
A Framework to Model Branch Prediction for WCET Analysis

Tulika Mitra
Department of Computer Science

School of Computing
National University of Singapore

Singapore 117543
tulika@comp.nus.edu.sg

Abhik Roychoudhury
Department of Computer Science

School of Computing
National University of Singapore

Singapore 117543
abhik@comp.nus.edu.sg

In this paper, we present a framework to model
branch prediction for Worst Case Execution Time
(WCET) analysis. Our micro-architectural modeling
is completely generic, and parameterizable w.r.t. the
currently used branch prediction schemes. It auto-
matically derives linear constraints on the total mis-
prediction count from the control flow graph of the
program. These constraints can be solved by any
integer linear programming (ILP) solver to estimate
the WCET.

Current generation processors perform control flow
speculation through branch prediction, which pre-
dicts the outcome of branch instructions. If the pre-
diction is correct, then execution proceeds without
any interruption. For incorrect prediction, the spec-
ulatively executed instructions are undone, incurring
a branch misprediction penalty between 3-19 clock
cycles. If branch prediction is not modeled, all the
branches in the program must be conservatively as-
sumed to be mispredicted for finding the WCET.
This pessimism results in as much as 60− 70% over-
estimation for some of the benchmarks in this paper,
even assuming a 3 clock cycle branch misprediction
penalty.

A classification of branch prediction schemes ap-
pears in Figure 1. Branch prediction can be static or
dynamic. Static schemes associate a fixed prediction
to each branch instruction via compile time analy-
sis. Almost all modern processors, however, predict
the branch outcome dynamically based on past exe-
cution history. Dynamic schemes are more accurate

Branch pred. schemes

Static Dynamic

Local Global

GAg gshare gselect

Figure 1: Classification of Branch Prediction
Schemes. At each level, the more widely used cat-
egory is underlined.

than static schemes, and in this work we study only
dynamic branch prediction. The first dynamic tech-
nique proposed is called local branch prediction [4],
where each branch is predicted based on its last few
outcomes. This scheme uses a 2n-entry branch predic-
tion table to store the past branch outcomes, which
is indexed by the n lower order bits of the branch ad-
dress. In the simplest case, each prediction table en-
try is 1-bit and stores the last outcome of the branch
mapped to that entry. When a branch is encountered,
the corresponding table entry is looked up and used
as the prediction. When a branch is resolved, the cor-
responding table entry is updated with the outcome.
A more accurate version of local scheme uses k-bit
counter per table entry.

1

Most modern processors however use global branch
prediction schemes [4] (also called correlation based
schemes), which are more accurate. Examples of pro-
cessors using global branch prediction include Intel
Pentium Pro, AMD, Alpha as well as embedded pro-
cessors IBM PowerPC 440GP and SB-1 MIPS 64. In
these schemes, the prediction of the outcome of a
branch I not only depends on I’s recent outcomes,
but also on the outcome of the other recently exe-
cuted branches. Global schemes can exploit the fact
that behavior of neighboring branches in a program
are often correlated. Global schemes uses a single
shift register, called branch history register (BHR) to
record the outcomes of n most recent branches. As
in local schemes, there is a global branch prediction
table in which the predictions are stored. The various
global schemes differ from each other (and from local
schemes) in the way the prediction table is looked up
when a branch is encountered.

Little work has been done to study the effects of
branch prediction on WCET. Effects of static branch
prediction have been investigated in [1, 3]. However,
most current day processors (Intel Pentium, AMD,
Alpha, SUN SPARC) implement dynamic branch
prediction schemes, which are more difficult to model.
To the best of our knowledge, [2] is the only other
work on timing estimation under dynamic branch
prediction. However, their technique only models the
effects of local prediction schemes.

The starting point of our analysis is the control flow
graph (CFG) of the program. Let vi denote the num-
ber of times block i is executed, and let ei,j denote the
number of times control flows through the edge i→ j.
As inflow equals outflow, vi =

∑
j→i ej,i =

∑
i→j ei,j .

We provide bounds on the maximum number of it-
erations for loops and maximum depth of recursive
invocations for recursive procedures. These bounds
can be user provided, or can be computed off-line for
certain programs.

Let costi be the execution time of basic block i
assuming perfect branch prediction. Given the pro-
gram, costi is a fixed constant for each i. Then, the
total execution time of the program is

∑
i(costi ∗vi+

penalty ∗ mi) where penalty is a constant denoting
the penalty for a single branch misprediction; mi is
the number of times the branch in block i is mispre-

dicted. By maximizing this objective function we can
get WCET.

Modeling Prediction Schemes To determine
the prediction of a block i, we first compute the index
into the prediction table. We define vπi and mπ

i : the
execution count and the misprediction count of block
i when branch in i is executed with index = π. By
definition:

mπ
i ≤ vπi mi =

∑
πm

π
i vi =

∑
π v

π
i

The prediction schemes differ from each other pri-
marily in how they index into the prediction table.
To predict a branch I, the index computed can be a
function of: (a) the past execution trace (history) and
(b) address of the branch instruction I. In the GAg
scheme, the index computed depends solely on the
history and not on the branch instruction address.
Other global prediction schemes (gshare, gselect) use
both history and branch address, while local schemes
use only the branch address.

Our modeling is independent of the definition of
the prediction table index π. Hence it can apply to
any branch prediction scheme that uses a single pre-
diction table. To model the effect of different branch
prediction schemes, we only alter the meaning of π,
and show how π is updated with the control flow.

In the case of GAg, this index is the outcome of
last k branches before block i is executed. These k
outcomes are recorded in the Branch History Register
(BHR). To model the change in history due to control
flow, we use the left shift operator ; thus left(π, 0)
shifts pattern π to the left by one position and puts
0 as the rightmost bit. We define:

Definition 1 Let i→ j be an edge in the control flow
graph and let π be the BHR content at basic block i.
The change in history pattern on executing i → j is
given by Γ(π, i→ j) = π if i→ j is an unconditional
jump. If i → j is a taken (non-taken) branch then
Γ(π, i→ j) is left(π, 0) (left(π, 1)).

In the popular gshare [4] scheme, the BHR is XOR-
ed with last n bits of the branch address to look
up the prediction table. Usually, gshare results in

2

Pgm. gshare GAg local
Mispred Mispred Mispred

Obs. Est. Obs. Est. Obs. Est.
check 3 3 3 3 198 198
matsum 204 204 204 204 200 200
matmul 223 223 223 223 200 200
fdct 7 7 7 7 4 4
fft 3678 6165 3398 5175 4129 5154
isort 9687 9952 587 598 399 399
bsearch 9 9 9 10 6 7
eqntott 203 205 202 206 203 204

Table 1: Observed and estimated misprediction count with gshare, GAg, and local schemes.

a more uniform distribution of table indices com-
pared to GAg. We define the index π as π =
historym ⊕ addressn(I) where m,n are constants,
n ≥ m, ⊕ is XOR, addressn(I) denotes the lower
order n bits of I’s address, and historym denotes the
most recent m branch outcomes (which are XOR-ed
with higher-order m bits of addressn(I)). And,

Γgshare(π, i→ j) = Γ(historym, i→ j)⊕addressn(I)

In local schemes, the index π for branch instruction
I is the least significant n bits of I’s address, denoted
addressn(I) (n is a constant). Here π is indepen-
dent of the past execution history of other branches.
The update of π due to control flow is given by
Γlocal(π, i → j) = addressn(J), where addressn(J)
denotes the least significant n bits of the last instruc-
tion J in basic block j.

Bounding Mispredictions Given the definition
of π and Γ, we derive inflow and outflow constraints
on the flow of π through the control flow graph to de-
rive upper bounds on vπi . To bound mπ

i , we note the
following. Suppose there is a misprediction of the
branch in block i with history π. This means that
certain blocks (maybe i itself) were executed with
history π, the outcome of these branches appear in
the πth row of the prediction table, and the outcome
of these branches must have created a prediction dif-
ferent from the current outcome of block i. To model
mispredictions, we therefore capture repeated occur-
rence of a history π during program execution with

differing outcomes; we provide constraints to bound
such occurrences. Details of our modeling appear in
[5] and are ommitted here for space considerations.

Experimental Results We selected eight different
benchmarks for our experiments. We assumed zero
cache misses and a perfect processor pipeline with
no stalls except for penalty due to misprediction of
conditional branches. These assumptions, although
simplistic, allow us to separate out and measure the
accuracy of our estimation technique. We assumed
that the branch misprediction penalty is 3 clock cy-
cles (as in the Intel Pentium processor). We used the
SimpleScalar architectural simulation platform in the
experiments. By changing SimpleScalar parameters,
we could change the branch prediction scheme for the
experiments.

To evaluate the accuracy of our branch prediction
modeling, we present the experiments for three dif-
ferent branch prediction schemes: gshare, GAg and
local. Since finding the worst case input of a bench-
mark (which produces the actual WCET) is a hu-
man guided and tedious process, we only measured
the actual WCET assuming a 4-entry prediction ta-
ble. The results appear in Table 1. In this table, we
have shown only the observed and estimated mispre-
diction counts to enable clear understanding of the
accuracy of our technique (which models the effect
of branch prediction). Even though not shown here
due to space shortage, the estimation accuracy was
independent of the prediction table size. Our esti-

3

mation technique obtains a very tight bound on the
WCET and misprediction count in all benchmarks
except fft. The reason is that the number of it-
erations of the innermost loop of fft depends on
the loop iterator variable value of the outer loops.
This problem can be solved by providing expressions
on the loop iteration counts instead of constants, as
shown in [2].

Using CPLEX, a commercial ILP solver dis-
tributed by ILOG, on a Pentium IV 1.3 GHz pro-
cessor with 1 GByte of main memory, our timing es-
timation technique requires less than 0.11 second for
all the benchmarks with prediction table size varying
4–1024 entries.

One major concern with any ILP formulation of
WCET is the scalability of the resulting solution. To
check the scalability of our solution, we formulated
the WCET problem for the popular gshare scheme
with branch prediction table size varying from 4–1024
entries. Recall that in gshare, the branch instruction
address is XOR-ed with the global branch history
bits. In practice, gshare scheme uses smaller num-
ber of history bits than address bits, and XORs the
history bits with the higher order address bits [4, 6].
The choice of the number of history bits in a pro-
cessor depends on the expected workload. In our
experiments, we used a maximum of 4 history bits
as it produces the best overall branch prediction per-
formance across all our benchmarks. As Figure 2
shows, the number of variables generated for the ILP
problem initially increases and then decreases. With
increasing number of history bits, number of possible
patterns per branch increases. But with fixed history
size and increasing prediction table size, the number
of cases where two or more branches have the same
pattern starts to decrease. This significantly reduces
the number of ILP variables.

References

[1] K. Chen, S. Malik, and D.I. August. Retargatable
static software timing analysis. In IEEE/ACM
Intl. Symp. on System Synthesis (ISSS), 2001.

4 16 64 256 1K
Number of prediction table entries

0

100

200

300

400

500

600

N
um

be
r

of
 v

ar
ia

bl
es

 in
 I

L
P

fo
rm

ul
at

io
n

FFT
eqntott
sort
matmul
bsearch
matsum
fdct
check

Figure 2: Change in ILP problem size with increase
in number of entries in the branch prediction table
for gshare scheme

[2] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Journal of Real time Systems, May 2000.

[3] S-S. Lim, J.H. Han, J. Kim, and S.L. Min.
A worst case timing analysis technique for in-
order superscalar processors. Technical report,
Seoul National University, 1998. Earlier version
published in IEEE Real Time Systems Sympo-
sium(RTSS) 1998.

[4] S. McFarling. Combining branch predictors.
Technical report, DEC Western Research Labo-
ratory, 1993.

[5] T. Mitra and A. Roychoudhury. Effects of branch
prediction on worst case execution time of pro-
grams. Technical Report 11-01, School of Com-
puting, National University of Singapore, 2001.

[6] S. Sechrest, C-C. Lee, and T. Mudge. Correla-
tion and aliasing in dynamic branch predictors.
In ACM International Symposium on Computer
Architecture (ISCA), 1996.

4

