Higher-order Fourier analysis and an application

FSTTCS '15 Workshop

Arnab Bhattacharyya Indian Institute of Science

December 19, 2015

<u>Roadmap</u>

- Preliminaries and review of Fourier analysis
- What is "higher-order" Fourier analysis?
- An application to locally correctable codes

No historical account!

Some Preliminaries

$\mathbb{F} = \text{finite field of fixed}$ prime order

- For example, $\mathbb{F} = \mathbb{F}_2$ or $\mathbb{F} = \mathbb{F}_{97}$
- Theory can be extended to extensions of prime fields [B.-Bhowmick `15]

Functions

Functions are always multivariate, on *n* variables

and

 $P \colon \mathbb{F}^n \to \mathbb{F}$

 $f: \mathbb{F}^n$

Current bounds aim to be efficient wrt *n*

 $(|f| \le 1)$

Polynomial

Polynomial of degree *d* is of the form: $\sum_{i_1,...,i_n} c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n}$

where each $c_{i_1,\ldots,i_n} \in \mathbb{F}$ and $i_1 + \cdots + i_n \leq d$

Phase Polynomial

Phase polynomial of degree d is a function $f: \mathbb{F}^n \to \mathbb{C}$ of the form f(x) = e(P(x)) where:

1. $P: \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree d2. $e(k) = e^{2\pi i k/|\mathbb{F}|}$

Inner Product

The **inner product** of two functions $f, g: \mathbb{F}^n \to \mathbb{C}$ is:

$$\langle f,g\rangle = \mathbb{E}_{x\in\mathbb{F}^n}[f(x)\cdot\overline{g(x)}]$$

Magnitude captures correlation between f and g

Derivatives

Additive derivative in direction $h \in \mathbb{F}^n$ of function $P: \mathbb{F}^n \to \mathbb{F}$ is:

$D_h P(x) = P(x+h) - P(x)$

Derivatives

Multiplicative derivative in direction $h \in \mathbb{F}^n$ of function $f: \mathbb{F}^n \to \mathbb{C}$ is:

$\Delta_h f(x) = f(x+h) \cdot \overline{f(x)}$

Polynomial Factor

Factor of degree *d* and order *m* is a tuple of polynomials $\mathcal{B} = (P_1, P_2, ..., P_m)$, each of degree *d*.

As shorthand, write: $\mathcal{B}(x) = (P_1(x), \dots, P_m(x))$

Fourier Analysis over \mathbb{F}

Fourier Representation

Every function $f: \mathbb{F}^n \to \mathbb{C}$ is a linear combination of linear phases:

$$f(x) = \sum_{\alpha \in \mathbb{F}^n} \hat{f}(\alpha) \operatorname{e}\left(\sum_i \alpha_i x_i\right)$$

Linear Phases

• The inner product of two linear phases is:

$$\langle e\left(\sum_{i} \alpha_{i} x_{i}\right), e\left(\sum_{i} \beta_{i} x_{i}\right) \rangle = \mathbb{E}_{x}\left[e\left(\sum_{i} (\alpha_{i} - \beta_{i}) x_{i}\right)\right] = 0$$

if $\alpha \neq \beta$ and is 1 otherwise.

• So:

 $\hat{f}(\alpha) = \langle f, \mathbf{e}(\sum_{i} \alpha_{i} x_{i}) \rangle$ = correlation with linear phase

Random functions

With high probability, a random function $f: \mathbb{F}^n \to \mathbb{C}$ with |f| = 1 has each $\hat{f}(\alpha) \to 0$.

$$f(x) = g(x) + h(x)$$

where:

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

Every Fourier coefficient of h is less than ϵ , so h is "pseudorandom".

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

g has only $1/\epsilon^2$ nonzero Fourier coefficients

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

The nonzero Fourier coefficients of g can be found in poly time [Goldreich-Levin '89]

<u>Elements of Higher-Order</u> <u>Fourier Analysis</u>

Higher-order Fourier analysis is the interplay between three different notions of pseudorandomness for functions and factors.

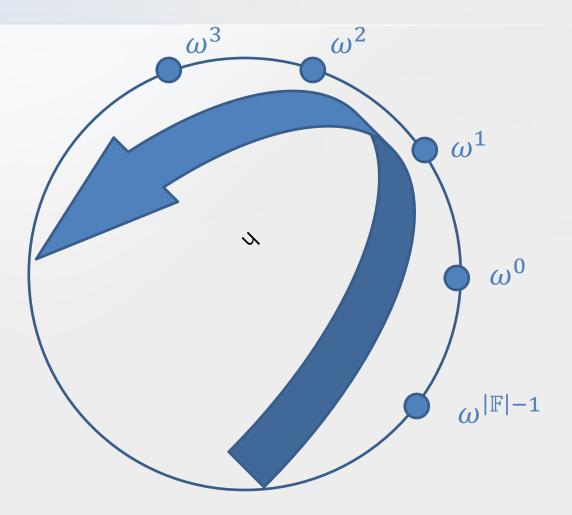
- 1. Bias
- 2. Gowers norm
- 3. Rank

Bias

For $f: \mathbb{F}^n \to \mathbb{C}$, bias $(f) = |\mathbb{E}_x[f(x)]|$

For $P: \mathbb{F}^n \to \mathbb{F}$, bias $(P) = |\mathbb{E}_x[e(P(x))]|$

[..., Naor-Naor '89, ...]



How well is *P* equidistributed?

Bias of Factor

A factor $\mathcal{B} = (P_1, \dots, P_k)$ is α unbiased if every nonzero linear combination of P_1, \dots, P_k has bias less than α :

$$bias(\sum_{i=1}^{k} c_i P_i) < \alpha$$

$$\forall (c_1, \dots, c_k) \in \mathbb{F}^k \setminus \{0\}$$

Bias implies equidistribution

Lemma: If \mathcal{B} is α -unbiased and of order k, then for any $c \in \mathbb{F}^k$: $\Pr[\mathcal{B}(x) = c] = \frac{1}{|\mathbb{F}|^k} \pm \alpha$

Bias implies equidistribution

Lemma: If \mathcal{B} is α -unbiased and of order k, then for any $c \in \mathbb{F}^k$:

$$\Pr[\mathcal{B}(x) = c] = \frac{1}{|\mathbb{F}|^k} \pm \alpha$$

Corollary: If \mathcal{B} is α -unbiased and $\alpha < \frac{1}{|\mathbb{F}|^k}$, then \mathcal{B} maps onto \mathbb{F}^k .

Gowers Norm

Gowers Norm

Given $f: \mathbb{F}^n \to \mathbb{C}$, its Gowers norm of order d is:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},...,h_{d}} \Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d}} f(x)|^{1/2^{d}}$$

[Gowers '01]

Gowers Norm

Given $f: \mathbb{F}^n \to \mathbb{C}$, its **Gowers norm of order** *d* is:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},\dots,h_{d}} \Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d}} f(x)|^{1/2^{d}}$$

<u>Observation</u>: If f = e(P) is a phase poly, then:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},\dots,h_{d}} \mathbf{e} (D_{h_{1}} D_{h_{2}} \cdots D_{h_{d}} P(x))|^{1/2^{d}}$$

Gowers norm for phase polys

• If *f* is a phase poly of degree *d*, then:

$U^{d+1}(f) = 1$

• Converse is true when $d < |\mathbb{F}|$.

Other Observations

• $U^1(f) = \sqrt{|\mathbb{E}[f]|^2} = \text{bias}(f)$

•
$$U^2(f) = \sqrt[4]{\sum_{\alpha} \hat{f}^4(\alpha)}$$

•
$$U^{1}(f) \le U^{2}(f) \le U^{3}(f) \le \cdots$$
 (C.-S.)

Pseudorandomness

• For random $f \colon \mathbb{F}^n \to \mathbb{C}$ and fixed d, $U^d(f) \to 0$

 By monotonicity, low Gowers norm implies low bias and low Fourier coefficients. Correlation with Polynomials Lemma: $U^{d+1}(f) \ge \max |\langle f, e(P) \rangle|$ where max is over all polynomials P of degree d.

<u>Proof</u>: For any poly *P* of degree *d*:

$$\begin{aligned} \left| \mathbb{E} \Big[f(x) \cdot \mathbf{e} \Big(-P(x) \Big) \Big] \right| &= U^1 \Big(f \cdot \mathbf{e} (-P) \Big) \\ &\leq U^{d+1} \Big(f \cdot \mathbf{e} (-P) \Big) \\ &= U^{d+1} (f) \end{aligned}$$

Gowers Inverse Theorem

Theorem: If $d < |\mathbb{F}|$, for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f) > \epsilon$, then $|\langle f, e(P) \rangle| > \delta$ for some poly *P* of degree *d*.

Proof:

- [Green-Tao `o9] Combinatorial for phase poly f (c.f. Madhur's talk later).
- [Bergelson-Tao-Ziegler `10] Ergodic theoretic proof for arbitrary *f*.

Small Fields

Consider $f: \mathbb{F}_2^1 \to \mathbb{C}$ with: f(0) = 1f(1) = i

f not a phase poly but $U^3(f) = 1!$

Small fields: worse news

Consider f = e(P) where $P: \mathbb{F}_2^n \to \mathbb{F}_2$ is symmetric polynomial of degree 4.

$$U^4(f) = \Omega(1)$$

but:

$|\langle f, e(C) \rangle| = \exp(-n)$ for all cubic poly C.

[Lovett-Meshulam-Samorodnitsky '08, Green-Tao '09]

Nevertheless...

Just *define* non-classical phase polynomials of degree *d* to be functions $f: \mathbb{F}^n \to \mathbb{C}$ such that |f| = 1and

 $\Delta_{h_1} \Delta_{h_2} \cdots \Delta_{h_{d+1}} f(x) = 1$
for all $x, h_1, \dots, h_{d+1} \in \mathbb{F}^n$

Inverse Theorem for small fields

Theorem: For all $\epsilon > 0$, there exists $\delta = \delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f) > \epsilon$, then $|\langle f, g \rangle| > \delta$ for some nonclassical phase poly g of degree d.

Proof:

- [Tao-Ziegler] Combinatorial for phase poly *f* .
- [Tao-Ziegler] Nonstandard proof for arbitrary *f*.

Pseudorandomness & Counting

Theorem: If $L_1, ..., L_m$ are m linear forms $(L_j(X_1, ..., X_k) = \sum_{i=1}^k \ell_{i,j} X_i)$, then:

$$\mathbb{E}_{X_1,\dots,X_k\in\mathbb{F}^n}\left[\prod_{j=1}^m f(L_j(X_1,\dots,X_k))\right] \le U^t(f)$$

if $f: \mathbb{F}^n \to \mathbb{C}$ and t is the *complexity* of the linear forms L_1, \dots, L_m . [Gowers-Wolf `10]

Examples

• Given $f: \mathbb{F}^n \to \mathbb{R}$ and we want to "count" the number of 3-term AP's:

$$\mathbb{E}_{X,Y}[f(X) \cdot f(X+Y) \cdot f(X+2Y)] \leq \sum_{\alpha} \hat{f}^{3}(\alpha)$$

• Similarly, number of 4-term AP's controlled by 3rd order Gowers norm of *f*.

Rank

Given a polynomial $P: \mathbb{F}^n \to \mathbb{F}$ of degree d, its **rank** is the smallest integer r such that:

$$P(x) = \Gamma(Q_1(x), \dots, Q_r(x)) \quad \forall x \in \mathbb{F}^n$$

where Q_1, \ldots, Q_r are polys of degree d - 1 and $\Gamma: \mathbb{F}^r \to \mathbb{F}$ is arbitrary.

Pseudorandomness

• For random poly *P* of fixed degree *d*, rank(*P*) = $\omega(1)$

• High rank is pseudorandom behavior

Rank & Gowers Norm

If $P: \mathbb{F}^n \to \mathbb{F}$ is a poly of degree d, Phas high rank **if and only if** e(P) has low Gowers norm of order d!

Low rank implies large Gowers norm

Lemma: If
$$P(x) = \Gamma(Q_1(x), ..., Q_k(x))$$

where $Q_1, ..., Q_k$ are polys of deg $d - 1$, then
 $U^d(e(P)) \ge \frac{1}{|\mathbb{F}|^{k/2}}$.

Low rank implies large Gowers norm

Lemma: If $P(x) = \Gamma(Q_1(x), ..., Q_k(x))$ where $Q_1, ..., Q_k$ are polys of deg d - 1, then $U^d(e(P)) \ge \frac{1}{|\mathbb{F}|^{k/2}}$.

Proof: By (linear) Fourier analysis:

$$e(P(x)) = \sum_{\alpha} \widehat{\Gamma}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} \cdot Q_{i}(x)\right)$$

Therefore:

$$\begin{split} |\mathbb{E}_{x} \sum_{\alpha} \widehat{\Gamma}(\alpha) \cdot \mathbf{e} \left(\sum_{i} \alpha_{i} \cdot Q_{i}(x) - P(x) \right) | &= 1 \\ \text{nen, there's an } \alpha \text{ such that} \\ \langle \mathbf{e}(P), \mathbf{e}(\sum_{i} \alpha_{i} Q_{i}) \rangle \geq |\mathbb{F}|^{-k/2}. \end{split}$$

Inverse theorem for polys

<u>Theorem</u>: For all ϵ and d, there exists $R = R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and $U^d(e(P)) > \epsilon$, then rank(P) < R.

[Tao-Ziegler `11]

Bias-rank theorem

Theorem: For all ϵ and d, there exists $R = R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and bias $(P) > \epsilon$, then rank(P) < R.

[Green-Tao '09, Kaufman-Lovett '08]

Decomposition Theorem

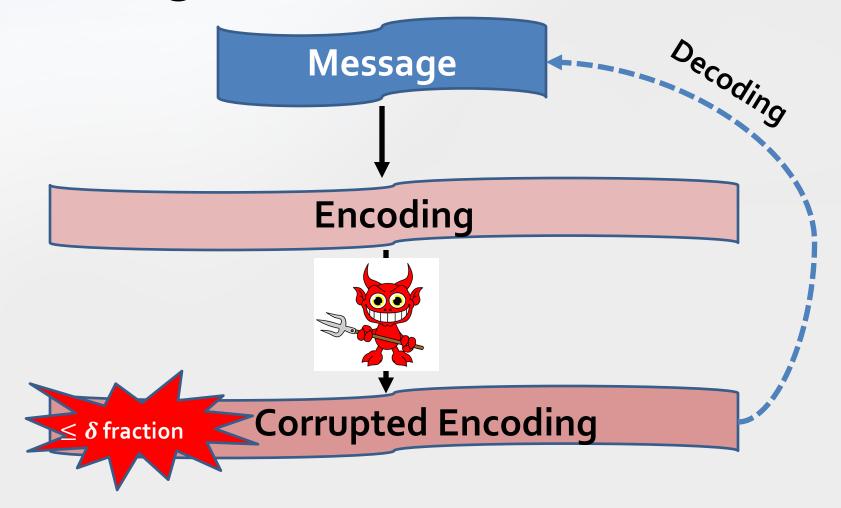
For any $\epsilon > 0$ and integer r > 1, there is a k so that any bounded $f : \mathbb{F}^n \to \mathbb{C}$ has a decomposition:

f = g + hwhere $g = \Gamma(P_1, \dots, P_k)$ for degree < rnon-classical polynomials P_1, \dots, P_k and $U^r(h) < \epsilon$.

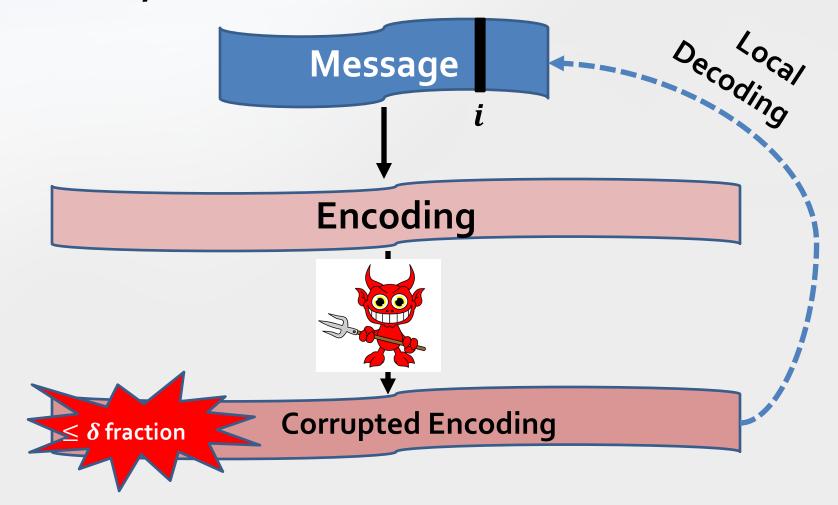
<u>An Application:</u> Locally Correctable Codes

[B.-Gopi '15]

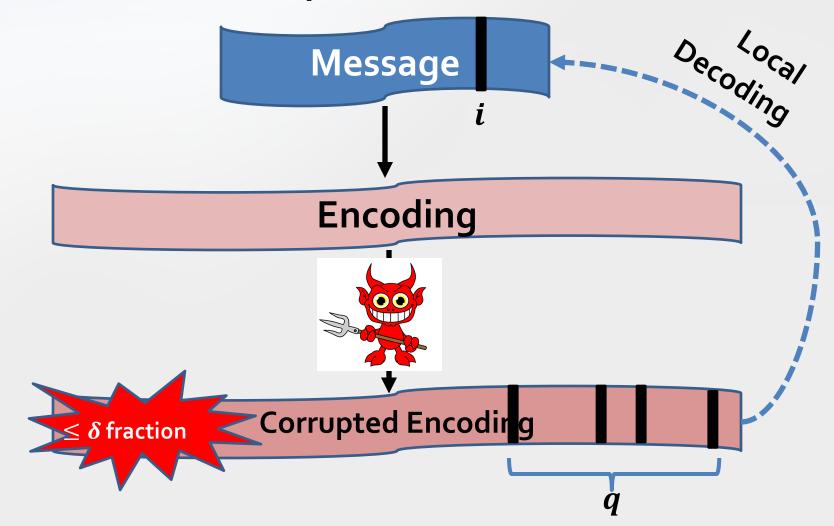
Tackling Adversarial Errors



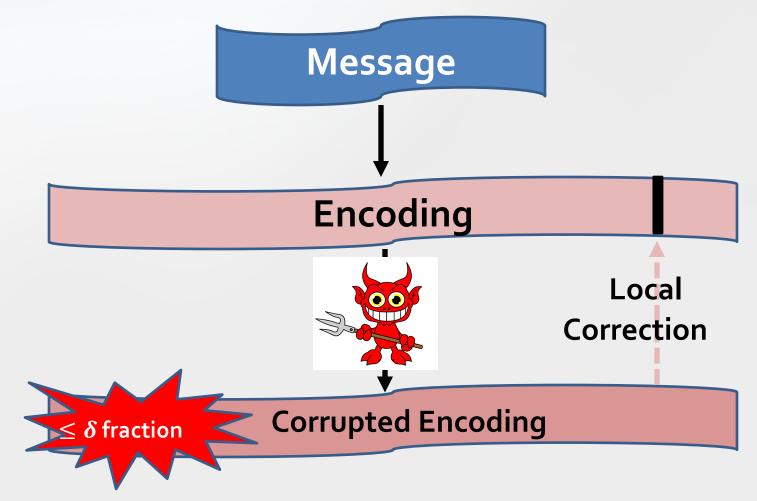
Locally Decodable Codes



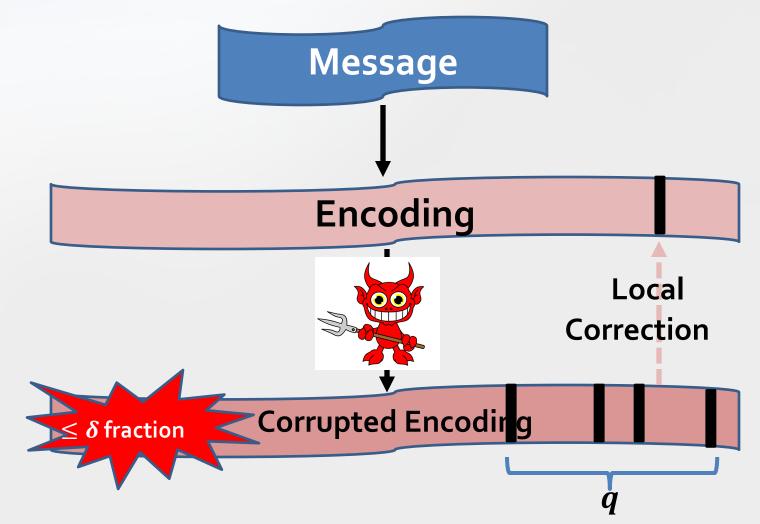
(q, δ) -Locally Decodable Codes



Locally Correctable Codes



(q, δ) -Locally Correctable Code



Locally Correctable Code (LCC)

Any encoding $y \in \Sigma^n$ by a (q, δ) -LCC has the property that for every δ corruption y' of y and for every $i \in [n]$, with probability at least 90%, one can recover y[i] by looking at qsymbols in y'.

LDC/LCC Applications

- Private Information Retrieval (PIR) schemes
- Secure Multiparty Computation
- Complexity theoretic applications:

 Arithmetic circuit lower bounds, Average-case complexity, Derandomization

LCC example

- Hadamard code $H \subseteq \{0,1\}^{2^n}$
- Interpret *n*-bit message $(a_1, ..., a_n)$ as linear form $H(x) = \sum_i a_i x_i$ and write evaluations of *H* on all $\{0,1\}^n$
- To recover H(x), choose random y and output H(x + y) - H(y)

Current Status: Construction

- If q is a constant, current shortest LCC is Reed-Muller code of order q - 1 (evaluation table of a polynomial of degree q - 1 on a field of size > q)
 - To recover P(x), pass line ℓ in random direction thru x, evaluate on q points on line to interpolate P_{ℓ} and evaluate $P_{\ell}(x)$

Current Status: Construction

 Same length also achieved by the "lifted codes" of [Guo-Kopparty-Sudan '13].

Current Status: Lower bounds

- Hadamard code known to be optimal for 2 queries (for constant alphabet)
- For larger number of queries, only very weak bounds known

Our Result

 Reed-Muller (and [GKS '13]) optimal q-query LCC among affine-invariant codes

Affine invariance

• For a codeword $w \in \Sigma^{\mathbb{F}^n}$, we can view it as a function $w: \mathbb{F}^n \to \Sigma$

• Code *C* is **affine-invariant** if for any $w \in C, w \circ A \in C$ for any affine transformation $A: \mathbb{F}^n \to \mathbb{F}^n$.

Why affine invariance?

- "Generic" way to introduce many constraints among codeword positions.
- Affine-invariance natural for algebraically defined error-correcting codes
- Study of connection between correctability and invariances formally initiated by [Kaufman-Sudan '08].

Previous work

• [Ben Sasson-Sudan `11] showed that Reed-Muller is optimal among all linear, affine-invariant codes.

> Their result does not assume fixed field size as ours does

Key Lemma

The metric induced by the $|| \cdot ||_{U^q}$ -norm on the space of all bounded functions has an ϵ -net of size $\exp(O(n^{q-1}))$.

Proof of Key Lemma

- Net consists of all functions of the form Γ(P₁, ..., P_k) where P₁, ..., P_k are degree < q, non-classical polynomials, k is a constant, and Γ arbitrary.
- By decomposition theorem, such a function approximates given *f* !
- Can discretize Γ without affecting error too much.

Proof of Theorem

- Take two codewords f and g.
- If decoder runs on f

 A for random position y and any affine map A, it must with good prob give different answer than g(A(y)).
- On the other hand, if f and g close in U^q norm, then for any y and queried positions y₁, ..., y_q,

 $\mathbb{E}[\langle f \circ A(y) - g \circ A(y), \mathcal{D}(f \circ A(y_1), \dots, f \circ A(y_q))]$ is small over random A.

Uses counting lemma

 Contradiction, so f and g lie in different cells of ε-net for U^q-norm.

More applications

- List-decoding radius for Reed-Muller codes [Bhowmick-Lovett `14, `15]
- New algorithms for factoring and decomposing polynomials [B. `14]
- New testers for algebraic properties [B.-Fischer-Hatami-Hatami-Lovett `13]

Thanks!