Modeling Out-of-order Processors
#or Software Timing Analysis

Xianfeng Li Tulika Mitra

National University of Singapore

WCET Analysis

= Program path analysis [Shaw'89, Healy'98,..]
— All paths in control flow graph are not feasible

= Micro-architectural modeling
namically variable instruction execution time
= Cache, Pipeline [Li'99, Schneider'99, Thieling'00..]
= Branch Prediction [Colin’00, Mitra’02]
= Out-of-order pipelines [Heckmann'03]
— Based on Abstract Interpretation

= We propose a new method for modeling out-
of-order executions

Complications

= Several instructions may reside in the same pipeline
stage in the same clock cycle

— An ADD instruction and MUL instruction in the EX
stage since they use different functional units

= Pipeline

— Instruction 1+1 may not proceed to EX since it
depends on the result of instruction |

by out-of-order exec

— If 1+1 cannot proceed, let 1+2 proceed if all its
operands are available

Worst Case Execution Time (WCET)

of a program on a
for

— Required for schedulability analysis
= Measurement for all inputs: impractical

— Execute program for selected inputs to get a lower
bound on WCET (Observed WCET)

— Employ static analysis to compute an upper bound
on WCET (Estimated WCET)

Pipelined program execution

Divide the execution of an instruction into stages.
Instruction I+1 can proceed before | completes.

Increased throughput, lower overall execution time.

IF
I

An out-of-order pipeline

= Taken from SimpleScalar architecture simulator
!

Mem => I-buffer (inorder) -

L head
IBUF => ROB (in-order) []) =

ROB => FU (out-of-order),
(Instr still in ROB)

FU => ROB (out-of-order) [ws |
(forward data)

Update register file, free
ROB entry (in-order)

Sample out-of-order exec.

nstruction
MULTO

ALU

Instruction A executes 3 cycles

Latencies

Partial order of dependences

Difficulty in modeling out-of-order exec.

Ready Instruction
Cycle MULTO

T
'
ALY g
'

Instruction A executes 3 cycles
i

MULTO

ALY

" Instruction A executes 4 cycles
Latencies

To-do list for pipeline modeling
= Safe estimation of WCET of an instruction sequence
— Must avoid enumerating all instruction schedules

= Tight estimation of WCET of an instruction sequence
— Must avoid too much pessimism in estimating the
contentions among instructions
= Estimating WCET of whole program

— Estimating straight-line code starting from different
pipeline states

— Beyond straight-line code

Sample out-of-order exec.

Ready Instruction
Cycle

mult

MULTU

! Instruction A executes 4 cycles
Latencies

Partial order of dependences

Timing Anomaly

= Overall WCET of an instruction sequence cannot be
obtained from WCET of each instruction

= Need to consider all possible execution times of each
instruction to safely estimate WCET !

— Expensive enumeration

= Very different from cache modeling

— Worst-case cache behavior of an instruction sequence
can be safely estimated by considering all cache
accesses as misses

Abstract interpretation approach

m Exec. of an instruction in an abstract pipeline state
— IF - Hit or miss in instruction cache
= 1 — 20 cycles
— ID - Instruction Decode
m 1 cycle or more (if ROB is not free)
— EX - Variable Latency instruction
ml-5c¢ 5
— WB - Forward results to ROB
= 1cycle
— CM - Wait for previous instructions to commit
s 1 -4 cycles (if ROB holds 4 instructions)

= How to deal with such non-determinacy of timing?

Abstract interpretation approach
= Consider all possibilities,
— IF may result in hit or miss
— EX may take 1 or 2 or 3 or 4 or 5 cycles
= ... but exclude those which can be ruled out via Al
over suitable domains
— IF of instruction I will never result in a cache miss
— EX of instruction I will always take 1 cycle

= Propagate the successor states to find all possible
pipeline states at a control location (fixed point)

— WCET of a single instruction [Heckmann03]

— Whole program’s WCET by Integer Linear
Programming

Use Intervals uniformly

= Ready/Start/End of each pipeline stage of each instr.
— IF(1), ID(1), EX(1), WB(I), CM(I)
— Bound by an interval
— WCET of | = latest,q oy — €arliestyy,q ixq

= Interval for EX(I) includes
— Time to execute |
— Time to wait for exec | : resolving data dependences

— Time to wait for executing I: contention for FU from
= Instructions earlier than | in program
]

— Must consider all possibilities without enumeration

Formal treatment
= Basic block B in control flow graph of program
— Assume clean pipeline state before B

= Model execution of B as an
— Nodes of the graph are IF(l), ID(I) etc
— Dependence edges: x — Y
= x must finish before y starts in any schedule
— Contention edges: X — Y.
= X may start before y starts, delaying y

= Find WCET of B
— Compute interval for ready/start/end of each node.

Avoid enumeration, locally first !

= EX of | may take 1 or 2 or 3 or 4 or 5 cycles

— But ...

= Depending on how many clock cycles EX takes, the
contentions of the to-be-exec instructions are decided

= ... the future pipeline state is decided by such timing
= How do we calculate possible pipeline states at each
control location ?

— Cannot case split based on the possible timings of
EX(I), of course

— Can we avoid this altogether ?

Computing Intervals — Basic Idea
= Consider all pairs (I, J) € Instr x Instr
— Assume all instr. J can delay all instr. |
— Leads to very coarse intervals for
= IF(I), ID(1), EX(1), WB(I), CM(l)
= ... hence very coarse WCET of |
— Rule out certain contentions
= Data dependencies, for starters !

= This again rules out some more contentions !

= ... until you reach a fixed point

Execution Graph

246)) EX(2) EX(3)

cycles 1,41 2] [1.2]

Schedulability Analysis
= Processes in task graph allocated to Processors
— Dependency among processes (edges of task graph)
— Contention among processes (based on allocation)
= Priorities for processes allocated to same Processor
— Calculate Worst case completion time [Yen & Wolf 98]

= Exec. graph: Dependency/contention between nodes
= Priorities determined by program order of instructions
— Cannot use the result directly, e.g.

= If I+k is executing when | becomes ready, 1+k delays |

— Later (lower priority) instructions affect worst case
completion of EX(I)

Bounding contexts
= For a basic block B

— Instructions before B which directly affect the exec. of
B -- Prologue

— Similarly, Epilogue
— Size of Prologue and Epilogue decided by architectural
parameters e.g. ROB

= Only dependence/contention from prologue/epilogue
considered for estimating WCET(B)

— Requires estimating intervals for IF/ID of instr. in
prologue and epilogue

= Done conservatively by assuming max. contention
= Imposes finite bound on the context for B

Estimate for entire program
= Define a constant wcet(B) for each basic block B

— Max over WCET(B) with all possible prologue/epilogue
= WCET of a program T (maximize via ILP solver)

- T = 35 wcet(B) * ng

— ng is a variable denoting number of executions of B

— Bound ng via inflow-outflow constraints, loop bounds

B2
Bl Ng; +Ngz= Ng= Ngz + Ngg

To-do list
m Safe estimation of WCET of an instruction sequence
— Must avoid enumerating all instruction schedules

= Tight estimation of WCET of an instruction sequence

— Must avoid too much pessimism in estimating the
instruction contentions

— Estimating straight-line code starting from different
pipeline states

— Beyond straight-line code

Handling sequences of Basic Blocks

Bl m 0

B2 1 N
IF(1) can happen much before CM(0) — pipeline/o-0-exec

Overlap = End of CM(0) - Ready of IF(1)

Calculate minimum overlap by analyzing exec. graph.
WCET(B2 with B1 as prologue) =

latest,g cupyy - €arliestyyqcu)

Other architectural features

= Instruction Cache

— Classify instructions (similar to Al approach)

— Always Hit, Always Miss, First Miss, Unknown

— Modify execution time of IF(I) based on classification
= 1 cycle without cache modeling
= N cycle if | is classified as always miss
= Approximated by [1,N] if I is classified unknown

— Shows flexibility of the interval based modeling

= Branch prediction

— Involves changes to Execution Graph

— Extremely involved, see Technical Report for full
modeling and detailed proofs

Experimental Results Experimental Results
-- Pipeline + I-Cache -- Pipeline + Branch Prediction

sParameters: sParameters:
=Func. Units: ALU: 1 cycle; MUL: [1,4]; FPU: [1,12] =Func. Units: ALU: 1 cycle; MUL: [1, 4] FPU: [1, 12]
=4KB I-Cache: 4-way, 32 sets, 32bytes/line, cache miss: 10 cycles dynamic branch predictor: 4-bit BHR, 16-entry BHT

| o
I O N ;
o | =] :

Summary
= Out-of-order pipelined execution involves a
complicated instruction scheduling
— Timing of the instruction scheduling depends on
= Dependence between instructions (data hazard)
= Contention between instructions (resource hazard)

= We use schedulability analysis methods for tasks
with dependence and contention [Yen & Wolf 98]

— Avoid enumeration of cases with interval based
modeling of pipeline evolution

— Fixed point on intervals unlike Al approach.
— Integrated with other micro-architectural features.

— Currently working on expt on a processor with out-of-
order pipeline, instruction cache and branch prediction

