 cache miss latency as 30 cycles for all the experiments.

For the experiments which do not have an L2 cache (e.g. inter-task and intra-task con-

flict refinement), we simply take the L1 cache miss penalty as 36 cycles. All reported

experiments have been performed in an Intel Core i7 processor having 4 GB of RAM

and running ubuntu 10.04 operating system. The reported total time captures the en-

tire time taken during the analysis — including the base analysis through abstract

interpretation and repeated invocation of path sensitive program verification steps.

7.4 Evaluation

Key result Before going into the details of each experiment, let us first demonstrate

the key result of this paper via Figures 13-15. Figures 13-15 show the averageWCET

and CRPD improvements using different path sensitive programverificationmethods.

The improvement of WCET is demonstrated in case of intra-task and inter-core cache

conflict refinement (Figure 13 and Figure 15). On the other hand, CRPD improvement

is shown for inter-task cache conflict refinement (Figure 14). We observe an almost

linear improvement in WCET and CRPD estimation with respect to time. Inter-task

and inter-core cache conflict refinement is much faster compared to intra-task cache

conflict refinement, as evidenced by Figure 14 and Figure 15. Recall that we can

store and reuse the results returned by program verification methods during inter-

task and inter-core cache conflict refinement phases (Section 5.5). Such reuses of

program verification results reduces a significant number of calls to model checkers

or the symbolic execution engine. As a result, inter-core and inter-task cache conflict

refinement are comparably much faster than the intra-task cache conflict refinement.

Figures 13-15 also capture the efficacy and performance of different standard

verification tools on the proposed approach. As evidenced by Figures 13-15, the per-

formance of KLEE symbolic execution engine is the best among the three (i.e. SPIN,
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CBMC and KLEE), whereas the performance of SPIN model checker lies somewhere

between the performance of CBMC model checker and KLEE symbolic execution

engine. It is, however, worthwhile to note that SPIN model checker is able to gen-

erate the best WCET improvement compared to CBMC and KLEE. As shown in

Figure 13, the use of SPIN model checker may lead to 75%WCET improvement. On
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the other hand, the maximumWCET improvement obtained by CBMC and KLEE is

below 70%.

As our result is always safe, a provably correct WCET/CRPD value can be ob-

tained from any vertical cut along the time axis of Figures 13-15. As illustrated in

Figure 13, consider the vertical cut at 100th second. It clearly shows that if we end the

refinement process after 100 seconds, we can obtain 17%, 43% and 43% improve-

ment using CBMC, SPIN and KLEE, respectively. Nevertheless, if the refinement

process is allowed more time to run, we can obtain better precision in our obtained

result (28%, 53% and 57% respectively using CBMC, SPIN and KLEE after 200

seconds, as shown in Figure 13). A similar observation can be made during the inter-

task and inter-core cache conflict refinement (as evidenced by Figure 14 and Figure

15 respectively).

7.5 Reducing intra-task cache conflicts

Our refinement depends both on the choice of conflicting task set and the cache size.

We choose an 4-way associative, 32 KB L1 cache with 64 bytes of block size. Apply-

ing intra-task cache analysis on compress does not leave any NC categorizedmem-

ory blocks inside loop. Therefore, our refinement pass did not have any additional

effect in improving the WCET for compress. On the other hand, statemate and

nsichneu contain very large loops (in terms of code size) with multiple paths in-

side a loop body. Consequently, AI-based cache analysis generates a large number of

NC categorized memory blocks.

The results obtained for statemate and nsichneu are shown in Figure 16(a)

and Figure 17(a), respectively. The overall analysis time is reported in Figure 16(b)
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Fig. 16 (a) WCET improvement of statemate, (b) analysis time

and Figure 17(b), for statemate and nsichneu, respectively. Both the figures

16(a) and 17(a) show almost linear improvement in WCET estimation with respect

to the number of refinement steps. For these experiments, we restrict the number of

refinements to 300. Nevertheless, if time budget permits, the refinement process can

be run longer and thereby provides more opportunities to improve the WCET. For

nsichneu, the contribution of cache misses to the overall execution time is less

compared to statemate. Consequently, the improvement in WCET is also much

smaller compared to the same for statemate.

Figures 16(a)-17(a) clearly show that we can obtain the same improvement in

WCET estimation using CBMC and KLEE. On the other hand, refinement using
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SPIN model checker generates a better improvement in WCET estimation compared

to CBMC or KLEE for statemate (as evidenced by Figure 16(a)).

Figures 16(b)-17(b) compare the analysis time overhead using CBMC, SPIN and

KLEE. As evidenced by Figures 16(b)-17(b), KLEE outperforms the rest. KLEE

significantly improves the analysis time compared to CBMC, with the maximum

reduction from 500 seconds to 50 seconds. The analysis overhead of SPIN model

checker is slightly worse than KLEE, but it can still outperforms CBMC on our

proposed approach by a significant magnitude. Moreover, as mentioned in Figure

16(a), refinement using SPIN model checker leads to the best WCET improvement

in statemate.
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Fig. 18 (a) CRPD improvement using statemate, (b) analysis time

This result demonstrates the potential of our approach even for improving the

most basic cache conflict analysis through AI.

7.6 Reducing inter-task cache conflicts

We present the results of inter-task cache conflict refinement through Figures 18(a)-

20(a). Figure 18(b)-20(b) report the respective analysis time. The reported CRPD

denotes the cache related preemption delay when a low priority task from the standard

task set (Table 2) is preempted by a high priority task from the conflicting task set

(Table 1). As before, we choose an 4-way associative, 32 KB L1 cache with 64 bytes
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Fig. 19 (a) CRPD improvement using nsichneu, (b) analysis time

block size. Unlike the intra-task cache conflict refinement, results reported in Figure

18(a) run the refinement process till the end (i.e. until all possible refinements have

been checked by CBMC, SPIN or KLEE).

We are able to reduce the number of ECBs as well as the CRPDwhen compress,

statemate and nsichneu are used as high priority tasks. CRPD improvement is

significant, with average improvement being more than 80%. Note that we use a set

associative cache. Therefore, conflicts generated from high priority tasks may just

age the used cache blocks in the low priority tasks (instead of completely evicting

the used cache blocks by the low priority task). Consequently, for a few cases, we
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Fig. 20 (a) CRPD improvement using compress, (b) analysis time

are able to completely eliminate the CRPD (e.g. when nsichneu is used as a high

priority task to preempt fir and ndes, Figure 19(a)).

Similar to the intra-task cache conflict refinement, KLEE and CBMC produce the

exactly same precision gain in CRPD. For all the subject programs,KLEE and CBMC

are able to refine the same number of inter-task cache conflicts, thereby reducing the

CRPD by the exactly same amount. This result is evidenced by Figures 18(a)-20(a).

On the other hand, when statemate is used as a high priority task, refinement

using SPIN model checker usually leads to better precision gain in CRPD estimation

compared to CBMC or KLEE. Note that such a positive result using SPIN model

checker was also observed while refining intra-task cache conflicts in statemate.
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Fig. 21 (a) Multi-core WCET improvement using statemate, (b) analysis time

We compare the time taken by different path sensitive verification tools (i.e.

CBMC, SPIN and KLEE) for the inter-task cache conflict refinement. The result is

shown through Figures 18(b)-20(b). We can observe that the time taken by KLEE is

much less compared to CBMC, but comparable to SPIN model checker, for all the

subject programs. Although we can gain the same precision using KLEE, the refine-

ment is much faster than CBMC, with as much as 9x times faster when statemate

is used as a high priority task (Figure 18(b)).
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Fig. 22 (a) Multi-core WCET improvement using nsichneu, (b) analysis time

7.7 Reducing inter-core cache conflicts

Finally, we present the results of inter-core cache conflict refinement in Figures 21(a)-

23(a). The analysis overhead of different experiments are reported in Figures 21(b)-

23(b). In one core, we run a task from the standard task set (in Table 2) and in an-

other core, we run a task from the conflicting task set (in Table 1). Reported WCET

improvements capture the WCET improvements from the standard task set. For the

experiments reported in Figure 21(a), we need the analysis of both L1 and L2 cache.

We fixed the L1 cache as a direct-mapped, 256 bytes with a block size of 32 bytes.

L1 cache is taken relatively small so that we are able to generate reasonable number
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Fig. 23 (a) Multi-core WCET improvement using compress, (b) analysis time

of conflicts in the shared L2 cache. We take an 4-way associative, 32 KB shared L2

cache having a cache block size of 64 bytes.

We are able to significantly reduce the standard task WCET by refining the inter-

core cache conflicts (maximum improvement around 50%). Similar to the inter-task

cache conflict refinement, we run the refinement process until we had checked all

possible and spurious inter-core cache conflicts. None of our experiments took more

than two minutes to complete.

Similar to the refinement of intra-task and inter-task cache conflicts, inter-core

cache conflict refinement using KLEE and CBMC also lead to the exactly same pre-

cision gain in WCET. Moreover, SPIN model checker gives the best precision gain in
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WCET estimation when statemate is used to generate the inter-core cache con-

flicts.

Figures 21(b)-23(b) compare the analysis time overhead using different verifica-

tion methods. For nsichneu and compress, KLEE generates the same results at

least twice faster than CBMC. On the other hand, for statemate, usage of KLEE

leads to a significant improvement in analysis time – with as much as 900% for a

few subject programs (Figure 21(b)). For all the cases, the time taken by SPIN model

checker is significantly lower than CBMC and in most of the cases, the analysis over-

head using SPIN model checker is comparable to the same using KLEE.

7.8 Discussion

We have evaluated our proposed framework using two different path sensitive pro-

gram verification techniques – model checking and symbolic execution. For model

checking, we have used CBMC - a SAT-based model checker and SPIN - an explicit-

state search based LTL model checker. For symbolic execution, we have used KLEE.

In our experiments, CBMC was unable to infer some of the loop bounds in a program

automatically. In particular for statemate, we provided sufficient loop bounds, so

that no unwinding assertion is violated (recall that an unwinding assertion is violated

when the user given loop bound may under-approximate the number of times the

loop body can be executed). On the other hand, since KLEE performs a symbolic ex-

ecution of the program, it was able to automatically detect the termination of all the

loops and no manual intervention was required during the experiments using KLEE.

Our evaluation shows that both KLEE and CBMC improve the analysis precision by

exactly same amount. However, the evaluation using SPIN model checker leads to

a better precision compared to using KLEE or CBMC in case of statemate. A

symbolic execution guided refinement process is faster than the refinement process

based on model checking. This time efficiency of symbolic execution has been made

possible by the recent advances in SMT technologies. KLEE uses the fast SMT solver

STP for constraint solving, hence improving the refinement process of our framework

significantly. Moreover, if any execution of an assertion property leads to a violation,

the entire symbolic execution by KLEE can be terminated. This in turn makes the vi-

olation check of an assertion much faster than CBMC. Although SPIN model checker

takes more time than KLEE to complete, the additional overhead is negligible.

Our experience with the evaluation process shows that both the model checking

and symbolic execution lead to exciting results. Whereas symbolic execution out-

performs the model checkers in terms of analysis time, model checking may some-

time lead to better improvement in WCET estimate (e.g. using SPIN model checker

for refining the cache conflicts generated by statemate). Therefore, use of model

checker and symbolic execution has a precision-time tradeoff on our proposed ap-

proach. As a result, we believe that both the approaches of path sensitive program

verification (i.e. model checking and symbolic execution) should be explored in the

context ofWCET estimation. However, note that we do not make any generality claim

about the performance of different program verification techniques in this paper. All

the claims shown through our evaluation are only meaningful for our proposed ap-
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proach. Therefore, all the program verification techniques and tools used in this paper

are of equal interest for a variety of other applications and technologies.

8 Extension

In this section, we shall discuss the modifications required to our proposed framework

for analyzing data caches and caches with non-LRU replacement policies. Note that

the baseline analysis used by our framework is abstract interpretation (AI). Therefore,

in the following discussion, we shall assume the presence of an AI-based framework

for data caches and caches with non-LRU replacement policies. We shall show the

instantiation of our general code transformation framework for such analyses.

8.1 Caches with non-LRU replacement policies

Although least-recent-used (LRU) replacement policy has been argued to be the most

suitable for real-time application [Wilhelm et al, 2009], LRU is difficult to implement

in hardware. As a result, many commercial embedded processors employ non-LRU

replacement policies. First-in-first-out (FIFO) is such a non-LRU cache replacement

policy and FIFO replacement policy has been widely used in ARM processor families

(e.g. ARM9 and ARM11).

WCET research community has investigated abstract interpretation (AI) based

analysis of FIFO replacement policies [Grund and Reineke, 2010a]. The work in

[Grund and Reineke, 2010a] employs must and may cache analysis to categorize

memory blocks as all-hit (AH) and all-miss (AM). If a memory block cannot be

categorized as AH or AM, it is categorized unclassified (NC). Therefore, the output

generated by the AI-based analysis has the same format as in the case of LRU replace-

ment policy and we can use our framework to refine the set of NC categorized mem-

ory blocks. More precisely, the instantiation of our framework for intra-task cache

conflict refinement is exactly the same as shown in Figure 4.

Nevertheless, for FIFO replacement policy, the code transformation will be dif-

ferent compared to the LRU replacement policy. We shall illustrate this difference

through an example in Figure 24. We use the same example used previously in the

paper. However, for the sake of illustration, let us assume a 2-way set associative

cache. Moreover, assume the following mapping of memory blocks to cache sets:

m0 7→ S1, m1 7→ S2, m2 7→ S3, m3 7→ S2, m4 7→ S4, m5 7→ S2, m6 7→ S5.

Si denotes the different cache sets. Therefore, in our example, onlym1, m3 and m5
conflict in the cache. Due to the two different cache conflicts generated fromm3 and
m5 along two different control flow paths, AI-based analysis will categorize m1 as

unclassified (NC).

To refine the categorization of memory blockm1 via path sensitive program ver-

ification, the code is modified as shown in Figure 24. To prove that m1 cannot be

evicted from the cache, we need to ensure that the number of unique and conflict-

ing memory blocks entered into the cache cannot be more than one, whenever m1
is accessed. This is due to the fact that two new and conflicting memory blocks will
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void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}

i++;}

}

void f(int z) {

int i = 0;

while (i < 100) {

if (z >= 0) {

int C_1 = 0;

x++;

assert(C_1 <= 1);

} else {

if (z == −2) {

if (flag_m5 == 0) {

flag_m5 = 1;

C_1++;}

x−−;

} else {

x++;

}

i++;}
}

Modified Code

x−−;
}

C_1++;
}

int flag_m5 = 0, flag_m3 = 0;

if (flag_m3 == 0) {

flag_m3 = 1;

Control flow graphOriginal Code

loc1

loc2

loc3

loc4

Assertion

Fig. 24 Intra-task cache conflict refinement for FIFO cache replacement policy

evict the oldest memory block m1. In Figure 24, variable C 1 serves the purpose of

counting the number of cache conflicts tom1. Therefore, we check an assertion prop-
erty C 1 ≤ 1 before accessing m1. Since m3 and m5 both conflict with m1, cache
conflict count (i.e. C 1) is incremented before accessing m3 and m5. flag m3 and

flag m5 are required to count the unique accesses to memory blocks m3 and m5,
respectively. Note that the crucial difference with LRU replacement policy is made

by elimination of the code after accessing m1 (see Figure 5). In LRU, each memory

block becomes most recently used after its access. Therefore, cache conflict count

(i.e. C 1) was reset after accessingm1. However, in FIFO replacement policy, cache

state does not change after a cache hit and therefore, the conflict count (i.e. C 1) was
unchanged after accessingm1. Sincem1−m3−m5 is an infeasible path, the asser-
tion property at P1 can be successfully verified and we can conclude thatm1 cannot
be evicted from the cache. As marked in Figure 5, our general code transformation

framework 〈L,A,Pl,Pc, I〉 was configured as follows: L = {m3,m5}, A is the

“assertion” clause checking the property C 1 ≤ 1, Pl = {loc3, loc4}, Pc = {loc2}
and I = {loc1}.

Caches with non-LRU and non-FIFO replacement policies So far, there have been

very few works on cache replacement policies other than LRU. In the preceding, we

have shown the instantiation of our framework for FIFO replacement policy. Recent

literatures [Grund and Reineke, 2010b] have shown the technical challenges in de-
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signing an abstract interpretation based analysis framework for pseudo LRU (PLRU)

cache replacement policy. In an N -way set associative PLRU cache, log2(N) + 1 is

a tight lower bound on the number of unique memory block accesses to evict a just

inserted memory block into the cache [Reineke et al, 2007]. As a result, an N -way

set associative PLRU cache can be instantiated as the analysis of a log2(N) + 1-
way set associative LRU cache [Reineke and Grund, 2008]. Due to this correlation

between different cache replacement policies, our proposed framework can also be

integrated nicely with PLRU cache replacement policy. The only change in our code

transformation will be made in designing the assertion property. For an N -way set

associative LRU cache, we check an assertion property of the form Ci ≤ N − 1,
as less than N cache conflicts will guarantee non-eviction of a just inserted memory

block into LRU cache. For an N -way set associative PLRU cache, such an assertion

property can be modified into Ci ≤ log2(N)+ 1− 1 or simply Ci ≤ log2(N) due to
the above mentioned correlation between a PLRU and LRU cache (refer to [Reineke

et al, 2007] for a proof of this correlation).

Refinement of inter-task and inter-core cache conflicts So far in this section, we have

discussed the refinement of intra-task cache conflicts. It is worthwhile to note that

during inter-task cache conflict refinements, we refine the number of memory blocks

accessed by the high priority tasks (termed as evicting cache blocks or ECBs), a quan-

tity independent of cache replacement policy. Similarly, during inter-core cache con-

flict refinement, we refine the number of memory blocks accessed by different cores,

again a quantity which is independent of any cache replacement policy. Therefore, for

a particular cache replacement policy, a CRPD analysis for multi-tasking system or a

WCET analysis for multi-core system can always be benefited from our framework

by refining the number of inter-task and inter-core cache conflicts, respectively.

8.2 Data caches

Analysis of data caches introduces additional complications, as different instances

of the same instruction may access different data memory blocks (e.g. array element

access inside a loop). Although the basic structure of our refinement process remains

exactly the same (i.e. Figure 4), the code transformation for the refinement requires

minor modifications as explained below.

The code transformation need to account two crucial facts in the presence of data

caches. Note that a data access may correspond to multiple memory blocks. Since

multiple memory blocks might map to different data cache sets, the code transforma-

tion need to record the cache conflicts for all such cache sets. Assume that we want

to refine the categorization of a data reference R which may access the cache sets

{S1,S2, . . . ,Sk}. Therefore, we introduce k variables C1, C2, . . . , Ck to count the

cache conflicts in cache sets S1,S2, . . . ,Sk; respectively. Ci is incremented before a

data reference if somememory block accessed by the data referencemay access cache

set i. Finally, to refine the categorization of R in an N -way set associative LRU data

cache, we check an assertion propertyC1 ≤ N−1∧C2 ≤ N−1∧. . .∧Ck ≤ N−1.
A successful verification of the assertion property leads to the fact that none of the
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void f(int z) {
int i = 0;

if (z >= 0) {

} else {
x−−;

}
if (z == −2) {

} else {
x++;

}

i++;}

}

x += a[i];

x −= b[i];

while (i < 16) {

Data blocks

{d1,d2}

Data blocks

Array a

Array b {d3,d4}

Original Code

void f(int z) {

int i = 0;

if (z >= 0) {

} else {

}

} else {

x++;

}

i++;}
}

Modified Code

x−−;
}

if (z == −2) {

C_1++;
}

x += a[i];

x −= b[i];

assert(C_1 <= 0 && C_2 <= 0);

if (flag_d3 == 0) {

flag_d3 = 1;

if (flag_d4 == 0) {

flag_d4 = 1;

int flag_d3 = 0, flag_d4 = 0;

while (i < 16) {

int C_1 = 0, C_2 = 0;

C_2++;

loc1

loc2

loc3

Assertion

Fig. 25 Intra-task cache conflict refinement for data caches

memory blocks accessed by data reference R could be evicted from the cache. As a

result, we can refine the categorization of data reference R.

Figure 25 illustrates an example with a direct mapped data cache. Assume that

the array reference a accesses a set of data memory blocks {d1, d2} and the array

reference b accesses a set of data memory blocks {d3, d4}. The memory block map-

ping to the data cache is as follows: d1 7→ S1, d2 7→ S2, d3 7→ S1, d4 7→ S2. Si

captures the data cache sets. Therefore, in our example, d1 and d3 conflict in the data
cache. Similarly, d2 and d4 also conflict in the data cache. Additionally, assume that

no other data accesses conflict in the data cache with array references a and b. A tra-

ditional abstract interpretation based analysis will classify both the array references

(i.e. a and b) as unclassified. Let us assume that we want to refine the categorization

of array reference a. The transformed code is also shown in Figure 25. Since array

reference amay access the cache sets S1 and S2, we count the cache conflicts both in

cache set 1 and 2 (through variablesC 1 and C 2, respectively). Such cache conflicts
are incremented at array reference b, since the array reference b may access both the

cache sets S1 and S2. Finally, since array reference a may access both the cache sets

S1 and S2, we check the assertion propertyC 1 ≤ 0∧C 2 ≤ 0. Due to the infeasible
path condition z ≥ 0 ∧ z = −2, the assertion property will be verified successfully

and we can conclude that the memory blocks of array a cannot be evicted from the

data cache. A similar successful refinement can also be carried out on array refer-

ence b. Note that we can no longer reset the conflict counts (i.e. variables C 1 and
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C 2) after accessing the array a, as the array reference may correspond to multiple

cache sets and we do not know statically which cache set is accessed. As illustrated in

Figure 25, our general code transformation framework 〈L,A,Pl,Pc, I〉 can be con-

figured as follows: L = {d3, d4}, A is the “assertion” clause checking the property

C 1 ≤ 0 ∧ C 2 ≤ 0, Pl = {loc3}, Pc = {loc2} and I = {loc1}.
Our inter-task and inter-core cache conflict refinement framework remains mostly

unchanged. However, to count the data memory blocks by a conflicting task (a high

priority task or a task running on a remote core), the code transformation must ac-

count the multiple memory blocks accessed by a data reference, as shown by our

previous example in Figure 25.

It is worthwhile to note that the accuracy of our refinement phase largely depends

on the accuracy of address analysis (e.g. [Balakrishnan and Reps, 2004]). Address

analysis is used to statically estimate an over-approximation of the set of addresses

accessed by a data reference. In the example shown in Figure 25, address analysis

computes the set of possibly accessed memory blocks by array references a and b

(i.e. {d1, d2} and {d3, d4}, respectively). If the set of memory blocks estimated by

address analysis is over-approximated,our frameworkmay increase the cache conflict

count unnecessarily for the set of over-approximated memory blocks. As a result, an

imprecise address analysis may lead to many assertion violations in the transformed

code and our framework may not be able to eliminate many spurious data cache

conflicts. However, we believe that designing precise address analysis is beyond the

technical scope of this paper and any precision gain in the underlying address analysis

will directly improve the data cache analysis precision using our framework.

9 Conclusion and future work

In this paper, we have proposed two compositional WCET analysis frameworks, one

of which combines abstract interpretation with model checking and the second one

combines abstract interpretation with constraint solving, both for cache analysis. Our

framework does not affect the flexibility of abstract interpretation based cache anal-

ysis and it can be composed with the analysis of different other micro-architectural

features (e.g. pipeline). Moreover, our model checker or symbolic execution guided

refinement process is always safe. Therefore, the refinement process can be termi-

nated at any point if the time budget is violated. Experimental results show that we

can obtain significant improvement for various types of cache analysis in single and

multi-cores using both of our compositional analysis frameworks.

Our current work can be extended to improve the state-of-the-art data cache anal-

ysis as follows: recall that address analysis computes an over-approximation of ac-

cessed memory blocks for a particular data reference. As a result, the precision of data

cache analysis may be significantly affected by the overestimation of address analy-

sis. In our proposed approach, such an address analysis may also affect the refinement

process by generating many false assertion violations (as mentioned in Section 8.2).

A recent work [Huynh et al, 2011] has proposed a new approach to overcome the

problem caused by address analysis. Instead of computing the set of memory blocks

accessed by each data reference, the work proposed in [Huynh et al, 2011] computes
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the set of loop iterations in which a particular memory block is accessed. Such a com-

putation strategy is quite useful for data accesses, as the data memory blocks mapping

to the same cache set can never conflict with each other if they are accessed in dis-

joint loop iteration space. Our code transformation technique can be extended for the

type of address analysis proposed in [Huynh et al, 2011]. Such an extension will be

helpful for improving the precision of data cache analysis by removing spurious data

cache conflicts.

In future, we plan to test our framework with real-world applications apart from

the programs in [Gustafsson et al, 2010] and we also plan to explore the possibilities

of applying such a compositional analysis framework for micro-architectural model-

ing other than caches in a scalable fashion.
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