
2018 ICPC Asia Singapore Preliminary Contest (Online)

Regional Contest Director Report

Dr Steven Halim

School of Computing, National University of Singapore

Saturday, 15 September 2018, 10AM-3PM SGT

1 Introduction

This file is to document the preparation and execution of the 2018 ICPC Asia Singapore Preliminary

Contest that is conducted on Saturday, 15 September 2018, 10AM-3PM SGT. It will later be followed

by another file to report the follow up 2018 ICPC Asia Singapore Regional Contest later in December

2018.

WARNING: SPOILER INSIDE. For present/future ICPC teams in any part of the

world who want to use the 2018 ICPC Asia Singapore Preliminary Contest problem set

for training (available at https://open.kattis.com), please skip Section 5 until you finish

your training.

2 Registration and Publicity Campaign

The registration period was started soon after the RCD attended his second RCD workshop in Beijing,

China, on Tuesday, 01 May 2018. The registration period lasted for a rather long period of 4.5 months

until Saturday, 08 September 2018. But obviously not many registrations happened around typical

University (Summer) holiday period: May-June-July-early August 2018.

From late August 2018 until early September 2018, due to rather low number of official team

registration at that point of time (only 27 official teams registered by 27 August 2018 from initial

target of 200+ teams), we launched another Facebook paid advertising campaign about our contest

webpage https://www.comp.nus.edu.sg/~acmicpc to targeted Computer Science students in South

East Asia aged 16-241.

Meanwhile, the RCD also contacted coaches from established Universities who have joined ICPC

Singapore previously, and coaches that he know in Indonesia, Vietnam, Malaysia, and Philippines

about the re-appearance of Singapore site in Asia Southeast and Pacific Contests region this year

(after 3 years of absence2).

1Unless given special permission, students that can join ICPC this year must be born in year 1995 or later.
2The last time Singapore hosted an ICPC regional was back in December 2015.

1

https://open.kattis.com
https://www.comp.nus.edu.sg/~acmicpc

Maybe due to those aggressive approaches or simply because many Universities register their

team(s) near deadline, we saw a spike of registrations around registration deadline day (Initially

Saturday, 8 September 2018 but eventually extended a bit to Monday, 10 September 2018).

3 Accepted Teams

3.1 Overview

As of Tuesday, 11 September 2018, 158 teams from 33 different Universities and 9 different Countries

have been Accepted3 for this Preliminary Contest. The breakdown of these 158 teams are as follows

(note that Indian and Chinese teams are outside the Asia Southeast and Pacific Contests region and

thus will not affect the World Finals 2019 quota for this region):

Country # Universities # Teams RCD Remarks

Singapore 2 23 Choose top 15 local teams

Indonesia 11 38 Biggest foreign teams participation
Philippines 5 18 Rotated with Singapore site
Malaysia 4 8
Vietnam 3 8
Taiwan 3 7 Clash with Taipei site Prelim

Thailand 1 3 Clash with Thai exams back in 2015

India 2 50 Outside Asia Southeast and Pacific
China 2 3 Outside Asia Southeast and Pacific

Myanmar 0 0 6 teams back in 2015
South Korea 0 0 1 (winning) team back in 2015

Brunei Darussalam 0 0 1 team back in 2015
Cambodia 0 0 1 team back in 2015

Japan 0 0 0 team back in 2015
Laos 0 0 0 team back in 2015

Total 33 158 Lower than target of 200 Accepted teams

4 No Warmup Contests

We use Kattis (https://asiasg18-prelim.kattis.com/), the official online judge used in the recent

ICPC World Finals as the judging software for Singapore site.

Unlike in year 2015, Kattis is now a well know online judge in Asia. NUS, the host of ICPC

Asia Singapore, is currently ranked first in https://open.kattis.com/ranklist/universities. To

prepare new contestants, we decided to just encourage Accepted teams to practice on https://open.

kattis.com/problem-sources/ICPC%20SG%20Preliminary%20Contest%202015.

3Unfortunately, about 12 teams have incomplete crucial registration details by deadline in such a way that the RCD
cannot determine the eligibility of the teams. These 12 teams were cancelled.

2

https://asiasg18-prelim.kattis.com/
https://open.kattis.com/ranklist/universities
https://open.kattis.com/problem-sources/ICPC%20SG%20Preliminary%20Contest%202015
https://open.kattis.com/problem-sources/ICPC%20SG%20Preliminary%20Contest%202015

5 Problem Set

5.1 Overview

The problem set is created with the standard ICPC problem set goals in mind:

1. All Most4 teams solve at least one problem

2. All problems are solvable by at least one team

3. No team5 solves all problems

5.2 Problem Analysis, Pre-Contest

The table below contains Scientific Committee (SC) prediction of the difficulty rating of each problem

(from trivial, easy, medium, to hard) prior to the actual Preliminary Contest. For this problem set,

we make problem ID ‘A’ to be the easiest and problem ID ‘J’ to be the hardest (on paper). This

is an experiment (we will not do the same for the actual regional contest) to see if actual Accepted

submissions from the teams in the actual contest follow this pattern or not.

ID Kattis ID Problem Type SC Expectation

A knightsearch Backtracking/DP, Knight Jump Most teams solve this problem

B swaptosort CC/UFDS; Pairing Observation; CC/UFDS to avoid TLE

C makepalindromes Classic DP String variant + counting DP palindrome
D caveexploration Bi-connected component containing 0 Classic but rare graph theory problem
E gridgame Binary Search ans; Perfect MCBM Easy and classic for the best teams
F modulodatastructures Sqrt Decomposition Data Structure Problem

G foolingaround Pre-calculate the answers Some teams give up with this problem
H beehouseperimeter Flood fill, modified DFS/BFS Tricky to code, not Geometry

I classicalcounting Combinatorics, Modulo Needs Mathematician
J unicycliccount Graph Theory, Counting, Modulo The hardest problem in this contest

The authors and the testers primary programming language is C++, thus all 10 problems in this

Preliminary Contest can definitely be solved with C++. However, during testing we also try our best

to ensure that all problems are solvable with Java. We do not make any guarantee with Python but

at least one problem is clearly solvable with Python. For each problem, we also estimate what is the

expected solving time for a ‘potential World Finalist’ level team and the expected solving time for an

‘average team’. The table below summarizes our testing process as of Friday, 31 August 2018.

4With all due respect, we are aware that some teams register to this prelim site with wrong expectation about the
contest. Unfortunately we cannot lower the standard of the problemset and thus we are bracing for impact that the
easiest problem in the set (knightsearch) may not be solvable by all teams during contest time...

5Actually this will be hard as we know that there are a few very strong teams in this preliminary contest; we are OK
if these teams clean sweep all the 10 problems.

3

ID Kattis ID C++ Java Python Fastest to AC Average to AC

A knightsearch AC AC ?? 5m 20m

B swaptosort AC AC ?? 10m 40m

C makingpalindrome AC AC ?? 20m 40m
D caveexploration AC AC ?? 20m 60m
E gridgame AC AC ?? 20m 60m
F modulodatastructures AC AC ?? 20m 80m

G foolingaround AC AC AC 30m Not AC
H beehouseperimeter AC AC ?? 30m Not AC

I classicalcounting AC AC ?? 45m Not AC
J unicycliccount AC AC ?? 100m Not AC

Total time 300m (10 AC) 300m (6 AC)

5.2.1 A - Knight Search (knightsearch)

Author: Dr Steven Halim (NUS); Tester: Dr Suhendry Effendy (NUS).

This is the giveaway problem in this problem set in order to have the number of teams solving at least

one problem is as close as possible to the number of accepted teams in this Preliminary Contest (158

teams). UNFORTUNATELY THIS DID NOT HAPPEN, as only 72 teams solved this

problem out of 158 Accepted teams..., or only 46%. This problem is a kind of String Matching

in a 2D Grid (see Section 6.4.3 of [1]) but using Knight Moves (see Section 9.16 of [1]). As there

are only 1 fixed starting character ‘I’ and 9 other characters “CPCASIASG”, one can either bet that

a recursive backtracking with pruning (essentially ‘Depth Limited Search (see Section 8.2.5 of [1]))

will pass or realize that Dynamic Programming with state (row, column, length of matched char) is

sufficient (distinct states is just 100× 100× 10 = 105).

Note that in this problem, a cell/letter can be used more than once. In “ICPCASIASG”, there

are several repetitions, but the important repetitions are only the ‘C’s and ‘I’s.

1. There are 2 ‘A’s and 2 ‘S’s, their distance is 3 characters: “A**A” and “S**S”. So there is no

valid knight moves where the first ‘A’ will be used twice.

2. There are 2 ‘C’s and their distance is 2 characters: “C*C”. A possible test case is:

XSXXX

ISXAP

GXCXX

AXIXX

XXXXX

3. There are 2 ‘I’s and their distance is 6 characters: “I*****I”. A possible test case is:

XXAXX

IXAXP

XSCXX

XSXCX

GXXXX

4

5.2.2 B - Swap to Sort (swaptosort)

Author: Sean Pek Yu Xuan (NUS); Testers: Dr Steven Halim (NUS), Dr Suhendry Effendy (NUS).

First, we have to make an observation that in order to be able to say “Yes” (note that we purposely ask

user to print out “YES” vs “NO” in knightsearch, but not here in swaptosort :O; some teams may get

accidental Wrong Answer and +20 minutes penalty because of this - this is intended), the first integer

must be swap-able with the last integer (via a single edge or via a path/multiple edges), second with

second last, third with third last, and so on. This gives rise to a näıve O(N2 ×N) = O(N2) DFS/BFS

algorithm. But this is TLE as N is up to 106.

To speed up the solution, one has to combine all CCs in the underlying graph with a DFS/BFS

pre-processing routine (see Section 4.2.3 of [1]) or using the simpler Union Find Disjoint Sets (UFDS)

data structure (see Section 2.4.2 of [1]) in O(N+K). Then, we can run the O(N2 ×1) checks afterwards.

This is AC.

5.2.3 C - Make Palindromes (makingpalindromes)

Author: Sean Pek Yu Xuan (NUS); Testers: Dr Suhendry Effendy (NUS).

We can construct a dynamic programming solution for this problem. Let f(L,R,K) be the number

of palindromic strings of length R− L + 1 + K which contains SL..R as its subsequence. The original

problem can be solved with f(1, N,N), i.e. the number of palindromic strings of length 2N which

contains S1..N as its subsequence. To solve f(L,R,K), we have to analyze several cases similar to

cases in longest common subsequence dynamic programming solution. If SL == SR, then f(L,R,K) =

f(L + 1, R− 1,K) + 25 ∗ f(L,R,K − 2), i.e. either take both characters (which are the same) or put

another pair of characters (25 possibilities). If SL 6= SR, then f(L,R,K) = f(L + 1, R,K − 1) +

f(L,R− 1,K− 1) + 24 ∗ f(L,R,K− 2), i.e. either take one of the character (and put a matching one)

or put another pair of characters (24 possibilities).

The base cases in which you need to pay attention to are when SL == SR (there is one character

left to take) and when SL > SR (there are no more character left to take). In both cases, we have

to check the remaining K first. If SL == SR, then K should be odd; if SL > SR, then K should be

even; otherwise, simply output 0. In SL == SR case, we have dK/2 characters to choose to fill the

remaining K + 1 slots. Beware that SL=R should appear at least once among these. In SL > SR case,

we have K/2 characters to choose to fill the remaining K slots; it is simply 26K/2.

This dynamic programming solution has O(N3) states, and to solve a state we need O(1)-time,

thus, total time-complexity for this solution is O(N3).

5.2.4 D - Cave Exploration (caveexploration)

Author: Dr Steven Halim (NUS); Tester: Dr Suhendry Effendy (NUS), Dr Felix Halim (Google).

This is a classic but actually rare graph problem with a rare modified DFS algorithm (see Section

4.2.8 of [1]). In summary, this problem is about finding the size of bi-connected component that

contains vertex 0. We can simply run O(V + E) Tarjan’s algorithm to identify the bridges, and then

5

run another O(V + E) DFS/BFS from vertex 0 to count all vertices reachable from that vertex 0 if

we ignore all the bridges.

We reckon that some strong teams will immediately recognize this and solve this problem in

approximately 20m (most of the time is about re-typing Tarjan’s DFS code without bug6). However,

non trained teams may not be able to solve this problem at all (using O(E × (V + E)) checks to

determine if which edge(s) is/are bridge will be TLE)...

5.2.5 E - Grid Game (gridgame)

Author: Sean Pek Yu Xuan (NUS); Testers: Dr Steven Halim (NUS), Dr Suhendry Effendy (NUS).

This problem can be challenging for non trained teams, but doable for experienced teams. In Section

8.4.1 of [1], we discuss the Binary Search the Answer technique. Apparently, this problem can be

solved that way. If we binary search the answer X, we can then construct classic bipartite graph of

a grid (left set = rows; right side = columns) with edges going from left set to right set if the edge

weight ≥ X. Now we try if we can find a perfect MCBM (see Section 4.7.4 of [1]). If the answer is

possible, we know that X is a valid answer and we can try reducing the answer X to a lower number.

If the answer is not possible, we know that X is not a valid answer and we have to increase X to

higher number. This is binary searchable. The time complexity is O((V × E) log 106)) in the worst

case which is very doable with the given constraints.

Note that the MCBM part can been speedup from O(V × E) to O(
√
V × E) (or using greedy

pre-processing), but this optimization is not necessary for this problem. We can also use Max Flow

based solution to find the MCBM value, but this is much longer to code. Alternatively, we can also

use some kind of backtracking with pruning to test the possible/not possible status of answer X, but

this is a bit harder to analyze.

5.2.6 F - Modulo Data Structures (modulodatastructures)

Author: Sean Pek Yu Xuan (NUS); Tester: Dr Felix Halim (Google), Dr Steven Halim (NUS).

Implementing the solution verbatim (do queries of type T = 1 in O(N) and do queries of type T = 2

in O(1)) is TLE as it can be made to run in O(Q×N) by having many type T = 1 queries.

However, if one knows the square-root decomposition technique (not yet written in [1] but will be

added in CP4), this problem becomes easy. We decompose the array Arr into
√
N ×
√
N buckets. For

the largest N = 200 000,
√

200 000 is just 447 (note that N does not have to be necessarily a perfect

square number).

For each query of type T = 1 with B ≤
√
N , we just update one cell: bucket[B][A] += C in O(1).

Otherwise if B >
√
N , we do Arr[j] += C for each j ∈ [A,A + B,A + 2B, ...] and stop when j > N

(as B >
√
N , this loop will be just O(N/

√
N) = O(

√
N), which is a major improvement compared to

the verbatim implementation above).

6Note that copy pasting a well written Tarjan’s DFS code and modify it to suit this poblem will save about 5m of
typing time compared to official teams who (are encouraged to) retype everything. This is very hard to check in an
online contest like this.

6

Now, we can answer each query of type T = 2 also in O(
√
N) time by combining values from

Arr[D] (this is O(1)) and sum of bucket[B][D%B] for each B ∈ [1..
√
N] (this is O(

√
N)). Notice the

reverse time complexity compared to query of type T = 1. We will get the correct answer again and

have a fast enough solution.

The SC predicts that the first 6 problems: A, B, C, D, E, F, mostly in that order, will be targeted

by most (strong) teams in the first two hours of the contest. After teams get 6 ACs, things will get

much more challenging :)... Unless they are the stronger teams who feel that the next few problems

are still ‘easy’.

5.2.7 G - Fooling Around (foolingaround)

Author: Sean Pek Yu Xuan (NUS); Tester: Dr Felix Halim (Google), Dr Steven Halim (NUS).

The title of this problem is actually a hint... :).

One needs to actually run a rather slow generator algorithm (ours terminate in a few minutes, but

not in a few seconds): Sieve of Eratosthenes to generate primes below 109, generate list of ‘one less

than a prime number’, and to realize that there are only 379 values of N where Bob wins. So, we can

precompute this :).

Note that as the final answer is just a precomputation, even a slow Python code will pass the

required time limit.

5.2.8 H - Bee House Perimeter (beehouseperimeter)

Author: Dr Steven Halim (NUS); Tester: Dr Felix Halim (Google), Dr Suhendry Effendy (NUS).

This is probably not as widely known, but there is actually a nice and simple mapping from a hexagonal

grid into a 2D grid, see below for the transformation of R = 3. Notice that we give sentinels (-1) to

first/last row/column to simplify this problem. Do you notice the required pattern by observing the

transformation below?

-1 -1 -1 -1 -1 -1 -1

-1 1 2 3 -1 -1 -1

-1 4 5 6 7 -1 -1

-1 8 9 10 11 12 -1

-1 -1 13 14 15 16 -1

-1 -1 -1 17 18 19 -1

-1 -1 -1 -1 -1 -1 -1

After you reach that transformation (other ways may exist), then the next step is just a matter of

counting how many times a cell from ‘out-of-house’ touches the boundary of a cell of Alice’s house.

The number of such occurrences is the required perimeter that we have to count. We can simply do

O(R×R) DFS/BFS (to 6 directions per cell) from any one of the sentinel (-1/out-of-house).

7

5.2.9 I - Classical Counting (classicalcounting)

Author: Sean Pek Yu Xuan (NUS); Tester: Dr Suhendry Effendy (NUS).

First, let us ignore the fact that the modulus in this problem (i.e. 106 + 7) is NOT a prime number;

we will come back to that later. This is a counting problem which can be solved with k-combination

(“n choose k”) and k-multicombination (“n choose k” with repetition) combined with the inclusion-

exclusion principle. Let say M is very large (e.g., ∞) or there is no bound on how many copies can be

taken from an object, then this problem is simply a k-multicombination
((

N
K

))
which can be solved

with k-combination, i.e.
((

N
K

))
=
(
N+K−1
N−1

)
.

To handle the bound M , we can use inclusion-exclusion principle. Start with
((

N
K

))
. Substract

the result with the number of combination in which one object is chosen > M times. Add back to the

result the number of combination in which two objects are chosen > M times. Substract the result

with the number of combination in which three objects are chosen > M times. Add back to the result

..., and so on. The number of combination in which i objects are chosen > M times can be computed

with
(
N
i

)
×
((

N
K−i·(M+1)

))
. The first term corresponds to the number of choosing i out of N objects,

while the second one corresponds to the number of choosing K − i · (M + 1) out of N objects with

repetition—the first i · (M + 1) objects are already “distributed” to the selected i objects, causing

them to exceed the M bound. Therefore, in general, the solution is:

∑
i=0..∞

−1i ×
(
N

i

)
×
((

N

K − i · (M + 1)

))

This equation can be computed with:

∑
i=0..∞

−1i ×
(
N

i

)
×
(
N + K − 1− i · (M + 1)

N − 1

)

The next challenge is how to quickly compute
(
N
i

)
and

(N+K−1−i·(M+1)
N−1

)
for all i. Observe that M can

be as low as 1, causing i to have O(N) different values, thus, computing each binomial in O(N)-time

will cause our solution to be TLE with large N . Notice that in both terms, there is a fixed value,

i.e. N in
(
N
i

)
, and N − 1 in

(N+K−1−i·(M+1)
N−1

)
. We can exploit this to compute the value of both

terms for all i in O(N + K) and store them in an array. Hints:
(
n
k

)
=
(

n
k−1
)
× (n − k + 1)/k and(

n
k

)
=
(
n−1
k

)
× n/(n− k).

Now, back to the modulus issue. The given modulus 106 + 7 is a composite number (29× 34 483)

while the constraint for N and K can be as large as 105. We can combine chinese reminder theorem

(CRT) with Lucas theorem to handle the modular multiplicative inverse in the equation above. Break

down the problem into two prime moduli, 29 and 34 483, solve them separately (meaning, you have

to do all the above twice, each with a different modulus), and then combine the result with CRT to

get the result modulo 1 000 007. As the moduli are smaller than the largest N and K, the number

whose modular multiplicative inverse we want to compute may not be coprime with a modulus, e.g.,

when N − 1 ≥ 29. Note that Euler’s theorem requires the numbers to be coprime. To handle

this, we can break down the k-combination which we want to compute with Lucas theorem, i.e.

8

(
n
k

)
≡
∏

i

(
ni
ki

)
(mod p), where ni and ki are the expansion of n and k in base-p.

The time-complexity for this approach is O((N + K) log (N + K)). Note that this complexity is

not tight, but it is not worse than this.

5.2.10 J - Unicyclic Count (unicycliccount)

Author: Sean Pek Yu Xuan (NUS); Tester: Dr Suhendry Effendy (NUS).

First, we observe that the a unicyclic graph consists of N vertices and N edges. Moreover, the edges

can be oriented such that each vertex has one outgoing edge. This is done by first considering all the

vertices of degree 1 in the unicyclic graph. The edges connecting to them can only point away from

the ”leaf”. Repeating this procedure, we will result in orientiering all the non-cycle edges. The cycle

can be oriented in exactly two ways (provided the cycle has at least 3 edges). Henceforth, we shall

call all graphs with N vertices and N edges a candidate graph.

Next, we would like to compute the number of connected candidate graphs. This is done via a

dynamic program on subsets of vertices. Let F [S] and G[S] be the number of connected candidate

graphs and (not-necessarily connected) candidate graphs using the vertices in the bitmask S. Then,

from the previous paragraph discussion, G[S] is the product of degree of vertices in induced subgraph

of S. This can be done effectively via bitmasks. We have to be more careful regarding F [S] to avoid

double counting. Let the smallest labelled vertex in S be u, then

F [S] =
∑

u∈T*S F [T] ∗G[S \ T].

Now that we have the connected candidate graphs, there is another obstruction. It is possible for

the cycle to be of length 2, hence the same edge chosen twice. This is a tree. We count the number

of trees via Kirchoff Matrix-Tree Theorem (or Dynamic Programming). Each tree can occur N − 1

times as each edge in the tree can be doubled. Subtracting this, we have double the answer as our

cycle can be oriented ”clockwise” or ”anti-clockwise”.

All in all, by carefully doing the operations modulo M (this affects the division at the end as

well as the finding of determinant of matrix) and ensuring the no redundant states in our dynamic

programming on subsets (this is done via bit manipulations). We result in an algorithm of time

complexity Θ(N3 + 3N).

We reckon that this is likely the hardest problem in this prelim contest.

6 Post Contest Remarks

This section is updated after the Preliminary Contest is over.

6.1 Contest Statistics

The distribution of number of solved problems is shown in the table below (only among the official

teams):

Problems Solved 0 1 2 3 4 5 6 7 8 9 10

teams 83 :(:(14 16 8 7 7 3 7 5 5 3

9

There is a total of 1234 submissions (the number is interesting) throughout the Preliminary

Contest. We have about 260 Java submissions (21% of all submissions) and 86 Python 2/3 submissions

(7% of all submissions). All other submissions use C/C++ language (the other 72% of all submissions).

No other programming language is used.

The actual order of problems solved and the frequency of solve in this Preliminary Contest is

shown in the table below. As the order is not ‘A’, ‘B’, ..., ‘H’, ‘I’, ‘J’. But at least the first two ‘A’,

‘B’ are quite correct (only differ by seconds) and the last three ‘H’, ‘I’, ‘J’ are exactly in correct order.

Please compare it with the Scientific Committee prediction in Section 5.2.

Time ID Kattis ID Fastest to Solve # AC

8m B swaptosort I See the One (ITB) 61
8m A knightsearch ITBNUS (Binus) 72

11m F modulodatastructures Pandamiao (NUS) 28
17m E gridgame 3body2 (NUS) 33
35m D caveexploration 414 (NUS) 45
47m G foolingaround Pandamiao (NUS) 9
51m C makingpalindromes THREE (VNU) 20

52m H beehouseperimeter 3NationsIOI (NUS) 29
57m I classicalcounting Bitset (VNU) 13
188m J unicycliccount Platelet (SJTU) 5

6.2 37 Teams Advancing to 2018 Asia Singapore Regional Contest

There is no plagiarism case with strong black-and-white proof found among qualified teams7. There-

fore, the results as listed in Kattis become official results.

Coaches of advancing teams have been emailed personally to officially declare their intention to

send their teams by paying registration fee (and accommodation fee-if applicable) latest by Friday,

02 November 2018, i.e. about one and half month from this Preliminary Contest. If the registration

fee payment is not received by deadline, the team’s place will be forfeited and the RCD will prepare

the contest with slightly lesser number of teams.

All advancing teams can purchase an autographed copy of ‘Competitive Programming 3, 2018b

revised edition’ book [2] onsite. You can notice that the book is mentioned several times in this RCD

report on purpose :).

6.3 Top 13 Local Singapore Teams

Local Singapore teams need to solve at least 2 problems with not more than 116 penalty minutes to

be the top 14 local teams and advance to the regional contest.

7The RCD found at least one case of plagiarism attempt, but the team involved is a non-qualified team and hence
the RCD decides not to pursue this matter.

10

Total Rank University Name

10 2,3,4,7,12,13,14,15,19,21 National University of Singapore
3Sophomores, Send Bobs to Alice, Pandamiao, 3body2, power harder

Sultan Halim, ReFreshPHD, 3NationsIOI, scrub++, NEWBIE
(6 other NUS teams at rank 22,23,29,30,48,51 are not sent:
414, Illumina, lorem ipsum, ICanProgramC++, LGD, BLS)

3 10,41,47 Nanyang Technological University
1T, H1N4, NTU Walnut

(3 other NTU team at rank 34,66,68 are not sent:
ntunoobs II, Code Age, PlusUltra)

6.4 Top 24 Foreign Teams

Due to only 75 out of 158 teams solved at least 1 problem in this preliminary contest and a few top

Universities only sending their best few (out of 5/6/8/16 :O qualified teams), then foreign teams need

to solve only 1 problem to advance to the regional contest... This leaves the RCD with many wildcard

slots that can be given to anyone else who will register to Asia Singapore 2018 before registration

deadline (Saturday, 27 October 2018).

All coaches of the prelim teams below have committed to send their team(s) to Singapore site and

have paid the registration fee (and accommodation fee, if any).

11

Total Rank Country University Name

2 1,11 China Shanghai Jiao Tong University
Platelet, Skyrim

1 6 Vietnam Vietnam National University
Bitset

3 9,16,20 Taiwan National Tsing Hua University
Teletubbies, NTHU 5734k, Made in Abyss(Jinkela)

1 24 Indonesia Bina Nusantara University
ITBNUS

1 25,55 Malaysia International Islamic University Malaysia
Fellas, Tyros

2 26,37 Taiwan National Chiao Tung University
NTCU Jaguar, NCTU Kemono

3 27,45,60 Philippines De La Salle University
Convex Hull, Blackjack, Panic

2 31,32 Philippines Ateneo de Manila University
L3, Nutritious Nilaga w/ Saba

1 35 Indonesia Institut Teknologi Bandung
Arurange Code Party

1 36 Indonesia Gadjah Mada University
Sayata Kid Prim’s Sieve

2 42,49 Indonesia Institut Pertanian Bogor
On|ecomp|ilemaN, LionCheeseCrackers

1 52 Taiwan National Taiwan Normal University
Love and Peace

1 57 Indonesia STMIK Mikroskil
Gae Bolg

1 61 Indonesia Universitas Multimedia Nusantara
Qubit

1 ≈64 Indonesia Parahyangan University
Anonymous Wombat (submit code to asiasg18-prelim-open instead)

6.4.1 Forfeited Slots...

12

0 - Vietnam Vietnam National University
(4 other VNU teams at rank 5,8,17,18 are not sent: ONE, THREE, TWO, FOUR)

0 - Taiwan National Tsing Hua University
(1 other NTHU team at rank 28 is not sent: NTHU leporidae)

0 - Indonesia Institut Teknologi Bandung
(1 other ITB team at rank 33 is not sent: I See the One

0 - Indonesia Bina Nusantara University
(7 other BINUS teams at rank 38,40,43,46,50,54,63 are not sent:

Aeroflot, YoBiLiNUS, BeNUS, PPTI SABER, Lucero, DoReMi, PPTI Starter Pack)

0 - Philippines University of the Philippines - Diliman
(2 UPD teams at rank 39,64 are not sent: Quiwarriors 1, Quiwarriors 2)

0 - Indonesia Satya Wacana Christian University
(1 SWCU team at rank 44 is not sent: CobaDuluAhh)

0 - Philippines Ateneo de Manila University
(3 other AdMU teams at rank 53,56,69 are not sent:

Happy BST Friends, |CBN |2, O(b2))

0 - Vietnam Eastern International University
(3 EIU teams at rank 58,71,75 are not sent:

CDK, ADN, PSV)

0 - Thailand Kasetsart University
(2 KU teams at rank 59,67 are not sent:

CSKU-PITLORD, CSKU-SIMANGKALO; (exam timing clash))

0 - Malaysia University of Malaya
(2 UoM teams at rank 62,72 are not sent: tacocat, IM26C4U)

0 - India RMK Engineering College
(1 RMKEC team at rank 65 is not sent: TryToBeatUs)

0 - Indonesia STMIK Mikroskil
(1 other STMIK Mikroskil team at rank 70 is not sent: Numpang Lewat)

0 - Philippines Malayan Colleges Laguna
1 MCL team at rank 73 is not sent: MCLCCIS2018B

0 - Indonesia Universitas Multimedia Nusantara
(1 other UMN team at rank 74 is not sent: WeBareBears)

6.4.2 Wildcard Slots by Registration Deadline of Saturday, 27 October 2018

The RCD has 60 (maximum capacity of the contest floor) - 13 confirmed local teams - 24 foreign

teams = 23 wild card slots that can be used by any teams that has been given permission by the

RCD. At the end, these 13 teams have gotten wildcard slots despite not joining (or advancing from)

this Preliminary Contest:

1. University of Aizu, Coach: Associate Professor Yutaka Watanobe (1 team, Return ZUKKY):

Excused from this preliminary contest. Rank 77 in ICPC World Finals 2016 and Rank 59 in

ICPC World Finals 2017.

2. University of Indonesia, Coach: Dr Denny (1 team, mad as rabbits): Excused from this prelim-

inary contest. Rank 6 in ICPC Asia Singapore 2015.

3. National University of Singapore, Coach: Dr Zhao Jin (1 team, 414): Rank 22 in Prelim 2018.

13

4. National University of Singapore, Coach: Dr Zhao Jin (1 team, Illumina): Rank 23 in Prelim

2018.

5. Hanoi University of Science and Technology (Vietnam), Coach: Dinh Viet Sang (1 team, amaz-

ingbamboo with coccoc): Miss prelim registration deadline. Rank 9 in ICPC Asia Ho Chi Minh

City 2017.

6. National Taiwan University (Taiwan), Coach: Associate Professor Pu-Jen Cheng, Ting-Wei Lin

(1 team, OAO): Excused from this preliminary contest as it clashes with their own Taipei site

preliminary contest. Runner-up in ICPC Asia Singapore 2015.

7. Tianjin University, Coach: Zhao Mankun (1 team, TJU valderField): Miss prelim registration

deadline. Rank 33 in ICPC World Finals 2016.

8. Chinese University of Hong Kong, Coach: Dr Chan Siu On (1 team, CUHK 4): Rank 16 in

ICPC Asia Singapore 2015.

9. National University of Singapore, Coach: Dr Zhao Jin (1 team, lorem ipsum→ Dolor Sit Amet):

Rank 29 in Prelim 2018.

10. National University of Singapore, Coach: Dr Zhao Jin (1 team, ICanProgramC++): Rank 30

in Prelim 2018.

11. Singapore Management University, Coach: Dr Dai Bing Tian (1 team, softmax), by invitation

of the RCD.

12. Singapore Management University, Coach: Dr Dai Bing Tian (1 team, support), by invitation

of the RCD.

13. Ajou University, Coach: Dr Sangyoon Oh (1 team, DID YOU TEST N=1?), last to register.

6.5 Contest Photos

The photos submitted by various team coaches (only show teams who solve at least 1 problem) can be

found in this public Facebook album: https://www.facebook.com/media/set/?set=a.10155746944362304&

type=1&l=a511e1d72f. Coaches and contestants are free to tag and/or share this album.

6.6 Live Contest for Coaches and Technically Gifted Spectators

The RCD decided to open the Preliminary Contest to any other Competitive Programmers out there

who wants to join or sample the problem set without any obligation or ICPC rules restrictions. The

non-official scoreboard can be found in https://open.kattis.com/contests/asiasg18-prelim-open.

We will do the same for the onsite Regional Contest in December. That is, this time the coaches

(in coach room) or any other technically gifted spectators can also try to solve the same problemset

while the real 2018 ICPC Singapore Regional Contest is running, same as with ICPC World Finals.

14

https://www.facebook.com/media/set/?set=a.10155746944362304&type=1&l=a511e1d72f
https://www.facebook.com/media/set/?set=a.10155746944362304&type=1&l=a511e1d72f
https://open.kattis.com/contests/asiasg18-prelim-open

6.7 Final Remarks and Acknowledgements

The RCD encourages all advancing teams to practice hard in these interim 3 months (15 September

2018 - 13 December 2018) before the actual 2018 Asia Singapore Regional Contest on 12-14 December

2018. The RCD wishes everyone all the best and see you in Singapore this December.

For the rest of the teams, we hope that you keep continue practising on this problemset (now

available at open Kattis for further practice) and various other ICPC problemsets. Who knows it is

your turn to advance next time?

For this Preliminary Contest, the RCD wishes to thank especially the problem authors/testers/scientific

committee for preparing this nice problem set (details in Section 5), NUS SoC Corporate Relations

(Tien, Wati, Christine) for the publicity efforts, Dean’s Office (Mrs Ho) for the local food @ NUS,

NUS SoC IT support (Musa), and Kattis team (Greg Hamerly, Fredrik Niemelä) for letting us use

World Finals online judge for our Singapore site contests (again).

Lots more work will be done by the other members of the https://www.comp.nus.edu.sg/

~acmicpc/#committees to bring these ≈ 50 advancing teams onsite to Singapore this coming De-

cember 2018.

References

[1] Steven Halim and Felix Halim, Competitive Programming 3: The New Lower Bound of Program-

ming Contests, Lulu, 3rd edition, 2013.

[2] Steven Halim and Felix Halim, Competitive Programming 3: 2018b Revised Edition, Not published

yet, 3.18b, 2018.

15

https://www.comp.nus.edu.sg/~acmicpc/#committees
https://www.comp.nus.edu.sg/~acmicpc/#committees

	Introduction
	Registration and Publicity Campaign
	Accepted Teams
	Overview

	No Warmup Contests
	Problem Set
	Overview
	Problem Analysis, Pre-Contest
	A - Knight Search (knightsearch)
	B - Swap to Sort (swaptosort)
	C - Make Palindromes (makingpalindromes)
	D - Cave Exploration (caveexploration)
	E - Grid Game (gridgame)
	F - Modulo Data Structures (modulodatastructures)
	G - Fooling Around (foolingaround)
	H - Bee House Perimeter (beehouseperimeter)
	I - Classical Counting (classicalcounting)
	J - Unicyclic Count (unicycliccount)

	Post Contest Remarks
	Contest Statistics
	38 Teams Advancing to 2018 Asia Singapore Regional Contest
	Top 13 Local Singapore Teams
	Top 25 Foreign Teams
	29 Forfeited Slots...
	Known Wildcard Slots as of Friday, 19 October 2018

	Contest Photos
	Live Contest for Coaches and Technically Gifted Spectators
	Final Remarks and Acknowledgements

