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Higher-order Fourier analysis 
and an application 



• Preliminaries and review of Fourier analysis 
 

• What is “higher-order” Fourier analysis? 
 

• An application to locally correctable codes 

Roadmap 

No historical 
account! 



Some Preliminaries 



 
𝔽 = finite field of fixed 

prime order 
 

• For example, 𝔽 = 𝔽2 or 𝔽 = 𝔽97 
• Theory can be extended to extensions of prime 

fields [B.-Bhowmick ‘15] 

Setting 



Functions are always multivariate,  
on 𝑛 variables 

 
                     𝑓:  𝔽𝑛 → ℂ        ( 𝑓 ≤ 1) 
 
and                    𝑃:  𝔽𝑛 → 𝔽 
 

Functions 

Current bounds 
aim to be 

efficient wrt n 



 
Polynomial of degree 𝒅 is of the form: 

� 𝑐𝑖1,…,𝑖𝑛𝑥1
𝑖1 ⋯𝑥𝑛

𝑖𝑛

𝑖1,…,𝑖𝑛

 

where each 𝑐𝑖1,…,𝑖𝑛 ∈ 𝔽 and 𝑖1 + ⋯+ 𝑖𝑛 ≤ 𝑑 
 

Polynomial 



Phase Polynomial 
 

Phase polynomial of degree 𝒅 is a 
function 𝑓:𝔽𝑛 → ℂ of the form 
𝑓 𝑥 = e(𝑃 𝑥 ) where: 
 
1.  𝑃:𝔽𝑛 → 𝔽 is a polynomial of degree 𝑑 
2.  e 𝑘 = 𝑒2𝜋𝑖𝜋/|𝔽| 

 
 



The inner product of two functions 
𝑓,𝑔:  𝔽𝑛 → ℂ is: 
 

〈𝑓,𝑔〉 = 𝔼𝑥∈𝔽𝑛 𝑓 𝑥 ⋅ 𝑔 𝑥  

Inner Product 

Magnitude captures 
correlation between 

𝑓 and 𝑔 



Additive derivative in direction 
ℎ ∈ 𝔽𝑛 of function 𝑃:  𝔽𝑛 → 𝔽 is: 
 

𝐷ℎ𝑃 𝑥 = 𝑃 𝑥 + ℎ − 𝑃(𝑥) 

Derivatives 



Multiplicative derivative in 
direction ℎ ∈ 𝔽𝑛 of function 
𝑓:  𝔽𝑛 → ℂ is: 
 

Δℎ𝑓 𝑥 = 𝑓 𝑥 + ℎ ⋅ 𝑓(𝑥) 

Derivatives 



Factor of degree 𝒅 and order m is a 
tuple of polynomials 
ℬ = (𝑃1,𝑃2, … ,𝑃𝑚), each of degree 𝑑. 
 
As shorthand, write: 

ℬ 𝑥 = (𝑃1 𝑥 , … ,𝑃𝑚 𝑥 ) 

Polynomial Factor 



Fourier Analysis over 𝔽 



Every function 𝑓:  𝔽𝑛 → ℂ is a linear 
combination of linear phases: 
 

𝑓(𝑥) =  � 𝑓 𝛼
𝛼∈𝔽𝑛

e �𝛼𝑖𝑥𝑖
𝑖

 

Fourier Representation 



• The inner product of two linear phases is: 
 

e �𝛼𝑖𝑥𝑖
𝑖

, 𝑒 �𝛽𝑖𝑥𝑖
𝑖

=  𝔼𝑥 e � 𝛼𝑖 − 𝛽𝑖 𝑥𝑖
𝑖

= 0 

   

       if 𝛼 ≠ 𝛽 and is 1 otherwise. 
 

• So: 
 
𝑓 𝛼 = 𝑓, e ∑ 𝛼𝑖𝑥𝑖𝑖 = correlation with linear phase 

 
 

Linear Phases 



With high probability, a random 
function 𝑓:  𝔽𝑛 → ℂ with |𝑓| = 1 has 

each 𝑓 𝛼 → 0. 

Random functions 



𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥  
 
where: 

𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

Every Fourier coefficient of ℎ is less 
than 𝜖, so ℎ is “pseudorandom”.  



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

𝑔 has only 1/𝜖2 nonzero Fourier 
coefficients 



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

The nonzero Fourier coefficients of 
𝑔 can be found in poly time 
[Goldreich-Levin ‘89] 



Elements of Higher-Order 
Fourier Analysis 



Higher-order Fourier analysis is the 
interplay between three different 
notions of pseudorandomness for 

functions and factors. 
 
1. Bias 
2. Gowers norm 
3. Rank 



Bias 



For 𝑓:  𝔽𝑛 → ℂ,  
bias 𝑓 = |𝔼𝑥 𝑓 𝑥 | 

 
 
For 𝑃:  𝔽𝑛 → 𝔽, 

bias 𝑃 = |𝔼𝑥 e 𝑃 𝑥 | 

Bias 

[…, Naor-Naor ‘89, …] 



𝜔0 

𝜔1 

𝜔2 𝜔3 

𝜔 𝔽 −1 

How well is 𝑷 equidistributed? 



A factor ℬ = (𝑃1, … ,𝑃𝜋) is 𝜶-
unbiased if every nonzero linear 
combination of 𝑃1, … ,𝑃𝜋 has bias less 
than 𝛼: 
 

bias ∑ 𝑐𝑖𝑃𝑖𝜋
𝑖=1 < 𝛼   

   ∀ 𝑐1, … , 𝑐𝜋 ∈ 𝔽𝜋 ∖ {0} 

Bias of Factor 



Lemma: If ℬ is 𝛼-unbiased and of 
order 𝑘, then for any 𝑐 ∈ 𝔽𝜋: 

Pr ℬ 𝑥 = 𝑐 =
1
𝔽 𝜋 ± 𝛼 

Bias implies equidistribution 



Lemma: If ℬ is 𝛼-unbiased and of order 𝑘, then for 
any 𝑐 ∈ 𝔽𝜋: 

Pr ℬ 𝑥 = 𝑐 =
1
𝔽 𝜋 ± 𝛼 

Bias implies equidistribution 

Corollary: If ℬ is 𝛼-unbiased and 
𝛼 < 1

𝔽 𝑘, then ℬ maps onto 𝔽𝜋. 



Gowers Norm 



Given 𝑓:  𝔽𝑛 → ℂ, its Gowers norm of 
order 𝒅 is: 
 
𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑Δℎ1Δℎ2 ⋯Δℎ𝑑𝑓 𝑥 |1/2𝑑  

Gowers Norm 

[Gowers ‘01] 



Given 𝑓:  𝔽𝑛 → ℂ, its Gowers norm of order 𝒅 is: 
 

𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑Δℎ1Δℎ2 ⋯Δℎ𝑑𝑓 𝑥 |1/2𝑑  

Gowers Norm 

Observation: If 𝑓 = e(𝑃) is a phase 
poly, then: 
 
𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑e 𝐷ℎ1𝐷ℎ2 ⋯𝐷ℎ𝑑𝑃 𝑥 |1/2𝑑  



• If 𝑓 is a phase poly of degree 𝑑, then: 
 

𝑈𝑑+1 𝑓 = 1 
 
 
• Converse is true when 𝑑 < |𝔽|. 

Gowers norm for phase polys 



• 𝑈1 𝑓 =  𝔼 𝑓 2 = bias 𝑓  
 
 

• 𝑈2 𝑓 =  ∑ 𝑓4(𝛼)𝛼
4

 

 
 

• 𝑈1 𝑓 ≤ 𝑈2 𝑓 ≤ 𝑈3 𝑓 ≤ ⋯ (C.-S.) 

Other Observations 



• For random 𝑓:  𝔽𝑛 → ℂ and fixed 𝑑,  
𝑈𝑑 𝑓 → 0 

 
 
• By monotonicity, low Gowers norm 

implies low bias and low Fourier 
coefficients.  

Pseudorandomness 



Lemma: 𝑈𝑑+1 𝑓 ≥ max | 𝑓, e 𝑃 | 
where max is over all polynomials 𝑃 of 
degree 𝑑. 

Correlation with Polynomials 

Proof: For any poly 𝑃 of degree 𝑑: 
 

𝔼 𝑓 𝑥 ⋅ e −𝑃 𝑥 = 𝑈1 𝑓 ⋅ e −𝑃  
                                                ≤ 𝑈𝑑+1 𝑓 ⋅ e −𝑃  

                               = 𝑈𝑑+1(𝑓) 



Theorem: If 𝑑 < |𝔽|, for all 𝜖 > 0, there 
exists 𝛿 = 𝛿(𝜖,𝑑,𝔽) such that if 
𝑈𝑑+1 𝑓 > 𝜖, then 𝑓, e 𝑃 > 𝛿 for 
some poly 𝑃 of degree 𝑑. 
 
Proof:  
• [Green-Tao ‘09] Combinatorial for phase poly 𝑓 (c.f. 

Madhur’s talk later).  
• [Bergelson-Tao-Ziegler ‘10] Ergodic theoretic proof for 

arbitrary 𝑓. 

Gowers Inverse Theorem 



Consider 𝑓:  𝔽21 → ℂ with: 
𝑓 0 = 1 
𝑓 1 = 𝑖 

 
 

𝑓 not a phase poly but 𝑈3 𝑓 = 1! 

Small Fields 



Consider 𝑓 = e(𝑃) where 𝑃:𝔽2𝑛 → 𝔽2 
is symmetric polynomial of degree 4.  
 

𝑈4 𝑓 = Ω(1) 
but: 

𝑓, e 𝐶 = exp −𝑛  
for all cubic poly 𝐶.  

[Lovett-Meshulam-Samorodnitsky ’08, Green-Tao ‘09] 

Small fields: worse news 



Just define non-classical phase 
polynomials of degree 𝒅 to be 
functions 𝑓:  𝔽𝑛 → ℂ such that 𝑓 = 1 
and 

Δℎ1Δℎ2 ⋯Δℎ𝑑+1𝑓 𝑥 = 1 
for all 𝑥, ℎ1, … , ℎ𝑑+1 ∈ 𝔽𝑛 

Nevertheless… 



Inverse Theorem for small fields 
Theorem: For all 𝜖 > 0, there exists 
𝛿 = 𝛿(𝜖,𝑑,𝔽) such that if 𝑈𝑑+1 𝑓 >
𝜖, then 𝑓,𝑔 > 𝛿 for some non-
classical phase poly 𝑔 of degree 𝑑. 
 
Proof:  
• [Tao-Ziegler] Combinatorial for phase poly 𝑓 .  
• [Tao-Ziegler] Nonstandard proof for arbitrary 𝑓. 



Theorem: If 𝐿1, … , 𝐿𝑚  are 𝑚 linear forms 
(𝐿𝑗 𝑋1, … ,𝑋𝜋 = ∑ ℓ𝑖,𝑗𝑋𝑖𝜋

𝑖=1 ), then: 
 

𝔼𝑋1,…,𝑋𝑘∈𝔽𝑛 �𝑓(𝐿𝑗 𝑋1, … ,𝑋𝜋

𝑚

𝑗=1

≤ 𝑈𝑡(𝑓) 

 
if 𝑓:  𝔽𝑛 → ℂ and 𝑡 is the complexity of the 
linear forms 𝐿1, … , 𝐿𝑚. 

Pseudorandomness & Counting 

[Gowers-Wolf ‘10] 



• Given 𝑓:  𝔽𝑛 → ℝ and we want to “count” the 
number of 3-term AP’s: 

𝔼𝑋,𝑌 𝑓 𝑋 ⋅ 𝑓 𝑋 + 𝑌 ⋅ 𝑓 𝑋 + 2𝑌 ≤�𝑓3(𝛼)
𝛼

 

 
• Similarly, number of 4-term AP’s controlled by 3rd 

order Gowers norm of 𝑓. 
 

Examples 



Rank 



Given a polynomial 𝑃:  𝔽𝑛 → 𝔽 of 
degree 𝑑, its rank is the smallest integer 
𝑟 such that: 
 
𝑃 𝑥 = Γ 𝑄1 𝑥 , … ,𝑄𝑟 𝑥     ∀𝑥 ∈ 𝔽𝑛 

 
where 𝑄1, … ,𝑄𝑟  are polys of degree 
𝑑 − 1 and Γ:  𝔽𝑟 → 𝔽 is arbitrary. 

Rank 



• For random poly 𝑃 of fixed degree 𝑑,  
rank 𝑃 = 𝜔(1) 

 
 
 

• High rank is pseudorandom behavior 

Pseudorandomness 



If 𝑃:  𝔽𝑛 → 𝔽 is a poly of degree 𝑑, 𝑃 
has high rank if and only if e(𝑃) has 

low Gowers norm of order 𝑑! 

Rank & Gowers Norm 



Lemma: If 𝑃(𝑥) = Γ 𝑄1(𝑥), … ,𝑄𝜋(𝑥)  
where 𝑄1, … ,𝑄𝜋  are polys of deg 𝑑 − 1, then 
𝑈𝑑 e 𝑃 ≥ 1

𝔽 𝑘/2. 

Low rank implies large Gowers norm 



Lemma: If 𝑃(𝑥) = Γ 𝑄1(𝑥), … ,𝑄𝜋(𝑥)  where 𝑄1, … ,𝑄𝜋  are polys of 
deg 𝑑 − 1, then 𝑈𝑑 e 𝑃 ≥ 1

𝔽 𝑘/2. 

Low rank implies large Gowers norm 

Proof: By (linear) Fourier analysis: 

e 𝑃 𝑥 = �Γ� 𝛼 ⋅ e �𝛼𝑖 ⋅ 𝑄𝑖 𝑥
𝑖𝛼

 

Therefore: 

|𝔼𝑥�Γ� 𝛼 ⋅ e �𝛼𝑖 ⋅ 𝑄𝑖 𝑥 − 𝑃 𝑥
𝑖

| = 1
𝛼

 

Then, there’s an 𝛼 such that  
e 𝑃 , e ∑ 𝛼𝑖𝑄𝑖𝑖 ≥ 𝔽 −𝜋/2. 



Inverse theorem for polys 

Theorem: For all 𝜖 and 𝑑, there exists 
𝑅 = 𝑅 𝜖,𝑑,𝔽  such that  if 𝑃 is a poly 
of degree 𝑑 and 𝑈𝑑 e 𝑃 > 𝜖, then 
rank(𝑃)< 𝑅. 

[Tao-Ziegler ‘11] 



Bias-rank theorem 

Theorem: For all 𝜖 and 𝑑, there exists 
𝑅 = 𝑅 𝜖,𝑑,𝔽  such that  if 𝑃 is a poly 
of degree 𝑑 and bias(𝑃) > 𝜖, then 
rank(𝑃)< 𝑅. 

[Green-Tao ‘09, Kaufman-Lovett ‘08] 



Decomposition Theorem 

For any 𝜖 > 0 and integer 𝑟 > 1, there is a 
𝑘 so that any bounded 𝑓:𝔽𝑛 → ℂ has a  
decomposition: 

𝑓 = 𝑔 + ℎ 
where 𝑔 = Γ(𝑃1, … ,𝑃𝜋) for degree < 𝑟 
non-classical polynomials 𝑃1, … ,𝑃𝜋  and 
𝑈𝑟 ℎ < 𝜖. 



An Application:  
Locally Correctable Codes 

[B.-Gopi ‘15] 



Tackling Adversarial Errors 
Message 

Encoding 

        Corrupted Encoding ≤ 𝜹 fraction 



Locally Decodable Codes 
Message 

Encoding 

       Corrupted Encoding ≤ 𝜹 fraction 

𝒊 



𝒒,𝜹 -Locally Decodable Codes 
Message 

Encoding 

Corrupted Encoding ≤ 𝜹 fraction 

𝒊 

𝒒 



Locally Correctable Codes 
Message 

Encoding 

     Corrupted Encoding ≤ 𝜹 fraction 

Correction 
Local 



𝒒,𝜹 -Locally Correctable Code 
Message 

Encoding 

Corrupted Encoding ≤ 𝜹 fraction 

Correction 
Local 

𝒒 



Locally Correctable Code (LCC) 

Any encoding 𝑦 ∈ Σ𝑛 by a (𝒒,𝜹)-LCC 
has the property that for every 𝛿-

corruption 𝑦𝑦 of 𝑦 and for every 
𝑖 ∈ [𝑛], with probability at least 90%, 
one can recover 𝑦[𝑖] by looking at 𝑞 

symbols in 𝑦𝑦. 



LDC/LCC Applications 
• Private Information Retrieval (PIR) schemes 

 
• Secure Multiparty Computation 
 
• Complexity theoretic applications:  

– Arithmetic circuit lower bounds, Average-case 
complexity, Derandomization 



• Hadamard code 𝐻 ⊆ 0,1 2𝑛  
 

• Interpret 𝑛-bit message 𝑎1, … , 𝑎𝑛  as 
linear form 𝐻 𝑥 = ∑ 𝑎𝑖𝑥𝑖𝑖  and write 
evaluations of 𝐻 on all 0,1 𝑛 
 

• To recover 𝐻(𝑥), choose random 𝑦 and 
output 𝐻 𝑥 + 𝑦 − 𝐻(𝑦) 

LCC example 



• If 𝑞 is a constant, current shortest 
LCC is Reed-Muller code of order 
𝑞 − 1 (evaluation table of a 
polynomial of degree 𝑞 − 1 on a 
field of size > 𝑞) 
– To recover 𝑃(𝑥), pass line ℓ in random 

direction thru 𝑥, evaluate on 𝑞 points on line 
to interpolate 𝑃ℓ and evaluate 𝑃ℓ(𝑥) 

Current Status: Construction 



 
 

• Same length also achieved by the 
“lifted codes” of [Guo-Kopparty-
Sudan ‘13]. 

Current Status: Construction 



• Hadamard code known to be 
optimal for 2 queries (for constant 
alphabet) 
 

• For larger number of queries, only 
very weak bounds known 
 

Current Status: Lower bounds 



 
 

• Reed-Muller (and [GKS ‘13]) optimal 
𝑞-query LCC among affine-invariant 
codes 

Our Result 



• For a codeword 𝑤 ∈ Σ𝔽𝑛, we can 
view it as a function 𝑤:𝔽𝑛 → Σ 
 

• Code 𝐶 is affine-invariant if for any 
𝑤 ∈ 𝐶, 𝑤 ∘ 𝐴 ∈ 𝐶 for any affine 
transformation 𝐴:𝔽𝑛 → 𝔽𝑛. 

Affine invariance 



• “Generic” way to introduce many constraints 
among codeword positions. 
 

• Affine-invariance natural for algebraically 
defined error-correcting codes 
 

• Study of connection between correctability 
and invariances formally initiated by 
[Kaufman-Sudan ‘08]. 

Why affine invariance? 



• [Ben Sasson-Sudan ‘11] showed 
that Reed-Muller is optimal 
among all linear, affine-invariant 
codes. 

–Their result does not assume fixed 
field size as ours does 

Previous work 



The metric induced by the || ⋅ ||𝑈𝑞-norm on the space 
of all bounded functions has an 𝜖-net of size 
exp (𝑂 𝑛𝑞−1 ). 

Key Lemma 



• Net consists of all functions of the form Γ(𝑃1, … ,𝑃𝜋) 
where 𝑃1, … ,𝑃𝜋  are degree < 𝑞, non-classical 
polynomials, 𝑘 is a constant, and Γ arbitrary. 
 

• By decomposition theorem, such a function 
approximates given 𝑓! 
 

• Can discretize Γ without affecting error too much. 

Proof of Key Lemma 



• Take two codewords 𝑓 and 𝑔.  
 

• If decoder runs on 𝑓 ∘ 𝐴 for random position 𝑦 and any 
affine map 𝐴, it must with good prob give different answer 
than 𝑔(𝐴 𝑦 ). 
 

• On the other hand, if 𝑓 and 𝑔 close in 𝑈𝑞  norm, then for 
any 𝑦 and queried positions 𝑦1, … ,𝑦𝑞, 

𝔼[ 𝑓 ∘ 𝐴 𝑦 − 𝑔 ∘ 𝐴 𝑦 ,𝒟 𝑓 ∘ 𝐴 𝑦1 , … , 𝑓 ∘ 𝐴 𝑦𝑞  
    is small over random 𝐴. 
 
• Contradiction, so 𝑓 and 𝑔 lie in different cells of 𝜖-net for 
𝑈𝑞-norm. 

Proof of Theorem 

Uses counting lemma 



• List-decoding radius for Reed-Muller codes 
[Bhowmick-Lovett ‘14, ‘15] 
 

• New algorithms for factoring and decomposing 
polynomials [B. ‘14] 
 

• New testers for algebraic properties [B.-Fischer-
Hatami-Hatami-Lovett ‘13] 
 

• …? 
 
 

More applications 



Thanks! 
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