
Prolonged Password

Prolonged Password
Given:
• A string S of alphabet characters.
• A function f(S,T) which transforms each character Si into a string TSi.
• An integer K denoting how many times f(S,T) is performed, i.e. fK(S,T).
• An integer M denoting the number of queries.

• Each query contains an integer mi.

Determine:
 For each query, the mi

th character of fK(S,T)

1 ≤ |S| ≤ 106; 2 ≤ |Tx| ≤ 50; 1 ≤ K ≤ 1015; 1 ≤ M ≤ 1000; 1 ≤ mi ≤ 1015.

Prolonged Password
Example:

S = bccabac
Ta = ab
Tb = bac
Tc = ac
Td .. Tz are not important in this example.

f0(S,T) = bccabac
K = 1  f1(S,T) = bacacacabbacabac
K = 2  f2(S,T) = bacabacabacabacabbacbacabacabbacabac

a  ab
b  bac
c  ac

Prolonged Password

• How to generate fK(S,T) for large K?

• K can be very large, i.e. 1015  a hint for 𝑂 log𝐾 solution

• How to store fK(S,T)?

• Recall the constraints: 1 ≤ |S| ≤ 106 and 2 ≤ |Tx| ≤ 50

• The complete fK(S,T) can be 106 ∙ 501015

• Each query falls within the first 1015 characters  we cannot store 1015 characters

• We need to output only ONE character per query  we have to exploit this.

Prolonged Password
• We don’t need to generate the whole fK(S,T).

• Define = 𝑓𝐾 𝑆,𝑇

• Iterate through the string S to find out which character we should recurse down into.

• E.g.,

• 𝑂 𝑀𝑀max
𝑖

𝑇𝑖 + 𝑀 𝑆

a b a a c

30 20 30 30 50

Then, the 85th character can be obtained by
expanding ‘a’ at index-3.

Prolonged Password
To handle large K: Matrix Exponentiation

𝑁𝑎𝑎 = count of character ‘a’ in Ta.

𝑁𝑎𝑏 = count of character ‘b’ in Ta.

…

𝑁𝑧𝑎 = count of character ‘a’ in Tz.

𝑁𝑧𝑏 = count of character ‘b’ in Tz.

𝑟𝑎 = count of character ‘a’.

𝑟𝑏 = count of character ‘b’.

…

𝑟𝑧 = count of character ‘z’.

𝑟𝑎 … 𝑟𝑧
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑧
⋮ ⋱ ⋮
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑧

𝑙0 𝑐,𝑇 = 𝑟
𝑙1 𝑐,𝑇 = 𝑟 ∙ 𝑁
𝑙2 𝑐,𝑇 = 𝑟 ∙ 𝑁 ∙ 𝑁
…
𝑙𝐾 𝑐,𝑇 = 𝑟 ∙ 𝑁𝐾

𝑙𝑙𝑙𝐾 𝑐,𝑇 = 𝑙𝐾 𝑐,𝑇 1

Prolonged Password

Another problem: K is too large, 𝑙𝑙𝑙𝐾 𝑆,𝑇 will be overflow.

Observation:
• 2 ≤ |Ti|  it means the string length doubles at each iteration.

• 21015 is way too large, but 𝑚𝑖 ≤ 1015

• 1015 ≤ 250
• We can cut down K by exploiting cycle in the transformation function.

a  bda
b  cdc a  b  c  a
c  ab

Prolonged Password

Summary:

• Cut down K to ≤ 50.

• Solve by recursing and using matrix exponentiation.

Prolonged Password

Summary:

• Cut down K to ≤ 50.

• Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get TLE as M ≤ 1000.

 You need to solve all queries at once (in one pass).

Magical String

Magical String
Given:
• A string S which has no substring containing 3 or more identical characters.
• An integer K, the number of maximum operations.

An operation on S: Convert Si into another character (non-asterisk) s.t. S contains a
substring of 3 or more identical characters. Turn such (maximal) substring into an
asterisk.

Determine:
 The maximum number of characters in S which can be turned into asterisks with

at most K operations.

1 ≤ K, |S| ≤ 1000

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

This example suggests that
the solution is not incremental,

i.e. the solution for (S,K) does not
necessarily use the solution for (S,< K)

Magical String
Example:

S = abacaac

If K = 1

abacaac  abaaaac : ab*c
ANS: 4

If K = 2

abacaac  aaacaac : *caac  *caaa : *c*
ANS: 6

This example suggests that
the solution is not incremental,

i.e. the solution for (S,K) does not
necessarily use the solution for (S,< K)

Greedy does not work!

Also, the operations order does matter.

Magical String
first attempt … dynamic programming

f(S, K)  The maximum number of characters in S which can be turned into asterisks with at most K
operations (i.e. the answer we want).

𝑓 𝑆,𝐾 = max

𝑖∈𝑣𝑣𝑣𝑣𝑣 𝑆,𝑖
𝑗=[0,𝐾)

(𝑓 𝐴, 𝑗 + 𝑓 𝐵,𝐾 − 𝑗 − 1)

abacaa aabacbba

abacaaccbaabacbba
Time complexity: 𝑂 𝑆 3 ∙ 𝐾2

Definitely TLE

Magical String
… we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no
overlapping intervals and the total weight is maximized.

It’s a similar problem!

abacaaccbaabacbba
aba
 acaa
 aac
 acc
 baa
 aaba
 cbb
 bba

Magical String
… we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no
overlapping intervals and the total weight is maximized.

It’s a similar problem!

abacaaccbaabacbba
aba
 acaa
 aac
 acc
 baa
 aaba
 cbb
 bba

… but different abacaa
aba
 acaa

Magical String

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take “both” intervals.

Magical String
• Let SINGLE be the set of all intervals obtained individually from S.

• Let EXTEND be the set of all intervals obtained by extending SINGLE
• [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by

other intervals in SINGLE.
• By definition, all intervals in SINGLE are in EXTEND.

 The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the
solution for Magical String.

 abacaa
aba
 acaa
 caa

[1,3]
[3,6]
[4,6] [4, 6] is obtained by cutting [3, 6] with [1, 3].

Magical String
• Generate SINGLE 𝑂 𝑆

• Generate EXTEND 𝑂 𝑆 2

Size of EXTEND = 𝑂 𝑆

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝑁

Magical String
• Generate SINGLE 𝑂 𝑆

• Generate EXTEND 𝑂 𝑆 2

Size of EXTEND = 𝑂 𝑆

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝑁

	Slide Number 1
	Prolonged Password	
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Prolonged Password
	Slide Number 10
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String
	Magical String

