
Debugging as a Science, that too, when your
Program is Changing

Abhik Roychoudhury 1

School of Computing
National University of Singapore

Abstract

Program debugging is an extremely time-consuming process, and it takes up a large portion of software
development time. In practice, debugging is still very much of an art, with the developer painstakingly
going through volumes of execution traces to locate the actual cause of an observable error. In this work,
we discuss recent advances in debugging which makes it systematic scientific activity in its own right. We
explore the delicate connections between debugging and formal methods (such as model checking) in the
overall task of validating software. Moreover, since any deployed software undergoes changes in its lifetime,
we need debugging methods which can take the software evolution into account. We show how symbolic
execution and Satisfiability Modulo Theories (SMT) solvers can be gainfully employed to greatly automate
software debugging of evolving programs.

Keywords: Software Debugging, Symbolic Execution.

1 Introduction

Software development is at the heart of our everyday societal infra-structure, and
software debugging is key to reliable software development. A study in 2002 by
the United State Department of Commerce’s National Institute for Standards and
Technology (NIST) mentioned that software bugs or errors cost $60 billion annually
or about 0.6% of USA’s gross domestic product [1]. The same study also mentions
that more than a third of these costs, or $22 billion can be saved by building better
testing and debugging infra-structure.

The limited short-term memory of human beings causes smart programmers
to make dumb mistakes. Moreover, the effect of errors thus introduced show up
in unexpected places during software testing. It is truly a difficult problem to
locate the error cause from an observed error - the art of debugging. In other
words, debugging denotes method(s) for detecting causes of unexpected observable
behavior in computer programs (such as a program crashing, or an unexpected
output value being produced).

1 Email: abhik@comp.nus.edu.sg

c©2009 Published by Elsevier Science B. V.

mailto:abhik@comp.nus.edu.sg

Roychoudhury

The social and economic importance of software debugging is enormous. To-
day, more and more functionalities in our daily life are controlled by software. Due
to the overwhelming growth of embedded systems, software-controlled devices are
ubiquitous — automotive control, avionics control and consumer electronics be-
ing prominent application domains. Many of these software are safety-critical and
should be validated extensively. This accentuates the importance of software de-
bugging in our daily lives.

Technically, the task of software debugging is an extremely time-consuming and
laborious phase of software development. An introspective survey on this topic in
2002 [2] mentions the following: “Even today, debugging remains very much of an
art. Much of the computer science community has largely ignored the debugging
problem ... over 50 percent of the problems resulted from the time and space chasm
between symptom and root cause or inadequate debugging tools.”

Let us first explain in a simple way what the authors mean by “chasm between
symptom and root cause”. Following is a program fragment to illustrate this issue.

1. void setRunningVersion(boolean runningVersion){

2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. if (savedValue == null)

Assume that the bug is in line 4, where the variable savedValue should be set
to something other than an empty string. Thus, line 4 is the root cause of this
particular error. However, this wrong value may be propagated elsewhere (e.g. via
line 6 in the above code) and the program may make several decisions based on
this wrong value. Thus, the error may be manifested much later in the program
execution and in a completely different line in the program. We need automated
tools to detect the root cause from the manifested error!

Organization
The rest of this article is organized as follows. In Section 2 we review the state-

of-the-practice in debugging. In particular, we discuss the commercially available
debugging tools. In Section 3, we review some advances in debugging methods in
the past decade where the bug is localized via trace comparison based dynamic
analysis. In Section 4 we explore the connections between debugging methods and
formal verification techniques like model checking. In Section 5 we grapple with the
realistic issue of debugging evolving programs — where the program changes from
one version to another. Concluding remarks appear in Section 6.

2

Roychoudhury

Fig. 1. Snapshots of commercially available debugging tools — VBwatch debugger for VisualBasic.

2 Commercially Available Tools

Most of us have grown up writing programs. If we write them, assuming we are
writing a substantial piece of code, we also need to debug. Now how do we debug
the programs we actually write? Do we do a manual code-review? Do we test them?
Do we model check them? In other words, how does a programmer today go about
injecting higher reliability in the software he/she is writing? A simple answer to our
question will come from the tools that go by the name of “debugging tools”. We
need to understand them in order to appreciate the need for systematic debugging,
or the principle of debugging as a science. Our question here is more about the
state-of-the-practice rather than the state-of-the-art. In our day-to-day software
development activity, how do we ensure that the programs work “as desired”.

Existing tools for checking program executions are extremely manual in nature.
They allow a user to step through the execution sequence, set specific control loca-
tions as breakpoints and view specific program variables as breakpoints. However
the programmer has to guide the entire process. These tools only allow a pro-
grammer to trace and check the execution manually. These tools do not analyze
the program execution, thereby making the debugging process manual and burden-
some.

3

Roychoudhury

S f l R P l Testing

Ch

Successful Run Pool Testing

F ili R S f l R

Choose

Failing Run Successful Run

Difference Metric
Compare Execution

Difference As bug report

Fig. 2. Fault Localization Methods.

The typical tools available for this purpose are command line tools such as gdb
(for C) or a similar tool jdb (for Java). These command line tools simply allow
the programmer to step through the execution of a test case, stopping it at places
and observing variable values. The entire process in such command line tools is
manual, the programmer must step through the execution, the programmer must
stop the execution at desired points (by setting a breakpoint), and the programmer
must decide which variables to look at in these breakpoints. Due to the short-
term memory of humans, such a manual process quickly goes out of hand for large
programs.

Visual Interfaces are not enough
Sometimes these tools also come with a visual interface. In Figure 1, we have

shown a snapshot of the Visual Basic debugger VBWatch which monitors a program
execution, allowing users to set breakpoints. It collects enough information about
the execution so as to be able to print out the call stack (the procedures called),
values of global variables, which program objects are being used and so on. Similar
tools are also available for other programming languages e.g., Visual Studio tools
for Visual C++. The key point is that all these tools simply monitor and collect
information about a program execution. They do not analyze the control and data
flow / dependencies in an execution for understanding why a test case failed.

3 Fault Localization by Trace Comparison

Simply visualizing a trace and manually examining it is not enough. One idea
which has sometimes been pursued with varying degrees of success, is to compare
an execution run with other execution runs. Figure 2 depicts the working of fault
localization methods. We start with a failing run (the test input which shows an

4

Roychoudhury

1. if (Climb)
2. separation = Up;
3. else
4. separation = Up + 100;
5. if (separation > 150)
6. upward = 1;
7. else
8. upward = 0;
9. if (upward > 0)
10. ...
11. printf(‘‘Upward");
12. else
13. ...
14. printf(‘‘Downward");

Fig. 3. Example program fragment from Siemens benchmark suite

unexpected output), and a pool of successful runs (possibly found via methods
like coverage based testing). A successful run corresponds to a test input (and its
trace) which does not show unexpected behavior. Using a difference metric (which
computes a difference between runs), we choose a successful run from the successful
run pool. Once again, we use the difference metric to compute the difference between
the chosen successful run and the failing run. This difference is then given as the
bug report.

To illustrate the method further, it is best to give an example. Our example is
a fragment of the TCAS program from the Siemens benchmark suite [3] which has
been extensively used in the software engineering community for research in test-
ing/debugging. The TCAS program is an embedded software for altitude control.
In Figure 3, we show a fragment of the program. Note that Climb and Up are input
variables of the program. There is a bug in the following program fragment, namely
lines 2 and 4 are reversed in order. In other words, line 2 should be separation =
Up + 100 and line 4 should be separation = Up.

Now, consider an execution of the above program fragment with the inputs
Climb = 1 and Up = 100. The execution will lead to “Downward” being printed.
Clearly, this is unexpected since the developer would expect “Upward” to be printed
for these inputs. Thus, the trace for the inputs Climb = 1, Up = 100 is a failing
run which needs to be debugged.

We now have an example of a failing run, but what is a successful run? A
successful run is simply one where the program output is as expected. So, if the pro-
grammer expects the output to be “Upward” the program should print “Upward”,
and if the programmer expects the output to be “Downward”, the program should
print “Downward”. Consider the program execution with the inputs Climb = 0
and Up = 0. The output in this case is “Downward” and this matches the devel-
oper’s expectations. Hence we deem this as a successful run. Usually, the process of
determining whether a given run is failed or successful cannot be fully automated.
This involves matching the program output with the developer’s expectation — so
the task of articulating the developer’s expectation remains manual.

5

Roychoudhury

We have now explained what we mean by failing run and successful run. Our
task is to debug a given “failed” run – explain why it failed – that is, why the
program output was not as expected. We are trying to do so by comparing it with
a successful run (where the program output was as expected) in order gain insights
about what went wrong in the failed run. The computed “difference” between the
failed run and the chosen successful run is reported to the programmer as the bug
report. The key questions now are:

• given a failed run, how to choose a successful run?
• given a failed and a successful run, how to compute their difference?

Both the questions have their answer in a evaluation metric for execution runs. A
common (and very rough) metric is the set of statements executed in an execution
run. If we have a successful run and a failed run we can compute their difference
by computing the difference of the set of statements executed. The question now
is how to get a successful run? In other words, how do we choose a successful run
corresponding to a given failed run σf? We will choose a successful run σs such that
the set of statements executed in σs is “close” to the set of statements executed in
σf .

Thus, given a program P and failed execution run σf in P we can do the fol-
lowing:

• Typically the program P will be endowed with a test suite (set of test cases)
based on some coverage criteria (covering all statements or all branches in the
program). We construct the execution runs for the test cases from the test suite.
Let this set of execution runs be Runsall(P).

• From among the execution runs in Runsall(P), we chose those which are success-
ful, that is, runs where the program output is as per the programmer’s expecta-
tions. Let this set be SuccRunsall(P); clearly SuccRunsall(P) ⊆ Runsall(P).

• We choose an execution run σs ∈ SuccRunsall(P) such that the quantity |stmt(σf)−
stmt(σs)| is minimized. Here stmt(σ) is the set of statements in an execution run
σ and |S| is the cardinality or the number of elements in a set S. Note that
for two sets S1 and S2, the quantity S1 − S2 denotes the set difference, that is,
elements appearing in S1 but not in S2.

Thus, we choose a successful execution run σs, such that there are only few state-
ments appearing in the failed run σf , but not in σs. The idea here is that if a
statement appears only in the failed run but not in the successful run — it is a
likely error cause.

In our running example, the inputs Climb = 1 and Up = 100 lead to an un-
expected output. The set of statements executed in this failed execution run is
{1, 2, 5, 7, 8, 9, 13, 14}. Furthermore, the inputs Climb = 0 and Up = 0 lead to an
expected output. The set of statements executed in this successful execution run is
{1, 3, 4, 5, 7, 8, 9, 13, 14}. So, the bug report is the difference between these two sets

{1, 2, 5, 7, 8, 9, 13, 14} − {1, 3, 4, 5, 7, 8, 9, 13, 14} = {2}

Once this line is pointed out to the developer, hopefully he/she will be able to locate
the error in line 2.

6

Roychoudhury

Note here that the choice of successful execution run is crucial. Consider an
execution of the program in Figure 3 with the inputs Climb = 1 and Up = 200.
When executed with these inputs, the program will print “Upward”, which is what
the developer expects. So, the execution run for these inputs is deemed as a suc-
cessful run. What would have happened if we chose this execution run to compare
with our failed execution run (the one resulting from the inputs Climb = 1 and Up
= 100). The set of statements executed for the inputs Climb = 1 and Up = 200
is {1, 2, 5, 6, 9, 10, 11}. So, in this case the bug report (the difference in executed
statements between the failed run and the chosen successful run) would have been

{1, 2, 5, 7, 8, 9, 13, 14} − {1, 2, 5, 6, 9, 10, 11} = {7, 8, 13, 14}

The bug report in this case consists of more statements. Moreover, the statements do
not pinpoint to the actual error cause in the program, they are only manifestations
of the error cause. This simple example should demonstrate to the reader that the
choice of successful run is crucial for the usefulness of the bug report generated by
fault localization methods. Thus, we need systematic methods to choose a successful
run corresponding to a failed execution run. Research results on this problem have
been reported in [4]. More discussion on lightweight software debugging methods
appear in [5].

What is needed
To establish debugging as a scientific activity, it should proceed by analysis —

of the program and/or the failed execution trace. Even if we need to compare the
failed execution trace with other traces, we should be able to derive the program
inputs for these other traces via formal analysis, rather than by heuristics. The
key challenge is, of course, how to build debugging methods with sound formal
foundations which scale to real-life industrial software.

4 Debugging vs Model Checking

When we plan to build debugging methods with formal foundations, one obvious
way is to base it on existing formal methods. Model checking and theorem proving
present themselves as natural candidate methods on which a debugging technique
may be based on. Indeed, many of the existing literature loosely refer to model
checking as a method for debugging! In doing so, they simply mean that model
checking can be employed on software for finding latent bugs. However, from the
end-user perspective, model checking and debugging are very different software pro-
cesses ! In the following, we illustrate these differences.

Figure 4 illustrates the fundamental differences between debugging and model
checking. On the left-hand side of the figure, we show how debugging works. Given
a program, we run test inputs against the program. If the output of the program
is “as expected”, we call the test a successful test, otherwise it is a failed test. In
this case, suppose with input == 0, we obtain output == 0 and this is not “as
expected”. The process of debugging is supposed to find out why we obtained an
unexpected output for this particular test input. Thus, this is a situation where we
have a witness showing the program error, but we do not know what the error is!

7

Roychoudhury

input = 0

P

P

P
G(pc = end ⇒output > input)

output = 0
Model Checker

Counter‐example:
input = 0, output = 0

We should have (output > input)

(a) Debugging (b) Model Checking

Fig. 4. Model Checking and Debugging as rather different software processes.

Debugging is supposed to find out where exactly in the program the error is, which
is causing the unexpected observable output.

On the right-hand side of Figure 4, we show how model checking works. Here the
model checker takes in the buggy program and a temporal property, say in Linear-
time Temporal Logic (LTL). The temporal property captures certain “requirements”
which the program should meet. We have provided the LTL property G (pc ==
end ⇒ output > input). Here pc is the program counter and end is the control
location at the end of the program. Thus, the property is saying that at the end of
the program, we should have output > input. If indeed the program is buggy and
does not satisfy this property, the model checker produces a counter-example trace
which witnesses a violation of the property being verified. The trace corresponding
to input ==0 which leads to output == 0 is one such trace. So, in this case we
are producing the buggy trace — which we assume to have in program debugging.
On the other hand, program debugging finds out which unspecified (or implicit)
program requirement is violated — this is the error cause. In the case of model
checking, this program requirement is made explicit by the user providing it as a
temporal property.

Several papers on software model checking often refer to the technique as a tool
for finding program bugs, and hence model checking is also often called as a debug-
ging method. However, model checking is a static checking method which checks
code. On the other hand, conventional debugging is a dynamic checking method
which analyzes an execution trace and explains an observable error. Moreover, as
pointed out in the preceding, debugging takes in an “erroneous” execution trace,
where the programmer is trying to find out what the “error” is. Model checking
on the other hand takes in a formal definition of what is an “erroneous” execu-
tion trace (any trace violating the given LTL property say), and searches for an
erroneous execution trace.

8

Roychoudhury

5 Debugging of Evolving Programs

Failed input tTest Input t passes here
N i t t’

Buggy
Old stable
program P

New input t’

ggy
program P’

Path condition f

program P

P h di i f’

h

Path condition f Path condition f’

h ’Path π
for test tPath σ

Path π’
for test t’

2. Compare π and π’ to get bug report

1. Solve f ∧ ¬f’ to get another input t’

Fig. 5. Pictorial description of debugging method for evolving programs [6]

We now move on to the task of debugging various versions of a program. In doing
so, we recognize the widely accepted reality in any large-scale software development
- a complex piece of software is never written from scratch. Usually a program
evolves from one version to another. When we change a program version to produce
a new version, we may introduce “bugs”. Thus, the problem formulation involves
two program versions — an old stable program P , and a new buggy program P ′.
We are debugging the behavior of a test input t which forms a legal input of both
the program versions. Moreover, test input t passes in P and fails in P ′. In other
words, the behavior of test input t is as expected in program P , while it shows
unexpected behavior in program P ′. The unexpected behavior can be in the form
of an unexpected output, or a program crash.

Given such a debugging task, we can solve it as follows. We perform concrete
as well as symbolic execution of test input t on programs P and P ′. By performing
symbolic execution, we can gather the path condition — a formula capturing
the set of inputs which follow the same program path as that of t. Let the path
conditions of t in programs P , P ′ be f and f ′ respectively.

Recall that, a solution to the formula f denotes an input which follows the same
path as t in program P . Similarly, a solution to the formula f ′ denotes an input
which follows the same paths as t in program P ′. We now find a solution to f ∧¬f ′.
Let t′ be such a solution. What can we say about t′? We know the following facts:

• t′ follows the same path as that of t in the old stable program P .
• t′ and t follow different program paths in the new buggy program P ′.

Assuming the old stable program P to be “correct”, we can therefore infer that
the behavior of t and t′ are intended to be “similar” — to the extent that they
follow the same program path in P . However, the behavior of t and t′ differ in the

9

Roychoudhury

int inp, outp;

scanf("%d", &inp);

if (inp !=0){

outp = func1(inp);

} else{

outp = func2(inp);

}

printf("%d", outp);

Program P

int inp, outp;

scanf("%d", &inp);

if (inp !=0 && inp !=1){

outp = func1(inp);

} else{

outp = func2(inp);

}

printf("%d", outp);

Program P’

0 -1, -2,…,
1,2,3,…

0,1 -1, -2,…,
2,3,…

Explain inp == 1

using inp == 2

Change

Fig. 6. Two example programs P, P ′ and their input space partitioning. The behavior of the input 1 changes
during the change P → P ′. We choose an input 2 to explain the behavior of the failing input 1 — since
1, 2 are in the same partition in P , but different partitions in P ′.

buggy program P ′. Thus, by comparing the traces of t and t′ in P ′ we can hope to
localize the error cause.

A pictorial description of the debugging method appears in Figure 5. To show
the working of the method, we present an example (similar to [6]). Consider a
program fragment with an integer input variable inp – the program P in Figure 6.
This is the old program version. Note that func1, func2 are functions invoked from
P . The code for func1, func2 is not essential to understanding the example, and
hence is not given. Suppose the program P is slightly changed to the program P ′ in
Figure 6, thereby introducing a “bug”. Program P ′ is the new program version. As
a result of the above bug, certain test inputs which passed in P may fail in P ′. One
such test input is inp == 1 whose behavior is changed from P to P ′. Now suppose
the programmer faces this failing test input and wants to find out the reason for
failure. The debugging method works as follows.

(i) We run program P for test input inp == 1, and calculate the resultant path
condition f , a formula representing set of inputs which exercise the same path
as that of inp == 1 in program P . In our example, path condition f is inp 6= 0.

(ii) We also run program P ′ for test input inp == 1, and calculate the resultant
path condition f ′, a formula representing set of inputs which exercise the same
path as that of inp == 1 in program P ′. In our example, path condition f ′ is
¬(inp 6= 0 ∧ inp 6= 1).

(iii) We solve the formula f ∧¬f ′. Any solution to the formula is a test input which
follows the same path as that of the test input inp == 1 in the old program
P , but follows a different path than that of the test input inp == 1 in the new
program P ′. In our example f ∧ ¬f ′ is

inp 6= 0 ∧ (inp 6= 0 ∧ inp 6= 1)

A solution to this formula is any value of inp other than 0,1 (say inp == 2).

10

Roychoudhury

(iv) Finally, we compare the trace of the test input being debugged (inp == 1) in
program P ′, with the trace of the test input that was generated by solving
path conditions (here inp == 2). By comparing the trace of inp == 1 with
the trace of inp == 2 in program P ′ we find that they differ in the evaluation
of the branch inp !=0 && inp !=1. Hence this branch is highlighted as the
bug report — the reason for the test input inp == 1 failing in program P ′.

We note that for solving the formula f ∧ ¬f ′, we take the help of state-of-the-
art Satisfiability Modulo Theory (SMT) solvers (such as Z3 [7] and STP [8] which
have built-in theories for bitvectors and arrays). SMT solvers can be used to decide
the satisfiability of quantifier-free first order logic formula. All path conditions are
formulae of this kind - universal quantification is not present, and any variable
appearing in the formula is implicitly existentially quantified. We leverage on the
immense progress in the theory and practice of SMT solvers in the past two decades
in our program debugging method.

Details of debugging methods for evolving programs appears in [6]. This ap-
proach can not only debug program versions, but also two completely different im-
plementations of the same protocol. Thus, our solution can also be used to debug
errors in the situation where P , P ′ are two completely different implementations
(of the same protocol specification), rather than being two versions of the same
program. This feature of our method is shown in [6], which reports experiments
from debugging different web-servers (all of which implement the well-known HTTP
protocol).

6 Concluding Remarks

In this article, we have taken a fresh look at software debugging, a task which is cru-
cial for reliable software development. We have reviewed the state-of-the-practice
in software debugging, first by studying the kind of commercial tools available in
the marketplace. We find that these tools are focused on execution visualization
with little focus on execution analysis. We have then discussed lightweight execu-
tion trace analysis methods which often go by the name of fault localization. The
success of such methods depend on the quality of available test data. Finally, we
present the problem of debugging evolving programs, a common situation in any
software development where a program evolves from one version to another. This
is a huge problem in any large-scale software development — for example, consider
the evolution of Microsoft Windows operating system from one version (say Vista)
to another (say Win7).

Our advocated method for debugging evolving programs is built on symbolic
execution and Satisfiability Modulo Theory (SMT) formula solving. With the recent
progress in the scalability of SMT solvers, analysis methods based on symbolic
execution and formula solving have become feasible in practice. Such methods are
based on formal foundations, which most program debugging methods lack. Even
though symbolic execution based test generation has been studied recently [9], the
utility of symbolic execution for program debugging has not been tapped (apart
from the most recent work [6]). The software engineering research community needs
to focus on these directions, building debugging methods with formal foundations

11

Roychoudhury

which scale up to large-scale industrial software. Symbolic dynamic analysis and
SMT formula solving are likely to be key ingredients of such debugging methods.

Acknowledgments

This work was partially supported by a Defense Innovative Research Programme
(DIRP) grant from Defense Science and Technology Agency (DSTA), Singapore.

References

[1] National Institute of Standards & Technology. The economic impacts of inadequate infrastructure for
software testing, 2002. http://www.nist.gov/director/prog-ofc/report02-3.pdf.

[2] B. Hailpern and P. Santhanam. Software debugging, testing and verification. IBM Systems Journal,
41(1), 2002.

[3] M. Hutchins et al. Experiments on the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In ACM/IEEE International Conference on Software Engineering (ICSE), 1994.

[4] L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing execution runs for software fault
localization. In International Conference on Compiler Construction (CC), 2006.

[5] A. Roychoudhury. Embedded Systems and Software Validation. Morgan Kaufmann, 2009.

[6] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. DARWIN: An approach for Debugging Evolving
Programs. In Joint meeting of the European Software Engineering Conference (ESEC) and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE), 2009.

[7] L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), 2008.

[8] V. Ganesh and D. Dill. A decision procedure for bit-vectors and arrays. In International Conference on
Computer Aided Verification (CAV), 2007.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In International
Conference on Programming Language Design and Implementation (PLDI), 2005.

12

http://www.nist.gov/director/prog-ofc/report02-3.pdf

	Introduction
	Commercially Available Tools
	Fault Localization by Trace Comparison
	Debugging vs Model Checking
	Debugging of Evolving Programs
	Concluding Remarks
	References

