

Your company, Apasaja Private Limited, is commissioned by Toko Kopi Luwak to design relational schema for the management of their coffee beans, drinks, and cafes.

A coffee bean is fully identified by its unique brand name or a combination of its cultivar and region (since the same cultivar can be grown in different region). For instance, we may have a coffee bean named "The Waterfall" which comes from a Tabi cultivar grown in Colombia.

A drink can be made utilizing a particular coffee bean. The name of the drink is only unique for a particular coffee bean. This means, we can have an "Espresso" made with "The Waterfall" or "La Bella" (which is a Pacamara cultivar grown in Guatemala). The price of the drink is also recorded.

A branch identified by its branch name may then sell the drink. A drink may be sold by zero or more branches. A branch may sell zero or more drinks. Additionally, the address of the branch is also recorded. Lastly, for each drink sold by a branch, we record the quantity sold to see which branch is the most profitable.

We are only given an abstract schema for this application as follows.

$$R = \{A, B, C, D, E, F, G, H\}$$

$$\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}$$

This tutorial continues from the computation of candidate keys and minimal cover in "Tutorial: Functional Dependencies". You are advised to compute them before continuing. This tutorial also uses the schema from "Tutorial: Creating and Populating Tables" before the updates done during the tutorial.

Questions

Not all questions will be discussed during tutorial. You are expected to attempt them before coming to the tutorial. You may be randomly called to present your answer during tutorial. You are encouraged to discuss them on Canvas Discussion.

1. Third Normal Form.

(a) Is R with Σ in 3NF?

2. Normalization.

- (a) Decompose R with Σ into a 3NF decomposition using the algorithm from the lecture.
- (b) Is the result dependency preserving?

3. 3NF or BCNF.

In this question, we will be revisiting the "issues" with the original schema from "Tutorial: Creating and Populating Tables". For simplicity, we will work with only the relevant attributes. The following tables provide the mapping from those attributes to letters.

book (A,B)

Attribute	Letter
isbn	A
title	В

copy (A,C,F)

Attribute	Letter
сору	F

student (C,D,E)

boudono (c,b,b)	
Attribute	Letter
email	С
department	D
faculty	Е

loan (A,C,F,G,H)

Attribute	Letter
borrowed	G
returned	H

We also rename owner to email and book to isbn.

Note that some attributes are not listed with the table as they are referencing another table. We assume those attributes are present nonetheless.

You are advised to figure out the functional dependencies on your own. Check that they match the following set of functional dependencies.

$$\Sigma = \{ \{A\} \to \{B\}, \{C\} \to \{D, E\}, \{A, C, F, G\} \to \{H\} \}$$

- (a) Recall that we found that department should uniquely identify faculty. This is represented as $\{D\} \to \{E\}$. Is the table student still in BCNF if we add $\{D\} \to \{E\}$ to Σ ? Is it in 3NF?
- (b) Consider instead that we replace $\{C\} \to \{D, E\}$ in Σ with $\{C, E\} \to \{D\}$ and $\{D\} \to \{C\}$. Is the table **student** still in BCNF? Is it in 3NF?

References

- [1] S. Bressan and B. Catania. *Introduction to Database Systems*. McGraw-Hill Education, 2006. ISBN: 9780071246507.
- [2] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. *Database Systems: The Complete Book.* 2nd ed. Prentice Hall Press, 2008. ISBN: 9780131873254.
- [3] Raghu Ramakrishnan and Johannes Gehrke. *Database Management Systems*. 2nd. USA: McGraw-Hill, Inc., 2000. ISBN: 0072440422.

¹Although it is a *synthesis* algorithm, the process is still decomposition.