
1

Modeling Out-of-order Processors
for Software Timing Analysis
Modeling Out-of-order Processors
for Software Timing Analysis

Xianfeng Li Xianfeng Li AbhikAbhik RoychoudhuryRoychoudhury Tulika MitraTulika Mitra

National University of SingaporeNational University of Singapore

Worst Case Execution Time (WCET)Worst Case Execution Time (WCET)

Maximum execution time of a program on a
micro-architecture for all possible inputs
– Required for schedulability analysis

Measurement for all inputs: impractical
– Execute program for selected inputs to get a lower

bound on WCET (Observed WCET)

Analysis
– Employ static analysis to compute an upper bound

on WCET (Estimated WCET)

Observed
Actual
Estimated

WCET AnalysisWCET Analysis

Program path analysis [Shaw’89, Healy’98,..]
– All paths in control flow graph are not feasible

Micro-architectural modeling
– Dynamically variable instruction execution time

Cache, Pipeline [Li’99, Schneider’99, Thieling’00..]
Branch Prediction [Colin’00, Mitra’02]
Out-of-order pipelines [Heckmann’03]

– Based on Abstract Interpretation

We propose a new method for modeling out-
of-order executions

Pipelined program executionPipelined program execution

Divide the execution of an instruction into stages.

Instruction I+1 can proceed before I completes.

Increased throughput, lower overall execution time.

I
I

I
I

I

I+1
I+1

I+1
I+1

I+2
I+2

I+2
I+3

I+3I+4

IF
ID

EX

WB
CM

0

1

2

3

4

SIMPLIFIED
VIEW !!

Complications Complications

Several instructions may reside in the same pipeline Several instructions may reside in the same pipeline
stage in the same clock cyclestage in the same clock cycle
–– An ADD instruction and MUL instruction in the EX An ADD instruction and MUL instruction in the EX

stage since they use different functional unitsstage since they use different functional units

Pipeline Pipeline stallsstalls
–– Instruction I+1 may not proceed to EX since it Instruction I+1 may not proceed to EX since it

depends on the result of instruction Idepends on the result of instruction I

Mask stall latencyMask stall latency by outby out--ofof--order execorder exec
–– If I+1 cannot proceed, let I+2 proceed if all its If I+1 cannot proceed, let I+2 proceed if all its

operands are availableoperands are available

An out-of-order pipelineAn out-of-order pipeline

Taken from Taken from SimpleScalarSimpleScalar architecture simulatorarchitecture simulator

I-1

headtail

I-4

I-2 I-3

IBUF

GPR

FPR

ROB

ALU

MULT

FPU

I+1
I

IF

ID

EX

WB

CM

MemMem => I=> I--buffer (buffer (inorderinorder))

IBUF => ROB (inIBUF => ROB (in--order)order)

ROB => FU (outROB => FU (out--ofof--order), order),
((InstrInstr still in ROBstill in ROB))

FU => ROB (outFU => ROB (out--ofof--order) order)
(forward data) (forward data)

Update register file, free Update register file, free
ROB entry (inROB entry (in--order)order)

2

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D

Instruction A executes 3 cycles

Instruction sequence

Sample out-of-order exec.Sample out-of-order exec.

Partial order of dependences

A
B

C

D

E

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

Sample out-of-order exec.Sample out-of-order exec.

Partial order of dependences

A
B

C

D

E

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

MULTU

ALU
D

D

A

B C

E

Instruction A executes 3 cycles

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

Difficulty in modeling out-of-order exec.Difficulty in modeling out-of-order exec. Timing AnomalyTiming Anomaly

Overall WCET of an instruction sequence cannot be Overall WCET of an instruction sequence cannot be
obtained from WCET of each instructionobtained from WCET of each instruction

Need to consider all possible execution times of each Need to consider all possible execution times of each
instruction to safely estimate WCET !instruction to safely estimate WCET !
–– Expensive enumerationExpensive enumeration

Very different from cache modelingVery different from cache modeling
–– WorstWorst--case cache behavior of an instruction sequence case cache behavior of an instruction sequence

can be safely estimated by considering all cache can be safely estimated by considering all cache
accesses as missesaccesses as misses

To-do list for pipeline modelingTo-do list for pipeline modeling

Safe estimation of WCET of an instruction sequenceSafe estimation of WCET of an instruction sequence
–– Must avoid enumerating all instruction schedulesMust avoid enumerating all instruction schedules

Tight estimation of WCET of an instruction sequenceTight estimation of WCET of an instruction sequence
–– Must avoid too much pessimism in estimating the Must avoid too much pessimism in estimating the

contentions among instructionscontentions among instructions

Estimating WCET of whole programEstimating WCET of whole program
–– Estimating straightEstimating straight--line code starting from different line code starting from different

pipeline statespipeline states
–– Beyond straightBeyond straight--line codeline code

Abstract interpretation approachAbstract interpretation approach

Exec. of an instruction in an abstract pipeline stateExec. of an instruction in an abstract pipeline state
–– IF IF -- Hit or miss in instruction cache Hit or miss in instruction cache

1 1 –– 20 cycles20 cycles
–– ID ID -- Instruction Decode Instruction Decode

1 cycle 1 cycle or more (if ROB is not free)or more (if ROB is not free)
–– EX EX -- Variable Latency instruction Variable Latency instruction

1 1 –– 5 cycles5 cycles
–– WB WB -- Forward results to ROB Forward results to ROB

1 cycle1 cycle
–– CM CM -- Wait for previous instructions to commit Wait for previous instructions to commit

1 1 –– 4 cycles4 cycles (if ROB holds 4 instructions)(if ROB holds 4 instructions)

How to deal with such nonHow to deal with such non--determinacy of timing?determinacy of timing?

3

Abstract interpretation approachAbstract interpretation approach

Consider all possibilities,Consider all possibilities,
–– IF may result in hit or missIF may result in hit or miss
–– EX may take 1 or 2 or 3 or 4 or 5 cyclesEX may take 1 or 2 or 3 or 4 or 5 cycles

…… but exclude those which can be ruled out via AI but exclude those which can be ruled out via AI
over suitable domainsover suitable domains
–– IF of instruction I will never result in a cache missIF of instruction I will never result in a cache miss
–– EX of instruction I will always take 1 cycleEX of instruction I will always take 1 cycle

Propagate the successor states to find all possible Propagate the successor states to find all possible
pipeline states at a control location (fixed point)pipeline states at a control location (fixed point)
–– WCET of a single instruction WCET of a single instruction [Heckmann03][Heckmann03]
–– Whole programWhole program’’s WCET by Integer Linear s WCET by Integer Linear

ProgrammingProgramming

Avoid enumeration, locally first !Avoid enumeration, locally first !

EX of I may take 1 or 2 or 3 or 4 or 5 cyclesEX of I may take 1 or 2 or 3 or 4 or 5 cycles
–– EX of I takes [1,5] clock cyclesEX of I takes [1,5] clock cycles
–– But But ……

Depending on how many clock cycles EX takes, the Depending on how many clock cycles EX takes, the
contentions of the tocontentions of the to--bebe--exec instructions are decidedexec instructions are decided
…… the future pipeline state is decided by such timingthe future pipeline state is decided by such timing

How do we calculate possible pipeline states at each How do we calculate possible pipeline states at each
control location ?control location ?
–– Cannot case split based on the possible timings of Cannot case split based on the possible timings of

EX(I), of courseEX(I), of course
–– Can we avoid this altogether ?Can we avoid this altogether ?

Use Intervals uniformlyUse Intervals uniformly

Ready/Start/EndReady/Start/End of each pipeline stage of each of each pipeline stage of each instrinstr. .
–– IF(I), ID(I), EX(I), WB(I), CM(I)IF(I), ID(I), EX(I), WB(I), CM(I)
–– Bound by an intervalBound by an interval
–– WCET of I = WCET of I = latestlatestend,CM(Iend,CM(I)) –– earliestearlieststart,IF(Istart,IF(I))

Interval for EX(I) includes Interval for EX(I) includes
–– Time to execute ITime to execute I
–– Time to wait for exec I : resolving data dependencesTime to wait for exec I : resolving data dependences
–– Time to wait for executing I: contention for FU fromTime to wait for executing I: contention for FU from

Instructions earlier than I in programInstructions earlier than I in program
Instructions later than I in programInstructions later than I in program

–– Must consider all possibilities without enumerationMust consider all possibilities without enumeration

Computing Intervals – Basic IdeaComputing Intervals – Basic Idea

Consider all pairs (I, J) Consider all pairs (I, J) ∈∈ InstrInstr ×× InstrInstr
–– Assume all Assume all instrinstr. J can delay all . J can delay all instrinstr. I. I
–– Leads to very coarse intervals forLeads to very coarse intervals for

IF(I), ID(I), EX(I), WB(I), CM(I)IF(I), ID(I), EX(I), WB(I), CM(I)
…… hence very coarse WCET of Ihence very coarse WCET of I

–– Rule out certain contentionsRule out certain contentions
Data dependencies, for starters !Data dependencies, for starters !
earliestearliestready,EX(I)ready,EX(I) ≥≥ latestlatestend,EX(Jend,EX(J))
earliestearliestready,EX(Jready,EX(J)) ≥≥ latestlatestend,EX(Iend,EX(I))

–– Refine to get tighter estimatesRefine to get tighter estimates
This again rules out some more contentions !This again rules out some more contentions !

…… until you reach a fixed point until you reach a fixed point

Formal treatmentFormal treatment

Basic blockBasic block B in control flow graph of programB in control flow graph of program
–– Assume clean pipeline state before BAssume clean pipeline state before B

Model execution of B as an Model execution of B as an Execution GraphExecution Graph
–– Nodes of the graph are IF(I), ID(I) etcNodes of the graph are IF(I), ID(I) etc
–– Dependence edges: x Dependence edges: x →→ yy

x must finish before y starts in any schedulex must finish before y starts in any schedule
–– Contention edges: Contention edges: x x →→ yy

x may start before y starts, delaying yx may start before y starts, delaying y

Find WCET of BFind WCET of B
–– Compute interval for ready/start/end of each node.Compute interval for ready/start/end of each node.

Execution GraphExecution Graph

IF(1) ID(1) EX(1) WB(1) CM(1)

IF(2) ID(2) EX(2) WB(2) CM(2)

IF(3) ID(3) EX(3) WB(3) CM(3) EX(3)EX(3)

EX(2)EX(2)

EX(3)EX(3)

EX(2)EX(2)

EX(3)EX(3)

EX(2)EX(2) [1, [1, ∞∞]][0, [0, ∞∞]][0, [0, ∞∞]]
00

[1, [1, ∞∞]][0, [0, ∞∞]][0, [0, ∞∞]]

[5, 10][5, 10][4, 8][4, 8][4, 7][4, 7]
11

[5, 8][5, 8][4, 6][4, 6][4, 4][4, 4]

[5, 9][5, 9][4, 7][4, 7][4, 7][4, 7]
22

[5, 8][5, 8][4, 6][4, 6][4, 4][4, 4]

endendstartstartreadyreadyIterIter..

EX(1) EX(2) EX(3)

cycles [1, 4] [1, 2] [1, 2]

[3, 6] [4, 7]

[3, 3]

[4, 4]

4

Schedulability AnalysisSchedulability Analysis

Processes in task graph allocated to ProcessorsProcesses in task graph allocated to Processors
–– Dependency among processes (edges of task graph)Dependency among processes (edges of task graph)
–– Contention among processes (based on allocation)Contention among processes (based on allocation)

Priorities for processes allocated to same ProcessorPriorities for processes allocated to same Processor
–– Calculate Worst case completion time Calculate Worst case completion time [Yen & Wolf 98][Yen & Wolf 98]

Exec. graph: Dependency/contention between nodesExec. graph: Dependency/contention between nodes
Priorities determined by program order of instructionsPriorities determined by program order of instructions

–– Cannot use the result directlyCannot use the result directly, e.g., e.g.
If If I+kI+k is executing when I becomes ready, is executing when I becomes ready, I+kI+k delays Idelays I

–– Later (lower priority) instructions affect worst case Later (lower priority) instructions affect worst case
completion of EX(I)completion of EX(I)

To-do listTo-do list

Safe estimation of WCET of an instruction sequenceSafe estimation of WCET of an instruction sequence
–– Must avoid enumerating all instruction schedulesMust avoid enumerating all instruction schedules

Tight estimation of WCET of an instruction sequenceTight estimation of WCET of an instruction sequence
–– Must avoid too much pessimism in estimating the Must avoid too much pessimism in estimating the

instruction contentionsinstruction contentions

Estimating WCET of whole programEstimating WCET of whole program
–– Estimating straightEstimating straight--line code starting from different line code starting from different

pipeline statespipeline states
–– Beyond straightBeyond straight--line codeline code

Bounding contextsBounding contexts

For a basic block BFor a basic block B
–– Instructions before B which directly affect the exec. of Instructions before B which directly affect the exec. of

B B ---- ProloguePrologue
–– Similarly, Similarly, EpilogueEpilogue
–– Size of Prologue and Epilogue decided by architectural Size of Prologue and Epilogue decided by architectural

parameters e.g. ROBparameters e.g. ROB

Only dependence/contention from prologue/epilogue Only dependence/contention from prologue/epilogue
considered for estimating WCET(B)considered for estimating WCET(B)
–– Requires estimating intervals for IF/ID of Requires estimating intervals for IF/ID of instrinstr. in . in

prologue and epilogueprologue and epilogue
Done conservatively by assuming max. contentionDone conservatively by assuming max. contention
Imposes finite bound on the context for BImposes finite bound on the context for B

Handling sequences of Basic BlocksHandling sequences of Basic Blocks

-M 0

1 N

IF(1) can happen much before CM(0) – pipeline/o-o-exec

B1

B2

Overlap = End of CM(0) - Ready of IF(1)

Calculate minimum overlap by analyzing exec. graph.

WCET(B2 with B1 as prologue) =

latestend, CM(N) - earliestend,CM(0)

Estimate for entire programEstimate for entire program

Define a constant Define a constant wcet(Bwcet(B) for each basic block B) for each basic block B
–– Max over WCET(B) with all possible prologue/epilogueMax over WCET(B) with all possible prologue/epilogue

WCET of a program T (maximize via ILP solver)WCET of a program T (maximize via ILP solver)
–– T = T = ΣΣ BB wcet(Bwcet(B) *) * nnBB

–– nnBB is a variable denoting number of executions of Bis a variable denoting number of executions of B
–– Bound Bound nnBB via inflowvia inflow--outflow constraints, loop boundsoutflow constraints, loop bounds

NB1 + NB2 = NB = NB3 + NB4
B1 B2

B3 B4

B

Other architectural featuresOther architectural features

Instruction CacheInstruction Cache
–– Classify instructions (similar to AI approach)Classify instructions (similar to AI approach)
–– Always Hit, Always Miss, First Miss, UnknownAlways Hit, Always Miss, First Miss, Unknown
–– Modify execution time of IF(I) based on classificationModify execution time of IF(I) based on classification

1 cycle without cache modeling1 cycle without cache modeling
N cycle if I is classified as always missN cycle if I is classified as always miss
Approximated by [1,N] if I is classified unknownApproximated by [1,N] if I is classified unknown

–– Shows flexibility of the interval based modelingShows flexibility of the interval based modeling

Branch predictionBranch prediction
–– Involves changes to Execution GraphInvolves changes to Execution Graph
–– Extremely involved, see Technical Report for full Extremely involved, see Technical Report for full

modeling and detailed proofsmodeling and detailed proofs

5

Experimental Results
-- Pipeline + I-Cache
Experimental Results
-- Pipeline + I-Cache

RatioRatioEst. WCETEst. WCETObsObs. WCET. WCETProgramProgram

1.151.1512240122401065810658fdctfdct

1.171.171270386127038610834161083416fftfft

1.131.1310293801029380909531909531whetwhet

1.341.34110531105382358235minverminver

1.361.3616283162831194811948ludcmpludcmp

1.351.3559426594264412044120firfir

1.101.10111163111163100867100867matsummatsum

Parameters:
Func. Units: ALU: 1 cycle; MUL: [1, 4]; FPU: [1, 12]
4KB I-Cache: 4-way, 32 sets, 32bytes/line, cache miss: 10 cycles

Experimental Results
-- Pipeline + Branch Prediction
Experimental Results
-- Pipeline + Branch Prediction

RatioRatioEst. WCETEst. WCETObsObs. WCET. WCETProgramProgram

1.151.15105351053591689168fdctfdct

1.171.171282903128290310980461098046fftfft

1.141.1410617211061721933206933206whetwhet

1.281.289020902070537053minverminver

1.281.2814325143251115711157ludcmpludcmp

1.271.2758159581594596745967firfir

1.101.10111744111744101628101628matsummatsum

Parameters:
Func. Units: ALU: 1 cycle; MUL: [1, 4]; FPU: [1, 12]
Gag dynamic branch predictor: 4-bit BHR, 16-entry BHT

SummarySummary

OutOut--ofof--order pipelined execution involves a order pipelined execution involves a
complicated instruction scheduling.complicated instruction scheduling.
–– Timing of the instruction scheduling depends on Timing of the instruction scheduling depends on

Dependence between instructions (data hazard)Dependence between instructions (data hazard)
Contention between instructions (resource hazard)Contention between instructions (resource hazard)

We use We use schedulabilityschedulability analysis methods for tasks analysis methods for tasks
with dependence and contention [Yen & Wolf 98]with dependence and contention [Yen & Wolf 98]
–– Avoid enumeration of cases with interval based Avoid enumeration of cases with interval based

modeling of pipeline evolutionmodeling of pipeline evolution
–– Fixed point on intervals unlike AI approach.Fixed point on intervals unlike AI approach.
–– Integrated with other microIntegrated with other micro--architectural features.architectural features.
–– Currently working on Currently working on exptexpt on a processor with outon a processor with out--ofof--

order pipeline, instruction cache and branch prediction order pipeline, instruction cache and branch prediction

