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Background on Higher-
Order Fourier Analysis 



• Talk 1: Mathematical primer (me) 
 

• Talk 2: Polynomial pseudorandomness (P. Hatami) 
 

• Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani) 
 

• Talk 4: Applications to property testing (Yoshida) 
 

• Talk 5: Applications to coding theory (Bhowmick) 
 

• Talk 6: A different generalization of Fourier analysis and 
application to communication complexity (Viola) 

Plan for the day 



Given a quartic polynomial 𝑃:  𝔽2𝑛 → 𝔽2, 
can we decide in poly(𝑛) time whether: 

𝑃 = 𝑄1𝑄2 + 𝑄3𝑄4 
where 𝑄1,𝑄2,𝑄3,𝑄4 are quadratic polys? 
 
 
Yes! [B. ‘14, B.-Hatami-Tulsiani ‘15] 

Teaser 



Some Preliminaries 



 
𝔽 = finite field of fixed 

prime order 
 

• For example, 𝔽 = 𝔽2 or 𝔽 = 𝔽97 
• Theory simpler for fields of large (but fixed) size 

Setting 



Functions are always multivariate,  
on 𝑛 variables 

 
                     𝑓:  𝔽𝑛 → ℂ        ( 𝑓 ≤ 1) 
 
and                    𝑃:  𝔽𝑛 → 𝔽 
 

Functions 

Current bounds 
aim to be 

efficient wrt n 



 
Polynomial of degree 𝒅 is of the form: 

� 𝑐𝑖1,…,𝑖𝑛𝑥1
𝑖1 ⋯𝑥𝑛

𝑖𝑛

𝑖1,…,𝑖𝑛

 

where each 𝑐𝑖1,…,𝑖𝑛 ∈ 𝔽 and 𝑖1 + ⋯+ 𝑖𝑛 ≤ 𝑑 
 

Polynomial 



Phase Polynomial 
 

Phase polynomial of degree 𝒅 is a 
function 𝑓:𝔽𝑛 → ℂ of the form 
𝑓 𝑥 = e(𝑃 𝑥 ) where: 
 
1.  𝑃:𝔽𝑛 → 𝔽 is a polynomial of degree 𝑑 
2.  e 𝑘 = 𝑒2𝜋𝑖𝜋/|𝔽| 

 
 



The inner product of two functions 
𝑓,𝑔:  𝔽𝑛 → ℂ is: 
 

〈𝑓,𝑔〉 = 𝔼𝑥∈𝔽𝑛 𝑓 𝑥 ⋅ 𝑔 𝑥  

Inner Product 

Magnitude captures 
correlation between 

𝑓 and 𝑔 



Additive derivative in direction 
ℎ ∈ 𝔽𝑛 of function 𝑃:  𝔽𝑛 → 𝔽 is: 
 

𝐷ℎ𝑃 𝑥 = 𝑃 𝑥 + ℎ − 𝑃(𝑥) 

Derivatives 



Multiplicative derivative in 
direction ℎ ∈ 𝔽𝑛 of function 
𝑓:  𝔽𝑛 → ℂ is: 
 

Δℎ𝑓 𝑥 = 𝑓 𝑥 + ℎ ⋅ 𝑓(𝑥) 

Derivatives 



Factor of degree 𝒅 and order m is a 
tuple of polynomials 
ℬ = (𝑃1,𝑃2, … ,𝑃𝑚), each of degree 𝑑. 
 
As shorthand, write: 

ℬ 𝑥 = (𝑃1 𝑥 , … ,𝑃𝑚 𝑥 ) 

Polynomial Factor 



Fourier Analysis over 𝔽 



Every function 𝑓:  𝔽𝑛 → ℂ is a linear 
combination of linear phases: 
 

𝑓(𝑥) =  � 𝑓 𝛼
𝛼∈𝔽𝑛

e �𝛼𝑖𝑥𝑖
𝑖

 

Fourier Representation 



• The inner product of two linear phases is: 
 

e �𝛼𝑖𝑥𝑖
𝑖

, 𝑒 �𝛽𝑖𝑥𝑖
𝑖

=  𝔼𝑥 e � 𝛼𝑖 − 𝛽𝑖 𝑥𝑖
𝑖

= 0 

   

       if 𝛼 ≠ 𝛽 and is 1 otherwise. 
 

• So: 
 
𝑓 𝛼 = 𝑓, e ∑ 𝛼𝑖𝑥𝑖𝑖 = correlation with linear phase 

 
 

Linear Phases 



With high probability, a random 
function 𝑓:  𝔽𝑛 → ℂ with |𝑓| = 1 has 

each 𝑓 𝛼 → 0. 

Random functions 



𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥  
 
where: 

𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

Every Fourier coefficient of ℎ is less 
than 𝜖, so ℎ is “pseudorandom”.  



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

𝑔 has only 1/𝜖2 nonzero Fourier 
coefficients 



𝑔 𝑥 = � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 ≥𝜖

 

ℎ 𝑥 =  � 𝑓 𝛼 ⋅ e �𝛼𝑖𝑥𝑖
𝑖𝛼: �̂� 𝛼 <𝜖

 

Decomposition Theorem 

The nonzero Fourier coefficients of 
𝑔 can be found in poly time 
[Goldreich-Levin ‘89] 



Elements of Higher-Order 
Fourier Analysis 



Higher-order Fourier analysis is the 
interplay between three different 
notions of pseudorandomness for 

functions and factors. 
 
1. Bias 
2. Gowers norm 
3. Rank 



Bias 



For 𝑓:  𝔽𝑛 → ℂ,  
bias 𝑓 = |𝔼𝑥 𝑓 𝑥 | 

 
 
For 𝑃:  𝔽𝑛 → 𝔽, 

bias 𝑃 = |𝔼𝑥 e 𝑃 𝑥 | 

Bias 

[…, Naor-Naor ‘89, …] 



𝜔0 

𝜔1 

𝜔2 𝜔3 

𝜔 𝔽 −1 

How well is 𝑷 equidistributed? 



A factor ℬ = (𝑃1, … ,𝑃𝜋) is 𝜶-
unbiased if every nonzero linear 
combination of 𝑃1, … ,𝑃𝜋 has bias less 
than 𝛼: 
 

bias ∑ 𝑐𝑖𝑃𝑖𝜋
𝑖=1 < 𝛼   

   ∀ 𝑐1, … , 𝑐𝜋 ∈ 𝔽𝜋 ∖ {0} 

Bias of Factor 



Lemma: If ℬ is 𝛼-unbiased and of 
order 𝑘, then for any 𝑐 ∈ 𝔽𝜋: 

Pr ℬ 𝑥 = 𝑐 =
1
𝔽 𝜋 ± 𝛼 

Bias implies equidistribution 



Lemma: If ℬ is 𝛼-unbiased and of order 𝑘, then for 
any 𝑐 ∈ 𝔽𝜋: 

Pr ℬ 𝑥 = 𝑐 =
1
𝔽 𝜋 ± 𝛼 

Bias implies equidistribution 

Corollary: If ℬ is 𝛼-unbiased and 
𝛼 < 1

𝔽 𝑘, then ℬ maps onto 𝔽𝜋. 



Gowers Norm 



Given 𝑓:  𝔽𝑛 → ℂ, its Gowers norm of 
order 𝒅 is: 
 
𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑Δℎ1Δℎ2 ⋯Δℎ𝑑𝑓 𝑥 |1/2𝑑  

Gowers Norm 

[Gowers ‘01] 



Given 𝑓:  𝔽𝑛 → ℂ, its Gowers norm of order 𝒅 is: 
 

𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑Δℎ1Δℎ2 ⋯Δℎ𝑑𝑓 𝑥 |1/2𝑑  

Gowers Norm 

Observation: If 𝑓 = e(𝑃) is a phase 
poly, then: 
 
𝑈𝑑 𝑓 = |𝔼𝑥,ℎ1,ℎ2,…,ℎ𝑑e 𝐷ℎ1𝐷ℎ2 ⋯𝐷ℎ𝑑𝑃 𝑥 |1/2𝑑  



• If 𝑓 is a phase poly of degree 𝑑, then: 
 

𝑈𝑑+1 𝑓 = 1 
 
 
• Converse is true when 𝑑 < |𝔽|. 

Gowers norm for phase polys 



• 𝑈1 𝑓 =  𝔼 𝑓 2 = bias 𝑓  
 
 

• 𝑈2 𝑓 =  ∑ 𝑓4(𝛼)𝛼
4

 

 
 

• 𝑈1 𝑓 ≤ 𝑈2 𝑓 ≤ 𝑈3 𝑓 ≤ ⋯ (C.-S.) 

Other Observations 



• For random 𝑓:  𝔽𝑛 → ℂ and fixed 𝑑,  
𝑈𝑑 𝑓 → 0 

 
 
• By monotonicity, low Gowers norm 

implies low bias and low Fourier 
coefficients.  

Pseudorandomness 



Lemma: 𝑈𝑑+1 𝑓 ≥ max | 𝑓, e 𝑃 | 
where max is over all polynomials 𝑃 of 
degree 𝑑. 

Correlation with Polynomials 

Proof: For any poly 𝑃 of degree 𝑑: 
 

𝔼 𝑓 𝑥 ⋅ e −𝑃 𝑥 = 𝑈1 𝑓 ⋅ e −𝑃  
                                                ≤ 𝑈𝑑+1 𝑓 ⋅ e −𝑃  

                               = 𝑈𝑑+1(𝑓) 



Theorem: If 𝑑 < |𝔽|, for all 𝜖 > 0, there 
exists 𝛿 = 𝛿(𝜖,𝑑,𝔽) such that if 
𝑈𝑑+1 𝑓 > 𝜖, then 𝑓, e 𝑃 > 𝛿 for 
some poly 𝑃 of degree 𝑑. 
 
Proof:  
• [Green-Tao ‘09] Combinatorial for phase poly 𝑓 (c.f. 

Madhur’s talk later).  
• [Bergelson-Tao-Ziegler ‘10] Ergodic theoretic proof for 

arbitrary 𝑓. 

Gowers Inverse Theorem 



Consider 𝑓:  𝔽21 → ℂ with: 
𝑓 0 = 1 
𝑓 1 = 𝑖 

 
 

𝑓 not a phase poly but 𝑈3 𝑓 = 1! 

Small Fields 



Consider 𝑓 = e(𝑃) where 𝑃:𝔽2𝑛 → 𝔽2 
is symmetric polynomial of degree 4.  
 

𝑈4 𝑓 = Ω(1) 
but: 

𝑓, e 𝐶 = exp −𝑛  
for all cubic poly 𝐶.  

[Lovett-Meshulam-Samorodnitsky ’08, Green-Tao ‘09] 

Small fields: worse news 



Just define non-classical phase 
polynomials of degree 𝒅 to be 
functions 𝑓:  𝔽𝑛 → ℂ such that 𝑓 = 1 
and 

Δℎ1Δℎ2 ⋯Δℎ𝑑+1𝑓 𝑥 = 1 
for all 𝑥, ℎ1, … , ℎ𝑑+1 ∈ 𝔽𝑛 

Nevertheless… 



Inverse Theorem for small fields 
Theorem: For all 𝜖 > 0, there exists 
𝛿 = 𝛿(𝜖,𝑑,𝔽) such that if 𝑈𝑑+1 𝑓 >
𝜖, then 𝑓,𝑔 > 𝛿 for some non-
classical phase poly 𝑔 of degree 𝑑. 
 
Proof:  
• [Tao-Ziegler] Combinatorial for phase poly 𝑓 .  
• [Tao-Ziegler] Nonstandard proof for arbitrary 𝑓. 



Theorem: If 𝐿1, … , 𝐿𝑚  are 𝑚 linear forms 
(𝐿𝑗 𝑋1, … ,𝑋𝜋 = ∑ ℓ𝑖,𝑗𝑋𝑖𝜋

𝑖=1 ), then: 
 

𝔼𝑋1,…,𝑋𝑘∈𝔽𝑛 �𝑓(𝐿𝑗 𝑋1, … ,𝑋𝜋

𝑚

𝑗=1

≤ 𝑈𝑡(𝑓) 

 
if 𝑓:  𝔽𝑛 → ℂ and 𝑡 is the complexity of the 
linear forms 𝐿1, … , 𝐿𝑚. 

Pseudorandomness & Counting 

[Gowers-Wolf ‘10] 



• If 𝑓:  𝔽𝑛 → {0,1} indicates a subset and we want to 
count the number of 3-term AP’s: 

𝔼𝑋,𝑌 𝑓 𝑋 ⋅ 𝑓 𝑋 + 𝑌 ⋅ 𝑓 𝑋 + 2𝑌 ≤�𝑓3(𝛼)
𝛼

 

 
• Similarly, number of 4-term AP’s controlled by 3rd 

order Gowers norm of 𝑓. 
 

• More in Pooya’s upcoming talk! 

Examples 



Rank 



Given a polynomial 𝑃:  𝔽𝑛 → 𝔽 of 
degree 𝑑, its rank is the smallest integer 
𝑟 such that: 
 
𝑃 𝑥 = Γ 𝑄1 𝑥 , … ,𝑄𝑟 𝑥     ∀𝑥 ∈ 𝔽𝑛 

 
where 𝑄1, … ,𝑄𝑟  are polys of degree 
𝑑 − 1 and Γ:  𝔽𝑟 → 𝔽 is arbitrary. 

Rank 



• For random poly 𝑃 of fixed degree 𝑑,  
rank 𝑃 = 𝜔(1) 

 
 
 

• High rank is pseudorandom behavior 

Pseudorandomness 



If 𝑃:  𝔽𝑛 → 𝔽 is a poly of degree 𝑑, 𝑃 
has high rank if and only if e(𝑃) has 

low Gowers norm of order 𝑑! 

Rank & Gowers Norm 



Lemma: If 𝑃(𝑥) = Γ 𝑄1(𝑥), … ,𝑄𝜋(𝑥)  
where 𝑄1, … ,𝑄𝜋  are polys of deg 𝑑 − 1, then 
𝑈𝑑 e 𝑃 ≥ 1

𝔽 𝑘/2. 

Low rank implies large Gowers norm 



Lemma: If 𝑃(𝑥) = Γ 𝑄1(𝑥), … ,𝑄𝜋(𝑥)  where 𝑄1, … ,𝑄𝜋  are polys of 
deg 𝑑 − 1, then 𝑈𝑑 e 𝑃 ≥ 1

𝔽 𝑘/2. 

Low rank implies large Gowers norm 

Proof: By (linear) Fourier analysis: 

e 𝑃 𝑥 = �Γ� 𝛼 ⋅ e �𝛼𝑖 ⋅ 𝑄𝑖 𝑥
𝑖𝛼

 

Therefore: 

|𝔼𝑥�Γ� 𝛼 ⋅ e �𝛼𝑖 ⋅ 𝑄𝑖 𝑥 − 𝑃 𝑥
𝑖

| = 1
𝛼

 

Then, there’s an 𝛼 such that  
e 𝑃 , e ∑ 𝛼𝑖𝑄𝑖𝑖 ≥ 𝔽 −𝜋/2. 



Inverse theorem for polys 

Theorem: For all 𝜖 and 𝑑, there exists 
𝑅 = 𝑅 𝜖,𝑑,𝔽  such that  if 𝑃 is a poly 
of degree 𝑑 and 𝑈𝑑 e 𝑃 > 𝜖, then 
rank(𝑃)< 𝑅. 

[Tao-Ziegler ‘11] 



Bias-rank theorem 

Theorem: For all 𝜖 and 𝑑, there exists 
𝑅 = 𝑅 𝜖,𝑑,𝔽  such that  if 𝑃 is a poly 
of degree 𝑑 and bias(𝑃) > 𝜖, then 
rank(𝑃)< 𝑅. 

[Green-Tao ‘09, Kaufman-Lovett ‘08] 



Regularity of Factor 

A factor ℬ = (𝑃1, … ,𝑃𝜋) is 𝑹-regular 
if every nonzero linear combination of 
𝑃1, … ,𝑃𝜋  has rank more than 𝑅. 



Claim: If a factor ℬ = (𝑃1, … ,𝑃𝜋) of 
degree 𝑑 is sufficiently regular, then 
for any poly 𝑄 of degree 𝑑, there can 
be at most one 𝑃𝑖  that is 𝜖-correlated 
with 𝑄.  

An Example 



Claim: If a factor ℬ = (𝑃1, … ,𝑃𝜋) of degree 𝑑 is sufficiently 
regular, then for any poly 𝑄 of degree 𝑑, there can be at 
most one 𝑃𝑖  that is 𝜖-correlated with 𝑄.  
 
Proof: 
𝑄 𝜖-correlated with 𝑃𝑖               bias 𝑄 − 𝑃𝑖 > 𝜖  
𝑄 𝜖-correlated with 𝑃𝑗               bias 𝑄 − 𝑃𝑗 > 𝜖 
 
So, rank 𝑄 − 𝑃𝑖 , rank(𝑄 − 𝑃𝑗) bounded. But 
then rank(𝑃𝑖 − 𝑃𝑗) bounded, a contradiction. 

An Example 



• Decomposition theorem 
– For any 𝑑,𝑅, 𝜖, given function 𝑓:  𝔽𝑛 → ℂ, can find 

functions 𝑓𝑆 and 𝑓𝑅  such that 𝑓 = 𝑓𝑆 + 𝑓𝑅, 𝑈𝑑+1 𝑓𝑅 < 𝜖, 
and 𝑓𝑆 = Γ(ℬ) for a factor ℬ of rank 𝑅 and constant order. 
 

 
• Gowers’ proof of Szemeredi’s theorem 

 
• Ergodic-theoretic aspects 

Things I didn’t talk about 



• Talk 1: Mathematical primer (me) 
 

• Talk 2: Polynomial pseudorandomness (P. Hatami) 
 

• Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani) 
 

• Talk 4: Applications to property testing (Yoshida) 
 

• Talk 5: Applications to coding theory (Bhowmick) 
 

• Talk 6: A different generalization of Fourier analysis and 
application to communication complexity (Viola) 

Plan for the day 



Claim: Let ℬ = (𝑃1, … ,𝑃𝑚) be a sufficiently 
regular factor of degree 𝑑. Define:  

𝐹 𝑥 = Γ(𝑃1 𝑥 , … ,𝑃𝑚(𝑥)) 
 
Then, for any 𝑄1, … ,𝑄𝑚 with deg 𝑄𝑗 ≤
deg 𝑃𝑗 , if 

𝐺 𝑥 = Γ(𝑄1 𝑥 , … ,𝑄𝑚 𝑥 ) 
 
it holds that: deg 𝐺 ≤ deg 𝐹 . 
 

A final example 

[B.-Fischer-Hatami-Hatami-Lovett ‘13] 



• Suppose 𝐷 = deg(𝐹).  
• Using (standard) Fourier analysis, write: 

e(𝐹 𝑥 ) = �𝑐𝛼e �𝛼𝑖𝑃𝑖 𝑥
𝑖𝛼

 

• Now, differentiate above expression 𝐷 + 1 times to 
get 1. But all the derivatives of 𝜔∑ 𝛼𝑖𝑃𝑖 𝑥𝑖  are linearly 
independent. So, all coefficients of these derivatives 
cancel formally. 

• Can expand out the derivative of 𝜔𝐺(𝑥) in the same 
way to get that it too equals 1. 
 

Sketch of Proof 
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