
Unified Cache Modeling for WCET Analysis and Layout Optimizations

Sudipta Chattopadhyay
National University of Singapore

sudiptac@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

Abstract—Presence of instruction and data caches in pro-
cessors create lack of predictability in execution timings. Hard
real-time systems require absolute guarantees about execution
time, and hence the timing effects of caches need to be modeled
while estimating the Worst-case Execution Time (WCET) of a
program. In this work, we consider the modeling of a generic
cache architecture which is most common in commercial
processors — separate instruction and data caches in the first
level and a unified cache in the second level (which houses code
as well as data). Our modeling is used to develop a timing
analysis method built on top of the Chronos WCET analysis
tool. Moreover we use our unified cache modeling to develop
WCET-driven code and data layout optimizations — where the
code and data layout are optimized simultaneously for reducing
WCET.

Keywords-WCET Analysis, Cache Memories.

I. INTRODUCTION

Hard real-time systems require absolute guarantees on
the execution time of software. For this purpose, accurate
analysis methods for estimating the Worst-case Execution
Time (WCET) of real-time embedded software have been
developed over the past two decades. WCET analysis meth-
ods usually involve program path analysis (which determines
infeasible paths in the program’s control flow graph), micro-
architectural modeling (for accurate estimation of the execu-
tion time of the basic blocks) and finally WCET calculation
often via Integer Linear Programming.

Micro-architectural modeling involves considering the
timing effects of micro-architectural features which are
common in modern processors. Over the past few decades,
the increasing processor-memory gap in terms of perfor-
mance have prompted computer architects to develop on-
chip caches — where some redundant memory (over and
above the main memory) is placed on-chip to capture
recently accessed memory blocks. This obviates the need
to access main memory for every memory access, thereby
improving program performance.

While caches constitute a well-established solution in
terms of improving program performance, their presence
raises serious questions about program predictability. Caches
are not visible to the programmer and cache management
is not done at the programming / compiler level. Given
a memory block which is accessed many times during a
program execution, we need to precisely predict the number
of times it will hit or miss in the cache. Indeed imprecise

(but conservative) hit/miss classification of memory blocks
can produce a gross over-estimate in terms of the Worst-case
Execution Time (WCET).

For safe and tight WCET analysis, precise analysis meth-
ods for predicting cache behavior have been developed
in the past decade. Abstract interpretation based hit-miss
classification methods have been proposed for instruction as
well as data cache [1], [2], [3]. Recently, multi-level cache
analysis methods have also been proposed [4]. However,
each of the works consider only a fragment of the cache
architecture — either a single instruction cache, or a single
data cache, or two levels of instruction cache.

In real processors (such as Intel x86), the most common
cache architecture is a multi level one. In the first level
(L1), there are separate instruction and data caches. In the
second level (L2), there is a unified cache which houses
both instruction and data. Instruction accesses are looked
up first in the L1 instruction cache, followed by the L2
unified cache, and finally in the main memory. Similarly,
data accesses are looked up first in the L1 data cache,
followed by the L2 unified cache and finally in the main
memory. Existing cache modeling techniques for WCET
analysis consider different fragments of the architecture, but
not the entire architecture. In this work, we draw upon and
enhance existing works to develop a comprehensive cache
modeling framework covering all aspects of the two level
cache architecture.

Technical Contributions: In terms of technical contri-
butions, ours is the first work to model the timing effects
of a L2 unified cache which houses instruction as well as
data. Previous works had either considered instruction cache
or data cache but not both. In this paper, we integrate the
modeling of instruction and data accesses by modeling the
timing effects of a unified (instruction + data) cache. Using
our cache modeling, we can identify the different sources
of WCET over-estimation in a multi-level cache architec-
ture with instruction and data caches. Our cache modeling
framework has been integrated into the open-source WCET
analyzer Chronos [5]. Using our WCET analysis, we develop
heuristics to perform simultaneous code and data layout
optimizations which can help reduce the WCET estimate.
Previous works on WCET-driven compiler optimizations
have studied code layout separately without concern for data
layout, and this is problematic in the presence of a unified

cache. Thus, we present a cache modeling framework which
goes beyond existing approaches, integrate it into a state-of-
the-art WCET analyzer, and use the analyzer results to guide
novel WCET-driven layout optimizations.

II. RELATED WORK

Research on WCET analysis was initiated two decades
ago. The early works [6], [7] analyzed the program source
code without considering the timing effects of the underlying
micro-architecture. In subsequent works, timing effects of
micro-architectural features such as pipelines, caches and
branch prediction have been studied.

Cache modeling for WCET analysis has been an active
topic of research in the area. Most of the research in
cache modeling consider a single level instruction cache.
Early works [8] used Integer Linear Programming (ILP)
for instruction cache modeling. However ILP-based methods
do not scale well in terms of analysis time. Subsequently,
abstract interpretation based methods have been developed
for instruction cache modeling [1]. These works consider all
incoming program flows for categorizing individual memory
accesses as always hit, always miss or persistent (only the
first access misses). Such an approach is more scalable and
has been integrated into various WCET analyzers.

Static analysis of data cache timing effects have also
been studied (e.g., see [3], [9]). In particular, [3] adapts the
abstract interpretation approach for data cache analysis. One
of the major difficulties in data cache analysis is the fact that
several executions of an instruction can access different data
memory addresses and it is difficult to precisely predict the
range of data memory addresses accessed by a particular
instruction. A recent paper [2] addresses this concern some-
what by partial unrolling of loops.

Multi-level cache analysis has been studied in [10], and
more recently in [4] which discusses timing anomalies
permitted by previous approaches.

In summary, all existing works on cache modeling focus
on either instruction cache or data cache, but not both.
Moreover, for cache hierarchies, in most real processors the
second-level cache is a unified cache which contains both
instruction and data — an issue not considered in existing
works. In our work, we build on existing works [1], [2],
[4] to develop a WCET analyzer which considers separate
instruction and data caches in the first level and a unified
cache in the second level.

Finally, our work on WCET-directed layout optimizations
extends the state-of-the-art in the area. WCET directed code
layout optimizations have been studied in [11]. Recently [12]
studies WCET-aware positioning of procedures. Once again,
none of the works consider code and data layout together.
Due to the presence of unified (code+data) caches in real-
life processors, it is important to simultaneously optimize
code and data layout — an issue addressed by this paper
from a WCET-centric perspective.

III. ASSUMPTIONS

We consider a memory hierarchy containing L1 instruc-
tion cache, L1 data cache and a L2 unified D/I cache. For
simplicity, all our examples and evaluation assume that the
cache replacement policy is LRU and the write policy is
write-through with allocate, although the proposed analysis
is not tied to a specific cache replacement or write policy.
We also assume the following.

1) A piece of information is searched in the level 2 cache
if and only if a cache miss occurs in level 1 cache.
Cache of level 1 is searched always.

2) Every time a cache miss occurs in level L cache,
the entire cache line containing the missing piece of
information is loaded in cache of level L.

3) There is a separation of address space for instruction
and data. That is from the memory address alone,
it can be verified whether it is the address of an
instruction or the address of a data.

4) Effects of micro-architectural features such as out of
order pipeline, branch prediction (in particular timing
anomalies created by the interaction of cache with
these other features) are disregarded.

Assumption 1 rules out architectures where cache levels
are searched in parallel to speed up the search for a piece
of information. Assumption 2 rules out architectures with
exclusive caches. These two assumptions also appear in [4].

IV. ISSUES IN CACHE ANALYSIS

Cache modeling for our multi level cache architecture in-
volves solving the following sub-problems. In the following,
we describe each of these sub-problems briefly.

1) Instruction cache analysis: Several works have al-
ready proposed techniques for analyzing instruction
caches. We use the abstract interpretation based ap-
proach as described in [1] for analyzing instruction
caches. Instructions are classified as all-hit(AH), all-
miss(AM), persistence(PS) or not-classified(NC)
after carrying out three analysis namely must, may and
persistence analysis. If an instruction is categorized
as AH, it means that the instruction is always in
cache whenever it is accessed. On the other hand if
an instruction is categorized as AM, it means that
the instruction is never in the cache whenever it
is accessed. Persistence analysis is carried out for
increasing precisions. An instruction is persistent if
it is never evicted from the cache. If an instruction
cannot be categorized as one of AH, AM or PS, it is
categorized as NC. For details of the analysis, readers
are referred to [1].

2) Address Analysis: Unlike instructions, data ac-
cesses in a program are unpredictable. Thus a sep-
arate analysis is needed to determine the range
of addresses accessed by a load/store instruction.

V alue set analysis [13] is a technique which com-
bines both numeric and pointer analysis to get an over
approximation of addresses accessed at each memory
access site of a given executable. An a-loc abstraction
is used to track the values in memory and registers.
An a-loc is represented by a stride interval s[a, b]
where s ∈ N; a, b ∈ Z and denotes the progression
[a, a+ s, a+ 2s, a+ 3s, ..., bk = a+ (n− 1)s] where
bk is the largest integer of the form a + (n − 1)s
such that bk ≤ b. This representation allows us to
represent a set of addresses with finer granularity
than a normal interval [a, b]. A normal interval [a, b]
includes all integers between a and b whereas a stride-
interval includes integers only with a period of s. It
is also very useful for data accesses in programs as
this nicely represent array accesses inside a loop, the
stride representing the width of a single array element.
Update is performed on this abstract domain for each
possible instruction in the ISA which may change
any a-loc and a fixed-point is computed. The address
analysis handles arrays and pointers. Details of the
analysis have been published in [13].

3) Data cache analysis: Output of address analysis is
used to analyze data cache and get a similar AH,
AM, PS and NC categorization on data accesses in
a program. So far must analysis for instruction cache
is extended to handle data caches in [2]. Persistence
analysis for data cache was introduced in [3] but no
experimental results were presented. In our frame-
work we have used both [2] and [3] for must and
persistence data cache analysis respectively and pro-
pose an extension of may analysis for data caches
which eventually leads us to get an analogous AH,
AM, PS and NC categorization for data accesses
to make instruction and data cache analysis more
compatible. We describe our extension in detail in
section VI-A.

4) Cache access classification: In presence of multi level
cache hierarchy, a specified cache level may not be
accessed at all. Thus the access categorization of a
specified cache hierarchy must also be known. This
categorization was first presented in [4]. For a given
memory access r, CAC (Cache access classification)
of a particular cache level L can be:

a) A: This means that the cache level L will always
be accessed. For example for cache level 1 this
is always true.

b) N : This means that the cache level L will never
be accessed.

c) U : This means the access of this cache level L
cannot be determined statically for this memory
access.

CAC of cache level L for memory reference r is

determined from the CAC and AH/AM/PS/NC cat-
egorization of r in cache level L − 1. For example
consider a two level hierarchy with L1 instruction
cache, L1 data cache and a unified L2 cache. It is
clear that AH categorized instructions or data are never
brought into unified cache, as it is never accessed. On
the other hand AM categorized instructions or data
are always brought into unified cache as it is always
accessed. For the other two categorizations it is not
sure whether the unified cache is accessed or not. Thus
all possibilities must be explored for a safe solution.
For further details readers are referred to [4].

5) Unified cache analysis: Unified cache contains both
instruction and data. Thus an instruction may get
evicted by some data access and vice versa. As in-
struction is fetched before any data reference made
by the same, a unified cache analysis first updates
the abstract cache state by bringing the memory block
containing the instruction into a cache line. Further, if
the instruction is a memory reference instruction (load
or store) abstract cache state is updated by applying the
corresponding data cache update function depending
on the analysis type (may, must or persistence). We
describe this analysis in detail in section VI-B.

The above modular approach is useful as the framework
can be evolved by the introduction of more sophisticated
approach for each module.

V. OVERVIEW OF OUR CACHE ANALYSIS

An overview of our cache analysis is shown in Figure 1.
A separate address analysis, which predicts the range of data
addresses accessed by each load/store instruction, is needed
for data cache analysis. From the result of L1 instruction
and data cache analysis, the “Compute CAC” block in the
diagram computes the access criteria for the unified cache
which is used by the final analysis to compute the hit/miss
classification of data and instruction in the same.

All cache analysis results are used for the final WCET
estimation (the hexagon marked with “WCET computation”
in Figure 1). The WCET estimation follows the methods

Executable

L1 instruction
cache analysis

Address

Analysis Cache Analysis

L1 Data

AH/AM/PS/NC
classification
of instruction

Compute

CAC

AH/AM/PS/NC
classification

of data

Unified
Cache

Analysis

AH/AM/PS/NC
classification
of instruction
Or Data in

Unified cache

WCET

Computation

Instruction

Reference

Data
Reference

Figure 1. Overview of Cache Modeling Framework

in a state-of-the-art estimation tool like Chronos [5] —
performing program flow analysis to find infeasible paths
in the assembly level control flow graph, and using micro-
architectural modeling (which includes cache analysis) to
estimate the WCET of the individual basic blocks. Finally,
the WCET of the basic blocks are pieced together to form the
program’s WCET estimate via Integer Linear Programming.

To illustrate unified cache analysis consider the following
code fragment and its corresponding assembly code targeting
Simplescalar Portable Instruction Set Architecture (PISA).
int a[4][18];
for(j = 0; j < 4; j++)
for(i = 0; i < 18; i++)

a[j][i] = a[j][i] + 10;

00400208 addu $4,$0,$0
00400210 addu $3,$0,$5
00400218 lw $2,0($3)
00400220 addiu $4,$4,1
00400228 addiu $2,$2,10
00400230 sw $2,0($3)
00400238 addiu $3,$3,4
00400240 slti $2,$4,18
00400248 bne $2,$0,00400218
00400250 addiu $5,$5,72
00400258 addiu $6,$6,1
00400260 slti $2,$6,4
00400268 bne $2,$0,00400208

Assuming that each integer takes 4 bytes to store and
cache block size being 32 bytes, array a accesses nine
memory blocks where a starts from the memory block
boundary. Also assuming that each instruction take 8 bytes
to store, the loop accesses four memory blocks for fetching
instructions say {I1, I2, I3, I4}. Let {m1, ...,m9} be the
memory blocks accessed by a. Assume a direct mapped L1
data cache and for the sake of illustration let us say m1 maps
to the same cache block as m9 in L1 data cache. Apart from
these, there are no other conflicts in data cache. Since access
patterns are not considered, a persistence analysis on data
cache cannot classify any of the accesses of the array a in the
loop to be persistent which leads to adding the cache miss
penalty for all 4×18×2 = 144 array accesses in the source
code. But in reality, only 3 memory blocks are accessed per
outer loop iteration leading to a total miss count of 12.

Now consider the presence of a L2 unified cache (common
in commercial processors such as Intel x86) whose size
is four times bigger than the L1 data cache by increasing
the associativity from 1 to 4. Increase of associativity is
a reasonable assumption as cache associativity generally in-
creases with hierarchy level. In this case, persistence analysis
on unified cache will not evict m1 for accessing the memory
block m9. The instruction memory blocks {I1, I2, I3, I4}
being contiguous map to different cache sets. Moreover for
a set-associative cache, one of these instruction memory
blocks can co-exist with m1 in a cache set of the unified
cache. Thus, persistence analysis on the unified cache can
declare all accesses in the loop to be persistent in the same.
Since access to unified cache is much faster than accessing
memory and access of array a is persistent in unified cache

in this example, overall estimate in WCET will have much
tighter result. Persistence analysis of the data cache and
unified cache results at the start of the loop are shown in
Table I where levict represents cache blocks which may be
evicted from the cache and li represents the usual cache
blocks. The different rows in Table I represent different
cache sets. For the above example, L1 data cache analysis
encountered a cache thrashing scenario which leads to a
much higher WCET than expected. The example also shows
a scenario where the presence of unified cache does not
make much difference in concrete execution but certainly
analyzing the unified cache makes us predict a much tighter
WCET estimate.

L1 Data Cache Unified Cache
l0 levict l0 l1 l2 l3 levict

⊥ {m1,m9} ⊥ {m1,m9} I1 ⊥ ⊥
m2 φ m2 I2 ⊥ ⊥ ⊥
m3 ⊥ ⊥ {m3, I3} ⊥ ⊥ ⊥
m4 ⊥ ⊥ {m4, I4} ⊥ ⊥ ⊥
m5 ⊥ m5 ⊥ ⊥ ⊥ ⊥
m6 ⊥ m6 ⊥ ⊥ ⊥ ⊥
m7 ⊥ m7 ⊥ ⊥ ⊥ ⊥
m8 ⊥ m8 ⊥ ⊥ ⊥ ⊥

Table I
EXAMPLE OF PERSISTENCE ANALYSIS IN UNIFIED CACHE, ⊥

REPRESENTS EMPTY CACHE LINE

On the other hand consider a very large loop which
cannot entirely fit into the instruction cache. As a result in
a concrete execution of the loop, cache thrashing will take
place in presence of only instruction cache. But in presence
of a unified cache in the memory hierarchy this problem
may be resolved as unified cache is generally much larger
than level 1 caches. For illustration suppose in the example
I1 and I4 conflicts. Thus every iteration will encounter
two instruction cache misses apart from cold misses. But
presence of a unified cache will resolve this by getting
the relevant instruction block from unified cache. From the
analysis result in Table I also we can see that in the presence
of a larger unified cache we can resolve this problem since
all of the instructions have become persistent in unified
cache. This constitutes an example where cache thrashing is
avoided in concrete execution because of unified cache, and
this will also be captured in the unified cache analysis.

VI. DETAILS OF CACHE ANALYSIS

For the rest of the discussion we consider a set associative
cache with associativity A and with a set of cache lines
L = {l1, l2, ..., ln} in a single set. The memory store is
considered as a set of memory blocks S = {s1, s2, ..., sm}.
An abstract cache set is a mapping d̂ : L ⇒ 2S ∪ ⊥ where
each cache line corresponds to a set of memory blocks and
⊥ captures the situation where a cache line is empty. Let
D̂ represents the set of all abstract cache states. To model

the LRU replacement policy it is assumed that the memory
blocks in the cache set are ordered by increasing age.

A. Data Cache Analysis

The output of address analysis is used in data cache
analysis. A key difference between instruction and data
references is that the address set for the latter may not be
a singleton set (for example consider array references). As
long as a data reference accesses a single memory block,
the update function for any data cache analysis remains
same as that of instruction cache analysis; in this case it is
definitely known which memory block is accessed and thus
it can be brought to the abstract cache set. On the other
hand, if number of memory blocks accessed is more than
one, it is not definitely known which memory blocks are
accessed in concrete execution as address analysis computes
an over-approximation of the actual addresses accessed.
Thus for our analysis to be safe, the update functions for
different data cache analysis (may, must and persistence)
become different. The persistence analysis for data cache
is described in [3] although no experimental results were
presented. Must analysis for data cache is introduced in
[2]. For a precise analysis result of the unified cache in
our architecture, we also need to perform may analysis on
data cache. May data cache analysis classifies all-miss data
references of a program. As memory blocks corresponding
to all-miss data references in one cache level are always
searched for in the next cache level, these memory blocks
are potential candidates to be brought into the unified cache
at level 2. We describe our proposed may analysis for data
cache next.

May Analysis: As described before, when the accessed
memory block is a singleton, the update function remains
same as in the case of instruction cache analysis. But when
number of accessed memory blocks is more than one, a
safe update function for may analysis should satisfy the
following two properties:

1) All memory blocks possibly accessed by the address
set must be brought into the abstract cache set and
have lowest possible age in the corresponding set.

2) Age of all memory blocks that are already in the
abstract cache must be decreased to the lowest possible
age.

Thus we use the following generalized update function for
may data cache analysis:

Ûmay(d̂,M) = tmi∈M Û(d̂,mi) (1)

Here M is the set of memory blocks accessed by the data
reference, Ûmay : D̂× 2S → D̂ is the update function used
for may data cache analysis, Û is the update function used
in instruction cache analysis, d̂ is the current data cache
set and t is the join operation used for may analysis.
Informally, a may join operation is performed for each

possible memory blocks accessed by the reference. It is clear
that this update operation satisfies both of the above specified
conditions of may analysis. Join operation for may data
cache analysis remains same as that of may analysis for
instruction cache [1].

A particular data access at some program point p is
classified as all-miss(AM) if the abstract cache contains
none of the memory blocks accessed by it at p. Otherwise
the data access is categorized as not-classified(NC).

Following example shows the difference of must, may
and persistence analysis on data cache. Let an abstract
cache set be as shown in the first row of Table II at
some program point p. For a particular memory reference
r, assume the address analysis module computes a range
of addresses which corresponds to a set of memory blocks
M ⊆ S. Let {sx, sy, sz} ⊆ M map to the same cache set
whose abstract state is shown at row 1 of Table II. Abstract
cache sets for must, may and persistence analysis after
memory reference r are shown in subsequent rows.

state l1 l2 l3 l4 levict

Initial sx sp ⊥ ⊥ ⊥
Must ⊥ ⊥ sx sp ⊥
May {sx, sy , sz} sp ⊥ ⊥ ⊥

Persistence ⊥ ⊥ {sx, sy , sz} sp ⊥

Table II
ILLUSTRATION OF DATA CACHE ANALYSIS, ⊥ REPRESENTS EMPTY

CACHE LINE

B. Unified Cache Analysis

After must, may and persistence analysis of instruction
and data cache we have AH/AM/PS/NC classification of
each instruction in the program and additionally if the
instruction is a load/store instruction we also have the
same classification for its data access. Moreover for each
instruction and data access we know whether the unified
cache will be accessed or not. Since level 1 caches are
always accessed, only the hit/miss criteria of instruction and
data access will decide the access classifications of unified
cache.

Let an abstract cache set of unified cache be a mapping
û1 : L⇒ 2S ∪⊥ where each cache line corresponds to a set
of memory blocks. Let CACu(i) represents the CAC (cache
access classification as described in IV) of instruction i in
unified cache and additionally if the instruction is a memory
load/store CACu(di) represents the CAC of data access at
instruction i in unified cache.

Informally, for any memory block accessed, it is checked
whether the corresponding access in unified cache is an A
(always) access or not. If the unified cache has a N (never)
classification for the same access, no update is performed. In
an U (unknown) classification of the access, a join operation
is performed on previous two possibilities depending on the

kind of analysis (may, must or persistence) and access
type (instruction or data).

It is also worth mentioning that for each instruction in the
program, instruction is fetched from memory or cache first
and if the instruction is a load/store instruction then the data
is fetched from memory or cache subsequently. Thus when
updating the unified cache, we always update it first with the
memory block representing the instruction and then with all
memory blocks representing the data access (if any).

Algorithm 1 describes the operations carried out for
each instruction i in unified cache analysis. Given an input
abstract cache set û1 it produces the output abstract cache
set ûf after the execution of instruction i.

Algorithm 1 Unified Cache Analysis. û1 is the input abstract
cache state (for a cache set) and ûf is the output abstract
cache state (for the same set) after executing a given
instruction i.

Let mi be the memory block corresp. to instruction i
if (CACu(i) = A) then
ûm = Û(û1,mi)

else if (CACu(i) = N) then
ûm = û1

else if (CACu(i) = U) then
ûm = Û(û1,mi) t û1

end if
if the instruction is not a load/store instruction then
ûf = ûm

return
end if
Let M is the set of data memory blocks accessed by
instruction i
if (CACu(di) = A) then
ûf = Ûd(ûm,M)

else if (CACu(di) = N) then
ûf = ûm

else if (CACu(di) = U) then
ûf = Ûd(ûm,M) t ûm

end if

In Algorithm 1, Û and Ûd represents the update functions
used for instruction and data cache analysis respectively,
and t denotes the join function. Note that the update and
the join function depends on the type of analysis performed
(may, must, persistence). For our purposes, we performed
both must and persistence analysis on unified cache. This
allows us to categorize certain code/data accesses as AH
— Always Hit (via must analysis) or PS — Persistent
(via persistence analysis), thereby tightening our WCET
estimate. We now discuss the experimental results obtained
from our analysis.

VII. ANALYSIS RESULTS

In this section we evaluate the accuracy and precision
of our unified cache analysis. We have implemented the
unified cache analysis inside the Chronos WCET analyzer
framework [5]. To compare the overestimation of WCET
we have taken four different cache configurations whose
essential parameters are shown in Figure 2. For the rest
of the discussion we shall use the abbreviations for cache
configurations as shown in Figure 2. Our implementation
has a 5 staged pipeline with in-order execution. Branch
prediction is assumed to be perfect in all the experiments.
L1 cache hit latency is 1 cycle and L1 cache miss penalty
is 2 cycles. L2 cache miss penalty is 4 cycles. If there is no
level 2 cache in the configuration, the cache miss penalty is
taken to be 6 cycles. In Figure 2 all L1 caches have a block
size of 32 bytes whereas all L2 caches have a block size
of 64 bytes. For each of the cache configurations shown in
Figure 2 we define two metrics, Sim and Est. Here Sim
represents the observed WCET (in terms of cpu cycles) of a
program and Est represents the WCET computed through
static analysis (in terms of cpu cycles).

All experiments are run on a 3 GHz Pentium 4 machine
having a 1 GB of RAM and running ubuntu Linux 8.10
operating system.

Instr. access Data access Instr. access Data access

Data accessInstr. access Instr. access Data access

Main memory

Main memory

Main memory
Main memory

L1 instruction cache
direct mapped, 1KB

L1 instruction cache
direct mapped, 1KB

direct mapped, 1KB

L1 instruction cache L1 instruction cache
direct mapped, 1KB

L1 data cacheL1 data cache

L1 data cache L1 data cache

direct mapped, 4 KB

direct mapped, 4 KB direct mapped, 4 KB

direct mapped, 4 KB

L2 instruction cache
2−way, 2 KB

L2 instruction cache
2−way, 2 KB

L2 data cache
2−way, 16KB L2 unified cache

2−way, 16KB

(b) il1−il2−dl1

(d) il1−dl1−ul2(c) il1−il2−dl1−dl2

(a) il1−dl1

Figure 2. Different cache configurations used in experiments

A. Benchmarks

We have used benchmarks described in table III from [14].
To test the effect of unified cache we have taken benchmarks
having different characteristics as follows.

1) Benchmarks having small/medium loop (in terms of
codesize) but accessing large amount of data (e.g.
matmult,cnt,ns).

2) Benchmarks having large loop (in terms of codesize),
and accessing large amount of data (e.g. fft, edn).

3) Benchmarks having large loop (in terms of codesize)
but accessing small amount of data (e.g. fdct).

4) Benchmarks having small loop (in terms of codesize)
and accessing small amount of data (e.g. qurt, expint).

We have benchmarks containing single as well as multiple
paths. For example matmult, bsort100 are single path pro-
grams, whereas qurt,expint,fft have multiple paths.

B. Comparison of analysis precision

Table IV demonstrates the running time and accuracy of
our analysis. Cache analysis time in Table IV corresponds to
the total time taken for multi-level cache analysis excluding
the time for address analysis (which is presented separately).
The WCET overestimation ratio for different cache config-
urations are shown in Figure 3.

For data intensive programs (e.g. matmult, fir, ns), WCET
estimates in presence of unified caches are much tighter than
the WCET estimated in presence of only L1 data cache.
Presence of a L2 data cache also reduces the WCET. For
these data intensive programs, a large number of memory
blocks whose hit-miss criteria were not-classified (NC) in
L1 data cache, become persistent in unified cache or L2 data
cache. We also observe that modeling only an L2 instruction
cache together with the L1 instruction cache does not reduce
the WCET significantly for these programs. The reason is
that all loops of these programs can fit into the L1 instruction
cache. Thus no cache thrashing happens in L1 instruction
cache when executing the loop body. Only reduction in
WCET estimation by modeling the L2 instruction cache may
come through the higher block size of the same. We also
observe that the estimate with unified cache and separated
L2 data cache are almost the same. This signifies that there
is little interference between instruction and data in the L2
unified cache.

On the other hand, benchmarks which have very large
loops in terms of codesize (e.g. edn), modeling only an L2
instruction cache shows significant improvement in WCET.
There is one loop in edn which cannot fit entirely in a 1
KB instruction cache. Thus in presence of an L2 instruction
cache, all instructions in the loop which would have been
evicted from L1 cache, become persistent in the L2 cache
and reduces the overall WCET estimation. However there
is a significant amount of data accesses in edn; some of
which become persistent in presence of a unified cache
and reducing the WCET estimation even more.

For benchmarks which have very small loop size (in
terms of codesize) as well as access very small set of data
(e.g. qurt, expint, bsort100), the WCET estimate cannot be
reduced much by modeling any type of L2 caches. The
reason is, all loops as well as accessed data memory blocks
for these benchmarks can fit in L1 instruction and data
caches respectively and thus getting no significant reduction
in WCET in presence of L2 caches.

Finally, we observe that WCET estimates in presence of
separate L2 instruction and data caches are almost same for
all of the benchmarks except edn and fft. For these two

benchmarks, there is a significant amount of interference
between instruction and data in the unified cache — an issue
which we discuss next.

Figure 3. WCET overestimation for the cache configurations in Fig. 2

VIII. WCET-CENTRIC CODE AND DATA LAYOUT

In presence of unified caches, conflict misses may occur
between instruction and data. Thus the WCET in presence of
a L2 unified cache cannot be better than the WCET in pres-
ence of separate L2 data and L2 instruction caches of same
size. However a unified cache reduces lot of storage cost.
Thus if the code and data layout in the program are placed
such that minimal conflict misses occur in unified cache,
WCET/ACET of an application can be highly reduced.

Procedure positioning is a well known compiler opti-
mization aiming at the improvement of instruction cache
behaviour. A recent paper [12] has proposed procedure
positioning optimizations driven by WCET information to
effectively minimize the program’s worst case behaviour.
However in presence of unified caches, this problem be-
comes more challenging as instruction may interfere with
data and vice versa. Thus there is a need for simultaneous
change of code and data layout for WCET reduction in
presence of unified caches. We present here a fast, heuristic-
based and unified cache aware algorithm for simultaneously
changing the code and data layout to effectively reduce the
WCET of a program.

A. Issues with WCET-centric procedure positioning in pres-
ence of unified cache

Current WCET-centric procedure positioning algorithm
may not be helpful in presence of unified caches. For
example let us consider the program below:
void f1()
{
.....
for(i = 0; i < N; i++) {
if(...) f3();
else {
f2(); a[i] = a[i] + 10;

}
}

}

Table III
DESCRIPTION OF BENCHMARKS USED

Benchmark Description Bytes LOC
matmult Matrix multiplication of two 20 X 20 matrices 3737 163

cnt Counts non-negative numbers in a 40 X 40 matrix 2880 267
bsort100 Bubblesort program 2779 128
insertsort Insert sort a reverse array of size 10 3892 92

expint Series expansion for computing an exponential integral func-
tion.

4288 157

bs Binary search for the array of 30 integer elements. 4248 114
fir Finite impulse response filter (signal processing algorithms)

over a 700 items long sample
11965 276

fdct Fast Discrete Cosine Transform. 8863 239
fft 1024-point Fast Fourier Transform. 6244 135
ns Search in a multi-dimensional array. 10436 535

qurt Root computation of quadratic equations. 4998 166
edn Implements the jpegdct algorithm together with other signal

processing algorithms.
10563 285

Table IV
ACCURACY AND RUNNING TIME OF WCET ANALYSIS FOR THE DIFFERENT CACHE CONFIGURATIONS DESCRIBED IN FIG. 2.

il1-dl1 il1-il2-dl1 il1-il2-dl1-dl2 il1-dl1-ul2 Analysis time
Benchmark Sim Est Sim Est Sim Est Sim Est Address Analysis Cache Analysis

matmult 187056 360154 187000 360146 186985 224222 186985 224230 2.78 1.6
cnt 75278 103056 75232 103048 74432 83840 74432 83848 1.14 1.3

bsort100 2692 3471 2664 3463 2664 3347 2664 3347 1.01 1.1
insertsort 968 1509 936 1493 936 1341 936 1341 1.01 1.04

expint 2730 3491 2693 3491 2693 3487 2693 3487 1.05 1.22
bs 141 261 121 261 121 221 121 221 1.01 1.01
fir 348411 700311 348374 700303 348168 498027 348192 498051 1.01 1.3

fdct 2893 4300 2744 4276 2744 4276 2744 4276 0.01 1.2
fft 610117 900693 571309 900633 561984 596237 562345 745637 1.29 2.67
ns 7665 13053 7641 13053 7577 10409 7585 10409 1.01 1.08

qurt 1847 2910 1816 2902 1701 2846 1701 2846 0.2 1.6
edn 90730 99574 87945 98054 87945 91216 87945 96216 1.1 3

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

256

257

258

259

.........

f1

f2

a[0]

a[N]

.........

260

261

262

263

.........
f1

f2 f3

1024

Instruction Memory Unified Cache Data Memory

WCET−centric call graph

Figure 4. Code and data layout before procedure positioning

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

f1

a[0]

a[N]

.........

260

261

262

263

.........

Instruction Memory Unified Cache Data Memory

.........

f24

5

6
7

CACHE THRASHING

Figure 5. Code and data layout after procedure positioning by [12]

Instruction and data memory layout for procedures f1, f2
and array a are shown in Figure 4. For sake of illustration
assume a direct mapped unified cache with 16 cache lines.
Initially procedure f1 and f2 conflict each other in unified
cache as shown in Figure 4. Array a maps to cache lines 4
to 7. Because of the initial layout of f1 and f2, whenever
f2 is called memory blocks corresponding to procedure
f1 got evicted and when control comes back to f1 again,
memory blocks corresponding to f2 are replaced eventually
leading to a poor WCET estimate. Thus a WCET-centric
procedure positioning algorithm as described in [12] re-
position the procedures from a “WCET-centric call graph”
so that most frequently called procedures are placed in
contiguous memory locations. The WCET-centric call graph
of a program1 is computed by a WCET analyzer and
is invariant of all program executions. Call frequency of
each edge is computed by the WCET analyzer and not
by profiling. The WCET-centric call graph of the example
program is shown in Figure 4. The marked portion of the

1The nodes of a call graph denote procedures, and edges denote calling
relationships. The edges are typically weighted with call frequencies.

call graph corresponds to the worst case path and edges
corresponding to the worst case path is labeled with call
frequencies computed by the WCET analyzer. The layout
after procedure positioning is shown in Figure 5. It is clear
that without having the knowledge of where array a was
mapped, procedure positioning in a unified cache leads to
a layout which may encounter cache thrashing scenario as
shown in Figure 5. This gives us the motivation to change
the layout of instruction and data simultaneously in presence
of unified cache.

B. Simultaneous procedure and data positioning

WCET-centric unified graph: We define a unified undi-
rected graph Guni = (V,E) which is an extension to the
call graph. We have V = P ∪ R where P is the set of
nodes corresponding to all procedures and R is the set of
nodes corresponding to all data references in the program.
There is an edge e ∈ E between p1 ∈ P and p2 ∈ P
if p1 calls p2. Similarly there is an edge e ∈ E between
p1 ∈ P and r1 ∈ R if r1 is inside procedure p1. An edge
e ∈ E can be between two data references r1 and r2 if and
only if references(r1)∩ references(r2) 6= φ i.e. two data
references access some common memory blocks. Execution
frequencies of all edges of our unified graph are computed
from the WCET analyzer. Clearly edges between two data
reference nodes do not have any associated frequency, they
are drawn only to capture the overlapping memory access
behavior. The unified graph for the example in Figure 4
appears in Figure 6 and the worst case path is marked.
Edges belonging to the worst case path are labeled with
execution frequencies. Data references r1 and r2 represent
two references to array a (one for load and another for store).

f1

f2 f3
r1 r2

1024
1024

1024

Figure 6. WCET-centric unified graph

Algorithm: Our technique for simultaneous data and
procedure positioning is described in Algorithm 2. In the
algorithm, the maxEdge function selects an edge e ∈ E
labeled with highest execution frequency at each step. If
any node representing the edge (returned by end1 and
end2 functions) is a data reference, then all overlapping
data reference nodes with the current one are first merged
together by collapseData function to form a super-node.
Subsequently the collapseEdge function collapses the edge
selected in that step to form a single node. This function
also modifies all related execution frequencies. If none of
the ends of a selected edge is a data reference node, only

the collapseEdge function is called to form a super-node
as overlapping data references (if any) are already captured
in the existing nodes. The algorithm terminates when no
edges are left in the WCET-centric unified graph. After
the graph has been merged to a single node, the layout is
computed assuming the presence of a single unified memory
and shifting to other memory such that mapping to the
unified cache line is preserved.

Algorithm 2 Simultaneous code and data positioning. Guni

is the unified graph and R is the set of nodes in Guni which
represent data references.

repeat
e = maxEdge(Guni);
if (e = φ) then

return;
end if
if (end1(e) ∈ R or end2(e) ∈ R) then

collapseData(e);
end if
collapseEdge(e);

until false

f1,f2

r1 r2

1024 1024
f1,f2,{r1,r2}

Figure 7. Transforming the unified graph of Figure 6

The collapsing of the unified graph in Figure 6 is depicted
in Figure 7. For our example, f1 and f2 are allocated
contiguously in instruction memory. Memory blocks corre-
sponding to r1 and r2 are allocated in data memory such
that they will map to the same cache line as if it would
have been allocated contiguously after f1 and f2 assuming
a hypothetical unified memory. The layout produced by
our method is shown in Figure 8. As pointed out earlier,
our algorithm is unified cache aware (i.e., it assumes the
knowledge of unified cache and also assumes the start of
instruction and data memory).

C. Experiments

To evaluate our heuristic, we compared the procedure
positioning method of [12] with our unified code and
data layout method. We chose the two benchmarks in
our benchmark-suite which have large codesize as well as
manipulate large amounts of data. These two benchmarks are
fft and edn. We measure the amount of WCET reduction
due to the procedure positioning method of [12] as well as

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

f1

a[0]

a[N]

.........

.........

Instruction Memory Unified Cache Data Memory

f2

.........

4

5

6

7

8

8

9

10

11

Figure 8. Final layout after our code + data positioning

Table V
REDUCTION IN WCET ESTIMATES VIA CHANGE IN LAYOUT

Benchmark Estul2 Estp Estp+d

edn 96216 97240 93108
fft 745637 745638 608418

our unified code and data layout method for these two bench-
marks. A multi-level cache architecture with a L2 unified
cache is assumed (see Fig. 2(d)). The results appear in Table
V. Estul2 represents the WCET estimate (in presence of a
unified L2 cache) assuming a default layout for code/data
(e.g. code is laid out as it appears in the program). Estp
denotes the WCET estimate using the procedure positioning
of [12] and Estp+d captures the WCET estimate using our
simultaneous procedure/data positioning.

As expected, Table V shows that procedure positioning
heuristic of [12] alone is not useful in presence of unified
caches. But by simultaneous data and procedure positioning
we are able to reduce the WCET estimate by 3% for edn and
almost 18% for fft. For fft benchmark we observe that
using unified caches increases the WCET by almost 0.15
million cycles. fft has fairly large loop structures (in terms
of codesize) and it is a data intensive program. Improper data
and instruction layout causes large number of conflict misses
in the unified cache — which we avoid via our unified code
and data layout.

IX. CONCLUDING REMARKS

In this paper, we have developed a cache modeling
framework for Worst-case Execution Time (WCET) analysis
of real-time embedded software. Our framework considers
a generic multi-level cache architecture with separated in-
struction and data caches in the first level and a unified
(code+data) cache in the second level. Unified cache is the
most common in commercial processors such as Intel x86
and ARM. Existing works on cache modeling have so far
considered either instruction or data caches but not both.
Our experiments indicate that our analysis of the multi-level
unified cache architecture produces tight WCET estimates
with low running time overheads.

We also exploit our WCET analysis of the unified cache
to build WCET-centric compiler optimizations. In particular,

we develop a joint (code + data) layout heuristic which leads
to higher WCET reduction in presence of a unified cache
as compared to existing WCET-centric code positioning
methods.

ACKNOWLEDGMENTS

This work was partially supported by a NUS University
Research Council grant R252-000-321-112.

REFERENCES

[1] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
wcet prediction by separated cache and path analyses. Real-
Time Systems, 18:157–179, 2000.

[2] R. Sen and Y. N. Srikant. WCET estimation for executables
in the presence of data caches. In EMSOFT, 2007.

[3] C. Ferdinand and R. Wilhelm. On predicting data cache
behavior for real-time systems. In LCTES, 1998.

[4] D. Hardy and I. Puaut. WCET analysis of multi-level non-
inclusive set-associative instruction caches. In RTSS, 2008.

[5] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos: A
timing analyzer for embedded software. Science of Computer
Programming, 69(1-3), 2007. http://www.comp.nus.edu.sg/
∼rpembed/chronos.

[6] P. Puschner and C. Koza. Calculating the maximum execution
time of real-time programs. Real-Time Systems, 1(2):159–
176, April 1989.

[7] C.Y. Park and A.C. Shaw. Experiments with a program timing
tool based on source-level timing schema. IEEE Transactions
on Computers, 24(5), 1991.

[8] Y-T.S. Li, S.Malik, and A.Wolfe. Performance estimation of
embedded software with instruction cache modeling. ACM
Transactions on Design Automation of Electronic Systems,
4(3), 1999.

[9] R.T. White, C.A. Healy, D.B. Whalley, F. Mueller, and M.G.
Harmon. Timing analysis for data caches and set-associative
caches. In RTAS, 1997.

[10] F. Mueller. Timing predictions for multi-level caches. In
LCTES, 1997.

[11] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET code
positioning. In RTSS, 2004.

[12] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven
cache-based procedure positioning optimizations. In ECRTS,
2008.

[13] G. Balakrishnan and T.W. Reps. Analyzing memory accesses
in x86 executables. In CC, 2004.

[14] WCET Benchmarks. http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

