Prolonged Password
Prolonged Password

Given:
- A string \(S \) of alphabet characters.
- A function \(f(S,T) \) which transforms each character \(S_i \) into a string \(T_{Si} \).
- An integer \(K \) denoting how many times \(f(S,T) \) is performed, i.e. \(f^K(S,T) \).
- An integer \(M \) denoting the number of queries.
 - Each query contains an integer \(m_i \).

Determine:
- For each query, the \(m_i \)th character of \(f^K(S,T) \)

1 \leq |S| \leq 10^6; 2 \leq |T_x| \leq 50; 1 \leq K \leq 10^{15}; 1 \leq M \leq 1000; 1 \leq m_i \leq 10^{15}.
Prolonged Password

Example:

$S = \text{bccabac}$

$T_a = \text{ab}$

$T_b = \text{bac}$

$T_c = \text{ac}$

$T_d .. T_z$ are not important in this example.

$f^0(S,T) = \text{bccabac}$

$K = 1 \rightarrow f^1(S,T) = \text{bacacabbacabac}$

$K = 2 \rightarrow f^2(S,T) = \text{bacabacabacabacabbacbacabacabacabacabacabacabac}$
Prolonged Password

- How to generate $f^K(S,T)$ for large K?
 - K can be very large, i.e. 10^{15} → a hint for $O(\log K)$ solution

- How to store $f^K(S,T)$?
 - Recall the constraints: $1 \leq |S| \leq 10^6$ and $2 \leq |T_x| \leq 50$
 - The complete $f^K(S,T)$ can be $10^6 \cdot 50^{10^{15}}$
 - Each query falls within the first 10^{15} characters → we cannot store 10^{15} characters
 - We need to output only ONE character per query → we have to exploit this.
Prolonged Password

• We don’t need to generate the whole $f^K(S,T)$.

 • Define $= |f^K(S,T)|$

 • Iterate through the string S to find out which character we should recurse down into.

 • E.g.,

 $\begin{array}{cccccc}
 a & b & a & a & c \\
 \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 30 & 20 & 30 & 30 & 50 \\
 \end{array}$

 Then, the 85th character can be obtained by expanding ‘a’ at index-3.

• $O\left(MK \max_i |T_i| + M|S| \right)$
Prolonged Password

To handle large K: Matrix Exponentiation

$N_{aa} = \text{count of character ‘a’ in } T_a.$
$N_{ab} = \text{count of character ‘b’ in } T_a.$
...
$N_{za} = \text{count of character ‘a’ in } T_z.$
$N_{zb} = \text{count of character ‘b’ in } T_z.$

$r_a = \text{count of character ‘a’}.$
$r_b = \text{count of character ‘b’}.$
...
$r_z = \text{count of character ‘z’}.$

\[
(r_a \ldots r_z) \begin{pmatrix}
N_{aa} & \cdots & N_{za} \\
\vdots & \ddots & \vdots \\
N_{az} & \cdots & N_{zz}
\end{pmatrix}
\]

\[
l^0(c, T) = r \\
l^1(c, T) = r \cdot N \\
l^2(c, T) = r \cdot N \cdot N \\
\ldots \\
l^K(c, T) = r \cdot N^K \\
\]

\[
\text{len}^K(c, T) = \|l^K(c, T)\|_1
\]
Prolonged Password

Another problem: K is too large, $len^K(S, T)$ will be overflow.

Observation:
• $2 \leq |T_i| \rightarrow$ it means the string length doubles at each iteration.
• $2^{10^{15}}$ is way too large, but $m_i \leq 10^{15}$
• $10^{15} \leq 2^{50}$
• We can cut down K by exploiting cycle in the transformation function.

$a \rightarrow bda$
$b \rightarrow cdc$ $a \rightarrow b \rightarrow c \rightarrow a$
$c \rightarrow ab$
Prolonged Password

Summary:
• Cut down K to \(\leq 50 \).
• Solve by recursing and using matrix exponentiation.
Prolonged Password

Summary:
• Cut down K to ≤ 50.
• Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get TLE as $M \leq 1000$.

→ You need to solve all queries at once (in one pass).
Magical String
Magical String

Given:

• A string S which has no substring containing 3 or more identical characters.
• An integer K, the number of maximum operations.

An operation on S: Convert S_i into another character (non-asterisk) s.t. S contains a substring of 3 or more identical characters. Turn such (maximal) substring into an asterisk.

Determine:

❖ The maximum number of characters in S which can be turned into asterisks with at most K operations.

$1 \leq K, |S| \leq 1000$
Magical String

Example:
\[S = abacaac \]

If \(K = 1 \)
\[abacaac \rightarrow abaaac : ab^*c \]
ANS: 4

If \(K = 2 \)
\[abacaac \rightarrow aaacaac : *caac \rightarrow *caaa : *c* \]
ANS: 6
Magical String

Example:

$S = \text{abacaac}$

If $K = 1$

$\text{abacaac} \rightarrow \text{abaaaac} : \text{ab*c}$

ANS: 4

If $K = 2$

$\text{abacaac} \rightarrow \text{aacaac} : \text{*caac} \rightarrow \text{*caaa} : \text{*c*}$

ANS: 6

This example suggests that the solution is not incremental, i.e. the solution for (S,K) does not necessarily use the solution for $(S,< K)$.
Magical String

Example:
S = abacaac

If K = 1
abacaac → aba_aac : ab*c
ANS: 4

If K = 2
abacaac → a_aacaac : *caac → *caa_a : *c*
ANS: 6

This example suggests that the solution is not incremental, i.e. the solution for (S,K) does not necessarily use the solution for (S,< K)

Greedy does not work!

Also, the operations order does matter.
Magical String

first attempt ... dynamic programming

\(f(S, K) \rightarrow \) The maximum number of characters in \(S \) which can be turned into asterisks with at most \(K \) operations (i.e. the answer we want).

\[
f(S, K) = \max_{i \in \text{valid}(S, i)} \left(f(A, j) + f(B, K - j - 1) \right)
\]

Time complexity: \(O(|S|^3 \cdot K^2) \)

Definitely **TLE**

\[
\begin{array}{l}
\text{abacaaccbaabacbbba} \\
\text{abaca} \quad \text{aabacbbba}
\end{array}
\]
Magical String

... we need a muse and see the problem from a different perspective

Consider the **Weighted Interval Scheduling Problem**.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It’s a similar problem!

```
abacaaccbaabacbbba
aba
acaa
aac
acc
baa
aaba
cbb
bba
```
Magical String

... we need a muse and see the problem from a different perspective

Consider the **Weighted Interval Scheduling Problem**.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It’s a similar problem!

```
abacaaccbaabacbbba
  aba
  acaa
  aac
  acc
  baa
  aaba
  cbb
  bba
```

... but different

```
abacaa
  aba
  acaa
```
Magical String

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take “both” intervals.
Magical String

• Let SINGLE be the set of all intervals obtained individually from S.
• Let EXTEND be the set of all intervals obtained by extending SINGLE
 • \([a, b]\) is in EXTEND iff its size is \(\geq 3\) and there is an interval \([L, R]\) in SINGLE which can be **cut** into \([a, b]\) by other intervals in SINGLE.
 • By definition, all intervals in SINGLE are in EXTEND.

→ The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the solution for Magical String.

abacaa	[1, 3]
aba	[3, 6]
acaa	[4, 6]
caa	

\([4, 6]\) is obtained by cutting \([3, 6]\) with \([1, 3]\).
Magical String

- Generate SINGLE $O(|S|)$
- Generate EXTEND $O(|S|^2)$

Size of EXTEND = $O(|S|)$

- Solve WISP with $K: N$ intervals $O(NK)$
Magical String

- Generate SINGLE $O(|S|)$
- Generate EXTEND $O(|S|^2)$

Size of EXTEND = $O(|S|)$

- Solve WISP with $K:N$ intervals $O(NK)$