
Lecture 5: Iterated Rounding

6th Feb, 2015

1 Some facts about Linear Programs

A minimization linear program, in its generality, can be denoted as

min c · x (1)

subject to Ax ≥ b

The number of variables is the number of columns of A, the number of constraints is the number
of rows of A. The ith column of A is denoted as Ai, the ith row as ai. Note that constraints of
A could also include constraints of the form xi ≥ 0. These non-negativity constraints are often
considered separately (for a reason). Let’s call the other constraints non-trivial constraints. For
the discussion of this section, let n be the number of variables and let m denote the number of
non-trivial constraints. Thus the number of rows in A are (m + n) and rank(A) = n (since it
contains an In×n as a submatrix).

A solution x is a feasible solution if it satisfies all the constraints. Some constraints may be
satisfied with equality, others as a strict inequality. A feasible solution x is called basic if the
constraints satisfied with equality span the entire space. Let B be the equality rows of A such that
Bx = bB, where bB are the entries of b corresponding to the rows of B. Note that B depends on
x. x is a basic feasible solution if rank(B) = n.

Fact 1. There is an optimal solution to every LP which is a basic feasible solution.

Let x be a basic feasible solution, and let supp(x) := {i : xi > 0}. Let B be the basis such
that Bx = bB. Note that B contains at most n − supp(x) non-negativity constraints. Therefore,
at least supp(x) linearly independent non-trivial constraints which are satisfied with equality. This
fact will be used crucially a few classes later.

Fact 2. There is an optimal solution to every LP with at least supp(x) linearly independent non-
trivial constraints satisfied with equality.

A linear program can be solved in polynomial (in the number of variables) time by using the
ellipsoid algorithm as long as there is a polynomial time separation oracle. A separation oracle is
the following: given a point x either says it is feasible or returns a violated inequality ai · x < bi.

Fact 3. An optimum basic feasible solution to a LP can be found in polynomial time as long as
there is a separation oracle.

1

2 Iterated Rounding Framework

Recall the LP-methodology for designing approximation algorithms. Write a linear integer program
capturing the optimum of the problem, solve the linear programming relaxation, and round the
possibly fractional solution of the LP to an integer solution. In the last lecture, we solved the linear
program and spent most of out energy rounding the solution thus obtained into a fully integral
solution. In iterated rounding, as the name suggests, the rounding of fractional variables is done in
iterations. A quick description of the schema is as follows. In each iteration, a set of variables are
made integral; this leads rise to a residual problem, and more often than not, the residual problem
is an instance of the same class of problems. One then considers the LP relaxation on this residual
instance, and if one can argue that the drop in the LP-value is at least 1

ρ times the cost of the
rounded variables (in case of minimization problems), then one gets a ρ-approximation.

Matchings in Bipartite Graphs Consider the min-cost perfect matching problem in bipartite
graphs. Given a bipartite graph G = (A,B,E) with costs on edges, we need to find a perfect
matching of minimum cost. An LP relaxation for the problem is as follows

min
∑
e∈E

cexe

subject to x(δ(a)) = 1 ∀a ∈ A
x(δ(b)) = 1 ∀b ∈ B
0 ≤ xe ≤ 1 ∀e ∈ E

Let x be a basic feasible solution to the above LP.

Lemma 1. There is an edge e with x∗e = 0 or x∗e = 1.

Proof. Suppose not and this all edges e have 0 < x∗e < 1. The constraints of the LP imply that each
vertex in A (or B) must have at least two edges incident on it; so |E| ≥ 2n, where |A| = |B| = n.
Since x∗ is basic feasible, we know that |E| is at most the number of linearly independent equalities.
These equalities must correspond to the 2n constraints shown above because none of the x∗e’s are 0
or 1. However these are not linearly independent – the sum of the rows corresponding to vertices
in A equal the sum of rows corresponding to B. This is a contradiction, implying some x∗e is either
0 or 1.

If x∗e = 0, we delete e from the graph. If x∗e = 1 then we pick this in our matching and delete the
end points of e from the graph. In both cases we end up with another min-cost perfect matching
problem, and hence we can apply iterated rounding to obtain an exact algorithm.

Maximum weight bipartite matching. Now let us consider the problem that I botched up in
the class. In fact, we were on the right lines, so let me just complete the argument. Here’s the LP

2

again.

max
∑

(i,j)∈E

pijxij

subject to x(δ(a)) ≤ 1 ∀a ∈ A
x(δ(b)) ≤ 1 ∀b ∈ B
0 ≤ xe ≤ 1 ∀e ∈ E

The following theorem allows us to run iterated rounding to prove that the integrality gap of the
LP is = 1.

Theorem 1. Given any bfs x, there exists an edge (i, j) with xij = 0 or xij = 1.

Proof. Let F be the set of edges, and suppose 0 < xij < 1 for all edges. Let r be the number of
tight constraints/vertices on the A-side, and s be the number of constraints on the B-side. From F
we throw away the edges (i, j) where neither i nor j are tight – as observed in the class, if pij > 0
then such edges can’t exist. Abusing notation, we call the remaining edges F . We divide F into
two parts: Fin and Fout, where Fin are the edges (i, j) where both i and j are tight, and Fout are
the remaining which have exactly one end point incident on a tight vertex.

Here is the first observation: if Fin = F , that is if Fout = ∅, then the number of linearly
independent tight constraints is ≤ (r + s − 1). This is because the rows corresponding to tight
constraints on the A-side sum up to tight constraints on the B-side. Thus, we get

Number of linearly independent tight constraints =

{
≤ r + s− 1 if |Fout| = 0

≤ r + s if |Fout| ≥ 1
(2)

Second observation: for any tight vertex, it’s degree must be ≥ 2. This is because the sum of
x-value son edges incident on it is 1 while each is < 1 (by supposition). Therefore, the sum of
degrees of all tight vertices is ≥ 2(r + s). Observe now that the sum of degrees of tight vertices is
precisely 2|Fin|+ |Fout| = 2|F | − |Fout| – the Fin edges are counted twice while the Fout edges are
counted once. Therefore, we get

2|F | − |Fout| ≥ 2(r + s) ⇒ |F | ≥ r + s+
|Fout|

2
=

{
> r + s− 1 if |Fout| = 0

> r + s if |Fout| > 0

Comparing with (2), we get that no matter if |Fout| = 0 or not, |F | exceeds the number of linearly
independent tight constraints. This is a contradiction, and hence our supposition is wrong, proving
the theorem.

3 The Tree Augmentation problem

Given a rooted tree T and a set of non-tree segments F with costs, the goal is to pick F ′ ⊆ F of
minimum cost such that T + F ′ is 2-edge connected.

3

We start with an LP relaxation for the problem. First some notation: given any segment
f = (u, v), we let Pf denote the unique tree path from u to v.

min
∑
f∈F

cfxf (3)

subject to
∑

f :e∈Pf

xf ≥ 1 ∀e ∈ T (4)

xf ≥ 0 ∀f ∈ F (5)

We show a 2-approximation for the problem. In fact, there are many (at least 3) ways of showing
this – today, we will see a beautiful proof using iterated rounding. In fact, we show the following.

Theorem 2. Let x be any basic feasible solution to (3). Then there must exist an f with xf ≥ 1/2.

The above theorem implies a 2-approximation: solve the LP, pick segment f with xf ≥ 1/2.
Construct the residual tree which contracts all the edges covered by f . Rinse and repeat. We
leave the details as an exercise. The proof of the above theorem essentially is due to Kamal Jain,
but we show a newer proof by Nagarajan, Ravi and Singh.

Proof. Let us assume xf > 0 for all f ∈ F by just chucking out all the zero-x-segments. For
notational purposes, given e ∈ T , let Fe := {f : e ∈ Pf} denote the segments which can potentially
cover e. Next, we contract some edges of the tree. That is, we replace (u, v) by a single node
and any segment starting at u or v now start or end at that super node. Note that contraction
doesn’t affect

∑
f∈Fe

xf for any non-contracted edge e. First we contract every edge e such that∑
f∈Fe

xf > 1. Abusing notation let’s call the remaining edges E. Next, we contract any edge e
such that the set Fe can be decomposed as disjoing unions of Fe1 ∪ Fe2 ∪ · · · for some other edges
e1, e2, Note that the row in the constraint matrix of the LP corresponding to e can be then
written as the sum of the rows in the constraint matrix corresponding to e1, e2, . . ., and therefore
in a full rank system the constraint of e won’t appear if those of e1, e2, . . . does. Let E (abusing
notation once again) be the remaining rows. Since x was a bfs, |F | ≤ |E|.

We now show if xf < 1/2 for all f ∈ F , |F | > |E| which is an obvious contradiction. This is done
by a charging argument. For every segment f = (u, v), we distribute ≤ 1 unit of charge on the
edges as follows: the edge (u, p(u)) where p(u) is the parent of u gets charge xf , the edge (v, p(v))
gets a charge xf . Now let a be the lca of u and v. If a is not the root, then the edge (a, p(a)) gets
a charge (1− 2xf).

Claim 1. The total charge distributed is < |F |.

Proof. It’s clear that the total charge is ≤ F . To see strict inequality note that the root r has at
least one child u. Now look at the tree edge e = (r, u) and consider Fe. For any segment f ∈ Fe,
the lca of its endpoints is r, the root. Therefore, it gives out 2xf < 1 units of charge since xf < 1/2
for all f .

The following claim along with the previous one shows |F | > |E| which is the contradiction.

Claim 2. Every edge in E gets at least one unit of charge.

4

Proof. Fix a tree edge (u, v) where v = p(u). Let u1, . . . , uk be the k ≥ 1 children of u and let
T1, . . . , Tk be the k subtrees rooted at these vertices. The proof that (u, v) gets one unit of charge
follows in two steps: first we show that (u, v) gets > 0 charge, and in the next we show the charge
on (u, v) must be an integer.

Suppose e = (u, v) gets 0 charge. Then this implies there is no f with endpoint u. Therefore,
all segments in Fe have one of their endpoints in one of the Ti’s. Furthermore, there is no segment
f = (a, b) where a ∈ Ti and b ∈ Tj for i 6= j. Since otherwise, e would get charge at least
(1− 2xf) > 0. Thus, all segments in Fei where ei := (u, ui) also lie in Fe. But this contradicts the
fact that e wasn’t removed. In sum, e gets > 0 charge.

Now, let A be the segments with one endpoint in Ti and another in Tj for some i 6= j. Let B
be the segments with one end point in Ti and which also lies in Fe. C be the segments in Fe which
have an endpoint in u. Finally, D be the segments which have one endpoint in Ti and the other
endpoint in u. We know the following equalities

x(B) + x(C) = 1

since (u, v) ∈ E.
x(B) + x(D) + 2x(A) = k

since each (u, ui) ∈ E. Now the total charge on the edge (u, v) equals |A| − 2x(A) + x(C) + |D| −
x(D) = |A|+ |D|+ 1− k, which is an integer.

5

	Some facts about Linear Programs
	Iterated Rounding Framework
	The Tree Augmentation problem

