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10.1 Sparsest Cut in a Graph

Given a graph (V, E ), in the sparsest cut problem our goal is to find a subset of vertices S, which minimizes

the ratio C(δS)

|S|.|S̄| which we’ll call sp(S ). Here δS denotes the cut-edges between S and S̄, where S̄ is precisely

V r S and C (δS ) denotes the total cost of the edges in δS. This problem is equivalent to finding a set of

edges F ⊆ E, minimizing sp(F ) = C(F )
#(si,ti) pairs seperated by F .

10.1.1 LP formulation

General Sparsest Cut:

Input : Graph G, {(si, ti) pairs}ki=1

Goal : It is easy to see that sp(F ) can be rewritten as
∑

e∈E CeXe∑
i d(si,ti)

where d(si,ti) is defined as the shortest

distance between vertices si and ti in the graph defined with weight Xe on the edges. The reason is d(si,ti)
= 0, if si and ti are on the same side. Still, this objective function is not linear. So, we can get rid of the
denominator by assuring that

∑
i d(si, ti) = 1, which can be ensured by scaling operation. From the previous

class we know, de ≤ Xe. Hence, while minimizing sp(S ), we should use de instead of Xe. So, the LP for
General Sparsest Cut which is given below, returns F with objective to

minimize
∑
e∈F

Cede

s.t. duw ≤ duv + dvw ∀{u, v, w} ∈ V
k∑
i=1

dsiti = 1

de ≥ 0 ∀e = (u, v) ∈ E

Uniform Sparsest Cut:

In this scenario, every (u,v) pair is a (si,ti) pair. So, our LP becomes,

minimize
∑
e∈F

Cede

s.t. duw ≤ duv + dvw ∀{u, v, w} ∈ V∑
(u,v)∈V×V

duv = 1

duv ≥ 0 ∀(u, v) ∈ v × v

10-1
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10.1.2 Sweep-cut algorithm for Uniform Sparsest Cut

Sweep-Cut:

1. Fix a vertex s.

2. Rename the vertices (v1, v2,..., vn) s.t. dsv1 ≤ dsv2 ... ≤ dsvn . We may assume s = v1, as dss = 0.

3. Let Ai := {v1, v2,..., vi} ∀ i∈{1, 2,..., n}.

4. Return the Ai s.t. sp(Ai) is minimum.

Analysis of Sweep-Cut:

Let ALG be the sparsity of the cut returned. We define the following notions.

a. Br(s) = Br := {v | dsv ≤ r}. We may assume r ∈ [0, R] where R = dsvn . Note that for any r, Br is one
of the Ais.

b. nr(s) = nr := |B̄r| = no. of vertices s.t. dsv > r. n̄r(s) is defined similarly.

As ALG returns the set of vertices with minimum sparsity, hence we have,

ALG ≤ sp(Br) = C(δBr)
|Br|.|B̄r|

Which implies,

C(δBr) ≥ ALG.|Br|.|B̄r|
= ALG.n̄r.nr

≥ ALG.nr (n̄r ≥ 1 as it always contains s.)

Integrating both sides, we get

R∫
0

C(δBr)dr ≥ ALG
R∫

0

nrdr = ALG.
∑
v

dsv (10.1)

Figure 10.1:
∫ R

0
nrdr and

∑
v dsv
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The equality (
R∫
0

nrdr =
∑
v

dsv) comes because l.h.s. represents Fig-a and r.h.s. is Fig-b, and both of those

essentially represent the same area under the curve (double-counting).

Now, we have,

1 =
∑
u,v

duv ≤
∑
u,v

(dsu + dsv)

=
∑
u

∑
v

dsu +
∑
u

∑
v

dsv

[Since we are summing over all vertices, u can be replaced with v.]

=
∑
u

∑
v

dsv +
∑
u

∑
v

dsv

= n.
∑
v

dsv + n
∑
v

dsv

= 2n.
∑
v

dsv

⇒
∑
v

dsv ≥
1

2n

Using this lower bound of
∑
v dsv in eqn 10.1, we get

R∫
0

C(δBr)dr ≥
ALG

2n

Again, by definition, we get

R∫
0

C(δBr)dr =
∑
u,v

C(u, v).|dsv − dsu| [as dsu ≤ r ≤ dsv]

≤
∑
u,v

C(u, v).duv [From triangle inequality]

= LP

Applying the above two inequalities in eqn 10.1 we obtain

LP ≥ ALG

2n
ALG ≤ O(n).LP

Hence, Sweep-Cut is an O(n) approximation algorithm for Uniform Sparsest Cut. �

10.1.3 A better approximation factor for Uniform Sparsest Cut

Let us look at at a modified version of Sweep-Cut, where instead of taking a single vertex s, we take a set of
vertices T at the beginning. Then the algorithm goes like this.
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Modified Sweep-Cut:

1. Fix a vertex set T of size at-least n
3 .

2. Rename the vertices (v1, v2,..., vn) s.t. dTv1 ≤ dTv2 ... ≤ dTvn , where dTvi := min
t∈T

dtvi .

3. Let Ai := {v1, v2,..., vi} ∀ i∈{1, 2,..., n}.

4. Return the Ai s.t. sp(Ai) is minimum.

Analysis of Modified Sweep-Cut:

Let ALG2 be the sparsity of the cut returned. We define the following notions.

1. Br(T ) = Br := {v | dTv ≤ r}.

2. nr(T ) = nr := |B̄r| = no. of vertices s.t. dTv > r. n̄r(T ) is defined similarly.

By the same logic, we have,

C(δBr) ≥ ALG2.|Br|.|B̄r|
= ALG2.n̄r.nr

≥ ALG2.
n

3
.nr (n̄r ≥

n

3
as it always contains T.)

Integrating both sides, we get

R∫
0

C(δBr)dr ≥
n

3
.ALG2

R∫
0

nrdr =
n

3
.ALG2.

∑
v

dTv (10.2)

Now, we have,

1 =
∑
u,v

duv ≤
∑
u,v

(dTu + dTv + diam(T ))

[Since, most likely the nearest vertices to u and v in T are different and can be furthest apart.]

=
∑
u

∑
v

dTu +
∑
u

∑
v

dTv + n2.diam(T )

[Since we are summing over all vertices, u can be replaced with v.]

=
∑
u

∑
v

dTv +
∑
u

∑
v

dTv + n2.diam(T )

= n.
∑
v

dTv + n
∑
v

dTv + n2.diam(T )

= 2n.
∑
v

dTv + n2.diam(T )

Now suppose T had small diameter – that is, diam(T ) ≤ 1/2n2. Then, we would get
∑
v dTv ≥ 1/2n, and

using this lower bound of
∑
v dsv in eqn 10.2, we get

R∫
0

C(δBr)dr ≥ c.ALG2
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The analysis for the upper bound still remains the same, hence we get LP as the upper bound. Applying
the above two inequalities in eqn 10.2 we obtain

LP ≥ c.ALG2

ALG2 ≤ O(1).LP

This implies the following theorem

Theorem 10.1 If there is a set T with |T | ≥ n/3 and diam(T ) ≤ 1/2n2, then Modified Sweep-Cut from T
is an O(1)-approximation algorithm for the Uniform Sparsest Cut problem.

Of course such a special set T may not exist. Next, we see a different algorithm which implies a O(log n)
approximation if no such ‘teeny-diameter-with-many-many-points’ set exist. To do so we need the following
general purpose lemma.

Theorem 10.2 (Low Diameter Decomposition Lemma) Given an undirected graph G = (V,E) with
cost Ce on each each e, and a distance d between all pairs of vertices, let L =

∑
e∈ECede. Given any R > 0,

we can partition V into {V1, V2,..., VT } in polynomial time such that

1. diam(Vi) ≤ 2R, ∀ i∈{1, 2,..., T}
2.
∑

e∈E(V1,V2,...,VT )

Ce ≤ O
(

logn
R

)
L where E(V1, . . . , VT ) := {(u, v) ∈ E : u ∈ Vi, v ∈ Vj , i 6= j}.

We now describe the O(log n)-approximation for uniform sparsest cut. Run the low diameter decomposition
algorithm with R = 1/4n2. Two cases arise.

Case 1: Among the T partitions of V, if ∃ i, s.t. |Vi| ≥ n
3 and diam(Vi) ≤ 1

2n2 we are done. Here we’ll get
a constant factor approximation from Theorem 10.1

Case 2: If there is no such partition, then initialize S = ∅. Order the parts V1, . . . , VT arbitrarily and go on
inserting parts into S until |S| > n/3. As the initial parts are of relatively small size (i.e. all of them have
size < n

3 ), |S| ≤ 2n/3 implying |S̄| ≥ n/3. Also note that δS ⊆ E(V1, . . . , VT ). This gives us

sp(S) =
C(δ(S))

|S| · |S̄|

≤ 9

n2
· C(δ(S))

≤ 9

n2
· C[E(V1, V2, ..., VT )]

≤ 9

n2
·O
(
n2 · log n · LP

)
[From the lemma]

= O(log n) · LP

�

10.1.4 Proof of Low Diameter decomposition lemma

We start with some definitions. Recall Br = Br(s) := {v : d(s, v) ≤ r}, δBr := {(u, v) : u ∈ Br, v /∈ Br} and
E[Br] := {(u, v) : u, v ∈ Br}.
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We define the “total LP volume” in a ball of radius r around a vertex s, as :

V ol(Br) :=
L

n
+
∑

(u,v)∈E[Br]

cuvduv +
∑

(u,v)∈δBr

cuv(r − dsu) (10.3)

where L =
∑
e∈E cede is the value of relaxed LP solution and n is the total number of vertices of the graph

G = (V,E). The first component in r.h.s is the “initial LP mass” which is same for all the balls “grown”,
the second component accounts for the mass due to internal edges in Br, while the third is for the cross-over
edges.

Fix a vertex s. Our goal is to find an r ∈ [0,R) such that c(δBr) ≤ 4 logn
R .V ol(Br). We claim that such a ball

can be found. To see this, look at the rate at which the volume of the ball wrt r. To do so, we differentiate
the equation on both sides w.r.t r, and get,

d

dr
(V ol(Br)) =

∑
(u,v)∈δBr

cuv = c(δBr)

Since the ball is still growing, we can assume c(δBr) > 4 logn
R .V ol(Br) and arrive at a contradiction if possible.

It is easy to check that at r = R, Vol(Br) = (L + L
n ) = L(1 + 1

n ). Thus we have

d

dr
(V ol(Br)) > 4

log n

R
.V ol(Br)

=⇒ d(V ol(Br))

V ol(Br)
> 4

log n

R
.dr So,∫ L(1+ 1

n )

V ol(Br)= L
n

d(V ol(Br))

V ol(Br)
>

∫ R

r=0

4
log n

R
.dr

=⇒ [log(V ol(Br))]
L(1+ 1

n )
L
n

> 4
log n

R
.[r]R0

=⇒ log(n+ 1) > 4. log(n) which is a contradiction

∴ There exists an r ∈ [0, R) such that

c(δBr) ≤ 4
log n

R
.V ol(Br) (10.4)

Now coming back to the definition of V ol(Br) in (10.1), we can say

r − dsu ≤ dsv − dsu (∵ v /∈ Br, dsv > r)

≤ duv (By triangle inequality, d is a metric)

∴ V ol(Br) ≤
L

n
+
∑

(u,v)∈E[Br]

cuvduv +
∑

(u,v)∈δBr

cuvduv

Finally if we sum up both sides of (10.2) over all possible balls (in worst case, we could have n balls), so,

R.H.S = 4
log n

R
.

n∑
Br(i):i=1

V ol(Br(i))

≤ 4
log n

R
.
[
L+

n∑
Br(i):i=1

( ∑
(u,v)∈E[Br(i)]

cuvduv +
∑

(u,v)∈δBr(i)

cuvduv

)]
≤ 4

log n

R
.(L+ 2L) = 4

log n

R
.3L

and L.H.S ≥ c(E(v1, v2, ..., vT )) which conclusively proves the lemma. �
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10.2 General Sparsest Cut

The input is an undirected graph G = (V,E), where each edge e ∈ E has a non-negative capacity ce. Also
there are some k demand vertex pairs {(s1, t1), (s2, t2), ..., (sk, tk)} each having some weight(demand) wi.
Given a subset of vertices S ⊆ V , we define “separation of S” as

sep(S) =

{
1 if |{si, ti} ∩ S| = 1, i.e S separates (si, ti) pair

0 otherwise

Our objective is to find the cut of minimum sparsity, which is

Ψ∗ = min
S⊆V

c(δS)∑k
i=1 wi.sep(S)

It is easy to write the general sparsest cut in terms of d as :

Ψ∗ = min
d

∑
e∈E cede∑k

i=1 wid(si, ti)

Like the uniform sparsest cut, the LP for this one will be :

LP = min
d

∑
e∈E

cede

s.t

k∑
i=1

wid(si, ti) = 1,

and d is a semi-metric [2]

Before we go ahead with metric embedding, let us define what are so called the “nice metrics”.
(1) Given a set S ⊆ V , we define :

fS(u, v) :=

{
1 if exactly one of u or v is in S

0 otherwise

Such a metric is called an elementary cut metric on V and it falls under the category of “nice metrics”.
If the LP solution gives such a metric i.e if d = fS , then trivially we can return S.
(2) However, if the cut metric f can be expressed as a linear combination of elementary cut metrics fS
i.e f :=

∑
S⊆V αSfS , αS ≥ 0 ∀S, then also it is “nice”.

If the LP solution d = f with polynomially many αS ≥ 0, then it can be shown that in the sparsity definition
we could minimize over f. Since f(u, v) =

∑
S⊆V

αS .fS(u, v), so we can rewrite the LP as :

LP =

∑
e∈E

ce
∑
S⊆V

αSfS(e)

k∑
i=1

wi
∑
S⊆V

αSfS(si, ti)

=

∑
S⊆V

αS
∑
e∈E

cefS(e)

∑
S⊆V

αS
k∑
i=1

wifS(si, ti)

≥ min
S:αs≥0

∑
e∈E

cefS(e)

k∑
i=1

wifS(si, ti)

= ψ∗
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where the last but one inequality used the elementary fact that for positive reals a1, a2, ..., ak and b1, b2, ..., bk,

we have
∑k

i=1 ai∑k
i=1 bi

≥ min
i∈[k]

ai
bi

. �

10.3 Sparsest cut from Metric embeddings

A metric f defined on V is called an L1 metric if there is a mapping φ : V −→ Rk for some k ≥ 1 such that
f(u, v) is the `1 distance between φ(u) and φ(v) i.e

f(u, v) = ‖φ(u)− φ(v)‖1=

k∑
i=1

|φ(u)i − φ(v)i|

Claim : Given any metric space (V, f), where f is an L1 metric and can be written as the linear combination
of some elementary cut metric, i.e f =

∑
S⊆V

αSfS , αS ≥ 0 ∀S, then f is also “nice”.

Proof : Let’s do it for k = 1 first and then we can generalize for any k. We plot the vertices on the real line
and order them as (say) φ(v1) ≤ φ(v2) ≤ ... ≤ φ(vk). Let us denote ri = φ(vi). We define αSi

:= ri+1 − ri
where Si = {v1, v2, ..., vi} and the ith cut is between vi+1 and vi. We put fSi

(vi+1, vi) = 1 and 0 otherwise.
It is easy to see that given any 2 vertices vi and vj (j > i), we can write f as :

f(vi, vj) =

j∑
c=i

αSc .fSc(vc+1, vc)

=

j∑
c=i

(rc+1 − rc).fSc
(vc+1, vc)

= rj − ri = φ(vj)− φ(vi)

We can do the same trick now for any k. Fix a co-ordinate i and do the above procedure and check that
f(u, v) = ‖φ(u)− φ(v)‖1.
Thus if the distance metric d given by LP is an L1 metric, we can get a constant factor approximation i.e

Ψ∗ = min
d∈L1

∑
e∈E cede∑k

i=1 wid(si, ti)

However Linial, London and Rabinovich (1995) showed that given any metric space (V, d), if there exists
a metric embedding φ : V −→ Rk for some k = O(poly(n)) such that for any pair of vertices u and v,

‖φ(u) − φ(v)‖1 ≤ d(u, v), and ‖φ(si) − φ(ti)‖1 ≥ d(si,ti)
α , then there is an α factor approximation for the

general sparsest cut i.e

ALG ≤

∑
e=(u,v)∈E

ce.‖φ(u)− φ(v)‖1

k∑
i=1

wi.‖φ(si)− φ(ti)‖1

≤ α.

∑
e=(u,v)∈E

ce.de

k∑
i=1

wi.d(si, ti)

= α.LP

The metric embedding result itself is due to Bourgain which will hopefully be covered in the next class. �


