
A

Cache Related Preemption Delay Analysis for Multi-level
Non-inclusive Caches

SUDIPTA CHATTOPADHYAY, Linköping University

ABHIK ROYCHOUDHURY, National University of Singapore

With the rapid growth of complex hardware features, timing analysis has become an increasingly difficult problem. The key

to solving this problem lies in the precise and scalable modeling of performance enhancing processor features (e.g. cache).

Moreover, real-time systems are often multi-tasking and use preemptive scheduling, with fixed or dynamic priority assign-

ment. For such systems, cache related preemption delay (CRPD) may increase the execution time of a task. Therefore, CRPD

may affect the overall schedulability analysis. Existing works propose to bound the value of CRPD in a single-level cache.

In this paper, we propose a CRPD analysis framework which can be used for a two-level, non-inclusive cache hierarchy.

Besides, our proposed framework is also applicable in the presence of shared caches. We first show that CRPD analysis faces

several new challenges in the presence of a multi-level, non-inclusive cache hierarchy. Our proposed framework overcomes

all such challenges and we can formally prove the correctness of our framework. We have performed experiments with

several subject programs, including an unmanned aerial vehicle (UAV) controller and an in-situ space debris monitoring

instrument. Our experimental results suggest that we can provide sound and precise CRPD estimates using our framework.

1. INTRODUCTION

Hard real-time systems require absolute guarantees on their execution time to meet certain dead-
lines. Consequently, a significant research has been done in the schedulability analysis of real-time
systems. Schedulability analysis requires worst case execution time (WCET) of each task as in-
put. Additionally, for preemptive scheduling, task interferences need to be modeled. This is due to
the preemption of a low priority task by a higher priority task. However, performance enhancing
micro-architectural features in modern processors make such modeling a very challenging task.
Caches have a key role to play for enhancing performance of any running application on the

underlying hardware platform. However, employing caches introduces additional complications to
analyze the effect of intra-task and inter-task interferences on caches. Literature on static cache
analysis handles the problemof intra-task interferences on caches. Inter-task interferences on caches
are created due to preemption. Suppose a low priority task t is preempted by a higher priority task t′.
The set of cache blocks used by t′ is Ct′ and the set of cache blocks used by t before the preemption
took place is denoted by Ct. If Ct ∩ Ct′ 6= φ, t′ may replace some of the cache blocks used by
t and therefore, t may suffer additional cache misses when it resumes. This variety of inter-task
interference on cache performance is called cache related preemption delay (CRPD).
Research on statically estimating CRPD has been done in the past few years [Lee et al. 1998;

Negi et al. 2003; Tomiyama and Dutt 2000; Tan and Mooney 2004; Altmeyer and Burguiere 2009;
Altmeyer et al. 2010]. All prior works on CRPD consider a single-level instruction or data cache.
However, with the advent of complex hardware in real-time, embedded systems (e.g., cache hi-
erarchies), many processors (e.g., ARM) employ a bigger second-level (L2) cache for improving
performance. In this paper, we propose a CRPD analysis framework which can be applied to a
two-level, non-inclusive cache hierarchy.
The key to estimate CRPD is based on the notion of useful cache blocks (UCB). UCBs denote

cache blocks which might be used by a preempted task after the preemption. Therefore, the number
of UCBs poses an upper bound on CRPD. Estimation can further be tightened by analyzing evict-
ing cache blocks (ECB) in preempting tasks. ECBs denote cache blocks which might be used by
a preempting task. In the presence of non-inclusive cache hierarchies, some memory blocks in a
preempted task might be accessed from L2 cache only in preempted executions. Therefore, preemp-
tions may increase the amount of intra-task cache interferences on L2 cache. Due to such variation
in the intra-task L2 cache interferences after preemptions, CRPD computation might be affected in
the presence of multi-level caches. As a consequence, a sound estimate of CRPD cannot be obtained
solely based on the concept of UCBs and ECBs.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 S. Chattopadhyay and A. Roychoudhury

We show that in the presence of cache hierarchies, an instruction may suffer one or more L2
cache misses due to a preemption. We have given a theoretical bound on the number of such L2
cache misses. Such a theoretical bound depends on the organization of a cache hierarchy (in terms
of the number of cache sets and cache associativities). We propose a CRPD analysis framework
which uses these bounds and estimates the CRPD.
We have implemented our CRPD analysis framework using Chronos [Li et al. 2007] - a freely

available, open-source, WCET analysis tool. To validate our analysis framework and measure the
CRPD, we have extended the Simplescalar toolset [Austin et al. 2002]. We have evaluated our
framework using several subject programs from [Gustafsson et al. 2010]. Besides, we have used
different tasks from an unmanned aerial vehicle (UAV) control application [Nemer et al. 2006] and
an in-situ, space debris monitoring instrument [Kuitunen et al. 2001]. Experiments show that our
framework computes precise estimates for most of the subject programs.

2. RELATED WORK

Cache modeling for timing analysis has been an active topic of research for more than a decade.
The key to the cache modeling lies in the precise estimation of different sources of cache conflicts.
Cache conflict, in general, arises in three different forms: intra-task, inter-task and inter-core. In the
following, we shall summarise existing works along the modeling of different cache conflicts.

Cache analysis of a single task

Existing works have primarily considered a single-level cache. Among others, abstract interpreta-
tion based cache analysis proposed in [Theiling et al. 2000] deserves mention. For analyzing the
cache behaviour of a single task, must, may and persistence analyses have been proposed in [Theil-
ing et al. 2000].Must, may and persistence analyses categorize memory references as all-hit (AH),
all-miss (AM) and persistence (PS), respectively. The memory block corresponding to an AH cat-
egorized memory reference is always in the cache when accessed. On the contrary, the memory
block corresponding to an AM categorized memory reference is never in the cache when accessed.
A memory reference is persistent (PS) if it suffers at most one cache miss. Must analysis can be
used along with virtual inline and virtual unrolling (VIVU) to significantly improve the analysis
precision [Theiling et al. 2000]. In VIVU approach, each loop is unrolled once to distinguish cold
cache misses at first iteration of the loop. If a memory reference cannot be classified as AH, AM or
PS, it is considered unclassified (NC). The analysis proposed in [Theiling et al. 2000] has later been
extended to analyze multi-level, non-inclusive caches [Hardy and Puaut 2008].

Inter-task cache conflict analysis

Inter-task cache conflict analysis is required to find an upper bound on cache misses due to pre-
emption. The bound on cache misses (or additional clock cycles) due to preemption is called cache
related preemption delay (CRPD). In last decade, there has been an extensive amount of research
to bound the cache related preemption delay (CRPD) [Lee et al. 1998; Negi et al. 2003; Tomiyama
and Dutt 2000; Tan and Mooney 2004; Staschulat and Ernst 2004; Altmeyer and Burguiere 2009;
Altmeyer et al. 2010]. There are three main approaches to statically bound the value of CRPD:

—Analyzing the preempted task ([Lee et al. 1998; Altmeyer and Burguiere 2009]),
—Analyzing the preempting task ([Tomiyama and Dutt 2000]), and
—Analyzing both the preempted and the preempting task ([Negi et al. 2003; Altmeyer et al. 2010]).

The analysis of the preempted task revolves around the concept of useful cache block (UCB) [Lee
et al. 1998]. A UCB is a block that may be cached before preemption and may be used later, result-
ing in a cache hit in the absence of preemption. A data flow analysis is applied on the preempted
task to statically predict the set of UCBs at each program point. The set of UCBs poses an upper
bound on the additional cache misses for a single preemption. Recently, [Altmeyer and Burguiere
2009] has improved the state-of-the-art CRPD analysis [Lee et al. 1998] by reducing the number
of UCBs to consider for CRPD computation. The key idea of [Altmeyer and Burguiere 2009] is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:3

based on the observation that a CRPD-analysis is always used along with a WCET-analysis. There-
fore, the technique proposed by [Altmeyer and Burguiere 2009] considers only those cache misses
which were not predicted as cache misses by the WCET analysis. In this fashion, [Altmeyer and
Burguiere 2009] may not be able to preserve the over-estimation of CRPD in isolation, however, it
can guarantee the over-estimation of the sum of WCET and CRPD.
The analysis of a preempting task is based on the notion of evicting cache blocks (ECB). The set

of cache blocks used by the preempting task is known as ECB. For example, if a cache set is entirely
unused by the preempting task, it cannot evict any cache block used by the preempted task in the
respective cache set. Therefore, researchers have proposed to use the set of ECBs for estimating
CRPD [Tomiyama and Dutt 2000; Tan and Mooney 2004].
The work in [Negi et al. 2003] has proposed a precise CRPD analysis approach based on the

combination of UCBs and ECBs. Therefore, [Negi et al. 2003] analyzes both the preempted task
(for computing UCBs) and the preempting task (for computing ECBs). A UCB may lead to an
additional cache miss after preemption only if it might be evicted by one or more ECBs. Such a
CRPD analysis framework [Negi et al. 2003] is more precise than the CRPD analysis based on
analyzing either the preempted or the preempting task in isolation. However, the analysis of [Negi
et al. 2003] is based on direct-mapped caches. As shown in [Altmeyer et al. 2010], set-associative
caches introduce additional complications in accurately estimating the set of UCBs that can be
replaced by a set of ECBs. Subsequently, [Altmeyer et al. 2010] has proposed a CRPD analysis
framework for set-associative caches with least-recently-used (LRU) replacement policy.
[Staschulat and Ernst 2004] shows that the precision of a CRPD-analysis does not only depend on

the precision of UCBs and ECBs, but it also depends on the set of preemption points. The technique
proposed by [Staschulat and Ernst 2004] is based on the following insight: if two different preemp-
tions at p and p′ may lead to a cache miss for the same memory reference in the preempted task,
then for the set of preemption points {p, p′}, it is sufficient to consider only one additional cache
miss. This could be possible, only if the analyzer has the knowledge of both the preemption points
p and p′. However, if we compute the CRPD for p and p′ in isolation, we shall consider duplicate
cache misses for the same memory reference in the preempted task. Computing the CRPD for all
possible set of preemption points will lead to an exponential slow-down. Therefore, [Staschulat and
Ernst 2004] proposes efficient algorithms which account multiple preemption points to improve the
precision of state-of-the-art CRPD analyses.
In summary, there has been an extensive set of works to estimate CRPD based on UCBs and

ECBs. Several improvements over the state-of-the-art by combining UCBs and ECBs (e.g. [Negi
et al. 2003; Altmeyer et al. 2010]) and by maintaining the knowledge of multiple preemptions (e.g.
[Staschulat and Ernst 2004]) have also been proposed in previous years. However, existing works
target only level-one caches. On the contrary, we leverage the concept of both UCB and ECB in
the context of cache hierarchies. To the best of our knowledge, ours is the first CRPD analysis
framework that targets a cache hierarchy.

Inter-core cache conflict analysis

Inter-core cache conflict analysis computes cache conflicts generated in shared caches. Conflicts
in shared caches are generated by tasks running on different cores. Till now, only a few solutions
have been proposed for analyzing the timing behaviour of shared caches [Li et al. 2009; Hardy
et al. 2009; Yan and Zhang 2008]. Inter-core cache conflict analysis may change the categorization
of a memory reference from all-hit (AH) to unclassified (NC). Assume a memory reference which
accesses a memory block m. Shared cache conflict analysis phase first computes the number of
unique and conflicting shared cache accesses from different cores. Then it is checked whether the
number of conflicts from different cores can potentially replace m from the shared cache. In case
the replacement of m is possible due to the computed set of inter-core conflicts, the categorization
of the corresponding memory reference is changed from AH to NC.
Existing works on shared caches focus on estimating the uninterrupted worst case execution time

(WCET) of a single task. To the best of our knowledge, there is no CRPD analysis framework in the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 S. Chattopadhyay and A. Roychoudhury

presence of shared caches. In this paper, we also show that our proposed CRPD analysis framework
can be nicely integrated with the existing works on shared caches. Therefore, our CRPD analysis
framework can also be adapted when the second-level cache is shared among multiple cores.

3. OVERVIEW OF OUR ANALYSIS

In this section, we shall first give an overview of our CRPD analysis framework for a two-level cache
hierarchy. Subsequently, we shall discuss the key challenges in analyzing CRPD in the presence of
level-two caches. We show through a few examples that major changes are required in the existing
CRPD analysis frameworks based on the concept of UCBs and ECBs. We also show through an
example that a sound CRPD estimation is not possible solely using the concept of UCBs and ECBs.

System Model

In this work, we only model the effect of instruction memory. Modeling the data memory requires
the estimation of memory addresses accessed by each load/store instruction. Such an estimation of
addresses is known in literature as address analysis [Balakrishnan and Reps 2004]. If the address
analysis can accurately estimate the address accessed by each load/store instruction, our framework
can be applied for data caches without any change. However, a load/store instruction may access
different memory blocks in different executions (e.g. array accesses within a loop). A similar sit-
uation occurs in the presence of data aliasing, as the aliasing may vary at runtime. Therefore, the
address analysis can only predict a range of addresses accessed by each load/store instruction. Such
a range is an over-approximation of the set of addresses accessed by a load/store instruction in any
execution. As a result, an accurate modeling of data caches, even in the absence of preemption,
poses a challenge [Huynh et al. 2011]. The purpose of our work is to discuss challenges in CRPD
analysis with non-inclusive cache hierarchies and their solutions. Therefore, overcoming the techni-
cal challenges due to data caches is a somewhat orthogonal field to the scope of this work. However,
all the technical challenges described in this paper are applicable for any non-inclusive cache hierar-
chy (i.e. instruction, data and unified cache hierarchies). In the presence of data and unified caches,
additional challenges to accurately bound the set of address references need to be investigated.
We assume a two-level and non-inclusive instruction cache hierarchy (i.e. L1 and L2 caches).

A cache hierarchy is non-inclusive if it is neither inclusive (i.e. the content of L2 cache is a su-
perset of the content in L1 cache) nor exclusive (i.e. the content of L1 cache and the content of
L2 cache are mutually exclusive). For inclusive and exclusive cache hierarchies, additional opera-
tions are required to maintain the inclusion and exclusion property, respectively. Moreover, in the
presence of multiple cores, inclusive cache hierarchies may limit the performance when the size of
the largest cache is not significantly larger than the sum of the smaller caches. Therefore, proces-
sor architects sometimes resort to non-inclusive cache hierarchies [Zahran et al. 2007]. However,
it is worthwhile to mention that inclusive cache hierarchies have their own advantages. The inclu-
sion property greatly simplifies the design of cache coherence protocol in multi-core architectures.
CRPD analysis for inclusive cache hierarchies is a subject of our future study.
For any memory reference, the memory subsystem (i.e. caches and main memory) is accessed

as follows. A memory block is always accessed from L1 cache. If a memory block is not present
in both L1 and L2 caches (i.e. an L2 miss), it is loaded from main memory to both the cache
levels. However, if a memory block is not present in L1 cache but it is present in L2 cache (i.e. an
L2 hit), the memory block is first loaded into L1 cache. A memory reference does not access L2
cache if the accessed memory block is present in L1 cache (i.e. an L1 cache hit). Finally, previous
literature on CRPD analysis is primarily based on least-recently-used (LRU) cache replacement
policy. Designing CRPD analysis frameworks for non-LRU replacement policies is still an open
area of research. Therefore, in this work we only concentrate on LRU cache replacement policy.

Overall framework

Our CRPD analysis framework is shown in Figure 1. We first perform L1 and L2 cache analyses
on the preempted task using [Theiling et al. 2000] and [Hardy and Puaut 2008], respectively. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:5

Preempted

task

L1 cache

analysis analysis

L2 cache

task

Preempting

analysis

L1 cache

analysis

L2 cache

blocks

cache

Evicting

Backward

flow analysis

flow analysis

Useful

due to preemption

Indirect effect

blocks

cache

Forward

CRPD computation

Fig. 1. CRPD analysis framework

cache analysis results are used by a backward-flow analysis, which in turn derives the set of useful
cache blocks (UCB) in the context of a two-level cache hierarchy. A similar cache analysis on the
preempting task derives the set of evicting cache blocks (ECB) in L1 and L2 caches. A separate
forward-flow analysis is used to estimate the additional intra-task L2 cache conflicts generated due
to preemptions. We call this additional intra-task L2 cache conflict indirect effect of preemption (as
shown by the box labeled “indirect effect due to preemption” in Figure 1). Finally, backward and
forward-flow analyses results are processed to compute the cache related preemption delay (CRPD)
suffered by the underlying preempted task. Our CRPD analysis does not account for the cache
misses computed by the intra-task L1 and L2 cache analyses (similar to [Altmeyer and Burguiere
2009]). Therefore, the CRPD computed by our framework is safe only when considered together
with a WCET analysis.

Key challenges

The presence of non-inclusive caches makes the CRPD analysis complicated due to the indirect
effect of preemption. The indirect effect of preemption is created when a particular memory reference
was an L1 cache hit in the absence of preemption, but the same memory reference has to access L2
cache after preemption. This counter-intuitive scenario is explained via Figure 2.
Figure 2(a) captures the control flow graph (CFG)

Preemption point

m

m

m’

m’’

L1 L2

L1 L2

L2L1

LRU age LRU age

X m’’ m’’ m’

m X m’’m

Cache content after m is accessed

in preempted execution

(Note that m’ is evicted from L2 cache)

Cache content in preempted execution

(Memory block X is accessed

in the preempting task and X does not

conflict with m’ in L2 cache)

m’’ m m’’ m’

Cache content in non−preempted

execution

set−associative

Caches are 2−way,

(a) (b)

Fig. 2. (a) Control flow graph of the preempted task.
Symbols inside each basic block capture the memory
blocks accessed therein, (b) L1 and L2 cache set con-
tents in non-preempted and preempted execution

of a preempted task. Symbols inside each basic block
capture the memory blocks accessed therein. Fig-
ure 2(b) demonstrates the indirect effect of preemp-
tion on a memory block m′ which was contained ex-
clusively in L2 cache before preemption. m′ was not
evicted by the preempting task. Consider a different
memory blockm that was contained exclusively in L1
cache before preemption. m was evicted by the pre-
empting task. Consider the memory access sequence
m m′ after the preempted task resumes execution.
m will be reloaded in both L1 and L2 caches. This
will evict m′ from L2 cache. Therefore, even though
m′ was not directly evicted by the preempting task,
reference tom′ will suffer an additional L2 cache miss
after preemption.
Apart from accounting the cost of indirect preemption effect separately, the phenomenon shown

in the preceding paragraph creates several other challenges during CRPD analysis. As a result,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 S. Chattopadhyay and A. Roychoudhury

m

m1

m2

m

m1

m m1

m1m

m1 m

m m1

m1m2

mm2

L2 hit

L1

L2

L1

L2

L2

L1

L1

L2

L2

L1

L1

L2

m

m

m1

m1

m

m

m2 m1

m1m2

(preemption point)

m1 evicted by
preempting task

L2 miss

LRU age LRU age

execution execution

Non−preempted Preempted

m’

m

m

m1

m2

m

L1

L2

m

m

m

m

L1

L2

m1 m

m

L1

L2

L1

L2

m2 m1

mm2

L1

L2m

m

m

L1

L2

m

L1

L2

m1 m

m

L1

L2

m2 m1

m2

X

X

X

X

X

X

L2 hit L2 miss

Preemption point

(m has one cache

conflict in L1 and L2)

r2

LRU age
LRU age

Non−preempted

execution Preempted

execution
m1

m2

m

m1

m’

m

m3

m’

m2

m1

m1

m2

m1

m2

m1

m1m2

m m2

m1

m2

m m2

m1

m2

m’ m

m1

m2

m

m2m

m’

m2

m1

L2

L2

L2 hit

L2

L1

L2 L2

L1

L1

L1

L2

L1

L2

L1

L1

ref(m)

LRU age

LRU age

(a) (b) (c)

m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L1

L2 m
L2 miss

ref(m)

LRU age

m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L2 miss

L1

L2

m1

m1

L1

L2

m1

m1m’

m

m1

m m’

L1

L2

ref(m)

LRU age

m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L2 miss

m1

m2

m2 m

m1

m2

m2m’

L1

L2

L2

L1

ref(m)

LRU age

(d) (e) (f)

Fig. 3. For all figures, LRU age direction has been indicated. The direction of the arrow labelled “LRU age” points to the
older age blocks. The relevant cache contents are shown. Each row of the cache content indicates a separate cache set. (a):
Due to the indirect effect of preemption, preemption cost must go through all the memory references (not just all the memory
blocks). The phenomenon is shown for memory block m in two-way, set-associative caches (b): An L2 cache miss occurs for
the second access (but first access to L2 cache) ofm after preemption. Caches are two-way, set-associative. (c)&(d)&(e)&(f):
Demonstrating the indirect effect of preemption. L1 cache is direct-mapped and L2 cache is two-way, set-associative. (c): L1
and L2 cache contents in the absence of preemption, assumingm3 does not map to any of the cache sets shown in the figure,
(d)&(e)&(f): Solid paths are the executed paths (in the order (d)→(e)→(f)) after preemption. L1 and L2 cache contents after
preemption are shown when the solid path is executed.

some major changes are required in the CRPD analysis framework. Before going into the details of
analysis, let us go through a few examples. The following examples will help in understanding the
main difficulties in CRPD analysis in the presence of multi-level caches.
The first difficulty arises in deciding the granularity at which the preemption cost needs to be

accounted for. In the presence of only L1 cache and LRU cache replacement policy, total preemption
cost can be computed soundly by accumulating the preemption cost to reload each L1 cache block.
The soundness of this approach can intuitively be explained as follows: once an L1 cache block
is reloaded in the cache after preemption, it can only be evicted by the intra-task cache conflicts.
Since L1 cache is always accessed, in the presence of LRU cache replacement policy, the amount
of intra-task cache conflicts does not change due to preemption. Therefore, the CRPD computation
in previous literature looks for the next possible use of a particular cache block after the preemption
point [Lee et al. 1998; Altmeyer and Burguiere 2009]. If the next use of a cache block C is an L1
cache hit after preemption (or an L1 cache miss in the absence of preemption), no preemption cost
is accounted for cache block C.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:7

Due to the indirect effect of preemption, the amount of intra-task cache conflicts generated in
L2 cache may increase after preemption. Therefore the reasoning, as described in the preceding
paragraph, may lead to underestimation in the CRPD computation. The situation can be explained
via Figure 3(a). Figure 3(a) shows a sequence of memory references in the preempted task, the
cache contents before each memory reference in the non-preempted execution (left side of memory
references in Figure 3(a)) and the cache contents before each memory reference in the preempted
execution (right side of memory references in Figure 3(a)). Assume two-way, set-associative caches
and assumem,m1,m2 map to the same L1 and L2 cache sets as shown in Figure 3(a). Figure 3(a)
demonstrates a sequence of memory references m1 m m1 m2 m. In the absence
of preemption, L1 and L2 cache contents are shown at the left of each memory reference. The
corresponding L1 and L2 cache contents are shown at the right of each memory reference in the
preempted execution. Note that the last access to m is an L2 cache hit in the absence of preemp-
tion, but an L2 cache miss after preemption. Consider a CRPD analysis framework which is tailored
to an LRU replacement policy based L1 cache. Such a CRPD analysis framework will only look
till the first access of m, which is an L1/L2 cache miss even in the absence of preemption. There-
fore, no preemption cost is added for the L1/L2 cache block corresponding to m. This leads to an
underestimation in the CRPD computation as shown by our example.
The example in Figure 3(b) shows the necessity of considering memory references (instead of

memory blocks) even in the absence of indirect effect. Analogous to Figure 3(a), Figure 3(b) also
shows a sequence of memory references in the preempted task, the cache contents before each
memory reference in the non-preempted execution (left side of memory references in Figure 3(b))
and the cache contents before each memory reference in the preempted execution (right side of
memory references in Figure 3(b)). Assume two-way, set-associative L1 and L2 caches and assume
that m1 and m2 both conflict with m in L1 cache, but only m2 conflicts with m in L2 cache. m′

does not conflict with any of m, m1 or m2 in both the cache levels. The example shows that the
second access ofm after preemption (r2) suffers one L2 cache miss. This is because L2 cache is not
always accessed. Therefore, the inter-task L2 cache conflict (denoted by “X” in Figure 3(b)) is only
realized at r2 (i.e. when L2 cache was accessed to fetchm).
Our next example discusses the following question: How many times a particular memory refer-

ence ref(m) may suffer an L2 cache miss due to the indirect effect of preemption? If ref(m) is not
accessed inside any loop, clearly, ref(m) can suffer at most one L2 cache miss after preemption.
Therefore, the more interesting scenario occurs when ref(m) is accessed inside some loop.
Figure 3(c) shows a sequence of memory references in the absence of preemption. Assume a

direct-mapped L1 cache and a two-way, set-associative L2 cache. Additionally, for the sake of illus-
tration, we shall assume the following:

—m andm′ map to the same L1 and L2 cache sets.
—m1 andm2 map to the same L2 cache set as m but m, m1 and m2 all map to different L1 cache

sets.
—m3 is a loop header and has three different paths to ref(m). m3 does not conflict with m, m′,

m1 orm2 in L1 and L2 caches.

Note that the above mapping is possible when L1 cache has higher number of sets than L2 cache.
Figures 3(c)-(f) only demonstrate a portion of L1 and L2 caches which is relevant for this discussion.
For example, we do not show the mapping ofm orm′ in L1 cache, as it is irrelevant for our current
discussion. Figure 3(c) clearly shows that ref(m) was an L2 cache hit and an L1 cache miss in the
absence of preemption.
Figures 3(d)-(f) show executions of three different paths reaching ref(m) after the preemption.

The solid line captures the executed path. After executing the path shown in Figure 3(d),m is first
loaded in L1 and L2 caches. Since m1 was evicted from L1 cache by the preempting task, it is
loaded in both L1 and L2 caches as shown in Figure 3(e). This generates an additional L2 cache
conflict to memory blockm. As a result, ref(m) suffers an L2 cache miss at the end. Sincem2 was
also evicted from L1 cache,m2 also generates an additional L2 cache conflict to memory blockm,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 S. Chattopadhyay and A. Roychoudhury

as shown in Figure 3(f). Consequently, ref(m) suffers a second L2 cache miss due to the indirect
effect of preemption.
This example shows that ref(m) suffers three L2 cache misses due to preemption: the first L2

cache miss (i.e. Figure 3(d)) is directly due to preemption, asm was evicted by the preempting task.
However, the last two L2 cache misses suffered by ref(m) resulted indirectly via two different
memory blocks (i.e.m1 andm2).
It is, however, infeasible to enumerate all different paths to a particular memory reference as

shown in Figures 3(d)-(f). Therefore, a reasonable question to ask is whether the number of L2
cache misses due to the indirect effect of preemption is bounded. Our work shows that this number
is bounded and it depends on the organization of L1 and L2 caches. More precisely, we state the
following properties: assume an L1 (L2) cache with number of cache sets S1 (S2) and associativity
K1 (K2). For any memory reference ref(m), assume that IL2ind denotes the number of additional
L2 cache misses due to the indirect effect of preemption. We can prove the following bounds (for
proofs, refer to Section 5):

— If S1 > S2 holds, then IL2 ind ≤ (S1

S2

)K1 − 1.
— If S1 ≤ S2 andK1 > K2 hold, then IL2 ind ≤ K1 −K2.
— If S1 ≤ S2 andK1 ≤ K2 hold, then IL2 ind ≤ 1.

Of course, the third cache organization (S1 ≤ S2 ∧ K1 ≤ K2) is the most common and it is
also used in most commercial architectures. Apart from bounding the number of L2 cache misses
for a realistic cache architecture, the preceding properties also explain the disadvantage of using the
other cache organizations to obtain real-time performance.

4. CRPD ANALYSIS

In this section, we shall describe the CRPD computation in detail. Throughout our discussion, we
shall use the notations described in Table I.

Table I. Symbols used for modeling

Symbol Description

S1 Number of cache sets in L1 cache

S2 Number of cache sets in L2 cache

K1 Associativity of L1 cache

K2 Associativity of L2 cache

LAT1 L1 cache miss penalty

LAT2 L2 cache miss penalty

M set of all memory blocks

P set of all program locations

4.1. Foundation

CRPD computation revolves around the concept of useful cache block (UCB). A UCB is a block
that must be cached before preemption and may be used later [Altmeyer and Burguiere 2009].
As previous literature is based only on L1 cache, we first need to define the notion of UCB in a
two-level cache hierarchy. Intuitively, a UCB might be used from L1 or L2 cache in the absence of
preemption. Therefore, the inter-task cache interferences generated to a UCBmay lead to additional
cache reload latency in the preempted task.

DEFINITION 4.1. (Useful cache block in a two-level cache hierarchy) With respect to a specific
preemption point p, a memory block m is characterized by a tuple 〈age1, age2〉 where age1 ∈
[1,K1] ∪ {∞} and age2 ∈ [1,K2] ∪ {∞}. This characterization is defined as follows:

—m must be cached at p (either in L1 cache or in L2 cache or in both).
—m might be used at program point q that must be reached from p without m being evicted from

both L1 and L2 caches, and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:9

—At program point q, the LRU age of memory blockm is age1 (age2) in L1 (L2) cache. If m is not
cached in L1 (L2) at p orm is evicted from L1 (L2) cache before reaching q, age1 (age2) is∞.

EXAMPLE 4.2. Consider the example code fragment and the respective preemption point shown
in Figure 3(b). m1 and m2 are neither in L1 cache nor in L2 cache before the next use beyond
preemption point. However, the memory block m is cached in both L1 and L2 before its next use
beyond the preemption point. Therefore, according to the cache contents and the preemption point
shown in Figure 3(b), we have the following useful cache blocks (UCBs): m1 7→ 〈∞,∞〉, m2 7→
〈∞,∞〉, m 7→ 〈1, 1〉.

In the following, we shall describe two different flow analyses. Backward flow analysis computes
the useful cache blocks with respect to a program point p. Forward flow analysis computes the set
of memory blocks which were L1 cache hits in the absence of preemption and might be potential
causes for the indirect effect of preemption (cf. Figure 2) at a program point p. Note that an L1 cache
hit may become an L1 cache miss after preemption and consequently, it may generate additional
L2 cache conflict. Therefore, forward flow analysis is particularly important while computing the
indirect effect of preemption (as demonstrated in Figures 3(e)-(f)).
Given the control flow graph

f()

CFG of main()

f()inst

inst1

inst2

inst3

CFG of f()

inst1

inst2

inst3

P4: f()

P8: f()P0:inst

Global CFG

P5:

P6:

P7:

P1:

P2:

P3:

int main () {

 if (...)

else

f();
}

inst

f()

Program

Fig. 4. Global CFG construction after virtual inlining

(CFG) of each procedure, our
analysis front-end uses virtual
inlining [Theiling et al. 2000] to
compute a global control flow
graph. Such a global CFG cap-
tures the control flow graph of
the entire program. Each pro-
cedure is virtually inlined at its
calling locations. Such a vir-
tual inlining is crucial for cache
analysis, as the content of a
cache may highly depend on
procedure call contexts. Figure
4 shows an example of such vir-
tual inlining. The control flow
graph of procedure f is copied at two callsites. Therefore, P1 and P5 in the global CFG essen-
tially access the same instruction, as shown in Figure 4.
All of our analyses work on the global CFG computed after virtual inlining. In the rest of the

discussion, we shall use the term memory reference to represent the different locations in this global
CFG. As an example, {P0 , . . . ,P8} in Figure 4 capture different memory references. It is worth-
while to note that even though we only model the instruction memory, it is possible that different
memory references in the program access the same memory block. As an example, memory refer-
ences P1 and P5 access the same instruction and therefore, they access the same memory block.

4.2. Backward flow analysis

Backward flow analysis is used to compute the set of useful cache blocks (cf. Definition 4.1). Our
analysis is based on abstract interpretation (AI). In the following, we shall describe the essential
components of our AI-based analysis framework.

Abstract domain. Assume thatM represents the set of all memory blocks and Dc captures the set
of inclusion patterns of a memory block in a two-level cache hierarchy. The domain of the analysis
(D) is the set of all valid mappings fromM to Dc as follows.

D : M → (Dc ∪ {⊤}) (1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 S. Chattopadhyay and A. Roychoudhury

with

Dc : {0, 1, . . . ,K,∞}× {0, 1, . . . ,K,∞} (2)

⊤ is an additional element in the abstract domain to capture the uncertain information during the
analysis, K = max(K1,K2) and ∞ captures numbers ≥ K + 1. Therefore, ∞ abstracts away all
the scenarios where a specific memory block is not present in a certain cache level.

Transfer operation at each program point. We first perform the must-cache analysis on the pre-
empted task. We use [Theiling et al. 2000] for analyzing L1 cache and we use [Hardy and Puaut
2008] for analyzing L2 cache. As an outcome of must-cache analysis, we obtain the abstract cache
content at each program point. According to the must-cache analysis, let us assume that the tuple
MustAgem,p = 〈age1, age2〉 captures LRU ages of memory blockm (in both the cache levels) im-
mediately before the program point p. Ifm is not present in L1 cache,MustAgem,p can be captured

as a tuple 〈∞, age2〉. Similarly, if m is not present in L2 cache, MustAgem,p can be captured as a

tuple 〈age1,∞〉.
The transfer function τ modifies the abstract state (i.e. an element from the abstract domainD) at

each program point. Since the direction of the analysis is backward, such a transfer function takes
the abstract state after a program point as input and computes the abstract state before the program
point as output. Formally, the transfer function τb can be defined as follows.

τb : D× P → D

τb(D, p) = D[mp 7→ MustAgemp,p
] (3)

P denotes the set of all program points and mp captures the memory block accessed at program
point p. D captures the abstract state after the program point p. D[mp 7→ MustAgemp,p

] up-
dates the mapping of memory block mp (i.e. the memory block accessed at program point p) as
mp 7→ MustAgemp,p

. The mapping of all other memory blocks exceptmp remain unchanged after

applying the transfer function τb.

Join operation to merge multiple abstract states. Since programs usually contain branches and
loops, an abstract join operation is used to combine multiple abstract states at the control flow merge
points.
To define the join operation, we need to define a partial order � on Dc. Recall that Dc captures

the set of possible inclusion patterns of a memory block in the two-level cache hierarchy. In the
following, we shall first define a couple of basic operations (∆ and ⊞) on the domain Dc. Such
basic operations are required to establish a partial order� among the elements of Dc.
Let us consider a tuple cu = 〈cu1, cu2〉 ∈ Dc. For some memory blockm ∈ M, assume that the

mappingm 7→ 〈cu1, cu2〉 belongs to some abstract state during the backward-flow analysis. We use
a function∆ to compute the latency of fetching the memory blockm.∆ is defined as follows.

∆ : Dc → N

∆(〈cu1, cu2〉) =

0, if cu1 6= ∞∧ cu1 ≤ K1;

LAT 1, else if cu2 6= ∞∧ cu2 ≤ K2;

LAT 1 + LAT 2, otherwise.

(4)

Recall that LAT 1 and LAT 2 denote the fixed L1 and L2 cache miss penalties, respectively.
In the following, the operation⊞ captures the element-wise addition operation in the domain Dc.

Assume cu = 〈cu1, cu2〉 ∈ Dc and cv = 〈cv1, cv2〉 ∈ Dc. In the following, we define the operation
⊞ between cu and cv. For the sake of simplicity, ⊞ is defined using the infix notation.

⊞ : Dc × Dc → Dc

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:11

〈cu1, cu2〉⊞ 〈cv1, cv2〉 = 〈cuv1, cuv2〉 (5)

where

cuvi =

{
∞, if cui = ∞∨ cvi = ∞∨ cui + cvi > Ki;

cui + cvi, otherwise
(6)

Note that saturation is used (using the element∞) in the addition operation⊞ instead of overflow.
Given cu1, cu2 ∈ Dc, an informal description of the partial order� can be introduced as follows:

cu1 � cu2 if and only if cu2 leads to more cache reload latency compared to cu1 in the presence
of any additional cache conflict ce. Therefore, the partial order � can be captured by the following
logical equivalence:

cu1 � cu2 ⇔ ∀ce ∈ Dc. ∆(cu1 ⊞ ce)−∆(cu1) ≤ ∆(cu2 ⊞ ce)−∆(cu2) (7)

However, it is possible that cu1 � cu2 and cu2 � cu1. Therefore, we introduce a join semi-lattice
Dc ∪{⊤} to define the least upper bound operator.⊤ captures the uncertain information during the
analysis and therefore, for any cu ∈ Dc, cu � ⊤. Now we can define the least upper bound operator⊔

on the set Dc ∪ {⊤} as follows.
⊔

: (Dc ∪ {⊤})× (Dc ∪ {⊤}) → Dc ∪ {⊤}

⊔
(cu1, cu2) =

⊤, if cu1 = ⊤ ∨ cu2 = ⊤;

cu2, if cu1 � cu2;

cu1, if cu2 � cu1;

⊤, otherwise.

(8)

The abstract join operation in our backward-flow analysis merges two abstract states from the
abstract domain (i.e. D). Assume that D1,D2 ∈ D. For a memory block m ∈ M, let us assume
D1(m) = cu1 and D2(m) = cu2. After the join operation, the least upper bound of cu1 and cu2

(i.e.
⊔
(cu1, cu2) as defined in Equation (8)) is mapped to memory block m. Therefore, the formal

definition of the join operation ĴD is as follows.

ĴD : D× D → D

ĴD(D1,D2) =
⋃

m∈M

{m 7→
⊔

(cu1, cu2)| D1(m) = cu1 ∧ D2(m) = cu2} (9)

Initialization. We start our backward flow analysis with an abstract state {m 7→ 〈∞,∞〉 | m ∈
M}. At each program point, we check the accessed memory block and apply our transfer function τb
as described in Equation (3). Since our analysis is a backward-flow analysis, the abstract state at the
exit of a basic block is computed by combining all the abstract states at the entry of its successors

(via the join operation ĴD in Equation (9)). The analysis terminates when a fixed-point is obtained
at each program point.

4.3. Forward flow analysis

Forward flow analysis is primarily required to compute the indirect effect of preemption. Recall that
the indirect effect of preemption is potentially caused by memory blocks which were L1 cache hits
before the preemption, but they may access L2 cache after the preemption (cf. Figure 2).
With respect to a program point p, forward flow analysis computes a set of memory blocks Mp

where eachm ∈ Mp satisfies the following two conditions:

—mmust be accessed along one of the paths starting from the entry point of the program and ending
at p. We call such references ofm reachable references to p.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 S. Chattopadhyay and A. Roychoudhury

—At least one of the reachable references of m (w.r.t. p) must be an L1 cache hit in the absence of
preemption.

Therefore, the abstract domain of the analysis is all possible subsets of memory blocks accessed
in the program (i.e. 2M). The abstract transfer function τf is applied at each program point. Since

the analysis direction is forward, τf takes the abstract state before a program point p (sayM ∈ 2M)
as input and it computes the abstract state after the program point p as output. Additionally, τf uses
the must-cache analysis results [Theiling et al. 2000] to detect L1 cache hits at a particular program
point. According to the must-cache analysis, let us assume MustACSp,1 captures the content of
L1 cache immediately before the program point p. If mp is the memory block accessed at program
point p and mp is contained in MustACS p,1 (i.e. the memory access at p is a guaranteed L1 cache
hit), τf augments the input abstract state M withmp. The formal definition of τf is as follows.

τf : 2M × P → 2M

τf (M, p) =

{
M∪ {mp}, if mp ∈ MustACSp,1;

M, otherwise.
(10)

The abstract join operation simply performs a set union of multiple abstract states at a control-
flow merge point.
Our forward flow analysis starts with the empty set and at each program point, we apply the

transfer function τf (as defined in Equation (10)). Since the direction of the analysis is forward, the
abstract state at the entry of each basic block is computed by taking a simple set union of all the
abstract states at the exit of its predecessors.

4.4. Analysis of the preempting task

For an accurate computation of CRPD, we need to compute the set of cache blocks possibly used
by the preempting task. The set of used cache blocks by the preempting task is called evicting
cache blocks (ECB) [Lee et al. 1998]. Since we consider set-associative LRU caches, for each cache
set, we compute the maximum number of cache blocks used by the preempting task. ECBs can
easily be computed by performing the may-cache analysis on the preempting task (using [Hardy
and Puaut 2008]). The may-cache analysis computes an over-approximation of cache contents at
each program point. Let us consider the exit point e of the preempting task. Therefore, the analyzed
cache content at e must include all possibly accessed memory blocks (subject to the size of cache)
in the preempting task. According to the may-cache analysis, let us assume that MayACS e,1(s)
andMayACS e,2(s) denote the contents of L1 and L2 cache set s, respectively, at the exit point e of
the preempting task. For each memory block m accessed in the preempted task, we define a tuple
CEm = 〈CEm,1, CEm,2〉. Intuitively, CEm captures the maximum number of ECBs mapping to the
same cache sets as m. Let us assume that memory block m is mapped to cache set Sm,1 (Sm,2) in
L1 (L2) cache. Therefore, we can define CEm = 〈CEm,1, CEm,2〉 as follows.

CEm = 〈CEm,1, CEm,2〉

where

CEm,i = |MayACS e,i(Sm,i)| (11)

4.5. Preemption delay computation

In this section, we show the CRPD computation using results of backward-flow analysis (Sec-
tion 4.2), forward-flow analysis (Section 4.3) and must-cache analyses [Theiling et al. 2000; Hardy
and Puaut 2008].
We start with a few definitions. The following definitions are based on the fixed-point computa-

tions by backward and forward flow analyses.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:13

— CUm,p : After backward-flow analysis, let us assume that Db,p captures the fixed-point on the
abstract state at program point p. Therefore, Db,p ∈ M → Dc ∪ {⊤}. We define CUm,p as
Db,p(m). As a result, CUm,p ∈ Dc ∪ {⊤}.

—Df,p : After forward-flow analysis, Df,p captures the fixed-point on the abstract state at program

point p. Therefore,Df,p ∈ 2M.

Additionally, we use CEm = 〈CEm,1, CEm,2〉 to capture evicting cache blocks (ECB) conflicting
with memory blockm (cf. Equation 11).

4.5.1. Indirect preemption factor. We had earlier illustrated that a CRPD analysis solely based
on UCBs and ECBs may lead to an unsafe result (cf. Figures 3(a)-(b)). The root cause of such
complications arises due to the presence of indirect effect (cf. Figure 2). Therefore, in the following,
we first define a quantity which is crucial to take into account the indirect effect of preemption.
For the sake of clarity, we first show the CRPD computation with respect to a specific preemption

point p. Subsequently, we show the computation of CRPD for an arbitrary preemption point. Given a
preemption point p, we compute a quantity IDr,p for a program point r. Let us assumemr denotes
the memory block accessed at r. Intuitively, IDr,p captures an over-approximation on the set of
memory blocks which may create indirect preemption effect tomr. Such memory blocks must have
been accessed from L1 cache in the absence of preemption, however, they might be accessed from
L2 cache after preemption. Therefore, any memory blockm in IDr,p must satisfy all the conditions
as stated below.

—m must be accessed along some path starting from the entry node and ending at r. Additionally, r
must be reachable from at least one reference ofm that must be an L1 cache hit in the absence of
preemption. Therefore,m ∈ Df,r.

—m must be accessed after preemption point p and such an access must be an L1 cache hit in
the absence of preemption. Therefore, CUm,p 6= 〈∞,∞〉. If CUm,p = 〈∞,∞〉, m is either not
accessed after preemption point p or any immediate access of m beyond p might be an L1 cache
miss in the absence of preemption (cf. Section 4.2).

—m might suffer an L1 cache miss due to preemption and m must map to the same L2 cache set
as mr. Let us assume CUm,p = 〈CUm,p,1, CUm,p,2〉. Therefore, CUm,p,1 + CEm,1 > K1. If m is
mapped to the L2 cache set Sm,2, we additionally have Sm,2 = Smr ,2.

Aggregating the above notion of description, we can now formally define IDr,p as follows.

IDr,p = {m | m 6= mr ∧m ∈ Df,r ∧ Sm,2 = Smr,2 ∧ CUm,p 6= 〈∞,∞〉

∧ (CUm,p = ⊤ ∨ (CUm,p 6= ⊤ ∧ CUm,p,1 + CEm,1 > K1))} (12)

4.5.2. CRPD computation. For an arbitrary preemption point p, an overview of the preemption
delay computation is shown in Figure 5. The computed preemption delay depends on cache hit-miss
categorizations of memory references (i.e. L1 and L2 cache hit/miss) in the absence of preemption.
For L1 cache hits in the absence of preemption, it is sufficient to check only the first access of the
respective memory block after preemption [Lee et al. 1998]. This is because the respective memory
block will be reloaded into L1 cache once it is first accessed after the preemption. For such memory
blocks, CRT p,1 captures the reloading delay from L2 cache and CRT p,2 captures the reloading
delay from main memory (cf. Figure 5).
Let us now consider the memory references which were L1 cache misses, but L2 cache hits, in

the absence of preemption. As evidenced by our example in Figure 3(b), it is insufficient to consider
only the first references of such memory blocks after preemption. Therefore, we need to go through
all program locations which were L1 cache misses, but L2 cache hits in the absence of preemption.
We distinguish between the first access and all other accesses to such a program location (say r)
after preemption. The first access to r after preemption may suffer L2 cache miss penalty due to
the combined effect of intra-task and inter-task L2 cache conflicts. Our examples in Figures 3(a)-(b)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 S. Chattopadhyay and A. Roychoudhury

and

L1 cache miss

L2 cache hit

L1 cache miss

and

L2 cache miss

L1 cache miss

and

L2 cache hit

L1 cache hit

L2 cache miss

and

L1 cache miss

preemptionpreemption preemption

preemption delay

No additional preemption costL1 cache miss

and

L2 cache miss

Indirect effect

Memory block

first access after first access after first access after

Non−preempted

execution

Preempted

execution

all but first accesses after

preemption

Memory reference

(program locations in the global CFG

cf. Figure 4)

CRTp,2
ICRTp,2ICRTp,1CRTp,1

Fig. 5. Overview of preemption delay computation

illustrate such situations. In Figure 5, ICRT p,1 captures this penalty. Any subsequent accesses to r
after preemptionmay suffer L2 cache miss penalty only due to the indirect effect of preemption. Our
examples in Figures 3(e)-(f) illustrate such situations. In Figure 5, ICRT p,2 captures this penalty.
Finally, in Theorem 5.3, we have proved an upper bound on the number of accesses that may suffer
L2 cache misses solely due to the indirect effect of preemption.
Total preemption delay is computed by accumulating the preemption delay contributed by dif-

ferent components (i.e. CRT p,1, CRT p,2, ICRT p,1 and ICRT p,2). Finally, CRPD maximizes the
preemption delay for any arbitrary preemption point. In the following, we shall describe the differ-
ent components of the preemption delay computation as shown in Figure 5. It is worthwhile to note
that the following computations are carried out with respect to an arbitrary preemption point p.
Assume that CUm,p = 〈CUm,p,1, CUm,p,2〉 and let mr denote the memory block accessed at

program point r. In the following,M1 captures the set of memory blocks which might be L1 cache
hits in the absence of preemption, but may suffer L1 cache miss penalties after the preemption.

M1 = {m | CUm,p 6= ⊤ ∧ CUm,p,1 6= ∞∧ CUm,p,2 6= ∞

∧ CUm,p,1 + CEm,1 > K1

∧ CUm,p,2 + CEm,2 + max
r:mr=m

|IDr,p| ≤ K2} (13)

Note that the indirect preemption factor maxr:mr=m |IDr,p| is essential for a sound estimation of
L2 cache conflicts tom.
In a similar way,M2 captures the set of memory blocks that might be L1 cache hits in the absence

of preemption, but may suffer the sum of L1 and L2 cache miss penalties after the preemption.

M2 = {m | (CUm,p = ⊤ ∧ CEm 6= 〈0, 0〉) ∨ (CUm,p 6= ⊤ ∧ CUm,p,1 6= ∞

∧ CUm,p,1 + CEm,1 > K1 ∧m /∈ M1)} (14)

Finally, CRT p,1 and CRT p,2 (cf. Figure 5) can be computed fromM1 andM2 as follows.

CRT p,1 = |M1| × LAT 1 (15)

CRT p,2 = |M2| × (LAT 1 + LAT 2) (16)

To compute ICRT p,1 and ICRT p,2, we need to check the set of program locations which had
L1 cache misses, but L2 cache hits in the absence of preemption (cf. Figure 5). Let us assume P2

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:15

captures this set of program locations. To compute the cache hit/miss categorization in the absence
of preemption, we use must-cache analysis [Theiling et al. 2000; Hardy and Puaut 2008]. Let us
assume that the tupleMustAgem,r = 〈MustAgem,r,1,MustAgem,r,2〉 captures LRU ages of mem-
ory block m (in both the cache levels) immediately before the program location r ∈ P2. If m is
not present in L1 cache, MustAgem,r can be captured as a tuple 〈∞,MustAgem,p,2〉. Let us as-
sume thatmr captures the memory block accessed at program location r. For any r ∈ P2, ICRT p,1

computes the total cache miss penalty for the first visit to r after preemption.

ICRT p,1 =
∑

r∈P2

{
0, if MustAgemr ,r,2

+ CEmr,2 + |IDr,p| ≤ K2;

LAT 2, otherwise.
(17)

Similarly, for all program locations r ∈ P2, ICRT p,2 (cf. Figure 5) computes the total cache
miss penalty solely due to the indirect effect of preemption. ICRT p,2 can be formally described as
follows.

ICRT p,2 = IL2 ind ×
∑

r∈P2

{
0, ifMustAgemr,r,2

+ |IDr,p| ≤ K2;

LAT2, otherwise.
(18)

In Equation (18), IL2 ind denotes an upper bound on the number of L2 cache misses due to the
indirect effect of preemption (for a proof of this bound, refer to Section 5, Theorem 5.3).

Final CRPD computation. Final CRPD computation maximizes the preemption delay for an ar-
bitrary preemption point p. Therefore, the final CRPD computation can be defined by the following
maximization function.

CRPDfinal = max
p∈P

(CRT p,1 + CRT p,2 + ICRT p,1 + ICRT p,2) (19)

4.6. Extension of the basic framework

4.6.1. Nested preemptions. In the preceding section, we have described the CRPD computation
for a single preemption. Our framework can easily be extended with nested preemptions. Recall that
our framework computes evicting cache blocks (ECB) using the may-cache analysis (cf. Equation
(11)). To handle nested preemptions, we need to take into account all the ECBs from all higher
priority tasks.
Assume that T1, T2, . . . , Tn are tasks in the decreasing order of priorities and we want to compute

the CRPD for Tn. The may-cache analysis is performed for each task in the set {T1, T2, . . . , Tn−1}.
The set of ECBs computed for T1, T2, . . . , Tn−1 are then merged (i.e. set union) together to produce
a final estimation of ECBs. Let us assume thatMayACSTi,e,1

(s) andMayACSTi,e,2
(s) denote the

content of L1 and L2 cache set s, respectively, at the exit point e of the preempting task Ti. For each
memory blockm accessed in task Tn, Equation (11) is modified as follows.

CEm = 〈CEm,1, CEm,2〉

where

CEm,i = |
⋃

t∈{T1,...,Tn−1}

MayACS t,e,i(Sm,i)| (20)

Recall that Sm,1 (Sm,2) captures L1 (L2) cache set in which memory blockm is mapped.
Our rest of the framework remains unchanged except for the modified tuple CEm (as computed

in Equation (20)). It is worthwhile to note that we perform a set union of all the possible ECBs. As
a result, the computed ECBs (i.e. CEm in Equation (20)) clearly over-approximate the number of
inter-task cache conflicts to memory blockm.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 S. Chattopadhyay and A. Roychoudhury

4.6.2. Multiple preemptions. Our CRPD analysis framework for non-inclusive cache hierarchies
can also be adapted in the presence of multiple preemptions. To adapt our framework in the presence
of multiple preemptions, we rely on the existing literature [Altmeyer et al. 2010]. In the following,
we first briefly describe the technical challenges in the presence of multiple preemptions and their
solutions proposed in [Altmeyer et al. 2010].

m

m m’ m

preemption by T2preemption by T1

ECBs conflicting

with m = 1

ECBs conflicting

with m = 1

cache content

in the absence

of preemption

cache content

considering T1

in isolation

(cache hit)

m m’ m

m m’ m

m

preemption by T1

ECBs conflicting

with m = 1

ECBs conflicting

preemption by T1T2

with m = 2

m

cache content

in isolation

(cache miss)

m is evicted

considering T1T2

(a) (b)

Fig. 6. Multiple preemptions by tasks T1 and T2 along the memory access sequence m → m′ → m. Assume m′ does
not conflict with m in cache. (a) Cache contents in the non-preempted execution. Neither T1 nor T2 can evict memory
block m from cache, but the interaction between tasks T1 and T2 will evict memory block m from cache, (b) sound CRPD
computation by considering tasks T1 and the sequential composition T1T2 in isolation [Altmeyer et al. 2010]

Background. The key challenges in multiple preemptions appear in the presence of set-
associative caches (as also shown in [Altmeyer et al. 2010]). For direct-mapped caches, multiple
preemptions do not pose any significant challenges in computing the CRPD. For a direct-mapped
cache, let us consider a useful cache block in the preempted task. If any memory block in any pre-
empting task conflicts with such a useful cache block, the useful cache blockmight be replaced from
cache. As a result, for direct-mapped caches, total CRPD in the presence of multiple preemptions
is bounded by the sum of CRPDs each preempting task will cause in isolation. For set-associative
caches, however, such a reasoning may lead to an unsafe CRPD estimation. We show an example
to illustrate this point. Figure 6 shows a memory access sequencem → m′ → m in the preempted
task. The preemption by task T1 takes place between the memory accesses m and m′. Another
preemption by task T2 takes place between the memory accesses m′ and m. Assume that both
the preempting tasks have at most one evicting cache block that conflicts with memory block m.
Figure 6(a) shows two different preemptions by task T1 and task T2 in the presence of a two-way,
set-associative cache. We can observe that neither T1 nor T2 can cause the eviction ofm in isola-
tion. However, T1 and T2 together may evict the memory block m, leading to a cache miss after
preemption. Therefore, for set-associative caches, it is crucial to consider the interactions among
different preempting tasks (e.g. the interaction between tasks T1 and T2 in Figure 6(a)). To solve
the challenges due to multiple preemptions, the work in [Altmeyer et al. 2010] considers preemption
by the sequential compositions of different preempting tasks. Such a solution is primarily based on
the following insight: if a memory block in the preempted task is evicted by the interaction between
two different preempting tasks T1 and T2 , the memory block will also be evicted by the sequential
composition T1T2 of the preempting tasks T1 and T2 . Figure 6(b) shows the solution, where the
second access of m can now be predicted as a cache miss. Such a solution allows us to consider
preemptions in isolation. At the same time, it allows to estimate a sound CRPD value. For a detailed
description of this technique, readers are referred to [Altmeyer et al. 2010].

Multiple preemptions in the presence of non-inclusive cache hierarchies. Multiple preemptions
do not pose any additional challenge for non-inclusive cache hierarchies. The key challenges in
the presence of multiple preemptions appear due to the presence of interacting preempting tasks, as

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:17

shown in Figure 6(b). Considering each preemption in isolation may lead to an under-approximation
of evicting cache blocks (ECBs), as also seen in Figure 6(b). Therefore, the solution proposed by
[Altmeyer et al. 2010] uses a sequential composition of the interacting preempting tasks in order to
compute a sound over-approximation of ECBs. Since we use the may-cache analysis to compute the
set of ECBs, such an over-approximation of ECBs will be preserved even in the presence of cache
hierarchies. Therefore, our CRPD analysis framework can be adapted into [Altmeyer et al. 2010]
to handle multiple preemptions. It is worthwhile to mention that we do not claim any contribution
in handling multiple preemptions. Our contribution is to address the technical challenges in the
presence of non-inclusive cache hierarchies. This section discusses the methodology to adapt our
basic framework into existing CRPD analysis frameworks that handle multiple preemptions (e.g.
[Altmeyer et al. 2010]). There has been extensive research (e.g. [Staschulat and Ernst 2004]) on
improving the estimation of CRPD in the presence of multiple preemptions. In future, we can study
such solutions to see if they can be adapted in the presence of cache hierarchies.

Preempted

task

L1 cache

analysis analysis

L2 cache

task

Preempting

analysis

L1 cache

analysis

L2 cache

blocks

cache

Evicting

Backward

flow analysis

flow analysis

Useful

due to preemption

Indirect effect

blocks

cache

Forward

CRPD computation

Shared cache

conflict analysis

Fig. 7. CRPD analysis in the presence of shared caches

4.6.3. Shared caches. The presence of shared caches may generate additional L2 cache misses
due to inter-core cache conflicts. Inter-core cache conflicts can easily be integrated into our frame-
work. With such an integration, we can compare the different sources of overestimations from dif-
ferent cache conflict analyses (i.e. intra-task, inter-task and inter-core). According to the must-cache
analysis [Theiling et al. 2000; Hardy and Puaut 2008] and without considering inter-core cache con-
flicts, let us assume age(m) captures the LRU age of memory blockm in L2 cache. Further assume
that IC denotes the number of unique memory blocks accessed by programs running on different
cores and that may potentially access the same L2 cache set as m. To consider the inter-core cache
conflicts faced by memory block m, age(m) is updated as age(m) + IC. As a result, the updated
LRU age now captures both intra-task and inter-core cache conflicts. Such an integration is similar
to the one used in [Li et al. 2009; Hardy et al. 2009]. However, it is worthwhile to note that the work
proposed in [Li et al. 2009] discusses a worst-case response time (WCRT) analysis in multi-tasking
systems. Integrating both inter-core cache conflicts and CRPD analysis into the WCRT analysis
framework may pose additional challenges and it is an interesting topic to be studied in future. In
this work, we show the effect of three different cache conflicts – intra-task, inter-task and inter-core
on the execution time of a single task. Figure 7 shows the integration of inter-core cache conflicts via
the dotted box. Once LRU ages are updated with inter-core cache conflicts, they are subsequently
used during our backward-flow analysis.

5. SOUNDNESS OF THE ANALYSIS

In this section, we shall first briefly outline the soundness proof of our CRPD analysis framework.
Subsequently, in Theorem 5.3, we shall prove theoretical bounds on the number of L2 cache misses
due to the indirect effect of preemption.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 S. Chattopadhyay and A. Roychoudhury

Structure of the soundness proofs

Soundness of over-approximated ECB. Our analysis framework computes an over-approximation
of evicting cache blocks (cf. Equation (11)). It is always sound to over-approximate the set of evict-
ing cache blocks (ECB). Recall that the CRPD computation in our framework revolves around four
quantities – CRT p,1, CRT p,2, ICRT p,1 and ICRT p,2 (Equations (13)-(18)). Equations (13)-(18)
clearly show that an over-approximation of ECBs will only overestimate the value of CRT p,1,
CRT p,2, ICRT p,1 and ICRT p,2. This will keep the overall CRPD analysis sound.

Soundness of WCET+CRPD. Since CRPD analysis is normally used with a WCET analysis [Alt-
meyer and Burguiere 2009], our approach guarantees a sound estimation of the sum of WCET and
CRPD. Consider a memory reference that is predicted cache miss by the WCET analysis in both
L1 and L2 caches. In our CRPD analysis, we do not consider any additional cache miss for such
memory references. However, it is possible that a memory reference suffers different delays after
preemption along different paths in the program. The least upper bound operator defined in Equation
(8) ensures that we always account for the maximum among all possible cache reload delays. More
precisely, the four key components of our CRPD computation (i.e. CRT p,1, CRT p,2, ICRT p,1 and
ICRT p,2) are always overestimated using the partial order defined in Equation (7).

Number of cache misses due to the indirect effect of preemption. Recall that the presence of cache
hierarchies may introduce multiple cache misses for the same memory reference after preemption.
Such a scenario may arise due to the increased intra-task cache interferences after preemption. We
call this effect of preemption indirect effect. In Section 3, we had introduced the bound on the
number of cache misses due to the indirect effect (bound on IL2 ind). In Theorem 5.3, we formally
prove this bound on IL2 ind.

5.1. Detailed proof

In this section, we shall prove theoretical bounds on the indirect effect of preemption. For the fol-
lowing discussion, we shall be using the terminologies defined in Table I.

PROPERTY 5.1. Assume two memory blocks m1 and m2 that map to the same L2 cache set. If
S1 ≤ S2 holds, thenm1 andm2 map to the same L1 cache set as well.

PROPERTY 5.2. If S1 > S2 holds, then at most (S1

S2

)K1 cache blocks in L1 cache map to the

same L2 cache set.

THEOREM 5.3. Consider any memory reference ref(M) in the preempted task that accesses
a memory block M . Assume ref(M) was an L2 cache hit and an L1 cache miss in the absence
of preemption. Further assume that ref(M) suffers IL2 ind number of L2 cache misses due to the
indirect effect of preemption. IL2 ind is bounded as follows:

— if S1 ≤ S2 andK1 ≤ K2 hold, then IL2 ind ≤ 1,
— if S1 ≤ S2 andK1 > K2 hold, then IL2 ind ≤ K1 −K2, and
— if S1 > S2 holds, then IL2 ind ≤ (S1

S2

)K1 − 1.

PROOF. If ref(M) resides outside of all loops, then our claim is trivially satisfied, as ref(M)
can be executed at most once after the preemption. Therefore, in the following, we are concerned
only about the case when ref(M) is accessed within a loop.
Recall that the indirect effect of preemption may arise when some memory references access

L2 cache only after preemption, but they do not access L2 cache in the absence of preemption (as
demonstrated via Figure 2).
The basic idea of all the three proofs is as follows: assume that we want to impose a bound B

on IL2 ind. For a memory reference ref(M), we first construct B different program paths leading
to ref(M) after a preemption. Each path may result in the eviction of M . Therefore, B different
program paths may generate a total ofB different L2 cache misses for ref(M) after the preemption.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:19

ref(M1,1) M1,1

M2,1ref(M2,1)

Mi,1ref(Mi,1)

MK2,1ref(MK2,1)

Mref(M)

ref(M1,2) M1,2

ref(M2,2)

ref(Mi,2) Mi,2

MK2,2ref(MK2,2)

Mref(M)

M2,2

ref(m1,2)ref(M1,1)

ref(M2,1)

ref(Mi,1)

ref(M)

M1,1

M2,1

Mi,1

MK2,1ref(MK2,1)

M1,2

ref(Mi−1,2)

ref(Mi,2)Mi,2

Mi−1,2

M
Mi,2 cannot reside in

L1 cache unless reloaded

along the above path

(a) (b) (c)

Fig. 8. Bounding the indirect effect of preemption when S1 ≤ S2 and K1 ≤ K2. ref(Mi,1) and ref(Mi,2) are L1

cache hits in the absence of preemption, but access L2 cache after preemption. (a)&(b): Indirect effect of preemption on
memory reference ref(M), (c): a potential scenario which shows that (a)&(b) cannot happen together.

If all of these L2 cache misses are generated due to the indirect effect of preemption, then each of
the B constructed path must contain at least one memory reference which accesses L2 cache only
after preemption (and not in the absence of preemption). Subsequently, we show the impossibility of
constructing aB+1-th path (say PB+1) in a similar fashion. We show that any such path PB+1 will
contain only memory references that are either L1 cache hits after preemption or L1 cache misses
even in the absence of preemption. As a result, PB+1 cannot lead to an L2 cache miss for ref(M)
due to the indirect effect of preemption.

S1 ≤ S2 ∧K1 ≤ K2 . IfM is evicted from L2 cache, thenM must have facedK2 unique con-

flicts since it is last accessed from L2 cache. Consider the scenario in Figure 8(a). Let us assume
one program path P1 := ref(M1,1) . . . ref(Mi,1) . . . ref(MK2,1) ref(M)
which accesses K2 unique memory blocks {M1,1, . . . ,Mi,1, . . . ,MK2,1}, all mapping to the same
L2 cache set as M . If all the references in {ref(M1,1), . . . , ref(MK2,1} access L2 cache in the
absence of preemption, thenM would be evicted from L2 cache (after accessing ref(MK2,1)) even
in the absence of preemption. This leads to a contradiction that ref(M) is an L2 cache hit in the
absence of preemption. Therefore, to consider the indirect effect, there must be one memory ref-
erence, say ref(Mi,1) ∈ {ref(M1,1), . . . , ref(Mi,1), . . . , ref(MK2,1)}, which does not generate
L2 cache conflict in the absence of preemption (being an L1 cache hit), but ref(Mi,1) generates L2
cache conflict after preemption (asMi,1 might be evicted from L1 cache due to preemptions).
Now consider the scenario in Figure 8(b) which illustrates a program path P2 := ref(M1,2)

. . . ref(Mi,2) . . . ref(MK2,2) ref(M). Assume that the execution of P2 can create
an indirect effect of preemption on memory reference ref(M) after the execution of P1. Therefore,
we must have a memory reference ref(Mi,2) ∈ {ref(M1,2), . . . , ref(Mi,2), . . . , ref(MK2,2)},
that was an L1 cache hit in the absence of preemption, but it may access L2 cache after preemption.
Note that L1 cache is always accessed. Therefore, in the absence of preemption, ref(Mi,2) can be
an L1 cache hit only if the following condition holds:

—Mi,2 is accessed in the path P := ref(M1,1) . . . ref(Mi−1,1) ref(Mi,1) . . .
ref(MK2,1) ref(M) . . . ref(M1,2) . . . ref(Mi−1,2). This scenario is illus-
trated in Figure 8(c). If Mi,2 is not accessed in path P , Mi,2 cannot exist in L1 cache after P1

is executed. This is because K2 ≥ K1 and K2 unique memory blocks M1,1, . . . ,MK2,1 are also
mapped to the same L1 cache set as M (since S1 ≤ S2). Therefore, M will be evicted from L1
cache by the set of memory blocksM1,1, . . . ,MK2,1 after P1 is executed.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 S. Chattopadhyay and A. Roychoudhury

If the preceding condition holds, then Mi,2 is already reloaded after preemption and before the
memory reference ref(Mi,2). As a result, ref(Mi,2) is an L1 cache hit even after preemption. If
Mi,2 is not reloaded before the memory reference ref(Mi,2), then ref(Mi,2) will be an L1 cache
miss even in the absence of preemption. Therefore, we reach a contradiction with our assumptions.

S1 ≤ S2 ∧K1 > K2 . In the preceding construction of P , Mi,2 may not be evicted from L1

cache if K1 > K2 holds. Therefore, we first constructK1 −K2 program paths P1, . . . ,PK1−K2
–

all of which lead to memory reference ref(M) as follows.

—P1 := ref(M1,1) . . . ref(Mi−1,1) ref(Mi,1) . . . ref(MK2,1) ref(M)
—P2 := ref(M1,2) . . . ref(Mi−1,2) ref(Mi,2) . . . ref(MK2,2) ref(M)
— . . .
—PK1−K2

:= ref(M1,K1−K2
) . . . ref(Mi−1,K1−K2

) ref(Mi,K1−K2
) . . .

ref(MK2,K1−K2
) ref(M)

where {ref(Mi,1), . . . , ref(Mi,K1−K2
)} is the set of memory references that were L1 cache hits

in the absence of preemption but may access L2 cache after preemption. Let us construct an-
other path, say, PK1−K2+1 := ref(M1,K1−K2+1) . . . ref(Mi,K1−K2+1) . . .
ref(MK2,K1−K2+1) ref(M), where ref(Mi,K1−K2+1) accesses L2 cache only after preemp-
tion, but not in the absence of preemption. After the execution of P1,P2, . . . ,PK1−K2

, at least
K1 unique memory-block accesses map to the same L1 cache set as M . Therefore, Mi,K1−K2+1

must have been accessed along the path P ′ := P1 P2 . . . PK1−K2
 . . .

ref(Mi−1,K1−K2+1). In this case, ref(Mi,K1−K2+1) must be an L1 cache hit after preemption.
If Mi,K1−K2+1 is not accessed along the path P ′, memory block Mi,K1−K2+1 is not cached in
L1 while executing the reference ref(Mi,K1−K2+1). Therefore, ref(Mi,K1−K2+1) will be an L1
cache miss even in the absence of preemption. In both the cases, we reach contradictions.

S1 > S2 . Assume that B = (S1

S2

)K1 − 1. We construct B + 1 program paths all leading to the

memory reference ref(M) as follows:

—P1 := ref(M1,1) . . . ref(Mi−1,1) ref(Mi,1) . . . ref(MK2,1) ref(M)
—P2 := ref(M1,2) . . . ref(Mi−1,2) ref(Mi,2) . . . ref(MK2,2) ref(M)
— . . .
—PB := ref(M1,B) . . . ref(Mi−1,B) ref(Mi,B) . . . ref(MK2,B) ref(M)

In the preceding paragraph, {ref(Mi,1), ref(Mi,2), . . . , ref(Mi,B)} is the set of memory refer-
ences that were L1 cache hits in the absence of preemption but may access L2 cache after pre-
emption. Suppose we want to construct another program path PB+1 := ref(M1,B+1) . . .
ref(Mi,B+1) . . . ref(MK2,B+1) ref(M), where ref(Mi,B+1) accesses L2 cache only
after preemption, but not in the absence of preemption. AfterP1,P2, . . . ,PB are executed, there are

at least (S1

S2

)K1 unique memory-block accesses in L1 cache ({Mi,1, . . . ,Mi,B} ∪ {M}) mapping

to the same L2 cache set as memory block M . According to Property 5.2, there could be at most

(S1

S2

)K1 blocks in L1 cache that may map to the same L2 cache set as M . Therefore,Mi,B+1 must

have been accessed along the path P1 P2 . . . PB . . . ref(Mi−1,B+1). In this case,
ref(Mi,B+1) will be an L1 cache hit even after preemption. If Mi,B+1 is not accessed along the
path P1 P2 . . . PB . . . ref(Mi−1,B+1), thenMi,B+1 must have been evicted from
L1 cache (by the set of memory blocks {Mi,1, . . . ,Mi,B} ∪ {M}) before executing ref(Mi,B+1).
As a result, ref(Mi,B+1) was an L1 cache miss even in the absence of preemption. Therefore, we
reach a contradiction with our assumptions.

6. EXPERIMENTAL EVALUATION

Experimental setup. We have chosen medium to large size benchmarks from [Gustafsson et al.
2010], which are generally used to validate timing analysis. The code size of different benchmarks

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:21

ranges from 2779 bytes (bsort100) to 118351 bytes (nsichneu), with an average code size of
18500 bytes. Throughout our evaluation, we shall assume that each task has been statically mapped
to a particular core and all the tasks have fixed static priorities. We compile each benchmark into
Simplescalar PISA (Portable Instruction Set Architecture) [Austin et al. 2002] — a MIPS like in-
struction set architecture. The control flow graph (CFG) of each benchmark is extracted from its
PISA compliant binary and is used for all the analysis results reported here.
We choose cnt and compress from

qurt / statemate

Low

compress)
(cnt /

priority
High

priority

L1 cache L1 cache

(1−way, 1 KB) (1−way, 1 KB)

Core 2Core 1

Main Memory

L2 cache L2 cache

(2−way, 2 KB) (2−way, 2 KB)

qurt / statemate

Low

compress)
(cnt /

priority
High

priority

L1 cache L1 cache

(1−way, 1 KB) (1−way, 1 KB)

Core 2Core 1

Main Memory

L2 cache

(2−way, 2 KB)

(a) (b)

Fig. 9. We use either cnt or compress [Gustafsson et al.
2010] to generate inter-task cache conflicts. (a) Default archi-
tecture used for the results reported as “preemption + no L2
cache sharing”. (b) Default architecture used for the results us-
ing shared caches. Either qurt or statemate [Gustafsson
et al. 2010] is used to generate inter-core cache conflicts.

[Gustafsson et al. 2010] to generate differ-
ent amounts of inter-task cache conflicts. cnt
(which is a small program having a code
size of 2880 bytes) is used to generate low
inter-task cache conflict, whereas, compress
(which is a relatively large program having
a code size of 13411 bytes) is used to gen-
erate relatively high inter-task cache conflict.
We also conduct experiments for private as
well as shared L2 caches. The default micro-
architectural setup is captured by Figure 9(a)
when each core has a private L2 cache and by
Figure 9(b) when L2 cache is shared among
multiple cores. For the experiments featur-
ing a shared L2 cache, we use qurt (code
size 4898 bytes) and statemate (code size
52618 bytes) from [Gustafsson et al. 2010] to
generate low and high inter-core cache interferences, respectively.
To validate our analysis method, the Simplescalar toolset [Austin et al. 2002] was extended to

support the simulation of shared L2 caches. The original Simplescalar toolset supports cycle ac-
curate simulation in the presence of L1 and L2 caches. However, the Simplescalar toolkit does not
support the simulation of shared caches in the presence of multiple cores. Such a Simplescalar exten-
sion was developed in our prior work [Chattopadhyay et al. 2010; Chattopadhyay et al. 2012]. The
extended Simplescalar framework is also cycle accurate. The key to such an extension is to modify
the main simulation loop for multiple cores. Each iteration of the main simulation loop updates the
execution state on each core – capturing the change in execution states for each cycle on each core.
As a result, the state of the shared cache is also updated appropriately for each cycle. Currently, the
simulation infrastructure is limited to the simulation of homogeneous processor cores, meaning that
each processor core runs at the same frequency.
As part of our work in this paper, we have extended the multi-core Simplescalar developed in

our prior work [Chattopadhyay et al. 2010; Chattopadhyay et al. 2012] to capture the effect of pre-
emptions. Inside the simulator, we have implemented features using which a task can be preempted
by a higher priority task and after the higher priority task finishes execution, the preempted task
will resume. Before the preemption takes place, the pipeline state of the preempted task is flushed.
This is acceptable, as we just want to measure the number of additional cache misses due to preemp-
tions. Such a measurement from simulation will help to evaluate the precision of our CRPD analysis
framework. However, since the preemption point is unknown, the search space for measuring the
worst-case preemption delay is huge. Therefore, the observed CRPD in our experiments may highly
underestimate the actual worst-case CRPD.
Our default system configuration uses a direct-mapped, 1 KB L1 cache and a 2-way associative,

2 KB L2 cache, both having 32 bytes cache block size. L1 cache miss penalty is 6 cycles and L2
cache miss penalty is 30 cycles.
We report the analysis overestimation ratio for the following evaluations. Overestimation ratio

compares the analysis result (using our CRPD analysis framework) with the results observed from
real execution (using our modified simulation infrastructure). To compare the overestimation solely

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 S. Chattopadhyay and A. Roychoudhury

 0

 0.5

 1

 1.5

 2

 2.5

edn+cnt

m
atm

ult+cnt

fdct+cnt

adpcm
+cnt

bsort100+cnt

jfdctint+cnt

expint+com
press

nsichneu+com
press

ludcm
p+com

press

fir+com
press

ns+com
press

st+com
press

O
v
e
re

s
ti
m

a
ti
o
n
 r

a
ti
o

Benchmarks (low priority + high priority)

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt

preemption + L2 cache shared with qurt
no preemption + L2 cache shared with statemate

preemption + L2 cache shared with statemate

Fig. 10. WCET +#p ·CRPD overestimation for the set of tasks used from [Gustafsson et al. 2010]. Along the x-axis,
A+ B denotes the scenario when task A is preempted by task B (where applicable)

due to the CRPD analysis, we record both the WCET overestimation and the overestimation of the
quantity WCET + #p · CRPD , where #p captures the number of preemptions. #p is chosen in
a fashion so that the value ofWCET and the value of #p · CRPD are comparable. In the absence
of preemption, a low priority task will not be interrupted by any higher priority task. Therefore, we
plot the WCET overestimation ratio in the absence of preemption. If preemption is enabled, a low
priority task can be preempted by a high priority task. Therefore, we record the overestimation of
WCET +#p · CRPD for the low priority task. The estimation is taken using our CRPD analysis
framework and Chronos WCET analysis tool [Li et al. 2007]. To measure the quantity WCET +
#p · CRPD for a task T , we run T for a few inputs. We also allow a high priority task to preempt
T exactly #p times. We observe the maximum execution time of T over different inputs and we
record the observed value as a measurement of the quantityWCET +#p · CRPD .

Accuracy of our analysis. The soundness of our CRPD analysis is guaranteed only when used in
conjunction with the WCET analysis. Therefore, only the sum of WCET and CRPD can be com-
pared with the measurement. Figure 10 shows the combinedWCET and CRPD overestimation ratio
in the presence of different benchmarks from [Gustafsson et al. 2010]. Note that the rightmost four
bars in Figure 10 uses the dual-core setup, as shown in Figure 9(b). Similarly, the leftmost two bars
in Figure 10 uses the setup shown in Figure 9(a). Figure 10 clearly shows that our analysis com-
putes precise estimates in most of the cases. Benchmark nsichneu is an exception. nsichneu
is a benchmark with over two hundred branch instructions and many infeasible paths. Therefore,
the overestimation largely arises from the path analysis during the WCET computation. This can be
illustrated by results labeled “no preemption” in Figure 10.

Analysis result sensitivity w.r.t L1 and L2 caches. Figure 11(a) shows our analysis result sensi-
tivity with respect to different L1 cache sizes and configurations. Similarly, Figure 11(b) shows the
analysis result sensitivity with respect to different L2 cache sizes and configurations. Increasing the
size of L1 cache usually increases the number of useful cache blocks, as a bigger L1 cache can hold
more cache blocks to be reused later. Consequently, CRPD may increase with bigger L1 caches,
as more cache blocks can be replaced by a preempting task. However, increasing the associativity
usually decreases the CRPD. This is expected, as high cache associativity could decrease cache con-
flict misses. In a similar fashion, increasing the size of L2 cache usually increases the CRPD due

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1-w
ay, 256 bytes

2-w
ay, 256 bytes

1-w
ay, 512 bytes

2-w
ay, 512 bytes

1-w
ay, 1KB

2-w
ay, 1KB

O
v
e

re
s
ti
m

a
ti
o

n
 r

a
ti
o

L1 cache configuration

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt
preemption + L2 cache shared with qurt

no preemption + L2 cache shared with statemate
preemption + L2 cache shared with statemate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2-w
ay, 2KB

4-w
ay, 2KB

2-w
ay, 4KB

4-w
ay, 4KB

2-w
ay, 8KB

4-w
ay, 8KB

O
v
e

re
s
ti
m

a
ti
o

n
 r

a
ti
o

L2 cache configuration ratio

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt
preemption + L2 cache shared with qurt

no preemption + L2 cache shared with statemate
preemption + L2 cache shared with statemate

(a) (b)

Fig. 11. CRPD and WCET analysis sensitivity with respect to (a) L1 cache configuration and (b) L2 cache configuration

to the replacement of more useful cache blocks. However, beyond a certain size of L2 cache, many
useful cache blocks are not replaced due to the reduced cache interference. As a result, CRPD also
decreases. Figures 11(a)-(b) show that our analysis is precise except for very small L1 caches in
multi-cores (e.g. 256 bytes). This is primarily due to the difficulty in analyzing the inter-core cache
conflicts. Note that the overestimation is high even in the absence of preemption (cf. Figure 11(a)).

Effect of cache sharing. It is worthwhile to mention that the measured CRPD (using our simu-
lation infrastructure) can be negative in the presence of shared caches. Since the lifetime of a task
is shifted due to preemptions, inter-core interferences may reduce after preemptions. As a result,
preempting a low priority task may reduce the number of shared L2 cache misses in the preempted
task. This leads to a negative CRPD value. In our measurements, we indeed found such scenarios.
However, to consider such scenarios in our analysis, we may need to model an unbounded number
of thread interleaving patterns. Since our analysis conservatively models all possible thread inter-
leavings, the CRPD computed by our analysis is always positive.

Indirect effect of preemption. We have separately measured the cache reload latency due to the
indirect effect of preemption (as computed by Equation (18)). Moreover, we have analyzed this
effect for all the three different cases reported in Theorem 5.3 (i.e. for S1 ≤ S2 ∧ K1 ≤ K2,
S1 ≤ S2 ∧ K1 > K2 and S1 > S2). In general, due to the structure of programs, the additional
cache reload latency resulting from the indirect effect is minimal. In the worst case (over all the used
benchmarks from [Gustafsson et al. 2010]), the indirect effect of preemption is around 8% of the
total CRPD cost computed by our analysis.

Case studies - papabench and Debie. We have also evaluated our framework on two freely
available embedded software - papabench [Nemer et al. 2006], a derivation from the unmanned
aerial vehicle (UAV) controller Paparazzi and DEBIE-I DPU [Kuitunen et al. 2001], an in-situ
space debris monitoring instrument developed by Space Systems Finland Ltd. The controller of
papabench contains two modules, fly by wire and autopilot. fly by wire module is
responsible for managing radio-command orders, whereas the autopilotmodule runs the navigation
and stabilization tasks of the aircraft. Table II(a) and Table II(b) describe the set of tasks used from
papabench and DEBIE-I DPU, respectively. We evaluate our framework for different preemp-
tion scenarios that may appear in some executions of papabench and DEBIE-I DPU software.
For the following experiments, we choose a 4-way, 16 KB L1 cache and an 8-way, 128 KB L2 cache.
The configuration of caches are typical for embedded processors, such as the Freescale i.MX31
processor equipped with an ARM1136 CPU [Freescale 2008]. Figure 12(a) shows the combined

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 S. Chattopadhyay and A. Roychoudhury

Table II. (a) Papabench task set used for evaluation, (b) Debie task set used for evaluation

Task Description code size (bytes)

T1 navigation task 20240

T2 stabilisation task 2744

T3 SPI serial link control 1 1840

T4 GPS control 4048

T5 fly by wire servo control 1696

T6 radio control 5520

T7 SPI serial link control 2 992

Task Description code size (bytes)

T1 telecommand 23288

T2 health monitoring 1 448

T3 Sensor unit (SU) interface task 1 6512

T4 Sensor unit (SU) interface task 2 4392

T5 Sensor unit (SU) interface task 3 1320

T6 health monitoring 2 16992

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

T1+{T2}

T1+{T3}

T4+{T5}

T5+{T6}

T2+{T6}

T1+{T2,T6}

O
v
e

re
s
ti
m

a
ti
o

n
 r

a
ti
o

(a) Preemption scenario

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with T7
preemption + L2 cache shared with T7

 0

 0.5

 1

 1.5

 2

 2.5

T2+{T1}

T3+{T1}

T4+{T1}

T5+{T1}

O
v
e

re
s
ti
m

a
ti
o

n
 r

a
ti
o

(b) Preemption scenario

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with T6
preemption + L2 cache shared with T6

Fig. 12. WCET+#p ·CRPD overestimation for (a) papabench and (b) DEBIE-IDPU. Along the x-axis,A+ {B}
denotes the scenario when task A is preempted by the set of tasks in B (where applicable)

WCET and CRPD overestimation for different preemption scenarios in papabench. On average,
our framework generates around 55% overestimation. For nested preemptions (e.g. preemption of
T1 using T2 and T6 as shown in Figure 12), evicting cache blocks (ECB) are merged from all
the high priority tasks (e.g. evicting cache blocks from T2 and T6). We observe that the overesti-
mation solely due to our CRPD analysis (i.e. comparing results labeled with “preemption” and “no
preemption“) is bounded by 10% on average. Figure 12(b) shows the results obtained for DEBIE-I
DPU software. Unfortunately, concrete inputs for DEBIE-I DPU software is not available in pub-
lic domain. Since simulation requires concrete input values, we cannot run simulation for the set of
tasks in DEBIE-I DPU software (i.e. the set of tasks shown in Table II(b)). Therefore, in Figure
12(b), we present the combined WCET and CRPD overestimation solely due to the presence of L2
caches. The baseline in Figure 12(b) captures WCET and CRPD values when all L1 cache misses
are treated as L2 cache hits. A fraction of such L1 cache misses can also be L2 cache misses and
such L2 cache misses are computed by enabling the analysis of L2 caches. We primarily observe
that the timing is not affected more than 20% due to L2 cache misses induced by preemptions.

Analysis time. We have performed all experiments on an 8-core, Intel Xeon machine with a 4 GB
of RAM and running Fedora core 4 operating system. Our analysis finishes within a few seconds
for most of the experiments. The maximum time taken by our framework is 5 minutes. This was
observed when we analyzed tasks from DEBIE-I DPU, a real-life embedded software.

7. CONCLUSION

In this paper, we have proposed a CRPD analysis framework in the presence of multi-level, non-
inclusive caches. We have shown that the presence of non-inclusive caches poses several new chal-
lenges in estimating the CRPD. These new challenges arise due to the indirect effect of preemption.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Cache Related Preemption Delay Analysis for Multi-level Non-inclusive Caches A:25

We have proved theoretical bounds on the indirect effect of preemption. Based on these theoret-
ical bounds, we have proposed a CRPD analysis framework in the presence of multi-level, non-
inclusive caches. We have performed experiments to evaluate our CRPD analysis framework on
standard WCET benchmarks as well as an unmanned aerial vehicle (UAV) controller and a space
debris monitoring software. Our observations suggest that we can provide precise estimates for
most of the cases. In future, we plan to extend our CRPD analysis framework for data caches and
multi-level, inclusive caches.

Acknowledgements

This work was partially supported by A*STAR Public Sector Funding Project Number 1121202007
- ”Scalable Timing Analysis Methods for Embedded Software”.

REFERENCES

ALTMEYER, S. AND BURGUIERE, C. 2009. A new notion of useful cache block to improve the bounds of cache-related
preemption delay. In ECRTS.

ALTMEYER, S., MAIZA, C., AND REINEKE, J. 2010. Resilience analysis: tightening the CRPD bound for set-associative
caches. In LCTES.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system modeling. Com-
puter 35, 2.

BALAKRISHNAN, G. AND REPS, T. W. 2004. Analyzing memory accesses in x86 executables. In CC.

CHATTOPADHYAY, S., CHONG, L. K., ROYCHOUDHURY, A., KELTER, T., MARWEDEL, P., AND FALK, H. 2012. A unified
wcet analysis framework for multi-core platforms. In RTAS.

CHATTOPADHYAY, S., ROYCHOUDHURY, A., AND MITRA, T. 2010. Modeling shared cache and bus in multi-cores for
timing analysis. In SCOPES.

FREESCALE. 2008. i.MX31 Applications Processor. http://www.freescale.com/files/32bit/doc/data_
sheet/MCIMX31.pdf.

GUSTAFSSON, J., BETTS, A., ERMEDAHL, A., AND LISPER, B. 2010. The Mälardalen WCET benchmarks – past, present
and future. In WCET.

HARDY, D., PIQUET, T., AND PUAUT, I. 2009. Using bypass to tighten WCET estimates for multi-core processors with
shared instruction caches. In RTSS.

HARDY, D. AND PUAUT, I. 2008. WCET analysis of multi-level non-inclusive set-associative instruction caches. In RTSS.

HUYNH, B. K., JU, L., AND ROYCHOUDHURY, A. 2011. Scope-aware data cache analysis for WCET estimation. In RTAS.

KUITUNEN, J., DROLSHAGEN, G., MCDONNELL, J., SVEDHEM, H., LEESE, M., MANNERMAA, H., KAIPIAINEN, M.,
AND SIPINEN, V. 2001. DEBIE-first standard in-situ debris monitoring instrument. EUROPEAN SPACE AGENCY-
PUBLICATIONS-ESA SP 473.

LEE, C.-G., HAHN, J., SEO, Y.-M., MIN, S. L., HA, R., HONG, S., PARK, C. Y., LEE, M., AND KIM, C. S. 1998.
Analysis of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Trans. Comput. 47, 6.

LI, X., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2007. Chronos: A timing analyzer for embedded software.
Science of Computer Programming. http://www.comp.nus.edu.sg/˜rpembed/chronos.

LI, Y., SUHENDRA, V., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2009. Timing analysis of concurrent programs
running on shared cache multi-cores. In RTSS.

NEGI, H. S., MITRA, T., AND ROYCHOUDHURY, A. 2003. Accurate estimation of cache-related preemption delay. In
CODES+ISSS.

NEMER, F., CASSÉ, H., SAINRAT, P., BAHSOUN, J., AND DE MICHIEL, M. 2006. Papabench: a free real-time benchmark.
In WCET Workshop.

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay analysis. In EMSOFT.

TAN, Y. AND MOONEY, V. 2004. Integrated intra- and inter-task cache analysis for preemptive multi-tasking real-time
systems. In SCOPES.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction by separated cache and path
analyses. Real-Time Systems 18, 3.

TOMIYAMA, H. AND DUTT, N. D. 2000. Program path analysis to bound cache-related preemption delay in preemptive
real-time systems. In CODES.

YAN, J. AND ZHANG, W. 2008. WCET analysis for multi-core processors with shared l2 instruction caches. In RTAS.

ZAHRAN, M. M., ALBAYRAKTAROGLU, K., AND FRANKLIN, M. 2007. Non-inclusion property in multi-level caches
revisited. I. J. Comput. Appl. 14, 2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

