10.1 Sparsest Cut in a Graph

Given a graph (V, E), in the sparsest cut problem our goal is to find a subset of vertices S, which minimizes the ratio $\frac{C(\delta S)}{|S| \cdot|\bar{S}|}$ which we'll call $s p(S)$. Here δS denotes the cut-edges between S and \bar{S}, where \bar{S} is precisely $V \backslash S$ and $C(\delta S)$ denotes the total cost of the edges in δS. This problem is equivalent to finding a set of edges $F \subseteq E$, minimizing $s p(F)=\frac{C(F)}{\#\left(s_{i}, t_{i}\right) \text { pairs seperated by } \mathbf{F}}$.

10.1.1 LP formulation

General Sparsest Cut:

Input: Graph $G,\left\{\left(s_{i}, t_{i}\right) \text { pairs }\right\}_{i=1}^{k}$
Goal: It is easy to see that $s p(F)$ can be rewritten as $\frac{\sum_{e \in E} C_{e} X_{e}}{\sum_{i} d\left(s_{i}, t_{i}\right)}$ where $d\left(s_{i}, t_{i}\right)$ is defined as the shortest distance between vertices s_{i} and t_{i} in the graph defined with weight X_{e} on the edges. The reason is $d\left(s_{i}, t_{i}\right)$ $=0$, if s_{i} and t_{i} are on the same side. Still, this objective function is not linear. So, we can get rid of the denominator by assuring that $\sum_{i} d\left(s_{i}, t_{i}\right)=1$, which can be ensured by scaling operation. From the previous class we know, $d_{e} \leq X_{e}$. Hence, while minimizing $s p(S)$, we should use d_{e} instead of X_{e}. So, the $L P$ for General Sparsest Cut which is given below, returns F with objective to

$$
\begin{aligned}
& \operatorname{minimize} \sum_{e \in F} C_{e} d_{e} \\
& \text { s.t. } \quad d_{u w} \leq d_{u v}+d_{v w} \quad \forall\{u, v, w\} \in V \\
& \sum_{i=1}^{k} d_{s_{i} t_{i}}=1 \\
& d_{e} \geq 0 \quad \forall e=(u, v) \in E
\end{aligned}
$$

Uniform Sparsest Cut:

In this scenario, every (u, v) pair is a $\left(s_{i}, t_{i}\right)$ pair. So, our $L P$ becomes,

$$
\begin{array}{lll}
\text { minimize } & \sum_{e \in F} C_{e} d_{e} & \\
\text { s.t. } & d_{u w} \leq d_{u v}+d_{v w} & \forall\{u, v, w\} \in V \\
& \sum_{(u, v) \in V \times V} d_{u v}=1 & \\
& d_{u v} \geq 0 & \forall(u, v) \in v \times v
\end{array}
$$

10.1.2 Sweep-cut algorithm for Uniform Sparsest Cut

Sweep-Cut:

1. Fix a vertex s.
2. Rename the vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ s.t. $\mathrm{d}_{s v_{1}} \leq \mathrm{d}_{s v_{2}} \ldots \leq \mathrm{d}_{s v_{n}}$. We may assume $s=v_{1}$, as $d_{s s}=0$.
3. Let $A_{i}:=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \forall i \in\{1,2, \ldots, n\}$.
4. Return the A_{i} s.t. $\operatorname{sp}\left(A_{i}\right)$ is minimum.

Analysis of Sweep-Cut:

Let $A L G$ be the sparsity of the cut returned. We define the following notions.
a. $B_{r}(s)=B_{r}:=\left\{v \mid d_{s v} \leq r\right\}$. We may assume $r \in[0, R]$ where $R=d_{s v_{n}}$. Note that for any r, B_{r} is one of the A_{i} s.
b. $n_{r}(s)=n_{r}:=\left|\bar{B}_{r}\right|=$ no. of vertices s.t. $d_{s v}>r . \bar{n}_{r}(s)$ is defined similarly.

As $A L G$ returns the set of vertices with minimum sparsity, hence we have,

$$
\mathrm{ALG} \leq \mathrm{sp}\left(\mathrm{~B}_{r}\right)=\frac{C\left(\delta B_{r}\right)}{\left|B_{r}\right| \cdot\left|\bar{B}_{r}\right|}
$$

Which implies,

$$
\begin{aligned}
C\left(\delta B_{r}\right) & \geq A L G \cdot\left|B_{r}\right| \cdot\left|\bar{B}_{r}\right| \\
& =A L G \cdot \bar{n}_{r} \cdot n_{r} \\
& \geq A L G \cdot n_{r} \quad\left(\bar{n}_{r} \geq 1 \text { as it always contains s. }\right)
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{equation*}
\int_{0}^{R} C\left(\delta B_{r}\right) d r \geq A L G \int_{0}^{R} n_{r} d r=A L G \cdot \sum_{v} d_{s v} \tag{10.1}
\end{equation*}
$$

Figure 10.1: $\int_{0}^{R} n_{r} d r$ and $\sum_{v} d_{s v}$

The equality $\left(\int_{0}^{R} n_{r} d r=\sum_{v} \mathrm{~d}_{s v}\right)$ comes because l.h.s. represents Fig-a and r.h.s. is Fig-b, and both of those essentially represent the same area under the curve (double-counting).

Now, we have,

$$
\begin{aligned}
1=\sum_{u, v} d_{u v} & \leq \sum_{u, v}\left(d_{s u}+d_{s v}\right) \\
& =\sum_{u} \sum_{v} d_{s u}+\sum_{u} \sum_{v} d_{s v}
\end{aligned}
$$

[Since we are summing over all vertices, u can be replaced with v.]

$$
\begin{aligned}
& =\sum_{u} \sum_{v} d_{s v}+\sum_{u} \sum_{v} d_{s v} \\
& =n \cdot \sum_{v} d_{s v}+n \sum_{v} d_{s v} \\
& =2 n \cdot \sum_{v} d_{s v} \\
\Rightarrow \sum_{v} d_{s v} & \geq \frac{1}{2 n}
\end{aligned}
$$

Using this lower bound of $\sum_{v} \mathrm{~d}_{s v}$ in eqn 10.1, we get

$$
\int_{0}^{R} C\left(\delta B_{r}\right) d r \geq \frac{A L G}{2 n}
$$

Again, by definition, we get

$$
\begin{aligned}
\int_{0}^{R} C\left(\delta B_{r}\right) d r & =\sum_{u, v} C(u, v) \cdot\left|d_{s v}-d_{s u}\right| \quad\left[\text { as } d_{s u} \leq r \leq d_{s v}\right] \\
& \leq \sum_{u, v} C(u, v) \cdot d_{u v} \quad \text { [From triangle inequality] } \\
& =L P
\end{aligned}
$$

Applying the above two inequalities in eqn 10.1 we obtain

$$
\begin{aligned}
L P & \geq \frac{A L G}{2 n} \\
A L G & \leq O(n) . L P
\end{aligned}
$$

Hence, Sweep-Cut is an $\mathrm{O}(n)$ approximation algorithm for Uniform Sparsest Cut.

10.1.3 A better approximation factor for Uniform Sparsest Cut

Let us look at at a modified version of Sweep-Cut, where instead of taking a single vertex s, we take a set of vertices T at the beginning. Then the algorithm goes like this.

Modified Sweep-Cut:

1. Fix a vertex set T of size at-least $\frac{n}{3}$.
2. Rename the vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ s.t. $\mathrm{d}_{T v_{1}} \leq \mathrm{d}_{T v_{2}} \ldots \leq \mathrm{d}_{T v_{n}}$, where $\mathrm{d}_{T v_{i}}:=\min _{t \in T} \mathrm{~d}_{t v_{i}}$.
3. Let $A_{i}:=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \forall i \in\{1,2, \ldots, n\}$.
4. Return the A_{i} s.t. $\operatorname{sp}\left(A_{i}\right)$ is minimum.

Analysis of Modified Sweep-Cut:

Let $A L G_{2}$ be the sparsity of the cut returned. We define the following notions.

1. $B_{r}(T)=B_{r}:=\left\{v \mid d_{T v} \leq r\right\}$.
2. $n_{r}(T)=n_{r}:=\left|\bar{B}_{r}\right|=$ no. of vertices s.t. $d_{T v}>r . \bar{n}_{r}(T)$ is defined similarly.

By the same logic, we have,

$$
\begin{aligned}
C\left(\delta B_{r}\right) & \geq A L G_{2} \cdot\left|B_{r}\right| \cdot\left|\bar{B}_{r}\right| \\
& =A L G_{2} \cdot \bar{n}_{r} \cdot n_{r} \\
& \geq A L G_{2} \cdot \frac{n}{3} \cdot n_{r} \quad\left(\bar{n}_{r} \geq \frac{n}{3} \text { as it always contains T. }\right)
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{equation*}
\int_{0}^{R} C\left(\delta B_{r}\right) d r \geq \frac{n}{3} \cdot A L G_{2} \int_{0}^{R} n_{r} d r=\frac{n}{3} \cdot A L G_{2} \cdot \sum_{v} d_{T v} \tag{10.2}
\end{equation*}
$$

Now, we have,

$$
1=\sum_{u, v} d_{u v} \leq \sum_{u, v}\left(d_{T u}+d_{T v}+\operatorname{diam}(T)\right)
$$

[Since, most likely the nearest vertices to u and v in T are different and can be furthest apart.]

$$
=\sum_{u} \sum_{v} d_{T u}+\sum_{u} \sum_{v} d_{T v}+n^{2} \cdot \operatorname{diam}(T)
$$

[Since we are summing over all vertices, u can be replaced with v.]

$$
\begin{aligned}
& =\sum_{u} \sum_{v} d_{T v}+\sum_{u} \sum_{v} d_{T v}+n^{2} \cdot \operatorname{diam}(T) \\
& =n \cdot \sum_{v} d_{T v}+n \sum_{v} d_{T v}+n^{2} \cdot \operatorname{diam}(T) \\
& =2 n \cdot \sum_{v} d_{T v}+n^{2} \cdot \operatorname{diam}(T)
\end{aligned}
$$

Now suppose T had small diameter - that is, $\operatorname{diam}(T) \leq 1 / 2 n^{2}$. Then, we would get $\sum_{v} d_{T v} \geq 1 / 2 n$, and using this lower bound of $\sum_{v} \mathrm{~d}_{s v}$ in eqn 10.2, we get

$$
\int_{0}^{R} C\left(\delta B_{r}\right) d r \geq c . A L G_{2}
$$

The analysis for the upper bound still remains the same, hence we get $L P$ as the upper bound. Applying the above two inequalities in eqn 10.2 we obtain

$$
\begin{aligned}
L P & \geq c . A L G_{2} \\
A L G_{2} & \leq O(1) . L P
\end{aligned}
$$

This implies the following theorem

Theorem 10.1 If there is a set T with $|T| \geq n / 3$ and $\operatorname{diam}(T) \leq 1 / 2 n^{2}$, then Modified Sweep-Cut from T is an $O(1)$-approximation algorithm for the Uniform Sparsest Cut problem.

Of course such a special set T may not exist. Next, we see a different algorithm which implies a $O(\log n)$ approximation if no such 'teeny-diameter-with-many-many-points' set exist. To do so we need the following general purpose lemma.

Theorem 10.2 (Low Diameter Decomposition Lemma) Given an undirected graph $G=(V, E)$ with $\operatorname{cost} C_{e}$ on each each e, and a distance d between all pairs of vertices, let $L=\sum_{e \in E} C_{e} d_{e}$. Given any $R>0$, we can partition V into $\left\{V_{1}, V_{2}, \ldots, V_{T}\right\}$ in polynomial time such that

1. $\operatorname{diam}\left(V_{i}\right) \leq 2 R, \forall i \in\{1,2, \ldots, T\}$
$\underset{e \in E\left(V_{1}, V_{2}, \ldots, V_{T}\right)}{\text { 2. } \sum_{e} C_{e} \leq O\left(\frac{\log n}{R}\right) L \text { where } E\left(V_{1}, \ldots, V_{T}\right):=\left\{(u, v) \in E: u \in V_{i}, v \in V_{j}, i \neq j\right\} \text {. } . ~ . ~ . ~}$

We now describe the $O(\log n)$-approximation for uniform sparsest cut. Run the low diameter decomposition algorithm with $R=1 / 4 n^{2}$. Two cases arise.

Case 1: Among the T partitions of V, if $\exists i$, s.t. $\left|V_{i}\right| \geq \frac{n}{3}$ and $\operatorname{diam}\left(V_{i}\right) \leq \frac{1}{2 n^{2}}$ we are done. Here we'll get a constant factor approximation from Theorem 10.1

Case 2: If there is no such partition, then initialize $S=\emptyset$. Order the parts V_{1}, \ldots, V_{T} arbitrarily and go on inserting parts into S until $|S|>n / 3$. As the initial parts are of relatively small size (i.e. all of them have size $\left.<\frac{n}{3}\right),|S| \leq 2 n / 3$ implying $|\bar{S}| \geq n / 3$. Also note that $\delta S \subseteq E\left(V_{1}, \ldots, V_{T}\right)$. This gives us

$$
\begin{aligned}
s p(S) & =\frac{C(\delta(S))}{|S| \cdot|\bar{S}|} \\
& \leq \frac{9}{n^{2}} \cdot C(\delta(S)) \\
& \leq \frac{9}{n^{2}} \cdot C\left[E\left(V_{1}, V_{2}, \ldots, V_{T}\right)\right] \\
& \leq \frac{9}{n^{2}} \cdot O\left(n^{2} \cdot \log n \cdot L P\right) \quad \text { [From the lemma] } \\
& =O(\log n) \cdot L P
\end{aligned}
$$

10.1.4 Proof of Low Diameter decomposition lemma

We start with some definitions. Recall $B_{r}=B_{r}(s):=\{v: d(s, v) \leq r\}, \delta B_{r}:=\left\{(u, v): u \in B_{r}, v \notin B_{r}\right\}$ and $E\left[B_{r}\right]:=\left\{(u, v): u, v \in B_{r}\right\}$.

We define the "total LP volume" in a ball of radius r around a vertex s, as :

$$
\begin{equation*}
\operatorname{Vol}\left(B_{r}\right):=\frac{L}{n}+\sum_{(u, v) \in E\left[B_{r}\right]} c_{u v} d_{u v}+\sum_{(u, v) \in \delta B_{r}} c_{u v}\left(r-d_{s u}\right) \tag{10.3}
\end{equation*}
$$

where $L=\sum_{e \in E} c_{e} d_{e}$ is the value of relaxed LP solution and n is the total number of vertices of the graph $G=(V, E)$. The first component in r.h.s is the "initial LP mass" which is same for all the balls "grown", the second component accounts for the mass due to internal edges in B_{r}, while the third is for the cross-over edges.

Fix a vertex s. Our goal is to find an $r \in[0, R)$ such that $c\left(\delta B_{r}\right) \leq 4 \frac{\log n}{R} \cdot \operatorname{Vol}\left(B_{r}\right)$. We claim that such a ball can be found. To see this, look at the rate at which the volume of the ball wrt r. To do so, we differentiate the equation on both sides w.r.t r, and get,

$$
\frac{d}{d r}\left(\operatorname{Vol}\left(B_{r}\right)\right)=\sum_{(u, v) \in \delta B_{r}} c_{u v}=c\left(\delta B_{r}\right)
$$

Since the ball is still growing, we can assume $c\left(\delta B_{r}\right)>4 \frac{\log n}{R} . \operatorname{Vol}\left(B_{r}\right)$ and arrive at a contradiction if possible. It is easy to check that at $r=R, \operatorname{Vol}\left(\mathrm{~B}_{r}\right)=\left(L+\frac{L}{n}\right)=L\left(1+\frac{1}{n}\right)$. Thus we have

$$
\begin{aligned}
& \frac{d}{d r}\left(\operatorname{Vol}\left(B_{r}\right)\right)>4 \frac{\log n}{R} \cdot \operatorname{Vol}\left(B_{r}\right) \\
& \Longrightarrow \frac{d\left(\operatorname{Vol}\left(B_{r}\right)\right)}{\operatorname{Vol}\left(B_{r}\right)}>4 \frac{\log n}{R} . d r \quad \text { So, } \\
& \int_{V o l\left(B_{r}\right)=\frac{L}{n}}^{L\left(1+\frac{1}{n}\right)} \frac{d\left(\operatorname{Vol}\left(B_{r}\right)\right)}{\operatorname{Vol}\left(B_{r}\right)}>\int_{r=0}^{R} 4 \frac{\log n}{R} . d r \\
& \Longrightarrow\left[\log \left(\operatorname{Vol}\left(B_{r}\right)\right)\right]_{\frac{L}{n}}^{L\left(1+\frac{1}{n}\right)}>4 \frac{\log n}{R} \cdot[r]_{0}^{R} \\
& \Longrightarrow \log (n+1)>4 \cdot \log (n) \quad \text { which is a contradiction }
\end{aligned}
$$

\therefore There exists an $r \in[0, R)$ such that

$$
\begin{equation*}
c\left(\delta B_{r}\right) \leq 4 \frac{\log n}{R} \cdot \operatorname{Vol}\left(B_{r}\right) \tag{10.4}
\end{equation*}
$$

Now coming back to the definition of $\operatorname{Vol}\left(B_{r}\right)$ in (10.1), we can say

$$
\begin{aligned}
r-d_{s u} & \leq d_{s v}-d_{s u} \quad\left(\because v \notin B_{r}, d_{s v}>r\right) \\
& \leq d_{u v} \quad(B y \text { triangle inequality, d is a metric }) \\
\therefore \operatorname{Vol}\left(B_{r}\right) & \leq \frac{L}{n}+\sum_{(u, v) \in E\left[B_{r}\right]} c_{u v} d_{u v}+\sum_{(u, v) \in \delta B_{r}} c_{u v} d_{u v}
\end{aligned}
$$

Finally if we sum up both sides of (10.2) over all possible balls (in worst case, we could have n balls), so,

$$
\begin{aligned}
\text { R.H.S } & =4 \frac{\log n}{R} \cdot \sum_{B_{r}(i): i=1}^{n} \operatorname{Vol}\left(B_{r}(i)\right) \\
& \leq 4 \frac{\log n}{R} \cdot\left[L+\sum_{B_{r}(i): i=1}^{n}\left(\sum_{(u, v) \in E\left[B_{r}(i)\right]} c_{u v} d_{u v}+\sum_{(u, v) \in \delta B_{r}(i)} c_{u v} d_{u v}\right)\right] \\
& \leq 4 \frac{\log n}{R} \cdot(L+2 L)=4 \frac{\log n}{R} \cdot 3 L
\end{aligned}
$$

and L.H.S $\geq c\left(E\left(v_{1}, v_{2}, \ldots, v_{T}\right)\right)$ which conclusively proves the lemma.

10.2 General Sparsest Cut

The input is an undirected graph $G=(V, E)$, where each edge $e \in E$ has a non-negative capacity c_{e}. Also there are some k demand vertex pairs $\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ each having some weight(demand) w_{i}. Given a subset of vertices $S \subseteq V$, we define "separation of S " as

$$
\operatorname{sep}(S)= \begin{cases}1 & \text { if }\left|\left\{s_{i}, t_{i}\right\} \cap S\right|=1, \text { i.e } S \text { separates }\left(s_{i}, t_{i}\right) \text { pair } \\ 0 & \text { otherwise }\end{cases}
$$

Our objective is to find the cut of minimum sparsity, which is

$$
\Psi^{*}=\min _{S \subseteq V} \frac{c(\delta S)}{\sum_{i=1}^{k} w_{i} \cdot \operatorname{sep}(S)}
$$

It is easy to write the general sparsest cut in terms of d as :

$$
\Psi^{*}=\min _{d} \frac{\sum_{e \in E} c_{e} d_{e}}{\sum_{i=1}^{k} w_{i} d\left(s_{i}, t_{i}\right)}
$$

Like the uniform sparsest cut, the LP for this one will be :

$$
\begin{aligned}
L P= & \min _{d} \sum_{e \in E} c_{e} d_{e} \\
& \text { s.t } \sum_{i=1}^{k} w_{i} d\left(s_{i}, t_{i}\right)=1 \\
& \text { and d is a semi-metric }{ }^{[2]}
\end{aligned}
$$

Before we go ahead with metric embedding, let us define what are so called the "nice metrics".
(1) Given a set $S \subseteq V$, we define :

$$
f_{S}(u, v):= \begin{cases}1 & \text { if exactly one of } u \text { or } v \text { is in } S \\ 0 & \text { otherwise }\end{cases}
$$

Such a metric is called an elementary cut metric on V and it falls under the category of "nice metrics".
If the LP solution gives such a metric i.e if $d=f_{S}$, then trivially we can return S .
(2) However, if the cut metric f can be expressed as a linear combination of elementary cut metrics f_{S} i.e $f:=\sum_{S \subseteq V} \alpha_{S} f_{S}, \alpha_{S} \geq 0 \forall S$, then also it is "nice".

If the LP solution $d=f$ with polynomially many $\alpha_{S} \geq 0$, then it can be shown that in the sparsity definition we could minimize over f. Since $f(u, v)=\sum_{S \subseteq V} \alpha_{S} \cdot f_{S}(u, v)$, so we can rewrite the LP as :

$$
\begin{aligned}
L P & =\frac{\sum_{e \in E} c_{e} \sum_{S \subseteq V} \alpha_{S} f_{S}(e)}{\sum_{i=1}^{k} w_{i} \sum_{S \subseteq V} \alpha_{S} f_{S}\left(s_{i}, t_{i}\right)} \\
& =\frac{\sum_{S \subseteq V} \alpha_{S} \sum_{e \in E} c_{e} f_{S}(e)}{\sum_{S \subseteq V} \alpha_{S} \sum_{i=1}^{k} w_{i} f_{S}\left(s_{i}, t_{i}\right)} \\
& \geq \min _{S: \alpha_{s} \geq 0} \frac{\sum_{e \in E} c_{e} f_{S}(e)}{\sum_{i=1}^{k} w_{i} f_{S}\left(s_{i}, t_{i}\right)}=\psi^{*}
\end{aligned}
$$

where the last but one inequality used the elementary fact that for positive reals $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{k}$, we have $\frac{\sum_{i=1}^{k} a_{i}}{\sum_{i=1}^{k} b_{i}} \geq \min _{i \in[k]} \frac{a_{i}}{b_{i}}$.

10.3 Sparsest cut from Metric embeddings

A metric f defined on V is called an \mathcal{L}_{1} metric if there is a mapping $\phi: V \longrightarrow \mathbb{R}^{k}$ for some $k \geq 1$ such that $f(u, v)$ is the ℓ_{1} distance between $\phi(u)$ and $\phi(v)$ i.e

$$
f(u, v)=\|\phi(u)-\phi(v)\|_{1}=\sum_{i=1}^{k}\left|\phi(u)_{i}-\phi(v)_{i}\right|
$$

Claim : Given any metric space (V, f), where f is an \mathcal{L}_{1} metric and can be written as the linear combination of some elementary cut metric, i.e $f=\sum_{S \subseteq V} \alpha_{S} f_{S}, \alpha_{S} \geq 0 \forall S$, then f is also "nice".
Proof : Let's do it for $k=1$ first and then we can generalize for any k. We plot the vertices on the real line and order them as (say) $\phi\left(v_{1}\right) \leq \phi\left(v_{2}\right) \leq \ldots \leq \phi\left(v_{k}\right)$. Let us denote $r_{i}=\phi\left(v_{i}\right)$. We define $\alpha_{S_{i}}:=r_{i+1}-r_{i}$ where $S_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and the $i^{\text {th }}$ cut is between v_{i+1} and v_{i}. We put $f_{S_{i}}\left(v_{i+1}, v_{i}\right)=1$ and 0 otherwise. It is easy to see that given any 2 vertices v_{i} and $v_{j}(j>i)$, we can write f as :

$$
\begin{aligned}
f\left(v_{i}, v_{j}\right) & =\sum_{c=i}^{j} \alpha_{S_{c}} \cdot f_{S_{c}}\left(v_{c+1}, v_{c}\right) \\
& =\sum_{c=i}^{j}\left(r_{c+1}-r_{c}\right) \cdot f_{S_{c}}\left(v_{c+1}, v_{c}\right) \\
& =r_{j}-r_{i}=\phi\left(v_{j}\right)-\phi\left(v_{i}\right)
\end{aligned}
$$

We can do the same trick now for any k. Fix a co-ordinate i and do the above procedure and check that $f(u, v)=\|\phi(u)-\phi(v)\|_{1}$.
Thus if the distance metric d given by LP is an \mathcal{L}_{1} metric, we can get a constant factor approximation i.e

$$
\Psi^{*}=\min _{d \in \mathcal{L}_{1}} \frac{\sum_{e \in E} c_{e} d_{e}}{\sum_{i=1}^{k} w_{i} d\left(s_{i}, t_{i}\right)}
$$

However Linial, London and Rabinovich (1995) showed that given any metric space (V, d), if there exists a metric embedding $\phi: V \longrightarrow \mathbb{R}^{k}$ for some $k=O(\operatorname{poly}(n))$ such that for any pair of vertices u and v, $\|\phi(u)-\phi(v)\|_{1} \leq d(u, v)$, and $\left\|\phi\left(s_{i}\right)-\phi\left(t_{i}\right)\right\|_{1} \geq \frac{d\left(s_{i}, t_{i}\right)}{\alpha}$, then there is an α factor approximation for the general sparsest cut i.e

$$
\begin{aligned}
A L G & \leq \frac{\sum_{e=(u, v) \in E} c_{e} \cdot\|\phi(u)-\phi(v)\|_{1}}{\sum_{i=1}^{k} w_{i} \cdot\left\|\phi\left(s_{i}\right)-\phi\left(t_{i}\right)\right\|_{1}} \\
& \leq \alpha \cdot \frac{\sum_{e=(u, v) \in E} c_{e} \cdot d_{e}}{\sum_{i=1}^{k} w_{i} \cdot d\left(s_{i}, t_{i}\right)}=\alpha \cdot L P
\end{aligned}
$$

The metric embedding result itself is due to Bourgain which will hopefully be covered in the next class.

