Algorithmic Questions in Higher-Order Fourier Analysis

Madhur Tulsiani TTI Chicago

Based on joint works with Arnab Bhattacharyya, Eli Ben-Sasson, Pooya Hatami,

Noga Ron-Zewi, Luca Trevisan, Salil Vadhan and Julia Wolf

Decomposition Theorems

Decomposition Theorems

Object of study

Family of algorithms or
functions

Decomposition Theorems

Decomposition Theorems

- Decompose an object in to structured and pseudorandom parts.

Decomposition Theorems

- Decompose an object in to structured and pseudorandom parts.
- Can often ignore the pseudorandom part for many applications. Structured part easier to study.

Fourier analysis

- Space of functions $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$.

Fourier analysis

- Space of functions $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$.
- Functions

$$
\chi_{\alpha}(x)=(-1)^{\alpha \cdot x}=(-1)^{\sum_{j} \alpha_{j} x_{j}}
$$

form an orthonormal basis under the inner product $\langle f, g\rangle=\mathbb{E}_{x}[f(x) g(x)]$.

Fourier analysis

- Space of functions $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$.
- Functions

$$
\chi_{\alpha}(x)=(-1)^{\alpha \cdot x}=(-1)^{\sum_{j} \alpha_{j} x_{j}}
$$

form an orthonormal basis under the inner product $\langle f, g\rangle=\mathbb{E}_{x}[f(x) g(x)]$.

- Any function g can be written as

$$
g=\sum_{\alpha \in \mathbb{F}_{2}^{n}} \hat{g}(\alpha) \chi_{\alpha} .
$$

Fourier analysis

- Space of functions $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$.
- Functions

$$
\chi_{\alpha}(x)=(-1)^{\alpha \cdot x}=(-1)^{\sum_{j} \alpha_{j} x_{j}}
$$

form an orthonormal basis under the inner product $\langle f, g\rangle=\mathbb{E}_{x}[f(x) g(x)]$.

- Any function g can be written as

$$
g=\sum_{\alpha \in \mathbb{F}_{2}^{n}} \hat{g}(\alpha) \chi_{\alpha} .
$$

- [Parsevall $]:\|g\|^{2}=\langle g, g\rangle=\mathbb{E}_{x}\left[(g(x))^{2}\right]=\sum_{\alpha}(\hat{g}(\alpha))^{2}$.

A basic decomposition in Fourier analysis

$$
g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]
$$

A basic decomposition in Fourier analysis

$$
g=\sum_{S} \widehat{g}(\alpha) \chi_{\alpha}
$$

A basic decomposition in Fourier analysis

A basic decomposition in Fourier analysis

- $k \leq 1 / \epsilon^{2}$.
simple structure

A basic decomposition in Fourier analysis

$g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$

$$
g=\sum_{S} \widehat{g}(\alpha) \chi_{\alpha}=\sum_{|\widehat{g}(\alpha)|>\epsilon} \widehat{g}(\alpha) \chi_{\alpha}+\sum_{|\widehat{g}(\alpha)| \leq \epsilon} \widehat{g}(\alpha) \chi_{\alpha}=\sum_{i=1}^{k} c_{i} \chi_{\alpha_{i}}+f
$$

- $k \leq 1 / \epsilon^{2}$.
- f has small correlation with linear functions.
simple structure pseudorandom

$$
\forall \alpha,\left|\left\langle f, \chi_{\alpha}\right\rangle\right|=\left|\mathbb{E}_{x}\left[f(x) \chi_{\alpha}(x)\right]\right| \leq \epsilon
$$

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- "Fourier pseudorandomness" often insufficient for many applications (e.g. counting 4-term APs in a set).

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- "Fourier pseudorandomness" often insufficient for many applications (e.g. counting 4-term APs in a set).
- [Gowers 98]: Defined uniformity norms (Gowers norms). "Right" notion of pseudorandomness for many applications.

$$
\|f\|_{U^{2}}^{4}=\mathbb{E}_{x, y, z}[f(x) \cdot f(x+y) \cdot f(x+z) \cdot f(x+y+z)]
$$

Think $f=$ indicator of a set. $\|f\|_{U^{2}}$ counts 2-dimensional "boxes" in set.

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- "Fourier pseudorandomness" often insufficient for many applications (e.g. counting 4-term APs in a set).
- [Gowers 98]: Defined uniformity norms (Gowers norms). "Right" notion of pseudorandomness for many applications.

$$
\|f\|_{U^{2}}^{4}=\mathbb{E}_{x, y, z}[f(x) \cdot f(x+y) \cdot f(x+z) \cdot f(x+y+z)]
$$

Think $f=$ indicator of a set. $\|f\|_{U^{2}}$ counts 2-dimensional "boxes" in set.

- Can define higher norms similarly

$$
\|f\|_{U^{3}}^{8}=\mathbb{E}_{x, y, z, w}\left[\begin{array}{l}
f(x) f(x+y) f(x+z) f(x+y+z) \\
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)
\end{array}\right]
$$

Norms, Shnorms... so what?

- $\|f\|_{U^{2}}$ measures correlation with Fourier characters (linear phase functions).

$$
\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{4} \leq\|f\|_{U_{2}}^{4} \leq\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{2}
$$

Norms, Shnorms... so what?

- $\|f\|_{U^{2}}$ measures correlation with Fourier characters (linear phase functions).

$$
\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{4} \leq\|f\|_{U_{2}}^{4} \leq\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{2}
$$

- [Green-Tao 05, Samorodnitsky 07]: Gowers U^{3} norm approximately measures correlation with the set of quadratic phase functions. $\left((-1)^{Q(x)}\right.$ for $\left.Q(x)=x^{T} A x+b^{T} x+c\right)$.

Norms, Shnorms... so what?

- $\|f\|_{U^{2}}$ measures correlation with Fourier characters (linear phase functions).

$$
\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{4} \leq\|f\|_{U_{2}}^{4} \leq\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{2}
$$

- [Green-Tao 05, Samorodnitsky 07]: Gowers U^{3} norm approximately measures correlation with the set of quadratic phase functions. $\left((-1)^{Q(x)}\right.$ for $\left.Q(x)=x^{T} A x+b^{T} x+c\right)$. For $f: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$,

$$
-\|f\|_{U^{3}} \leq \epsilon \Longrightarrow \text { for all } Q,\left|\left\langle f,(-1)^{Q}\right\rangle\right| \leq \epsilon
$$

Norms, Shnorms... so what?

- $\|f\|_{U^{2}}$ measures correlation with Fourier characters (linear phase functions).

$$
\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{4} \leq\|f\|_{U_{2}}^{4} \leq\left(\max _{\alpha}|\hat{f}(\alpha)|\right)^{2}
$$

- [Green-Tao 05, Samorodnitsky 07]: Gowers U^{3} norm approximately measures correlation with the set of quadratic phase functions. $\left((-1)^{Q(x)}\right.$ for $\left.Q(x)=x^{T} A x+b^{T} x+c\right)$. For $f: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$,
- $\|f\|_{U^{3}} \leq \epsilon \Longrightarrow$ for all $Q,\left|\left\langle f,(-1)^{Q}\right\rangle\right| \leq \epsilon$.
- $\|f\|_{U^{3}} \geq \epsilon \Longrightarrow$ for some $Q,\left|\left\langle f,(-1)^{Q}\right\rangle\right| \geq \eta(\epsilon)$.

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given $\epsilon>0$, any $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

for quadratic functions Q_{1}, \ldots, Q_{k} such that

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given $\epsilon>0$, any $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

for quadratic functions Q_{1}, \ldots, Q_{k} such that

- $\|f\|_{U^{3}} \leq \epsilon,\|e\|_{1} \leq \epsilon$

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given $\epsilon>0$, any $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

for quadratic functions Q_{1}, \ldots, Q_{k} such that

$$
\begin{aligned}
& -\|f\|_{U^{3}} \leq \epsilon,\|e\|_{1} \leq \epsilon \\
& -\sum_{i}\left|c_{i}\right| \leq M(\epsilon) \text { for } M(\epsilon)=\exp \left(1 / \epsilon^{c}\right)
\end{aligned}
$$

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given $\epsilon>0$, any $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

for quadratic functions Q_{1}, \ldots, Q_{k} such that

- $\|f\|_{U^{3}} \leq \epsilon,\|e\|_{1} \leq \epsilon$
pseudorandom
- $\sum_{i}\left|c_{i}\right| \leq M(\epsilon)$ for $M(\epsilon)=\exp \left(1 / \epsilon^{C}\right)$.

Similar to basic Fourier decomposition, where we get

$$
g=\sum_{i=1}^{k} c_{i} \chi_{\alpha_{i}}(x)+f
$$

with $\left|\left\langle f, \chi_{\alpha}\right\rangle\right| \leq \epsilon$ for all α and $k \leq 1 / \epsilon^{2}$ (also implies $\sum_{i}\left|c_{i}\right| \leq 1 / \epsilon$).

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given $\epsilon>0$ and $p>d$, there exists $M(\epsilon, p)$ such that any $g: \mathbb{F}_{p}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i} \cdot \omega^{P_{i}}+f+e
$$

for $P_{1}, \ldots, P_{k} \in \mathcal{P}_{d}$ (polynomials of degree at most d) such that

- $\|f\|_{U^{d+1}} \leq \epsilon,\|e\|_{1} \leq \epsilon$
- $\sum_{i}\left|c_{i}\right| \leq M(\epsilon, p)$.

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given $\epsilon>0$ and $p>d$, there exists $M(\epsilon, p)$ such that any $g: \mathbb{F}_{p}^{n} \rightarrow[-1,1]$ can be decomposed as

$$
g=\sum_{i=1}^{k} c_{i} \cdot \omega^{P_{i}}+f+e
$$

for $P_{1}, \ldots, P_{k} \in \mathcal{P}_{d}$ (polynomials of degree at most d) such that

- $\|f\|_{U^{d+1}} \leq \epsilon,\|e\|_{1} \leq \epsilon$
- $\sum_{i}\left|c_{i}\right| \leq M(\epsilon, p)$.
- Stronger decomposition theorems proved by [HL 11] and [BFL 12].
- Decomposition theorems for the case when $p \leq d$ require non-classical polynomials.

Q1: Can we compute these decompositions efficiently?

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given $\epsilon, \delta>0$ and oracle access to $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, runs in time $O\left(n^{2} \log n \cdot\left(1 / \epsilon^{2}\right) \cdot \log (1 / \delta)\right)$ and outputs a decomposition

$$
g=\sum_{i=1}^{k} c_{i} \cdot \chi_{\alpha_{i}}+f
$$

such that

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given $\epsilon, \delta>0$ and oracle access to $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, runs in time $O\left(n^{2} \log n \cdot\left(1 / \epsilon^{2}\right) \cdot \log (1 / \delta)\right)$ and outputs a decomposition

$$
g=\sum_{i=1}^{k} c_{i} \cdot \chi_{\alpha_{i}}+f
$$

such that

- $k=O\left(1 / \epsilon^{2}\right)$

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given $\epsilon, \delta>0$ and oracle access to $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, runs in time $O\left(n^{2} \log n \cdot\left(1 / \epsilon^{2}\right) \cdot \log (1 / \delta)\right)$ and outputs a decomposition

$$
g=\sum_{i=1}^{k} c_{i} \cdot \chi_{\alpha_{i}}+f
$$

such that

- $k=O\left(1 / \epsilon^{2}\right)$
- $\mathbb{P}\left[\exists i\right.$ such that $\left.\left|c_{i}-\widehat{g}\left(\alpha_{i}\right)\right| \geq \epsilon\right] \leq \delta$

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given $\epsilon, \delta>0$ and oracle access to $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, runs in time $O\left(n^{2} \log n \cdot\left(1 / \epsilon^{2}\right) \cdot \log (1 / \delta)\right)$ and outputs a decomposition

$$
g=\sum_{i=1}^{k} c_{i} \cdot \chi_{\alpha_{i}}+f
$$

such that

- $k=O\left(1 / \epsilon^{2}\right)$
- $\mathbb{P}\left[\exists i\right.$ such that $\left.\left|c_{i}-\widehat{g}\left(\alpha_{i}\right)\right| \geq \epsilon\right] \leq \delta$
- $\mathbb{P}[\exists \alpha$ such that $|\widehat{f}(\alpha)| \geq \epsilon] \leq \delta$
- Finding large Fourier coefficients has many applications.

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.
- Proof of decomposition by Gowers and Wolf is non-constructive (using the Hahn-Banach theorem).

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.
- Proof of decomposition by Gowers and Wolf is non-constructive (using the Hahn-Banach theorem).

$$
\begin{gathered}
\sum c_{i}(-1)^{Q_{i}}+f \\
\text { s.t. } \sum_{i}\left|c_{i}\right| \leq M(\epsilon),\|f\|_{U^{3}} \leq \epsilon
\end{gathered}
$$

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.
- Proof of decomposition by Gowers and Wolf is non-constructive (using the Hahn-Banach theorem).

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.
- Proof of decomposition by Gowers and Wolf is non-constructive (using the Hahn-Banach theorem).

What's so different about quadratics?

- Set of quadratic phase functions $\left((-1)^{Q}\right)$ is not an orthonormal basis. No Parseval's identity.
- Proof of decomposition by Gowers and Wolf is non-constructive (using the Hahn-Banach theorem).

- Use inverse theorem for Gowers norm to get a contradiction.

A quadratic Goldreich-Levin Theorem

Theorem (T, Wolf 11)

For $M(\epsilon)=\exp \left(1 / \epsilon^{C}\right)$, can compute in time poly $(n, M(\epsilon), \log (1 / \delta))$, a decomposition

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

such that

- with probability $1-\delta,\|f\|_{U^{3}} \leq \epsilon$ and $\|e\|_{1} \leq \epsilon$.
- $\sum_{i}\left|c_{i}\right| \leq M(\epsilon)$ and $k \leq(M(\epsilon))^{2}$.

Improved quadratic Goldreich-Levin Theorem

Theorem (BRTW 12)

For $M(\epsilon)=O\left(\exp \left(\log ^{4}(1 / \epsilon)\right)\right)$, can compute in time poly $(n, M(\epsilon), \log (1 / \delta))$, a decomposition

$$
g=\sum_{i=1}^{k} c_{i}(-1)^{Q_{i}}+f+e
$$

such that

- with probability $1-\delta,\|f\|_{U^{3}} \leq \epsilon$ and $\|e\|_{1} \leq \epsilon$.
- $\sum_{i}\left|c_{i}\right| \leq M(\epsilon)$ and $k \leq(M(\epsilon))^{2}$.

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

$$
-h_{0}=0, f_{0}=g-h_{0}, t=1 .
$$

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

- $h_{0}=0, f_{0}=g-h_{0}, t=1$.
- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

- $h_{0}=0, f_{0}=g-h_{0}, t=1$.
- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$
$-h_{t}=h_{t-1}+\eta \cdot(-1)^{Q_{t}}=\sum_{r=1}^{t} \eta \cdot(-1)^{Q_{r}}$
- $f_{t}=g-h_{t}$
- $t=t+1$

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

- $h_{0}=0, f_{0}=g-h_{0}, t=1$.
- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$
$-h_{t}=h_{t-1}+\eta \cdot(-1)^{Q_{t}}=\sum_{r=1}^{t} \eta \cdot(-1)^{Q_{r}}$
- $f_{t}=g-h_{t}$
- $t=t+1$
- return h_{t}

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.

Algorithm:

- $h_{0}=0, f_{0}=g-h_{0}, t=1$.
- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$
$-h_{t}=h_{t-1}+\eta \cdot(-1)^{Q_{t}}=\sum_{r=1}^{t} \eta \cdot(-1)^{Q_{r}}$
- $f_{t}=g-h_{t}$
- $t=t+1$
- return h_{t}

Convergence: $\left\|f_{t-1}\right\|^{2}-\left\|f_{t}\right\|^{2}=2 \eta\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle-\eta^{2} \geq \eta^{2}$.

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

$$
-h_{0}=0, f_{0}=g-h_{0}, t=1
$$

- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$
$-h_{t}=h_{t-1}+\eta \cdot(-1)^{Q_{t}}=\sum_{r=1}^{t} \eta \cdot(-1)^{Q_{r}}$
- $f_{t}=g-h_{t}$
- $t=t+1$
- return h_{t}

Convergence: $\left\|f_{t-1}\right\|^{2}-\left\|f_{t}\right\|^{2}=2 \eta\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle-\eta^{2} \geq \eta^{2}$.
[Samorodnitsky 07]: $\forall Q\left|\left\langle(-1)^{Q}, f\right\rangle\right| \leq \eta(\epsilon) \Longrightarrow\|f\|_{U^{3}} \leq \epsilon$.

A constructive proof of decomposition

Goal: Given $g: \mathbb{F}_{2}^{n} \rightarrow[-1,1]$, find a decomposition $g=\sum_{i} c_{i}(-1)^{Q_{i}}+f$ such that $\|f\|_{U^{3}} \leq \epsilon$.
Algorithm:

- $h_{0}=0, f_{0}=g-h_{0}, t=1$.
- while there is a quadratic function Q_{t} such that $\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle>\eta$
$-h_{t}=h_{t-1}+\eta \cdot(-1)^{Q_{t}}=\sum_{r=1}^{t} \eta \cdot(-1)^{Q_{r}}$
- $f_{t}=g-h_{t}$
- $t=t+1$
- return h_{t}

Convergence: $\left\|f_{t-1}\right\|^{2}-\left\|f_{t}\right\|^{2}=2 \eta\left\langle f_{t-1},(-1)^{Q_{t}}\right\rangle-\eta^{2} \geq \eta^{2}$.
[Samorodnitsky 07]: $\forall Q\left|\left\langle(-1)^{Q}, f\right\rangle\right| \leq \eta(\epsilon) \Longrightarrow\|f\|_{U^{3}} \leq \epsilon$.

The algorithmic problem

Question: Given $f: \mathbb{F}_{2}^{n} \rightarrow\{-1,1\}$, does there exist Q such that $\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon$? If yes, find one.

The algorithmic problem

Question: Given $f: \mathbb{F}_{2}^{n} \rightarrow\{-1,1\}$, does there exist Q such that $\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon$? If yes, find one.

Truth-tables of functions $(-1)^{Q}$ form the Reed-Muller code of order 2.

The algorithmic problem

Question: Given $f: \mathbb{F}_{2}^{n} \rightarrow\{-1,1\}$, does there exist Q such that $\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon$? If yes, find one.

Truth-tables of functions $(-1)^{Q}$ form the Reed-Muller code of order 2. Want a codeword inside a ball of distance $1 / 2-\epsilon / 2$ around f (if one exists).

Q2: Decoding beyond the list-decoding radius

Finding codewords at large distances
${ }^{\bullet}{ }_{f}$

Finding codewords at large distances

Finding codewords at large distances

- List decoding radius is $\frac{1}{4}$. [GKZ 08, Gopalan 10, BL 14]

Finding codewords at large distances

- List decoding radius is $\frac{1}{4}$. [GKZ 08, Gopalan 10, BL 14]
- Number of codewords within distance $\frac{1}{2}-\epsilon$ may be exponential.

Finding codewords at large distances

- List decoding radius is $\frac{1}{4}$. [GKZ 08, Gopalan 10, BL 14]
- Number of codewords within distance $\frac{1}{2}-\epsilon$ may be exponential.
- But we only need to find one codeword! In time poly (n) (polylogarithmic in code length).

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial $P: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, the Reed-Muller encoding of P is of length p^{n} and is given by the table of values $\{P(x)\}_{x \in \mathbb{F}_{p}^{n}}$.

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial $P: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, the Reed-Muller encoding of P is of length p^{n} and is given by the table of values $\{P(x)\}_{x \in \mathbb{F}_{p}^{n}}$.
- Problem: Given $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, if there exists $P \in \mathcal{P}_{d}$ such that

$$
\Delta(F, P) \leq 1-\frac{1}{p}-\epsilon
$$

find a $P^{\prime} \in \mathcal{P}_{d}$ such that

$$
\Delta\left(F, P^{\prime}\right) \leq 1-\frac{1}{p}-\eta
$$

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial $P: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, the Reed-Muller encoding of P is of length p^{n} and is given by the table of values $\{P(x)\}_{x \in \mathbb{F}_{p}^{n}}$.
- Problem: Given $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, if there exists $P \in \mathcal{P}_{d}$ such that

$$
\Delta(F, P) \leq 1-\frac{1}{p}-\epsilon
$$

find a $P^{\prime} \in \mathcal{P}_{d}$ such that

$$
\Delta\left(F, P^{\prime}\right) \leq 1-\frac{1}{p}-\eta
$$

- If there exists a Reed-Muller codeword within a ball of radius $1-\frac{1}{p}-\epsilon$, find one within a ball of radius $1-\frac{1}{p}-\eta$.

Finding a single codeword: the quadratic case

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution to testing problem using Gowers norm.

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution to testing problem using Gowers norm.

$$
-\exists q\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon \Longrightarrow\|f\|_{U^{3}} \geq \epsilon
$$

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
 to testing problem using Gowers norm.

$$
\begin{aligned}
& -\exists q\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon \Longrightarrow\|f\|_{U^{3}} \geq \epsilon \\
& -\|f\|_{U^{3}} \geq \epsilon \Longrightarrow \exists Q\left\langle f,(-1)^{Q}\right\rangle \geq \eta(\epsilon)
\end{aligned}
$$

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
 to testing problem using Gowers norm.

$$
\begin{aligned}
& -\exists q\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon \Longrightarrow\|f\|_{U^{3}} \geq \epsilon \\
& -\|f\|_{U^{3}} \geq \epsilon \Longrightarrow \exists Q\left\langle f,(-1)^{Q}\right\rangle \geq \eta(\epsilon)
\end{aligned}
$$

- [TW 11] convert Samorodnitsky's proof into an algorithm. Find codeword within distance $\frac{1}{2}-\eta$ if there is one within $\frac{1}{2}-\epsilon$.

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution to testing problem using Gowers norm.

$$
\begin{aligned}
& -\exists q\left\langle f,(-1)^{Q}\right\rangle \geq \epsilon \Longrightarrow\|f\|_{U^{3}} \geq \epsilon \\
& -\|f\|_{U^{3}} \geq \epsilon \Longrightarrow \exists Q\left\langle f,(-1)^{Q}\right\rangle \geq \eta(\epsilon)
\end{aligned}
$$

- [TW 11] convert Samorodnitsky's proof into an algorithm. Find codeword within distance $\frac{1}{2}-\eta$ if there is one within $\frac{1}{2}-\epsilon$.
- First example of any kind of decoding beyond the list decoding radius.

Algorithmic versions of combinatorial theorems

- Samorodnitsky's proof applies various combinatorial theorems (e.g. Balog-Szemerédi-Gowers) to "nice" subsets of \mathbb{F}_{2}^{n}.

Algorithmic versions of combinatorial theorems

- Samorodnitsky's proof applies various combinatorial theorems (e.g. Balog-Szemerédi-Gowers) to "nice" subsets of \mathbb{F}_{2}^{n}.
- [BSG]: If $S \subseteq \mathbb{F}_{2}^{n}$ satisfies $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$, then there exists $A \subseteq S$ with certain additive properties.

Algorithmic versions of combinatorial theorems

- Samorodnitsky's proof applies various combinatorial theorems (e.g. Balog-Szemerédi-Gowers) to "nice" subsets of \mathbb{F}_{2}^{n}.
- [BSG]: If $S \subseteq \mathbb{F}_{2}^{n}$ satisfies $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$, then there exists $A \subseteq S$ with certain additive properties.
- S and A are exponential in size. Need to work with randomized membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

- Samorodnitsky's proof applies various combinatorial theorems (e.g. Balog-Szemerédi-Gowers) to "nice" subsets of \mathbb{F}_{2}^{n}.
- [BSG]: If $S \subseteq \mathbb{F}_{2}^{n}$ satisfies $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$, then there exists $A \subseteq S$ with certain additive properties.
- S and A are exponential in size. Need to work with randomized membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

- Modify proofs of combinatorial theorems to go from algorithms in the hypothesis to algorithms in conclusion.

Algorithmic versions of combinatorial theorems

- Modify proofs of combinatorial theorems to go from algorithms in the hypothesis to algorithms in conclusion.
- Statements of the form: "Given (approximate) membership oracle for S, it can be converted to an oracle A whose output is sandwiched between A_{1} and A_{2} with certain additive properties."

Algorithmic versions of combinatorial theorems

- Modify proofs of combinatorial theorems to go from algorithms in the hypothesis to algorithms in conclusion.
- Statements of the form: "Given (approximate) membership oracle for S, it can be converted to an oracle A whose output is sandwiched between A_{1} and A_{2} with certain additive properties."
- Prove "robust" versions of theorems from additive combinatorics.

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in $S \subseteq \mathbb{F}_{2}^{n}$.

- [BSG]: If $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$ then $\exists A \subseteq S$ s.t.

$$
|A| \geq \epsilon^{O(1)}|S| \text { and }|A+A| \leq \epsilon^{-O(1)}|A| .
$$

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in $S \subseteq \mathbb{F}_{2}^{n}$.

- [BSG]: If $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$ then $\exists A \subseteq S$ s.t.

$$
|A| \geq \epsilon^{O(1)}|S| \text { and }|A+A| \leq \epsilon^{-O(1)}|A| .
$$

- [Freiman-Ruzsa]: $|A+A| \leq K \cdot|A| \Longrightarrow \operatorname{Span}(A) \leq 2^{O(K)} \cdot|A|$.

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in $S \subseteq \mathbb{F}_{2}^{n}$.

- [BSG]: If $\mathbb{P}_{x, y \in S}[x+y \in S] \geq \epsilon$ then $\exists A \subseteq S$ s.t.

$$
|A| \geq \epsilon^{O(1)}|S| \text { and }|A+A| \leq \epsilon^{-O(1)}|A| .
$$

- [Freiman-Ruzsa]: $|A+A| \leq K \cdot|A| \Longrightarrow \operatorname{Span}(A) \leq 2^{O(K)} \cdot|A|$.
- [CS 09]: If $|A+A| \leq K \cdot|A|$, then $\mathbf{1}_{A} * \mathbf{1}_{A}$ has a large set of "almost periods" i.e., there is a large set $X \subseteq \mathbb{F}_{2}^{n}$ s.t

$$
\mathbf{1}_{A} * \mathbf{1}_{A}(\cdot) \approx \mathbf{1}_{A} * \mathbf{1}_{A}(\cdot+x) \quad \forall x \in X
$$

$\mathbf{1}_{A} * \mathbf{1}_{A}(\cdot) \approx$ distribution of sum of two random elements from A.

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U^{3}-norm using almost periodicity from [CS 09].

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U^{3}-norm using almost periodicity from [CS 09].
- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic Goldreich-Levin.

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U^{3}-norm using almost periodicity from [CS 09].
- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic Goldreich-Levin.
- Question: Can sampling based proofs be used to find better subspace structure?

Decompositions for higher-degrees

- Question: Given $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, does there exist a polynomial $P \in \mathcal{P}_{d}$ such that $\left|\left\langle\omega^{F}, \omega^{P}\right\rangle\right| \geq \epsilon$? If yes, find one.

Decompositions for higher-degrees

- Question: Given $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, does there exist a polynomial $P \in \mathcal{P}_{d}$ such that $\left|\left\langle\omega^{F}, \omega^{P}\right\rangle\right| \geq \epsilon$? If yes, find one.

Decompositions for higher-degrees

- Question: Given $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, does there exist a polynomial $P \in \mathcal{P}_{d}$ such that $\left|\left\langle\omega^{F}, \omega^{P}\right\rangle\right| \geq \epsilon$? If yes, find one.

- Can be solved for the special case when $F \in \mathcal{P}_{k}$ and $p>k$, inverse theorem by [GT 09].

Decomposition Theorems and Regularity

- [GT 09]: Actually prove a decomposition theorem when $F \in \mathcal{P}_{k}$:

$$
\omega^{F}=\Gamma\left(P_{1}, \ldots, P_{m}\right)+f_{2}
$$

where $P_{1}, \ldots, P_{m} \in \mathcal{P}_{d}$ and $\left\|f_{2}\right\|_{U^{d+1}} \leq \epsilon$.

Decomposition Theorems and Regularity

- [GT 09]: Actually prove a decomposition theorem when $F \in \mathcal{P}_{k}$:

$$
\omega^{F}=\Gamma\left(P_{1}, \ldots, P_{m}\right)+f_{2}
$$

where $P_{1}, \ldots, P_{m} \in \mathcal{P}_{d}$ and $\left\|f_{2}\right\|_{U^{d+1}} \leq \epsilon$.

- Here, $\Gamma: \mathbb{F}_{p}^{m} \rightarrow \mathbb{R}$. By (linear) Fourier analysis

$$
\Gamma\left(P_{1}, \ldots, P_{m}\right)=\sum_{c_{1}, \ldots, c_{m}} \hat{\Gamma}\left(c_{1}, \ldots, c_{m}\right) \cdot \omega^{\sum_{i} c_{i} P_{i}}
$$

which gives decomposition in the required form.

Decomposition Theorems and Regularity

- [GT 09]: Actually prove a decomposition theorem when $F \in \mathcal{P}_{k}$:

$$
\omega^{F}=\Gamma\left(P_{1}, \ldots, P_{m}\right)+f_{2}
$$

where $P_{1}, \ldots, P_{m} \in \mathcal{P}_{d}$ and $\left\|f_{2}\right\|_{U^{d+1}} \leq \epsilon$.

- Here, $\Gamma: \mathbb{F}_{p}^{m} \rightarrow \mathbb{R}$. By (linear) Fourier analysis

$$
\Gamma\left(P_{1}, \ldots, P_{m}\right)=\sum_{c_{1}, \ldots, c_{m}} \widehat{\Gamma}\left(c_{1}, \ldots, c_{m}\right) \cdot \omega^{\sum_{i} c_{i} P_{i}}
$$

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$ to satisfy certain "regularity" properties. Obtaining regularity is the main challenge in converting their proof to an algorithm.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications of higher-order Fourier analysis.
- Analogues of Szemerédi regularity lemma. Regular partition a graph is highly structured. So is a regular collection of polynomials.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications of higher-order Fourier analysis.
- Analogues of Szemerédi regularity lemma. Regular partition a graph is highly structured. So is a regular collection of polynomials.
- Different notions of regulariy for a factor $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$:

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications of higher-order Fourier analysis.
- Analogues of Szemerédi regularity lemma. Regular partition a graph is highly structured. So is a regular collection of polynomials.
- Different notions of regulariy for a factor $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$:
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\operatorname{rank}_{d-1}\left(c_{1} P_{1}+\cdots+c_{m} P_{m}\right) \geq \stackrel{\wedge}{\Lambda}(m)$.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications of higher-order Fourier analysis.
- Analogues of Szemerédi regularity lemma. Regular partition a graph is highly structured. So is a regular collection of polynomials.
- Different notions of regulariy for a factor $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$:
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\operatorname{rank}_{d-1}\left(c_{1} P_{1}+\cdots+c_{m} P_{m}\right) \geq \Lambda(m)$.
- [KL 08]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}, \sum c_{i} P_{i}$ and it's derivatiives have high-rank.
- Polynomial Regularity Lemmas: Given $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$, it can be refined to $\mathcal{B}^{\prime}=\left\{P_{1}^{\prime}, \ldots, P_{m^{\prime}}^{\prime}\right\}$ which is regular.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications of higher-order Fourier analysis.
- Analogues of Szemerédi regularity lemma. Regular partition a graph is highly structured. So is a regular collection of polynomials.
- Different notions of regulariy for a factor $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$:
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\operatorname{rank}_{d-1}\left(c_{1} P_{1}+\cdots+c_{m} P_{m}\right) \geq \Lambda(m)$.
- [KL 08]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}, \sum c_{i} P_{i}$ and it's derivatiives have high-rank.
- Polynomial Regularity Lemmas: Given $\mathcal{B}=\left\{P_{1}, \ldots, P_{m}\right\}$, it can be refined to $\mathcal{B}^{\prime}=\left\{P_{1}^{\prime}, \ldots, P_{m^{\prime}}^{\prime}\right\}$ which is regular.
- Like Szemerédi's regularity lemma, proofs find a certificate of non-regularity and make progress by local modification.

Q3: Algorithmic Regularity Lemmas

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of non-regularity.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of non-regularity.
- [BHT 15]: Slightly modified notions of regularity (equivalent up to some loss of parameters) and corresponding algorithmic lemmas.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of non-regularity.
- [BHT 15]: Slightly modified notions of regularity (equivalent up to some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\left\|c_{1} P_{1}+\cdots+c_{m} P_{m}\right\|_{U^{d}} \leq \delta(m)$.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of non-regularity.
- [BHT 15]: Slightly modified notions of regularity (equivalent up to some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\left\|c_{1} P_{1}+\cdots+c_{m} P_{m}\right\|_{U^{d}} \leq \delta(m)$.
- [KL 08]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}, \sum c_{i} P_{i}$ and it's derivatiives have small-bias.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of non-regularity.
- [BHT 15]: Slightly modified notions of regularity (equivalent up to some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}$, $\left\|c_{1} P_{1}+\cdots+c_{m} P_{m}\right\|_{U^{d}} \leq \delta(m)$.
- [KL 08]: For all $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{p}^{m} \backslash\left\{0^{m}\right\}, \sum c_{i} P_{i}$ and it's derivatiives have small-bias.
- Show these notions provide required equidistribution for various known applications.

Further questions

- Higher-degree decomposition theorems.

Further questions

- Higher-degree decomposition theorems.
- (Approximate) Decoding beyond the list decoding radius for other codes. Even for distances slightly beyond the list-decoding radius.

Further questions

- Higher-degree decomposition theorems.
- (Approximate) Decoding beyond the list decoding radius for other codes. Even for distances slightly beyond the list-decoding radius.
- Do algorithms really need to be derived from proofs of existence? Can there be a simpler algorithm for which a solution is guaranteed by the proof?

Further questions

- Higher-degree decomposition theorems.
- (Approximate) Decoding beyond the list decoding radius for other codes. Even for distances slightly beyond the list-decoding radius.
- Do algorithms really need to be derived from proofs of existence? Can there be a simpler algorithm for which a solution is guaranteed by the proof?
- Regularity lemmas give terrible quantitative bounds. Is there a way to use weaker regularity properties and obtain better bounds?

Thank You

Questions?

