JSlice, a Dynamic Slicing Tool for Java Programs
Abhik ROYCHOUDHURY, WANG Tao, GUO Liang
National University of Singapore

Aim/Objective:

Too many functionalities in our daily life are software controlled, and reliable software
development is thus of great importance. JSlice is a tool for program debugging and
comprehension. It partially automates the search for programming errors, thereby improving
software quality as well as programmer productivity.

Why the need?

Current software debugging tools require active participation from the programmer to find the
cause(s) of an observable error. This makes software debugging tedious and extremely time-
consuming. JSlice reduces the programmer’s burden by quickly and automatically identifying likely
causes of a given error.

How does it work?

JSlice highlights a fragment of the program that is likely to be responsible for a particular
unexpected behavior. This is achieved via automated identification of program dependency
chains in an execution trace. To scale up the semantic analysis to huge traces of real-life
programs, JSlice employs certain key technical innovations. These include online compression of
the execution trace, direct analysis of the compressed trace, as well as analysis at the machine-
readable bytecode level to handle programs containing third-party libraries. JSlice works for any
Java program and has a user-base spread over 20 different countries. The tool is available from
http://jslice.sourceforge.net/

e Java- Main.java - Eclipse SDK
File Edit Source Refactor Navigate Search Project Run Window Help

[t @@ 50 (& & o @2 B |1y o9 o [@ava)
(1 Package Expl.. % 1 = O I RVATTI L =H|i%E g 2o
| ek BB E T Database.printRecords = false; //"*NS*" ‘EEE <
| . . i return new Main().inst main{ args); ;
| b ispec } 1% W N
| ‘:.‘:t spec.ben
K public static void main(String[] args) { J b 22 impart des
> runBenchmark(args): < {3, Main
= standa
& Zhelp)
ol 6 public leng harnessMain({ String[] args)} { & "runBer
return runBenchmark(args); Q?’sﬂ,h_m":5
@ = hames
public long inst.main(String[] argv) { m
long starttime = System.currentlimeMiliis();| £ mun(Sh
try {
int iter = 1; //spec.harness,Context.getSpesd();
L _s_pec.hamess.tnmexLaur.pr:intln("db " & iter + " iterations "); EI |
[l L [+] [ﬂ— 77 m_:
i.ProbIemsgjauadoc_Deciaraxicn:ngress:SJicing Criterion View @ Dynamic Slicing Result % R BEE g E'
! |Source File In Folder ILocan'l:m |
Main java Jspec/speci/benchmarks/_200_dh Line &0
Main.java /spec/spec/benchmarks/_200_db Line &5

Main.java [specispecibenc hm_arits!;.;?w;dt

Main.java /specispec/benchmarks/_200_db Line 80
Main.java fspec/specfbenchmarks/_209_db Line 91

Figure 1: Screenshot of the JSlice tool. Highlighted lines appear in green.

1. void setRunningVersion(boolean runningVersion){
2. if(runningVersion) {
3. savedValue = value;
}
else{
4, savedValue =“";
¥
5 this.runningVersion = runningVersion; Example of
program
6. if (savedValue == null){ dependency

Figure 2: JSlice infers program dependency chains leading to an
error, and summarizes them in a bug report.

Execute the program
L Slice |

[tual vViachine

Dynamic Slicing

— | Setof bytecodes |

Figure 3: Architecture of the JSlice tool.

