Problem

Given a sequence S with N elements.
We need to find a subsequence with 4 elements with pattern:
ABAB

where 4 # B

Solution

Let's first consider a brute force solution, where we look at:
e All pairs of indices (i, j) where S, =S;. There are O(NZ) such pairs.
e All pairs of indices (u, v) where S, =S, . There are O(Nz) such pairs.
There are O(N?) indicesijuv. If i<u<j<v, then we have found a solution.

We observe that if i <u <j <v forms a solution, then any i'satisfying S, =S, and i’ <i also
forms a solution, since i'<i<u<j<vand §,=§;=5,.

Thus, instead of looking at all 0(N2) pairs of indices (i, j), we only look at all the pairs (i,,;,, /)

where i, is the minimum index such that §,,,, = S; . There is only O(V) pairs of (i,,;,, j) -

Similarly, we only need to look at the pairs of indices (u, v, ) where v, is the maximum index
such that S, = S,...x - There are also O(N) such pairs.

Thus, we have improved our solution to O(Nz)with some pre-processing:

e For each value x, stores the smallest index imin(x) where S =x, and the largest

imin(x)

index imax(x) where S x.

imax(x) =

e Loop through all index jand u. Let i = imin(S;) and v = imax(S,) . If i<u<j<v and
Ay #Aj , then we have found a solution.

Improve to O(N = logN)

We re-state the problem as follows:
e Given O(N) segments [i, j].
e Given O(N) queries (u, v). We need to check if there exist any segment such that

i<u<j<v.



This problem can be solved efficiently as follows:
e For each segment [i, j], we create 2 events:

o At time=1i, we add a new segment [, j] to our data structure.
o At time=j, we remove the segment [i, j] from our data structure. Note that this

segment must be previously added.
e Foreach query (u, v), we create 1 event:

o At time=u, we query if there is a segment [i, j]in our data structure, such that:
m A, #Aj
m <V
We sort all events according to time. This will make sure that we do not need to check for the
condition i <u <j, since the segment will only exist in our data structure at the time of query iff

i<u<j.

To check efficiently if there is at least one segment with j <v, we can store segments in a
Segment Tree.


https://codeforces.com/blog/entry/15890

