
Protocol Conformance with
Choreographic PlusCal

Darius Foo[0000−0002−3279−5827], Andreea Costea[0000−0002−9089−9392], and
Wei-Ngan Chin[0000−0002−9660−5682]

National University of Singapore
{dariusf,andreeac,chinwn}@comp.nus.edu.sg

Abstract. Distributed protocols, an essential part of modern comput-
ing infrastructure, are well-known to be difficult to implement correctly.
While lightweight formal methods such as TLA+ can be effectively used
to verify abstract protocols, end-to-end validation of real-world protocol
implementations remains challenging due to their complexity. To address
this problem, we extend the TLA+ toolset along two fronts. We pro-
pose several extensions to PlusCal – an algorithm language which com-
piles to TLA+ – to allow writing distributed protocols as choreographies.
This enables more structured and succinct specifications for role-based
protocols. We also provide a methodology and toolchain for compiling
TLA+ models into monitors, allowing them to be used to test existing
systems for conformance. The result is a lightweight testing method that
bridges specification and implementation. We demonstrate its benefits
with case studies of both classic and recent protocols and show it to be
readily applicable to existing systems with low runtime overhead.

1 Introduction

Distributed systems are an essential part of modern computing infrastructure.
They are well known to be hard to implement correctly: Faults and asynchrony
give rise to huge state spaces which make ad hoc testing ineffective. To alleviate
this, developers of distributed systems implement well-known distributed pro-
tocols and algorithms, e.g. Paxos and Raft, which provide strong guarantees,
e.g. solving consensus provided a quorum of nodes does not fail. Implementing
a protocol correctly transfers its guarantees to the implementation, but this is
easier said than done. In practice, production-ready consensus implementations
are large and complex, containing optimizations and low-level details that make
the correspondence with an abstract protocol difficult to establish. Moreover,
protocols must often be extended to meet real-world needs. It is thus difficult to
say if a protocol is correct, and if a system indeed implements a given protocol.

Developers working with such protocols today rely on lightweight formal
methods [28, 6], best exemplified by TLA+ . Its combination of first-order tem-
poral logic with explicit state-space model checking is simple, yet effective. Its
expressiveness makes it readily applicable, and its intended workflow of checking
protocol properties in a relatively low-commitment manner is compatible with
software engineering constraints [28]. However, TLA+ has two shortcomings.

Distributed protocols are specified in TLA+ as state machines, consisting of
a set of actions (relations between states). This form is simple and explicit, but
relatively unstructured. Control flow must be encoded in guard conditions, and
it is generally difficult to see how actions relate: given two actions A and B, we
must examine potentially all other actions to see that B follows A and is the only
action that could follow A. Modifying protocols is in turn error-prone, as seem-
ingly local protocol changes often require nonlocal specification changes. Even for
experienced users, changing a large model in state machine form without intro-
ducing bugs takes several tries. TLA+ has an algorithm language, PlusCal [23],
that should solve these issues, but despite being more structured and apt, it is
not often used1. We suggest that this is because it does not provide sufficiently
high-level constructs for common patterns that occur in distributed protocols.

The TLA+ toolset also does not contain a lightweight mechanism for checking
an implementation’s conformance to a specification. This is a pity given the
ready availability of protocol specifications and the abundance of supposedly-
conforming implementations. We thus extend TLA+ along two fronts.

We first extend PlusCal with choreographies – global descriptions of commu-
nication protocols, and a natural fit for specifying distributed behavior. Chore-
ographies are typically used for specifying communication protocols using mul-
tiparty session types [15], in security protocols (“Alice-and-Bob notation”), or
writing distributed programs. As specifications, they read causally and resemble
informal natural-language descriptions. Choreographies are projected into indi-
vidual process declarations and subsequently translated to regular PlusCal. The
translation is parametric in the choice of network semantics.

Secondly, we extend the TLA+ tools with a source-to-source translator from
TLA+ into a monitor in an implementation language. This allows a system model
to be linked into an implementation and executed in lockstep to check for pro-
tocol conformance, a lightweight testing method which does not require invasive
changes. Given a TLA+ model verified using the TLC model checker, an imple-
mentation which refines it thus inherits its safety properties.

We implement both of these extensions in the TLA+ tools and demonstrate
both the use of choreographies and monitors with case studies.

Our prototype, experimental data and results, and an extended technical
report containing case studies and more detailed proofs are publicly available2.

2 Overview

We highlight our proposed extensions and methodology using an instance of
the classic two-phase commit protocol [24], in which a set of database replicas
collectively agree on whether or not to commit a distributed transaction.

The two-phase commit protocol is initiated by the coordinator, a distin-
guished node which first sends requests to a set of participant nodes, asking
them to prepare to commit a transaction. The participants decide independently

1 Of the 99 TLA+ models in the official examples repository, 61 could be called dis-
tributed protocols and only 15 of them use PlusCal.

2 https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal

process (C \in coordinators)
variables temp = participants ,

aborted = FALSE; {
while (temp /= {}) {

with (r \in temp) {
Send(self , r, "prepare ");
temp := temp \ {r};

} };
temp := participants;
while (temp /= {} \/ aborted) {

with (r \in temp) {
either {
Receive(r, self , "prepared ");
} or {
Receive(r, self , "abort ");
aborted := TRUE;
};
temp := temp \ {r};

} };
if (aborted) {

temp := participants;
while (temp /= {}) {

with (r \in temp) {
Send(coord , r, "abort ");
temp := temp \ {r};

} };
temp := participants;
while (temp /= {}) {

with (r \in temp) {
Receive(r, coord , "aborted ");
temp := temp \ {r};

} }
} else {

temp := participants;
while (temp /= {}) {

with (r \in temp) {
Send(coord , r, "commit ");
temp := temp \ {r};

} }
temp := participants;
while (temp /= {}) {

with (r \in temp) {
Receive(r, coord , "committed ");
temp := temp \ {r};

} } } }

Fig. 1: Two-Phase Commit
Coordinator (PlusCal)

process (P \in participants) {
Receive(coord , self , "prepare ");
either {
psend:

Send(self , coord , "prepared ");
} or {

Send(self , coord , "abort ");
};
either {

Receive(coord , self , "commit ");
Send(self , coord , "committed ");

} or {
Receive(coord , self , "abort ");
Send(self , coord , "aborted ");

} }

Fig. 2: Two-Phase Commit
Participant (PlusCal)

choreography
(P \in participants),
(C \in coordinators) {
task coordinators "phase1" {

all (p \in participants) {
Transmit(coord , p, "prepare ");
either {

Transmit(p, coord , "prepared ");
} or {

Transmit(p, coord , "aborted ");
cancel "phase1 ";

} } };
if (aborted) {

all (p \in participants) {
Transmit(coord , p, "abort ");
Transmit(p, coord , "aborted ");

}
} else {

all (p \in participants) {
Transmit(coord , p, "commit ");
Transmit(p, coord , "committed ");

} } }

Fig. 3: Two-Phase Commit
Choreography

whether or not to commit and reply to the coordinator, which decides to commit
the transaction provided all participants decided to commit. Entering the sec-
ond phase of the protocol, the coordinator performs another multicast to inform
the participants of the outcome, which end the protocol by acknowledging.

The protocol in PlusCal is shown in Fig. 1 and Fig. 2. It is parameterized by
two roles (Def. 1), participants and coordinators: finite sets of identifiers (or
parties) which represent protocol nodes. Intuitively, parties in a role enact the
same unique pattern of interactions in a protocol. One PlusCal process per role
is declared, and processes are replicated for each party in their role. Send and
Receive are macros for communication. P and C are process names (Sec. 3.1).

Fig. 1 shows the coordinator’s process; coordinators is the singleton role
{coord}. Within its body, self refers to the current party (which is always
coord here). There are two locals: a set of participants temp and a boolean
variable aborted. The initial multicast is modelled with a while loop which
repeatedly selects a participant to send a prepare message to by iterating over
temp.

The loop may seem a rather low-level construct to use, but while it is possible
to define a TLA+ operator to perform an atomic multicast and send a batch of
messages at once, the loop lets us model possible reorderings of parallel sends.
Unfortunately, PlusCal macros may only be parameterized by expressions, not
blocks or statements, so this pattern of relying on loops and temp to communicate
with the participants is repeated throughout the coordinator’s model.

The second loop in the coordinator’s process receives prepared messages
from every participant, and stops at the first abort, ending the first phase.
The second phase begins with the coordinator making a decision: if a partic-
ipant aborted the transaction, the coordinator ensures that every participant
acknowledges this; otherwise it solicits committed messages from everyone.

Moving on to the participant model in Fig. 2, we see that it mirrors the
coordinator: the control flow is identical, sends are replaced with receives, loops
with replicated processes, and if with either.

2.1 Choreographies

It may have seemed natural to break the specification of the two-phase com-
mit protocol into two parts corresponding to the coordinator and participant,
respectively. However, such a split compromises the readability and maintain-
ability of the protocol: it is tedious to identify the matching receives and sends
spread across different processes and keep them in sync. A better specification
approach is a choreography, a global description of interactions. The entire two-
phase commit protocol as a choreography is shown in Fig. 3. Like a program,
a choreography has imperative and control flow constructs, but is written from
a global perspective instead: statements like Transmit are now allowed to men-
tion members of multiple roles. Transmit is intuitively a juxtaposed Send on
one party and a Receive on another, and effectively halves the size of proto-
col specifications. A choreography is statically projected (Sec. 4) into multiple
processes, recovering something close to what was written in Fig. 1 and Fig. 2.

2.2 Parallel Composition and all

There are still a number of problems with the PlusCal model. A glaring one is
that the coordinator’s model is overly sequential: despite our attempt to model
parallelism with the while loop in Fig. 1, the coordinator is forced to send all its
prepare messages before receiving a single response. To alleviate that, we could
merge the first two loops, but that makes message transmission synchronous.
To specify asynchronous transmissions in PlusCal, we could factor the sends
and receives into separate processes and manually add variables and awaits to
sequence them between phases, but this is, again, error-prone and tedious.

At this point one might be tempted to fall back to TLA+ , where having
separate actions for sending and receiving messages is easy. The downside is
that TLA+ is unstructured. Any action may interact with any other, so it is
difficult to see where new actions fit into an existing model without a global view.
Furthermore, TLA+ is no less verbose; the PlusCal translator’s TLA+ output is
more than twice the size of Fig. 1 and Fig. 2 combined.

To overcome this, we extend PlusCal with two structuring mechanisms for
intra-process concurrency, all and par; use of the former is illustrated in Fig. 3.
The all statement may be thought of procedurally as a fork-join or nested
process, and logically as universal quantification. Its body is executed once for
each element in the given set, possibly in parallel.

all in combination with Transmit is particularly useful for modelling mul-
ticasts. The resulting model is more succinct, but more importantly, it is more
abstract : the body of the all statement need not execute sequentially. Sends
and receives to different participants may also occur asynchronously.

Parallel composition par { ... } and { ... } ... is similar: each of the
given blocks executes in parallel and may differ, compared to what all does,
where each element of the set gives rise to a copy of a single process.

2.3 Tasks and Cancellation

A second problem with the PlusCal model in Fig. 1 is that cancellation, a useful
complement to timeouts, is done in an ad hoc manner. While we attempted an
early abort in the first phase, we had to send all the prepare messages first.

To address this, we extend PlusCal with two constructs, task and cancel.
task delimits a block of statements; anything within will no longer execute fol-
lowing the corresponding cancellation. cancel terminates its matching task.

The model finally expresses the desired behavior. Suppose we observe (a
prefix of) a behavior where two prepare messages are sent, immediately after
which a reply to abort comes back. In the final model, no more prepare messages
will be sent, and no more prepared or abort messages will be received. In other
words, the entire first phase has been cancelled early, and the decision in the
second phase will be the very next thing following the cancellation.

With all these changes implemented, we see also that our choreographic spec-
ification is very succinct: the final model in Fig. 3 is less than half the size of its
PlusCal counterpart while saying more.

psend(self) ==
/\ pc[self] = "psend"
/\ outbox ’ = [outbox EXCEPT ![self] =

outbox[self] \union
{[To |-> coord , From |-> self ,

Type |-> "prepared "]}]
/\ pc ’ = [pc EXCEPT ![self] = "Lbl_2"]
/\ UNCHANGED << participants , temp ,

aborted >>

(a) TLA+ rendering of psend action

psend(self) ==
/\ pc = "psend"
/\ outbox ’ = outbox \union

{[To |-> coord , From |-> self ,
Type |-> "prepared "]}

/\ pc ’ = "Lbl_2"

(b) Projection of psend action

Fig. 5: TLA+ rendering and projection of psend action from Fig. 2

2.4 Verification and Monitoring

Choreographic PlusCal projects and translates down to regular PlusCal, which
in turn translates to TLA+ , so it fits naturally into the verification pipeline of
the TLA+ tools (Fig. 4).

Ch. PlusCal Ŝ (Sec. 3)

Ex. PlusCal S̄

PlusCal S

{τ, ...}

{τ, ...}

{τ, ...}

TLA+ TLC

Monitor Test

� (Sec. 4)

Tr (Sec. 5)

=

=

Comp. (Sec. 6)

pcal.trans [23]

Inv.

Instr.

Fig. 4: Overview

Suppose we specify an invariant
that the protocol must uphold and
verify it with TLC, the TLA+ model
checker. For example, an invariant for
two-phase commit is that participants
all commit or all abort, i.e. we cannot
observe one participant that has com-
mitted and another that has aborted.

We would like assurance that a
given implementation of two-phase
commit follows the protocol and sat-
isfies the same invariant. The typical
way to ensure this is to show that the
implementation is a refinement of the
model: for each of its behaviors, we
find a corresponding behavior of the
model that “justifies” the implemen-
tation behavior under a refinement mapping— a mapping of implementation
states to model states. This in turn implies inheritance of safety properties.

We provide a lightweight way to gain this assurance for TLA+ models via
monitoring. As mentioned earlier, this supports the validation of the many hand-
tuned implementations which already exist, not requiring major changes.

We illustrate monitor generation for the statement labelled psend in Fig. 2,
where a participant sends a message to the coordinator, is shown in Fig. 5a.
This translates down to an action which adds to a participant-local outbox, then
advances a program counter pc to capture the protocol’s progression.

Given a TLA+ model satisfying some syntactic conditions3 (e.g. that local
variables are represented as records), we project it, removing non-local variables
and actions and projecting local record variables. psend now looks as in Fig. 5b.

3 Choreographic PlusCal ensures these by construction, but they can also be satisfied
in handwritten TLA+ models, so this methodology applies to them equally.

We then generate code to be linked with an implementation to enable the
collection and validation of traces. Collection is done via the following function.

func (m *Monitor) Capture(s State, a Action, args ...TLA)

The State struct is generated from the variables of the model and represents
its abstract state via a deep embedding of TLA+ . The user provides a refinement
mapping by constructing it using the concrete state of the implementation, and
placing it at appropriate linearization points to snapshot the state of the system.

With traces captured, validation is done by interpreting projected actions as
assertions and using them to check traces, via generated code like in Fig. 6.

func psend(prev state , this state , self TLA) bool {
if !(reflect.DeepEqual(prev.pc, Str("psend "))) {

return false
}
// ... outbox check elided
if !(reflect.DeepEqual(this.pc, Str("Lbl_2 "))) {

return false
}
return true

}

Fig. 6: Go rendering of psend in generated monitor

This gives us a pipeline for checking the correspondence of a high-level chore-
ography with a lower-level implementation, supporting their evolution in tan-
dem. As this is a testing approach, it finds only violations of refinement, but
scales to real-world implementations.

In the following sections we describe a core fragment of PlusCal and define
our extensions to it (Sec. 3). Sec. 4 and Sec. 5 define projection and translation,
respectively, to this core fragment. Sec. 6 describes the generation and use of
monitors. We evaluate the approach empirically in Sec. 7 before concluding.

3 Choreographic PlusCal

3.1 PlusCal

We begin by introducing the syntax (Fig. 7a) and semantics of a minimal subset
of PlusCal, Core PlusCal, which extends TLA+ with process declarations and
control flow constructs such as conditionals and loops.

A model pcal is a sequence of global variable declarations, followed by one or
more processes, sequential and replicated imperative programs. Processes are
declared with an identifying expression of the form v ∈ e, where v is a name for
the set of replicas collectively, and e is a set of indices for the individual replicas.

skip is a no-op. await blocks until a condition becomes true. with nonde-
terministically selects an element of the set e and binds it to v in its body, and
either nondeterministically executes one of its branches. The rest are standard.

The semantics of a (Core) PlusCal model is a set of behaviors, sequences of
states. A state is an assignment of variables to values; in each state global vari-
ables are assigned values, and each local is assigned one value per process. The
execution of a process gives rise to a behavior by updating variables via assign-
ments, nondeterminism allows several possible behaviors, and the execution of
multiple processes interleaves their individual behaviors. Within process bodies,
the special variable self refers to the current replica.

pcal ::= vardecl∗proc∗ vardecl ::= v = e procid ::= v ∈ {e∗}
proc ::= process procid vardecl∗ S
S ::= skip | await e | while e S | if e S S | with v ∈ e S | v := e

| S; S | either S or S
e ::= string | v | e = e | e 6= e | ∀v ∈ e : e | {e∗} | e \ e | e ∪ e

| 〈〈e∗〉〉 | e[e] | e[e] := e

(a) Core PlusCal

S̄ ::= S | Send(e, e, e)
| v := Receive(e, e)
| all v ∈ e S̄ | par S̄ and S̄
| task R e S̄ | cancel e

(b) Extended Core PlusCal

cpcal ::= vardecl∗ chor proc∗

chor ::= choreography (procid vardecl∗)∗ Ŝ

Ŝ ::= S̄ | while e∗ Ŝ
| Transmit(e, e, v = e)

(c) Choreographic PlusCal

Fig. 7: Syntax of Core PlusCal and its extensions

3.2 Extensions

We extend Core PlusCal with new statements (Fig. 7b), and a choreography

top-level declaration in cpcal (Fig. 7c), which allows additional global statements.
A protocol implementation typically involves multiple sets of physical nodes

(or replicas), where nodes within each set follow the same “pattern of interac-
tion”. We represent nodes by their identifiers (concretely, TLA+ model values or
short strings), and their interactions by PlusCal processes. These concepts are
made explicit in all our PlusCal variants.

Definition 1 (Roles and parties). A role R is a statically-declared set of node
identifiers. A node identifier, as a member of a role, is called a party.

The syntax of Extended Core PlusCal also contains explicit send and receive
operations that parties use to exchange messages over the network [32, 39].

with executes its body with a nondeterministically chosen element of some
set, whereas all does so with every element of the set. There is no obligation
that this be done sequentially, so each “subprocess” executes in parallel. Parallel
composition is similar to all, but has a fixed number of child processes with dif-
ferent behavior. Unlike subprocesses in Distributed PlusCal [1], the translation
scheme for both is compositional, allowing arbitrary nested trees of processes.

Finally, there are the paired constructs of tasks and cancellation. A task is a
block of statements that may or may not execute to completion. Tasks are local to
a given role R, and are uniquely named with an expression e. Correspondingly,
cancellation is a local operation which terminates its task: the suffix of any
behavior following a cancellation will not contain actions in the scope of its
task. There is exactly one task for a given cancellation. A task may, however, be
cancelled in multiple places. For example, in

par (cancel e) and (task {p1} e Transmit(p2, p2, v = m))
if Transmit means that p1 sends the message m asynchronously to p2 and the
network is reliable, then there are two outcomes: one where m is received by
p2, and one where it is sent but never received. Tasks and cancellation are thus
useful for more fine-grained modeling of timeouts and aborted operations.

A choreography declaration chor (Fig. 7c) gives the roles involved in the
protocol and their locals. Transmit allows for a name v to be given, which e

will be bound to on the receiving party. A while loop must have a termination
condition for each role its body involves, and is otherwise standard.

4 Projection

The first step in the translation to PlusCal is to split choreographies Ŝ into pro-
cesses S̄ via projection. As mentioned earlier, a choreography declares a num-
ber of roles, each with its own local variables. The body of the choreography Ŝ
(Fig. 7c) allows two additional global statements (Transmit and global while)
and may mention variables and members of all roles simultaneously in expres-
sions, subject to well-formedness conditions detailed in this section.

A global while statement has a termination condition for every role involved
in its body. We have seen Transmit before; a multicast is expressed as a Transmit
inside all. Consider how the first multicast from Fig. 3 is projected:

coordinator : all p ∈ participants (Send(coord , p, prepare))
participants : v := Receive(p, coord)

The Transmit is split into a Send and Receive. As the set of participants is
“quantified over”, the all block vanishes when we view the protocol from the
perspective of some p, which performs only a single Receive from coord.

Projection is a partial operation, requiring that variables and expressions
used by non-global statements belong to only one role. For example, we cannot
await a global condition involving multiple roles.

Choreographies are parametric in their choice of network semantics. The
user can implement any network semantics they wish via the macros Send and
Receive: reliable, ordered, etc. This is a more minimalistic solution than in
Distributed PlusCal [1], which provides explicit broadcast and multicast op-
erations and multiple kinds of channels, and Modular PlusCal [43, 8], which adds
constructs for separating the system from the environment of a model.

Definition 2 (Projection). The projection of Ŝ onto a role R, Ŝ � R, is de-
fined inductively over the syntax of Ŝ in Fig. 8.

Parties and roles are first-class citizens in Choreographic PlusCal, yet projec-
tion is done at translation time and must use only statically-known information.
A number of auxiliary predicates which relate syntax with (approximations of)
semantic information are used in its definition. loc(v,R) is true if v is a local
variable of R, loc(e,R) is true if all variables in e are local to R; role(e,R) and
party(e,R) allow interpreting expressions as roles and parties of the given role
respectively; task(e,R) holds if there is a task task R e S.

Projection is defined in Fig. 8. Assignments, await (elided), and cancel

vanish if the variables, expressions, and/or tasks they mention are not local
to the current role (the role being projected onto). Transmissions are projected
depending on how the parties involved are related to the current role. Projection
is “pushed through” sequential composition, par, and either.

(v := e) � R ,

{
v := e if loc(v,R), loc(e,R)
skip otherwise

(cancel e) � R ,

{
cancel e if task(e,R)
skip otherwise

Transmit(s, r, v = m) � R
party(s,Rs),party(r,Rr),Rs 6=Rr

,

Send(s, r,m) if party(r,R)
v := Receive(s, r) if party(s,R)
skip otherwise

(task Q e Ŝ) � R ,

{
task Q e (Ŝ � R) if Q = R

Ŝ � R otherwise

(all v ∈ e Ŝ) � R ,

all v ∈ e (Ŝ � R) if role(e,Q), Q 6= R

all v ∈ e (Ŝ � R) if loc(e,R)

Ŝ � R otherwise

(if e Ŝ1 Ŝ2) � R ,

{
if e (Ŝ1 � R) (Ŝ2 � R) if loc(e,R)

either (Ŝ1 � R) or (Ŝ2 � R) otherwise

(while e∗ Ŝ) � R ,

{
while e1 (Ŝ � R) if loc(e1, R), e1 ∈ e∗

Ŝ � R if roles(Ŝ, R∗), R /∈ R∗

Fig. 8: Projection

all is slightly more subtle. If the set being “quantified over” is a role different
from the current one, we project under the “quantifier”. We do the same if the
set is not a role but some data located on R. Otherwise we drop the quantifier.
Note that due to the side condition on transmission, there is no use for nesting
more than one all over the same role. with is similar to all, except that the set
being selected from is not allowed to be a role, as the selection of an arbitrary
party cannot be coordinated globally in a simple manner. if projects to an
either depending on whether its condition can be tested by the current role.

To project while, a termination condition must be given for the role it is
to be projected on, and it is carried through without changes. The body of the
loop must not involve roles for which there is no termination condition.

Projection of a statement Ŝ with respect to a set of roles R∗ results in a set of
statements {S̄1, ...}. A given projection function is sound if every behavior of the
parallel composition of {S̄1, ...} is a behavior of Ŝ, and complete if the converse
is true. A sound and complete projection function thus splits a choreography
into a set of processes with equivalent behavior. This may be expressed in the
following statement, if (Ŝ, σ) τ denotes that Ŝ may give rise to the behavior
τ from a starting state σ, where τ is a sequence of states.

Theorem 1. Given Ŝ � R1 = S̄1, ..., (Ŝ, σ) τ ⇐⇒ (par S̄1 and ..., σ) τ .

process (p_main \in {main}) {
fork: await \A p \in {S1, S2} :

pc[p] = "Done";
}
process (p_S1 \in {S1}) {

await pc[main] = "fork";
(* body of S1 *)

}
(* S2 is similar *)

Fig. 9: Translation of par

process (p_main \in {main}) {
fork:
await \A p \in {main} \X {p1 , p2} :

pc[p] = "Done"
}
process (p_S \in {main} \X {p1, p2}) {

await pc[Head(self)] = "fork";
(* S[Head(self)/v] *)

}

Fig. 10: Translation of all

5 Translation

Having projected a choreography Ŝ into a set of processes S̄, we now cover the
translation to Core PlusCal S. The overall translation is denoted by the function
Tr : S̄ → S, which is the composition of several functions Tr task ◦Trpar ◦Trall ,
each handling a specific construct orthogonally. We explain each translation
scheme by example and then justify its correctness.

First is Tr task , which handles tasks and cancellation. It instruments models
with a global variable cancelled, a record whose domain is the set of all task
identifiers. For each statement task R e S̄, cancelled[e] is initially FALSE.
cancel e translates to cancelled[e] := TRUE, and task R e S̄ by transforming
every statement S̄1 in S̄ to if cancelled[e] S̄1 skip. Intuitively, this translation
is correct because it makes cancellation idempotent and prevents further actions
in a task from occurring by making them skips.

The actual statement of semantic preservation is as follows, given that the
target language S is a strict subset of the source language S̄ and the behaviors
produced by both are identical (hence they are equally expressive):

Theorem 2. Given Tr task (S̄) = S, (S, σ) τ ⇐⇒ (Tr task (S̄), σ) τ .

(par S̄1 and S̄2) is translated as in Fig. 9. main is the process this “fork”
is nested in, where control is initially (above). S̄1 and S̄2 expand into separate
processes (below) which may only begin execution once main reaches the labelled
fork point. S̄1 and S̄2 execute in parallel, and main awaits their completion at
the “join” point before proceeding.

Theorem 3. Given Trpar (S̄) = S, (S, σ) τ ⇐⇒ (Trpar (S̄), σ) τ .

Next, we cover all, which extends the approach (and justification) for par.
The statement all v ∈ e S̄ expands as shown in Fig. 10, assuming e = {p1, p2}.

As before, there is a main process with a distinguished fork point. It awaits
the completion of all the subprocesses whose identifiers are in e. Now, however,
as the value of e may not be statically known, we create a set of processes whose
identifiers come from the cartesian product of e and any roles in enclosing all

statements; in this case, the only such role is the singleton set {main}. Each
process body contains S̄ with the bound variable v substituted.

This translation scheme is compositional: we can apply it recursively to sup-
port arbitrary nesting of all statements. This is in contrast to threads in Dis-
tributed PlusCal [1], which only allow one level of nesting due to the way program

counters are extended. This gives Choreographic PlusCal much of the flexibility
of a process calculus, allowing very direct expression of some protocols.

Theorem 4. Given Trall(S̄) = S, (S, σ) τ ⇐⇒ (Trall(S), σ) τ .

6 Monitoring

After progressively translating from Choreographic PlusCal to regular PlusCal
to TLA+ , the next step of the pipeline compiles a TLA+ model into a monitor
in an implementation’s language. We choose Go here because of its popularity
for distributed protocol work, but our overall approach is language-agnostic.

To use a TLA+ model as a monitor for a system, one instruments the system
to collect behaviors. Each behavior is checked to see if it satisfies the temporal
formula Init ∧ �Next of the model. As a testing approach, monitoring is sound
but incomplete: failing assertion point to refinement violations and indicate bugs,
but nothing can be said about assertions which are never executed.

Specifications of distributed protocols are satisfied by behaviors involving
several roles, so traces must be collected from all of them and merged to obtain
a behavior to check. This may be inconvenient (requiring events to be ordered
using vector clocks) or impractical (if the behaviors of some roles cannot be
observed directly). We would thus like to perform monitoring locally, checking
the behaviors of individual parties in isolation, and deriving global guarantees
from the assumption that all parties satisfy their specifications.

6.1 Projection of TLA+ Models

This motivates projecting TLA+ models – using only variables and actions rele-
vant to a given role to monitor a party of that role. This in turn requires that
models have a little more structure, satisfying additional syntactic conditions:

All variables are local to a role or to the Network (a distinguished, singleton
role). Variables representing role-local state have record values with the role as
domain. All actions are local and have an initiating party, intuitively the one
which acts, e.g. performing a send, or reacting to a message. Actions take this
initiating party as an argument and may modify only its variables. If an action
involves communication, it must take the other party as an argument as well; all
communication is via message-passing and we assume there is at most one other
party. Non-Network actions may only modify variables belonging to the role of
the party; Network actions must modify the variables of one other party as well.

Choreographic PlusCal ensures all of these by construction, but handwritten
TLA+ models may also satisfy them and thereby be usable as monitors.

With this additional structure, projecting a TLA+ model on a role R leaves
only R’s actions. Variables for R are straightforwardly projected on the initiating
party. Network actions are projected to remove state nonlocal to R.

An example is in Fig. 11. On the left is a model for a set of communicating
Nodes. There are two local variables, inbox and outbox, which have record values
indexed by node. The set of inflight messages is local to the Network. Nodes
can send the string “msg” across the network by putting it in their outbox. The
Network delivers messages by moving them from the set of inflight messages into

CONSTANT Nodes
VARIABLES inbox , outbox , inflight

Init ==
/\ inbox = [n \in Nodes |-> {}]
/\ outbox = [n \in Nodes |-> {}]
/\ inflight = {}

Send(n) ==
/\ outbox ’ = [outbox EXCEPT ![n] =

outbox[n] \union {"msg"}]

NetworkDeliver(n, m) ==
/\ inbox ’ = [inbox EXCEPT ![n] =

inbox[n] \union {m}]
/\ inflight ’ = inflight \ {m}

Next ==
\/ \E n \in Nodes :

\/ Send(n)
\/ \E m \in inflight :

NetworkDeliver(s, m)
\/ ...

CONSTANT Nodes
VARIABLES inbox , outbox

Init ==
/\ inbox = {}
/\ outbox = {}

Send(n) ==
/\ outbox ’ = outbox \union {"msg"}

NetworkDeliver(n, m) ==
/\ inbox ’ = inbox \union {m}

Fig. 11: Projection example

some node’s inbox. The projection of this model for monitoring the Node role
is shown on the right. Local variables are no longer records, but single values
for a given node. Non-local variables (inflight) and actions (Next) have vanished.
Network actions have been projected by removing conjuncts involving inflight.

6.2 Trace Collection

To facilitate collection of traces, we utilize a deep embedding of TLA+ formulae.
This avoids semantic mismatches, e.g. TLA+ ’s dynamic value types vs Go’s
static value/interface types. Instrumentation of the system to expose its states
as a trace is user-provided, and consists of calls to a function with the following
signature, to record the current State and the Action that led to it.

func (m *Monitor) Capture(s State, a Action, args ...TLA)

The use of a refinement mapping to construct a State value from the system
state and the placement of Capture at appropriate linearization points, where
snapshots of system state can be observed, are crucial. Because the construction
of a State value is decoupled from its use, it is possible to make use of arbitrary
auxiliary state to build it, or to build it piecemeal if the state of the system
cannot be easily snapshot [9]. We assume that this instrumentation produces
traces which faithfully represent system behaviors.

6.3 Trace Validation

Checking if a concrete behavior satisfies the model’s specification can be done in
multiple ways (e.g. model-based trace checking [35, 9]), with different tradeoffs.

Here we experiment with the approach of compiling the model into a monitor
(in Go) and executing it on observed behaviors. Each action is interpreted as an
assertion on pairs of consecutive states with additional information to make the
failure cause clear (the user sees more than just an opaque assertion violation).
An artificial example (Fig. 12) illustrates the compilation scheme.

A1(z) ==
/\ x = 1
/\ y’ = z + 2

func CheckA1(prev State , this State , z Int) bool {
if !reflect.DeepEqual(prev.x, Int (1)) {

return false
}
if !reflect.DeepEqual(this.y, Plus(z, Int (2))) {

return false
}
return true

}

Fig. 12: TLA+ monitor compilation example

Protocol Ch. PlusCal TLA+

Two-phase commit [24] 23 66
Non-blocking atomic commit [36] 36 96
Raft leader election [33] 46 186

Table 1: Relative specification sizes (LoC)

We benchmark the approach in Sec. 7. Compared to model-based trace check-
ing, monitoring requires more engineering (a TLA+ embedding and translations
of required operators) but is more scalable (allowing validation of large numbers
of traces from randomized testing) and may be done either online or offline, even
enabled in production and used to e.g. block transactions if a bug is detected.

7 Evaluation

We answer the following research questions, divided along two broad axes:

1. What classes of protocols does Choreographic PlusCal express well? How
concisely can it render them compared to existing specification languages?

2. How applicable is the monitoring approach to existing codebases? How much
overhead does it impose at runtime?

7.1 Expressiveness

Choreographic PlusCal lends itself well to the concise expression of protocols
with multiple roles. Our case studies focus on distributed consensus protocols,
but protocols from other domains which are typically specified as choreographies
or in Alice-and-Bob notation (networking, security) would also benefit.

We compare the sizes of such protocol models against handwritten TLA+ in
Tab. 1. Writing TLA+ directly offers a great deal of flexibility, but Choreographic
PlusCal builds in a lot of structure for the domain and juxtaposes communica-
tion, usually halving the sizes of specifications. While LoC is by no means a
perfect measure of succinctness and clarity, the point of this comparison is to
show that choreographies are an appropriate and promising paradigm for dis-
tributed protocols, and make them much easier specify and evolve.

7.2 Monitoring

To evaluate the scalability of the monitoring approach, we instrumented two
systems to check their conformance to their protocols. committer was the largest
implementation under the two-phase-commit GitHub tag in Go, while etcd is a

Project Protocol LoC Overhead

vadiminshakov/committer 2PC 3032 19% (5 ms)
etcd-io/raft Raft leader election 21,064 2% (4 ms)

Table 2: Monitor overhead

(a) committer (b) etcd

Fig. 13: Runtime overhead measurements

key infrastructure piece for platforms such as Kubernetes. Neither project was
designed for monitoring, and the models used to monitor them were taken from
the public TLA+ examples repository and were not written with them in mind.

For committer, we issued 1000 requests to write different keys (and trigger
its commit protocol) in a blocking manner. For etcd, we waited for a cluster of
newly created nodes to elect a leader and stabilize, repeating this 10 times. The
overhead figures in Tab. 2 (distribution in Fig. 13, where the x-axis is the request
number and the y-axis is time taken) represent the percentage (and absolute
amount) of time spent in monitor code over the amount of time spent in their
core consensus flows, per request. Experiments were carried out in clusters of size
3 (one coordinator and two replicas, and 3 servers), on a 2020 MacBook Pro with
a 2.3 GHz CPU and 16 GB RAM, with Go 1.19.4. The runtime overhead was
consistently low (up to two orders of magnitude for etcd), making monitoring
readily usable for randomized testing and CI, possibly even in production as a
sort of sanitizer. Monitoring also performs significantly better than model-based
trace checking with a separate TLC process [9, 35]; I/O for such a task typically
adds hundreds of ms, compared to 4-5 ms that in-process monitoring costs.

8 Related Work

8.1 Protocol Specifications

Protocols are classically specified as state machines [21] or automata [26], and
early specification languages such as TLA+ [22] and IOA [13] provided a con-
crete syntax for defining such models. While they are simple to manipulate
symbolically, such specifications are unstructured (Sec. 1, Sec. 2) and are hard
to extend and comprehend as they grow. Despite that, they are popular as a
classical approach for embedding in general-purpose languages [18, 4, 11, 12]
and proof assistants [40, 37, 17, 2], supporting extraction validation by model
checking, testing, symbolic execution, or deductive verification.

Since protocols are essentially distributed algorithms which compute and
branch, they are also naturally specified as imperative programs, in the spirit
of “exhaustively testable pseudocode” [28]. DistAlgo [25] extends Python for
this, adding queries over message history. Ivy [34] uses carefully constrained
imperative programs to enable decidable reasoning. PlusCal [23], Distributed
PlusCal [1] (which adds threads, channels, and communication primitives such
as multicasts) and Modular PlusCal [43, 8] (which separates system descriptions
from their environment to support program extraction) are also in this category.

Choreographies make up a third family of specification styles, describing
interactions globally and utilizing projection. Examples are Choral [14], a lan-
guage for writing executable descriptions of protocols, and session-typed sys-
tems [15, 10], many of which utilize monitoring [29, 31, 30, 5, 3].

Our work aims to combine the benefits of these three approaches. By in-
tegrating choreographies into PlusCal, a system for which transparency of the
compilation to TLA+ model is an explicit goal, we are able to support succinct
and high-level specifications which also have a clear semantics, and for practical
goals of model checking and conformance testing.

8.2 Testing Distributed Systems

We distinguish distributed systems testing approaches which require clean-room
implementations [18, 25, 11, 12, 43] or extensive generated scaffolding [14, 42]
from those which aim to validate existing systems with minimal changes, like
ours. Dealing with existing systems not originally designed with verification
in mind is challenging, and falling back on testing is the usual compromise.
Jepsen [19] is a well-known system for black-box testing of distributed databases.
It exemplifies the offline monitoring approach: implementation traces are recorded,
then analyzed later for indications of bugs using correctness conditions such as
linearizability, serializability, and transaction isolation [20]. Model-based trace
checking [16] is another similarly offline approach; specializations to TLA+ [35,
9] use TLC to determine conformance with a model. Online approaches in-
clude SPL [27], which uses imperative event-based specifications for monitoring,
model-based test case generation [38, 9], and stateless model checking [41].

9 Conclusion

We proposed Choreographic PlusCal, a suite of extensions to PlusCal to enable
more abstract and succinct specifications of communication-centric algorithms.
We hope that it may become for distributed protocols what PlusCal was to
shared-memory concurrent algorithms. Separately, we extended the TLA+ tools
to enable monitoring implementations for protocol conformance, resulting in a
practical and scalable approach for improving the robustness of existing systems.

Acknowledgments. We would like to thank Ilya Sergey for the insights that
led to this work, George P̂ırlea for contributing to an early implementation of
it, and Markus Kuppe, Leslie Lamport, and the anonymous reviewers for their
thoughtful suggestions and comments.

Bibliography

[1] H. Alkayed, H. Cirstea, and S. Merz. An extension of pluscal for modeling
distributed algorithms. In TLA+ Community Event 2020, 2020.

[2] A. Athalye. CoqIOA: a formalization of IO automata in the Coq proof
assistant. PhD thesis, Massachusetts Institute of Technology, 2017.

[3] C. Bartolo Burlò, A. Francalanza, and A. Scalas. On the Monitorability of
Session Types, in Theory and Practice. In 35th European Conference on
Object-Oriented Programming (ECOOP 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

[4] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper. Distal: A framework
for implementing fault-tolerant distributed algorithms. In International
Conference on Dependable Systems and Networks (DSN), pages 1–8. IEEE,
2013.

[5] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Mon-
itoring networks through multiparty session types. In Formal Techniques
for Distributed Systems, pages 50–65. Springer, 2013.

[6] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle, K. Sauri,
D. Schleit, G. Slatton, S. Tasiran, et al. Using lightweight formal methods to
validate a key-value storage node in amazon s3. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pages 836–850,
2021.

[7] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communications
of the ACM, 22(5):281–283, 1979.

[8] R. M. Costa. Compiling distributed system specifications into implementa-
tions. PhD thesis, University of British Columbia, 2019.

[9] A. Davis, M. Hirschhorn, and J. Schvimer. Extreme modelling in practice.
arXiv preprint arXiv:2006.00915, 2020.

[10] P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In ACM
SIGPLAN-SIGACT Symposium on Principles of programming languages,
pages 435–446, 2011.

[11] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey.
P: safe asynchronous event-driven programming. ACM SIGPLAN Notices,
48(6):321–332, 2013.

[12] A. Desai, A. Phanishayee, S. Qadeer, and S. A. Seshia. Compositional
programming and testing of dynamic distributed systems. (OOPSLA):1–
30, 2018.

[13] S. J. Garland, N. A. Lynch, and M. Vaziri. IOA: A language for specifying,
programming, and validating distributed systems. Unpublished manuscript,
1997.

[14] S. Giallorenzo, F. Montesi, and M. Peressotti. Choreographies as objects.
arXiv.

[15] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In POPL, pages 273–284, 2008.

[16] Y. Howard, S. Gruner, A. Gravell, C. Ferreira, and J. C. Augusto. Model-
based trace-checking. arXiv preprint arXiv:1111.2825, 2011.

[17] C. Hsieh and S. Mitra. Dione: A protocol verification system built with
dafny for i/o automata. In International Conference on Integrated Formal
Methods, pages 227–245. Springer, 2019.

[18] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat. Mace:
language support for building distributed systems. ACM Sigplan Notices,
pages 179–188, 2007.

[19] K. Kingsbury. A framework for distributed systems verification, with fault
injection, 2022.

[20] K. Kingsbury and P. Alvaro. Elle: Inferring isolation anomalies from exper-
imental observations. arXiv preprint arXiv:2003.10554, 2020.

[21] L. Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[22] L. Lamport. Specifying systems, volume 388. Addison-Wesley Boston, 2002.
[23] L. Lamport. The pluscal algorithm language. In International Colloquium

on Theoretical Aspects of Computing, pages 36–60. Springer, 2009.
[24] B. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage

system. 1979.
[25] Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From clarity to effi-

ciency for distributed algorithms. Number OOPSLA, pages 395–410, 2012.
[26] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for dis-

tributed algorithms. In Proceedings of the sixth annual ACM Symposium
on Principles of distributed computing, pages 137–151, 1987.

[27] A. Madhavapeddy. Combining static model checking with dynamic enforce-
ment using the statecall policy language. In International Conference on
Formal Engineering Methods, pages 446–465. Springer, 2009.

[28] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff. How amazon web services uses formal methods. Commu-
nications of the ACM, pages 66–73, 2015.

[29] R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects of Computing, 29(5):877–910,
2017.

[30] R. Neykova and N. Yoshida. Multiparty session actors. In Interna-
tional Conference on Coordination Languages and Models, pages 131–146.
Springer, 2014.

[31] R. Neykova and N. Yoshida. Let it recover: multiparty protocol-induced
recovery. In Proceedings of the 26th International Conference on Compiler
Construction, pages 98–108, 2017.

[32] D. Ongaro. Tla+ specification for the raft consensus algorithm, 2022.
[33] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. In USENIX, pages 305–319, 2014.
[34] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy: safety

verification by interactive generalization. In PLDI, pages 614–630, 2016.

[35] R. Pressler. Verifying software traces against a formal specification with
tla+ and tlc. 2018.

[36] M. Raynal. A case study of agreement problems in distributed systems:
non-blocking atomic commitment. In HASE, pages 209–214, 1997.

[37] I. Sergey, J. R. Wilcox, and Z. Tatlock. Programming and proving with
distributed protocols. 2(POPL):1–30, 2017.

[38] T. Tervoort and I. Prasetya. Modeling and testing implementations of pro-
tocols with complex messages. arXiv preprint arXiv:1804.03927, 2018.

[39] tlaplus. A collection of tla+ specifications of varying complexities, 2022.
[40] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and

T. Anderson. Verdi: a framework for implementing and formally verifying
distributed systems. In PLDI, pages 357–368, 2015.

[41] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang,
and L. Zhou. Modist: Transparent model checking of unmodified distributed
systems. 2009.

[42] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol language.
In International Symposium on Trustworthy Global Computing, pages 22–
41, 2013.

[43] B. Zhang. Pgo: Corresponding a high-level formal specification with its
implementation. SOSP SRC, page 3, 2016.

A Auxiliary Definitions

Definition 3 (Local variables and expressions). Declared local variables v
of parties of a role R are said to be local to R, written loc(v,R). An expression
e is local to R iff loc(v,R) holds for all variables v in e and all other values in
e are constants; this is denoted loc(e,R).

Definition 4 (Party and role expressions). An expression e is a role ex-
pression if it evaluates to a subset of some role R, and a party expression if it
evaluates to a member of R. These are written role(e,R) and party(e,R).

Definition 5 (Task roles). task(e,R) holds if there is a task task R e S.

Definition 6 (Initiative). Relates a global statement S and the next role to
act R as it reduces. R is said to have the initiative in S if initiative(S,R) holds.

initiative(v := e,R) iff loc(e,R)
initiative(await e,R) iff loc(e,R)

initiative(while e S,R) iff loc(e,R)
initiative(with v ∈ e S,R) iff loc(e,R)

initiative(all v ∈ e S,R) iff loc(e,R)
initiative(par S1 and S2, R) iff initiative(S1, R)

initiative(S1; S2, R) iff initiative(S1, R)
initiative(Transmit(s, r, v = m), R) iff party(s,R)

initiative(Send(s, r,m), R) iff party(s,R)
initiative(v := Receive(s, r), R) iff party(r,R)

initiative(task Q e S,R) iff initiative(Q,R)
initiative(cancel e,R) iff task(e,R)

Definition 7 (Syntactic membership). Given party(self , R) and role(e,R),
self ∈ e holds if self ∈ R.

Definition 8 (Structural congruence).

par skip andŜ ≡ Ŝ parŜ1 andŜ2 ≡ parŜ2 andŜ1

par(parŜ1 andŜ2) andŜ3 ≡ parŜ1 and(parŜ2 andŜ3)

allv ∈ e skip≡ skip allv ∈ {} Ŝ ≡ skip

taskR e skip≡ skip

eitherŜ1 orŜ2 ≡ eitherŜ2 orŜ1

either(eitherŜ1 orŜ2) orŜ3 ≡ eitherŜ1 or(eitherŜ2 orŜ3)

skip; Ŝ ≡ Ŝ Ŝ; skip≡ Ŝ (Ŝ1; Ŝ2); Ŝ3 ≡ Ŝ1; (Ŝ2; Ŝ3)

Ŝ1; Ŝ2 ≡ Ŝ2; Ŝ1 if roles(Ŝ1, R
∗
1), roles(Ŝ2, R

∗
2), R∗1 ∩R∗2 = {}

(v := e, σ) → (skip, σ[e1/v]) if [[e]]σ = e1
(await e, σ) → (skip, σ) if [[e]]σ
(await e, σ) → (await e, σ) otherwise

(while e Ŝ, σ) → (Ŝ; while e Ŝ, σ) if [[e]]σ

(while e Ŝ, σ) → (skip, σ) otherwise

(if e Ŝ1 Ŝ2, σ) → (Ŝ1, σ) if [[e]]σ

(if e Ŝ1 Ŝ2, σ) → (Ŝ2, σ) otherwise

(either Ŝ1 or Ŝ2, σ) → (Ŝ1, σ)

(either Ŝ1 or Ŝ2, σ) → (Ŝ2, σ)

(with v ∈ e Ŝ, σ) → (Ŝ, σ[e1/v]) if [[e]]σ = {e1, ...}
(all v ∈ e Ŝ, σ) → (par Ŝ[e1/v] and ..., σ) if [[e]]σ = {e1, ...}

(par Ŝ1 and Ŝ2, σ) → (par Ŝ′1 and Ŝ2, σ
′) if (Ŝ1, σ) → (Ŝ′1, σ

′)

(Ŝ1; Ŝ2, σ) → (Ŝ′1; Ŝ2, σ
′) if (Ŝ1, σ) → (Ŝ′1, σ

′)

(task R e Ŝ, σ) → (task R e Ŝ′, σ′) if (Ŝ, σ) → (Ŝ′, σ′),

initiative(Ŝ, R), not [[ve]]σ

(task R e Ŝ, σ) → (task R e Ŝ′, σ) if (Ŝ, σ) → (Ŝ′, σ′),

initiative(Ŝ, R), [[ve]]σ

(task R e Ŝ, σ) → (task R e Ŝ′, σ′) if (Ŝ, σ) → (Ŝ′, σ′),

initiative(Ŝ, Q), Q 6= R
(cancel ve, σ) → (skip, σ[TRUE/ve])

(Transmit(s, r, v = m), σ) → (Send(s, r,m); v := Receive(s, r), σ′)

(skip, σ) []

(Ŝ, σ) → (Ŝ′, σ′) (Ŝ′, σ′) τ

(Ŝ, σ) σ :: τ τ ::= [] | σ :: τ

Fig. 14: Operational Semantics of Choreographic PlusCal

B Operational Semantics of Choreographic PlusCal

The operational semantics of Choreographic PlusCal is shown in Fig. 14. It is
inductively defined as a small-step reduction relation → between configurations
(statement-state pairs), modulo structural congruence (Def. 8).

The rules clarify the correspondences between the different statements: await
blocks until the condition is true whereas while loops until it is false, with exe-
cutes the body with exactly one element of e while all does so for every element,
if and either branch conditionally or nondeterministically, and sequential and
parallel composition simply execute one of their child statements.

A task propagates inward as its body executes. It depends on an auxiliary
predicate, initiative (Def. 6), which relates statements and the role that their
next reduction involves; intuitively initiative switches back and forth between
roles. The effect of the task body is retained if it has not been cancelled or if its
role does not have initiative, otherwise its effect is ignored. Cancellation sets a
distinguished global variable indexed by the task label, which subsequent task
executions may use to tell if they have been cancelled.

It is worth noting that sequential composition at the global level may ex-
press unenforceable orderings (via the last structural congruence rule); consider
for example the program (Transmit(a, b, v1 = m1);Transmit(c, d, v2 = m2)),
where all parties are from different roles.

We assume Send and Receive are user-provided functions with the following
semantics: Send buffers a message to the given recipient, and Receive returns
the buffered message of any prior Send from the given sender, blocking if it is
not available, and assigning to the given variable v.

The definitions make use of the auxiliary relation roles (Def. 4) which intu-
itively relates a statement to the set of roles involved in its execution.

Finally, (Ŝ, σ0) τ holds if a given starting configuration (Ŝ, σ0) may give
rise to the behavior τ . The set of behaviors of a Choreographic PlusCal fragment
Ŝ is thus defined to be b(Ŝ) = { τ | (Ŝ, σ0) τ }. This may be an infinite set due
to the presence of loops. Each behavior in the set, however, is of arbitrary but
finite length; we assume loops are productive and protocols have a termination
condition. Reasoning about nonterminating protocols is left to future work.

C Proofs (Translation)

Theorem 5. Given Tr task (S̄) = S, (S, σ) τ ⇐⇒ (Tr task (S̄), σ) τ .

Proof. We proceed by induction on the structure of S̄. As Tr task only trans-
forms two language constructs, the proof for all the other cases is immediate.
Tr task (cancel e) is practically identical to its definition in Fig. 14, and both
versions produce an identical, singleton trace with a distinguished variable for e
set to TRUE. Next, we consider how Tr task (task R e S̄1) executes in each of the
three cases in Fig. 14. By the IH, we have that the translation of S̄1 preserves its
semantics, so it remains to show for each case that the source and target behave
equivalently under a single reduction step. If the task has not been cancelled and
R has the initiative, task R e S̄1 reduces to task R e S̄′1; this is equivalent to
the topmost if in Tr task (task R e S̄1) not being a no-op and reducing to S′1; as
child statements all have the same checks, it then reduces as task R e S̄′1 would.
If it has been cancelled, the topmost if results in a no-op; this is the same as a
single reduction with no effect. If R does not have the initiative, cancellation has
no effect, and thus in all cases the source and target behaviors are equivalent.

Theorem 6. Given Trpar (S̄) = S, (S, σ) τ ⇐⇒ (Trpar (S̄), σ) τ .

Proof. By induction on the structure of S̄, focusing on the case of parallel com-
position. Consider (par S̄1 and S̄2, σ) τ . By the IH, the property holds for S̄1

and S̄2, and τ is some interleaving of their behaviors. Trpar (S̄1) and Trpar (S̄2)
may give rise to τ as well, as they result in separate processes with identical
interleaving semantics.

Theorem 7. Given Trall(S̄) = S, (S, σ) τ ⇐⇒ (Trall(S), σ) τ .

Proof (Sketch.). From Fig. 14, all is semantically equivalent to the parallel
composition of its body |e| times. Each nested all statement multiplicatively
increases the number of parallel compositions, thus the number of threads in the
innermost par is the product of the sizes of all the sets. This is exactly what the
translation to processes identified by the cartesian product of all nested sets
expresses.

D Reflexive Projection

The restriction in Sec. 4 that parties of a single role do not send messages to each
other, does not seem severe at first. However, many protocols have only a single
conceptual role, e.g. Chang and Roberts’ leader election in a ring [7] and non-
blocking atomic commit [36] (Sec. E.1). Other protocols have entirely dynamic
roles (and thus a single static role, in our sense of the word), e.g. Raft [33]
(Sec. E.2), where node states (e.g. follower, candidate, and leader) determine
their pattern of behavior.

We call such protocols dynamic multirole protocols, following Deniélou et
al. [10]. They require a more granular projection function �+ which is sensitive
to self-sends. This new function changes only two cases, shown in Fig. 15.

In the case for Transmit, there is the additional possibility that s and r
belong to the same role; in that case, we produce both a send and a receive. The
all case is more involved. Projection is now defined with respect to a role R
and an arbitrary member of that role. We use the distinguished value self as
a syntactic proxy for that party; party(self , R) thus holds. The first case is the
same as before: if the set e may be interpreted as another role, the quantifier
pertains neither to the current role nor party and thus should stay; we project
under it. Otherwise, we must check the syntactic condition self ∈ e (Def. 7);
self ∈ e holds, given self ∈ R and role(e,R), and self ∈ (e \ {self}) does not.
In the second case, if self ∈ e, we must account for the possibility of a self-send.
This produces two parallel behaviors, one for what self does, and another for
what the other parties in its role do. The result in the final case is the same as
in the first; since self is not in e, we need only account for what other parties
do. An example of what this projection function produces is shown in Sec. D.1.

Theorem 8. Given Ŝ �+ R1 = S̄1, ..., (Ŝ, σ) τ ⇐⇒ (par S̄1 and ..., σ) τ .

Transmit(s, r, v = m) �+ R ,

Send(s, r,m); if party(s,R), party(r,R)
v := Receive(s, r)

Send(s, r,m) if party(r,R)
v := Receive(s, r) if party(s,R)
skip otherwise

(all v ∈ e Ŝ) �+ R ,

all v ∈ e (Ŝ �+ R) if role(e,Q), Q 6= R

par (Ŝ[self /v] �+ R) if self ∈ e
and (all v ∈ (e \ {self })

(Ŝ �+ R))

all v ∈ e (Ŝ �+ R) otherwise

Fig. 15: Extended Projection

D.1 Reflexive Projection Example

The following (artificial) program:

choreography
(x \in C)

variables a = "start", b = "start";
{

all (c \in C) {
all (d \in C) {

Transmit(c, d, v = m);
a[d] = "y";
b[c] = "z";

}
}

}

projects to:

choreography
(x \in C)

variables a = "start", b = "start";
{

par {
Send(self , m);
Receive(self , m);
a = 1;
b = 2;

} and {
all (d \in (C \ {self })) {

Send(d, m);
b = 2;

}
} and {

all (c \in (C \ {self })) {
v := Receive(c);
a = 1;

}
}

}

E Case Studies

E.1 Nonblocking Atomic Commit

Nonblocking Atomic Commit (NBAC) [36] is a classic refinement of two-phase
commit and a precursor to Paxos. To avoid centralizing the decision of whether
to commit (and blocking if that central coordinator fails), NBAC enables all
parties to take responsibility for the decision to commit. There is thus just one
set of “processes” P (which we call participants, to avoid overloading the term).
Each sends a vote on whether to commit to every other process, including itself,
and tallies votes upon receiving them. This is naturally expressed in lines 10-19
of Fig. 16. The next part (lines 21-29) expresses when a commit occurs: when
all processes have voted yes, or when some process has voted no or failed.

NBAC relies on a failure detector (lines 31-36) that informs each process p

of the failure of another process q. This provides the condition for protocol to
end.

1 choreography
2 (F \in failure_detectors)
3 (P \in participants)
4 variables
5 voted_yes = {},
6 voted_no = FALSE ,
7 outcome = "none"; {
8 par {
9 task participants "votes" {

10 all (p \in participants) {
11 all (q \in participants) {
12 either {
13 Transmit(p, q, "yes");
14 voted_yes[q] = voted_yes[q] \cup {p};
15 } or {
16 Transmit(p, q, "no");
17 voted_no[q] = TRUE;
18 cancel "votes";
19 } } } }
20 } and {
21 all (p \in participants) {
22 either {
23 await voted_no \/ some_failed;
24 outcome := "abort";
25 } or {
26 await voted_yes = participants;
27 outcome := "commit ";
28 }
29 }
30 } and {
31 all (f \in failure_detectors) {
32 all (p \in participants) {
33 all (q \in participants \ {p}) {
34 Transmit(f, p, <<"failed", q>>)
35 some_failed[p] := TRUE;
36 } } } } }

Fig. 16: NBAC

E.2 Raft

Raft [33] is a modern and comprehensive take on consensus. It is a dynamic
multirole protocol: parties begin as followers, and upon a random timeout, they
transition to candidates and vie to become leader via an election. Upon receiving
a quorum of votes, a party declares itself leader and begins to service requests,
replicating them to other parties. As Raft is fully-featured, we show only the
leader election fragment in Fig. 17, with details left out for simplicity.

We express Raft as the parallel composition of a number of subprotocols. The
first controls timeouts (line 6): a party may time out at any point, continuously,
as long as it is a follower. Once it becomes a candidate, it may start an election
(line 12), which also occurs continuously as long as it is not in the middle of an
existing election.

During the election it sends RequestVote messages to other parties, including
itself (line 21). Recipients decide whether to grant requests, track who they
voted for, and reply (lines 26-33). If the reply is positive and not stale, the
leader tallies it (line 37). It also waits for a quorum (line 40), or give up waiting
and begin a new election (line 43).

The original TLA+ specification of Raft [32] represents each of these steps
as individual actions, using guards to control when they may occur (the rough
equivalent in our language would be writing each step as a recursive protocol

and composing them all in parallel). It is lower-level, and also more permis-
sive: for example, a leader is allowed to time out after sending any number of
RequestVote messages, despite the fact that an implementation would never
do this. Admitting such behaviors is conceptually harmless, but are redundant
and not useful when running a model checker. This is something we are able to
capture easily with a more structured specification, and something we are more
sensitive to given the goal of instrumenting implementations.

1 choreography
2 (S \in servers)
3 variables role = "follower", votes = {},
4 voted_for = <<>>, term = 0, grant = FALSE , ...; {
5 par { * Handle timeouts
6 all (s \in servers) {
7 while (TRUE) {
8 await role = "follower ";
9 role := "candidate ";

10 } }
11 } and { * Start an election
12 all (s \in servers) {
13 while (TRUE) {
14 await role = "candidate ";
15 votes := {};
16 term := term + 1;
17 par {
18 task servers s {
19 * Vote for ourselves too
20 all (t \in servers) {
21 Transmit(s, t, msg = [
22 Type |-> "RequestVote",
23 Term |-> term[s]]);
24 * Drop stale messages
25 if (msg.Term <= term[t]) {
26 grant[t] := ...;
27 if (grant[t]) {
28 voted_for[t] = <<t>>;
29 }
30 Transmit(t, s, [
31 Type |-> "RequestVoteResp",
32 Term |-> term[t],
33 Grant |-> grant[t]]);
34 * Drop stale messages
35 if (msg.Term = term[s]) {
36 if (msg.Granted) {
37 votes[s] := votes[s] \union {t};
38 } } } } }
39 } and {
40 await Cardinality(votes) > Quorum(servers);
41 role := "leader ";
42 } and {
43 cancel s;
44 }
45 } * end while
46 } } and { ... } }

Fig. 17: Raft leader election

F Two-phase Commit in PlusCal and TLA+

--------------------- MODULE TwoPhaseCommit ----------------------
EXTENDS Naturals , TLC , Sequences

CONSTANTS p1, p2 , coord

(* --algorithm TwoPhaseCommit {
variables

participants = {p1 , p2};
messages = {};

macro Send(from , to, type) {
messages := messages \union {[To |-> to, From |-> from , Type |-> type]};

}

macro Receive(from , to, type) {
await [To |-> to, From |-> from , Type |-> type] \in messages;

}

process (P \in participants)
{

Receive(coord , self , "prepare ");

either {
psend:

Send(self , coord , "prepared ");
} or {

Send(self , coord , "abort ");
};

either {
Receive(coord , self , "commit ");
Send(self , coord , "committed ");

} or {
Receive(coord , self , "abort");
Send(self , coord , "aborted ");

};
};

process (Coordinator = coord)
variables temp = participants , aborted = FALSE;

{
while (temp /= {}) {

with (r \in temp) {
Send(coord , r, "prepare ");
temp := temp \ {r};

};
};

temp := participants;
while (temp /= {} \/ aborted) {

with (r \in temp) {
either {

Receive(r, coord , "prepared ");
} or {

Receive(r, coord , "aborted ");
aborted := TRUE;

};
temp := temp \ {r};

};
};

if (aborted) {
temp := participants;
while (temp /= {}) {

with (r \in temp) {

Send(coord , r, "abort");
temp := temp \ {r};

};
};

temp := participants;
while (temp /= {}) {

with (r \in temp) {
Receive(r, coord , "aborted ");
temp := temp \ {r};

};
};

} else {
temp := participants;
while (temp /= {}) {

with (r \in temp) {
Send(coord , r, "commit ");
temp := temp \ {r};

};
};

temp := participants;
while (temp /= {}) {

with (r \in temp) {
Receive(r, coord , "committed ");
temp := temp \ {r};

};
};

};
}

}
*)
* BEGIN TRANSLATION (chksum(pcal) = "a7969572" /\ chksum(tla) = "2 ef5998a ")
VARIABLES participants , messages , pc, temp , aborted

vars == << participants , messages , pc , temp , aborted >>

ProcSet == (participants) \cup {coord}

Init == (* Global variables *)
/\ participants = {p1 , p2}
/\ messages = {}
(* Process Coordinator *)
/\ temp = participants
/\ aborted = FALSE
/\ pc = [self \in ProcSet |-> CASE self \in participants -> "Lbl_1"

[] self = coord -> "Lbl_3"]

Lbl_1(self) == /\ pc[self] = "Lbl_1"
/\ [To |-> self , From |-> coord , Type |-> "prepare "] \in

messages
/\ \/ /\ pc ’ = [pc EXCEPT ![self] = "psend "]

/\ UNCHANGED messages
\/ /\ messages ’ = (messages \union {[To |-> coord , From |->

self , Type |-> "abort "]})
/\ pc ’ = [pc EXCEPT ![self] = "Lbl_2"]

/\ UNCHANGED << participants , temp , aborted >>

psend(self) == /\ pc[self] = "psend"
/\ messages ’ = (messages \union {[To |-> coord , From |-> self ,

Type |-> "prepared "]})
/\ pc ’ = [pc EXCEPT ![self] = "Lbl_2"]
/\ UNCHANGED << participants , temp , aborted >>

Lbl_2(self) == /\ pc[self] = "Lbl_2"
/\ \/ /\ [To |-> self , From |-> coord , Type |-> "commit "] \in

messages

/\ messages ’ = (messages \union {[To |-> coord , From |->
self , Type |-> "committed "]})

\/ /\ [To |-> self , From |-> coord , Type |-> "abort"] \in
messages

/\ messages ’ = (messages \union {[To |-> coord , From |->
self , Type |-> "aborted "]})

/\ pc ’ = [pc EXCEPT ![self] = "Done"]
/\ UNCHANGED << participants , temp , aborted >>

P(self) == Lbl_1(self) \/ psend(self) \/ Lbl_2(self)

Lbl_3 == /\ pc[coord] = "Lbl_3"
/\ IF temp /= {}

THEN /\ \E r \in temp:
/\ messages ’ = (messages \union {[To |-> r, From |->

coord , Type |-> "prepare "]})
/\ temp ’ = temp \ {r}

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_3"]
ELSE /\ temp ’ = participants

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_4"]
/\ UNCHANGED messages

/\ UNCHANGED << participants , aborted >>

Lbl_4 == /\ pc[coord] = "Lbl_4"
/\ IF temp /= {} \/ aborted

THEN /\ \E r \in temp:
/\ \/ /\ [To |-> coord , From |-> r, Type |-> "

prepared "] \in messages
/\ UNCHANGED aborted

\/ /\ [To |-> coord , From |-> r, Type |-> "
aborted "] \in messages

/\ aborted ’ = TRUE
/\ temp ’ = temp \ {r}

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_4"]
ELSE /\ IF aborted

THEN /\ temp ’ = participants
/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_5"]

ELSE /\ temp ’ = participants
/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_7"]

/\ UNCHANGED aborted
/\ UNCHANGED << participants , messages >>

Lbl_5 == /\ pc[coord] = "Lbl_5"
/\ IF temp /= {}

THEN /\ \E r \in temp:
/\ messages ’ = (messages \union {[To |-> r, From |->

coord , Type |-> "abort "]})
/\ temp ’ = temp \ {r}

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_5"]
ELSE /\ temp ’ = participants

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_6"]
/\ UNCHANGED messages

/\ UNCHANGED << participants , aborted >>

Lbl_6 == /\ pc[coord] = "Lbl_6"
/\ IF temp /= {}

THEN /\ \E r \in temp:
/\ [To |-> coord , From |-> r, Type |-> "aborted "] \

in messages
/\ temp ’ = temp \ {r}

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_6"]
ELSE /\ pc’ = [pc EXCEPT ![coord] = "Done"]

/\ temp ’ = temp
/\ UNCHANGED << participants , messages , aborted >>

Lbl_7 == /\ pc[coord] = "Lbl_7"
/\ IF temp /= {}

THEN /\ \E r \in temp:

/\ messages ’ = (messages \union {[To |-> r, From |->
coord , Type |-> "commit "]})

/\ temp ’ = temp \ {r}
/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_7"]

ELSE /\ temp ’ = participants
/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_8"]
/\ UNCHANGED messages

/\ UNCHANGED << participants , aborted >>

Lbl_8 == /\ pc[coord] = "Lbl_8"
/\ IF temp /= {}

THEN /\ \E r \in temp:
/\ [To |-> coord , From |-> r, Type |-> "committed "]

\in messages
/\ temp ’ = temp \ {r}

/\ pc ’ = [pc EXCEPT ![coord] = "Lbl_8"]
ELSE /\ pc’ = [pc EXCEPT ![coord] = "Done"]

/\ temp ’ = temp
/\ UNCHANGED << participants , messages , aborted >>

Coordinator == Lbl_3 \/ Lbl_4 \/ Lbl_5 \/ Lbl_6 \/ Lbl_7 \/ Lbl_8

(* Allow infinite stuttering to prevent deadlock on termination. *)
Terminating == /\ \A self \in ProcSet: pc[self] = "Done"

/\ UNCHANGED vars

Next == Coordinator
\/ (\E self \in participants: P(self))
\/ Terminating

Spec == Init /\ [][Next]_vars

Termination == <>(\A self \in ProcSet: pc[self] = "Done")

* END TRANSLATION

==

	Protocol Conformance withChoreographic PlusCal

