
Lecture 1: Introduction, TSP, ATSP

16th January, 2015

Welcome to EO 249, “Approximation Algorithms”. What are we going to learn in this course?
A very short answer: algorithms with provable guarantees. “But wait, I have already done that
in my design and analysis of algorithms course (which is a prerequisite for this course, I believe).
Are you going to go over all of it again?”, I hear you shout. Notwithstanding the not-so-obvious
fact the repeating all that stuff may be worthwhile, the answer is no. We will look at new kinds
of algorithms and proofs than what you probably did in the DAA course – although there will
be some intersection. The main difference is that in this course we will primarily be looking at
problems which are NP-hard, while in the former you mostly studied problems which are in P.
Nevertheless, we will be designing polynomial time algorithms, and since we won’t be cashing in
a million dollars, our algorithms will not solve all instances of the problems exactly. But rather
approximately, and that explains the name of the course.

1 Optimization Problems and Approximation Algorithms.

Formally, an optimization problem Π consists of instances I and feasible solutions, S, to these
instances. Each solution S ∈ S is associated a cost c(S). To work with an example, the optimization
problem minimum spanning tree (MST) has instances described by undirected graphs and costs
(positive rationals) on the edges. Solutions are the spanning trees of the graph, and the cost of
each solution is the sum of costs of the various edges. An optimization problem Π is called a
minimization problem if one wishes to find minimum cost solutions for every instance; it is called
a maximization problem, if one wishes to find maximum cost (in which case cost is often called
profit) solution.

An algorithm A for an optimization problem Π, maps every instance I to a feasible solution
S ∈ S. So an MST algorithm takes an undirected graphs with edge costs and returns a spanning
tree. Algorithm A is called the optimal algorithm for a minimization (respectively, maximization)
problem Π if for each instance I, the algorithm returns the solution S ∈ S of the minimum
(respectively, maximum) cost. As mentioned above, for many optimization problems which are
NP-hard, we do not expect to find optimal algorithms. This motivates the following definition.

Definition 1. An algorithm A for a minimization problem Π is an α-factor approximation algo-
rithm for Π, for some α ≥ 1, if for every instance I, the solution SA returned by A satisfies

c(SA) ≤ α ·min
S∈S

c(S)

1

An algorithm A for a maximization problem Π is an α-factor approximation algorithm for Π, for
some α ≤ 1, if for every instance I, the solution SA returned by A satisfies

c(SA) ≥ α ·max
S∈S

c(S)

It should be clear that for any problem Π, we would like to design polynomial time algorithms
with α as close to 1 as possible. Can this be done? Throughout this course we will study this
question, and see the extremely rich field which has arisen in the last 30 years or so!

2 The Travelling Salesman Problem (TSP)

Here is a famous NP-hard, optimization problem. The input is a set of n points denoted {1, 2, . . . , n}.
For each pair of distinct points i, j we have a cost c(i, j). This defines an instance of the problem.
The solution to the problem is a ‘tour’ of these n-points. A tour is nothing but a permutation σ of
{1, 2, . . . , n} – the order in which a salesman is supposed to visit these points. The cost of a tour
σ is defined to be

c(σ) =
n∑

i=1

c(σ(i), σ(i+ 1))

where σ(n + 1) is just (bad but convenient) notation for σ(1). Henceforth, we stop being formal
about instances and solutions and rely on the ‘informal-to-formal’ compiler in our students’ heads.

This problem is NP-hard. You may remember the Hamiltonian cycle problem which was (and
still is, and will be) NP-complete; the TSP definitely smells Hamiltonian. In fact, as your first
exercise, we will ask you to show that it is NP-hard to find a polynomial time α-approximation
algorithm for any α! Rather, we will now make an assumption on the instances of the problem and
design an algorithm for those. We assume the costs c(i, j) form what is called a metric. For any
three points i, j, k, we assume

c(i, k) ≤ c(i, j) + c(j, k)

We will see that this assumption will lead to very good approximation algorithms.

Eulerian Walks of Graphs. Given a (multi)-graph G = (V,E), an Eulerian walk of the graph
is a walk π where each edge of the graph is traversed exactly once and we return to the starting
vertex. Eulerian walks again seem related to tours and Hamiltonian cycles, and they will be the
main ingredient of our algorithms today. In one crucual respect they differ: it is extremely easy to
figure out if a graph G has an Eulerian walk or not.

Theorem 1. A multigraph G has an Eulerian walk iff it is connected and every vertex of G has
even degree.

Shortcutting: from walks to tours Any walk can be converted to a tour by just ‘refusing’
to go to a vertex twice (except the last vertex). Formally, given π, we obtain σ by deleting all
repetitions of any vertex except π(last). We claim that c(σ) ≤ c(π) which is nothing but c(E).
This follows from the triangle inequality property. Consider we delete v from u, v, w in π. We claim
that the new walk has only less cost – then we can inductively proceed. But this is equivalent to
saying c(u,w) ≤ c(u, v) + c(v, w).

2

How to get a good G?: Lower bounds on OPT . So now our attack is clear – we need to
find a graph G which is Eulerian, that is, all degrees are even, and furthermore the sum of cost of
all edges in G is ≤ α ·OPT , where OPT is the cost of the minimum cost tour. Then we would get
an α-approximate algorithm which is eulerian walk + shortcut.

But how do we get such a graph? We don’t know OPT – after all that is what NP-hard means,
right? To by pass this, what one does is instead of working with OPT , one works with lower
bounds on OPT . Suppose there is a quantity L which we can indeed compute in polynomial time
and we can prove that L ≤ OPT , then we would like to actually ue L as our benchmark rather
than OPT . Sounds crazy, right? Let’s see how we can do this for TSP.

Lower bounds on OPT for TSP. We will show use such two lower bounds. First, consider the
minimium spanning tree on the complete graph formed by n points with the costs c(i, j). We claim
that MST ≤ OPT . Why?

Second lower bound seems even weaker. Let O be a subset of the points such that |O| is even.
Consider the complete graph on O with the costs c(i, j). Let M be the minimum cost perfect
matching of O. We claim that c(M) ≤ OPT/2. Why?

Approximation algorithms for TSP. Now we are armed with everything we need. First we
show a 2-approximation.

• Let T be the minimum spanning tree on the complete graph with costs c(i, j). Note c(T) ≤
OPT .

• Consider the multi-graph 2T where we duplicate every edge of T .

• Note: 2T is Eulerian. Let π be an Eulerian walk and σ be the shortcutted tour. Return σ.

We claim c(σ) ≤ 2OPT . This is almost immediate – c(σ) ≤ c(E(2T)) = 2c(T) ≤ 2OPT .
Now we show a slightly cleverer way to make the MST Eulerian than just duplicating edges.

Let O be the set of odd-degree vertices of T . Claim: |O| is even. Why? Let MO be the minimum
cost perfect matching in the graph induced by O. Note that T + MO is Eulerian. Now in bullet
point, replace 2T by T +MO. We claim that the σ we get is a 1.5 approximation. This is because

c(σ) ≤ c(T +MO) = c(T) + c(MO) ≤ OPT +OPT/2 = 1.5OPT

(Big-Kahuna) Open Problem #1. Find an 1.49-approximation algorithm for metric TSP.

3 Asymmetric TSP

Till now we have implicitly assumed that we are dealing with an undirected graph. That is, we
assumed c(i, j) = c(j, i) for all pairs i, j. (Can you find where we used this?) In the asymmetric
TSP, one doesn’t have this assumption. One still assumes the metric assumption.

Instead of talking of graphs, we now talk of directed graphs. Eulerian walks still make sense
except we need to traverse every directed edge exactly once. The corresponding theorem regarding
Eulerian walks in directed graphs is this.

3

Theorem 2. A multi-digraph G has an Eulerian walk iff it is strongly connected and every vertex
of G has in-degree equal to out-degree.

Our knowledge regarding ATSP is considerably less compared to that of TSP. In particular, no
constant factor approximation is known for ATSP and neither has it been ruled out. We describe
a log n-factor approximation algorithm. To do this, first we need to describe a lower bound.

Lower bound on OPT : Cycle cover Given a directed graph, a cycle cover is a collection of
non-trivial vertex disjoint cycles {C1, . . . , Ck} which span all the vertices. That is, each vertex
is in exactly one cycle. The cost of a cycle cover is the cost of all the directed edges in the
cycles. Let’s use CY C(G) to denote the cost of the optimal cycle cover of a digraph G. Obviously,
CY C(G) ≤ OPT , since the ATSP tour is a valid cycle cover. In fact, for any subset O ⊆ {1, . . . , n},
if GO denotes the complete digraph induced by these vertices, then CY C(GO) ≤ OPT as well,
because of the metric property. The crux of the ATSP algorithm is the following theorem.

Theorem 3. There is a polynomial time algorithm to find the minimum cost cycle cover in any
digraph.

Now we are ready to describe the approximation algorithm for ATSP.

• Initially F = ∅.

• Repeat till |G| = 1:

– Find the minimum cycle cover {C∗1 , . . . , C∗k} of G.

– Add the edges of the cycles to F .

– Pick an arbitrary representative from each cycle to form the set O.

– Let G = GO.

• Claim: F is an Eulerian digraph. Let π be the Eulerian walk and σ the shortcutted tour.

• Return σ.

First let’s establish the claim in the fourth bullet. Since we only add cycles to F , the in-degree
equalling out-degree property holds. To establish connectivity, pick some arbitrary pair of vertices
u and v. If u and v lie in the same cycle of the first cycle cover, then there is a path from u to v
on the cycle. Otherwise, let ru and rv be the representative vertices picked in O. Note there is a
path from u to ru and a path from rv to v in F . Since we repeat the same procedure on GO, by
induction , there is a path from ru to rv in F . All together, we have a path from u to v.

Theorem 4. The above algorithm is a log2 n-factor approximation algorithm for ATSP.

Proof. Let r be the number of times the inner cycle is run. Since CY C(GO) ≤ OPT for every O,
and so |F | ≤ r · OPT . At the end of each loop, the size of |G| decreases by at least a factor of 2
(since each cycle is of length ≥ 2), r ≤ log2 n.

4

	Optimization Problems and Approximation Algorithms.
	The Travelling Salesman Problem (TSP)
	Asymmetric TSP

