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Prolonged Password  
Given: 
• A string S of alphabet characters. 
• A function f(S,T) which transforms each character Si into a string TSi. 
• An integer K denoting how many times f(S,T) is performed, i.e. fK(S,T). 
• An integer M denoting the number of queries. 

• Each query contains an integer mi. 
 

Determine: 
 For each query, the mi

th character of fK(S,T) 
 
1 ≤ |S| ≤ 106; 2 ≤ |Tx| ≤ 50; 1 ≤ K ≤ 1015; 1 ≤ M ≤ 1000; 1 ≤ mi ≤ 1015. 
 



Prolonged Password 
Example: 

S = bccabac 
Ta = ab 
Tb = bac 
Tc = ac 
Td .. Tz are not important in this example. 

 

f0(S,T) = bccabac 
K = 1  f1(S,T) = bacacacabbacabac 
K = 2  f2(S,T) = bacabacabacabacabbacbacabacabbacabac 
 

 

 

a  ab 
b  bac 
c  ac 



Prolonged Password 
 
• How to generate fK(S,T) for large K? 

• K can be very large, i.e. 1015  a hint for 𝑂 log𝐾  solution 
 

• How to store fK(S,T)? 

• Recall the constraints: 1 ≤ |S| ≤ 106 and 2 ≤ |Tx| ≤ 50 

• The complete fK(S,T) can be 106 ∙ 501015  

• Each query falls within the first 1015 characters  we cannot store 1015 characters 

• We need to output only ONE character per query  we have to exploit this. 



Prolonged Password 
• We don’t need to generate the whole fK(S,T). 

 
• Define = 𝑓𝐾 𝑆,𝑇  

 

• Iterate through the string S to find out which character we should recurse down into. 
 

• E.g., 
 
 
 
 

• 𝑂 𝑀𝑀max
𝑖

𝑇𝑖 + 𝑀 𝑆  

a b a a c 

30 20 30 30 50 

Then, the 85th character can be obtained by 
expanding ‘a’ at index-3. 



Prolonged Password 
To handle large K: Matrix Exponentiation 
 

𝑁𝑎𝑎 = count of character ‘a’ in Ta. 

𝑁𝑎𝑏 = count of character ‘b’ in Ta. 

… 

𝑁𝑧𝑎 = count of character ‘a’ in Tz. 

𝑁𝑧𝑏 = count of character ‘b’ in Tz. 

 

𝑟𝑎 = count of character ‘a’. 

𝑟𝑏 = count of character ‘b’. 

… 

𝑟𝑧 = count of character ‘z’. 

 

 

 

 

𝑟𝑎 … 𝑟𝑧
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑧
⋮ ⋱ ⋮
𝑁𝑎𝑎 ⋯ 𝑁𝑧𝑧

  

 
𝑙0 𝑐,𝑇 = 𝑟  
𝑙1 𝑐,𝑇 = 𝑟 ∙ 𝑁  
𝑙2 𝑐,𝑇 = 𝑟 ∙ 𝑁 ∙ 𝑁  
… 
𝑙𝐾 𝑐,𝑇 = 𝑟 ∙ 𝑁𝐾   
 
𝑙𝑙𝑙𝐾 𝑐,𝑇 = 𝑙𝐾 𝑐,𝑇 1  
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Another problem: K is too large, 𝑙𝑙𝑙𝐾 𝑆,𝑇  will be overflow. 
 
Observation: 
• 2 ≤ |Ti|  it means the string length doubles at each iteration. 

• 21015  is way too large, but 𝑚𝑖 ≤ 1015 

• 1015 ≤ 250 
• We can cut down K by exploiting cycle in the transformation function. 

 
a  bda 
b  cdc a  b  c  a 
c  ab 
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Summary: 

• Cut down K to ≤ 50. 

• Solve by recursing and using matrix exponentiation. 
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Summary: 

• Cut down K to ≤ 50. 

• Solve by recursing and using matrix exponentiation. 

 

However, if you solve each query independently, you will get TLE as M ≤ 1000. 

 

 You need to solve all queries at once (in one pass). 



Magical String 



Magical String 
Given: 
• A string S which has no substring containing 3 or more identical characters. 
• An integer K, the number of maximum operations. 
 

An operation on S: Convert Si into another character (non-asterisk) s.t. S contains a 
substring of 3 or more identical characters. Turn such (maximal) substring into an 
asterisk. 
 

Determine: 
 The maximum number of characters in S which can be turned into asterisks with 

at most K operations. 
 
1 ≤ K, |S| ≤ 1000 
 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 

This example suggests that 
the solution is not incremental, 

i.e. the solution for (S,K) does not 
necessarily use the solution for (S,< K) 



Magical String 
Example: 

S = abacaac 
 

If K = 1 

abacaac  abaaaac : ab*c 
ANS: 4 

 

If K = 2 

abacaac  aaacaac : *caac  *caaa : *c*  
ANS: 6 

This example suggests that 
the solution is not incremental, 

i.e. the solution for (S,K) does not 
necessarily use the solution for (S,< K) 

Greedy does not work! 

Also, the operations order does matter. 



Magical String 
first attempt … dynamic programming 

 

f(S, K)  The maximum number of characters in S which can be turned into asterisks with at most K 
operations (i.e. the answer we want). 

 
𝑓 𝑆,𝐾 = max

𝑖∈𝑣𝑣𝑣𝑣𝑣 𝑆,𝑖
𝑗=[0,𝐾)

(𝑓 𝐴, 𝑗 + 𝑓 𝐵,𝐾 − 𝑗 − 1 ) 

 

 

 

abacaa aabacbba 

abacaaccbaabacbba 
Time complexity: 𝑂 𝑆 3 ∙ 𝐾2  

 
Definitely TLE 



Magical String 
… we need a muse and see the problem from a different perspective 
 

Consider the Weighted Interval Scheduling Problem. 

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no 
overlapping intervals and the total weight is maximized. 

 

It’s a similar problem! 

 

 

 

abacaaccbaabacbba 
aba 
  acaa 
    aac 
     acc 
        baa 
         aaba 
             cbb 
              bba 



Magical String 
… we need a muse and see the problem from a different perspective 
 

Consider the Weighted Interval Scheduling Problem. 

 Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no 
overlapping intervals and the total weight is maximized. 

 

It’s a similar problem! 

 

 

 

abacaaccbaabacbba 
aba 
  acaa 
    aac 
     acc 
        baa 
         aaba 
             cbb 
              bba 

… but different abacaa 
aba 
  acaa 



Magical String 
 

 

 

 
 

In Weighted Interval Scheduling Problem, we can only take one interval. 

 

In Magical String, we can take “both” intervals. 



Magical String 
• Let SINGLE be the set of all intervals obtained individually from S. 

• Let EXTEND be the set of all intervals obtained by extending SINGLE 
• [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by 

other intervals in SINGLE. 
• By definition, all intervals in SINGLE are in EXTEND. 

 

 The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the 
solution for Magical String. 

 

 abacaa 
aba 
  acaa 
   caa 

 
[1,3] 
[3,6] 
[4,6] [4, 6] is obtained by cutting [3, 6] with [1, 3]. 



Magical String 
• Generate SINGLE 𝑂 𝑆  

• Generate EXTEND 𝑂 𝑆 2  

 

Size of EXTEND = 𝑂 𝑆  

 

• Solve WISP with 𝐾:𝑁 intervals 𝑂 𝑁𝑁  
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