Background on Higher-Order Fourier Analysis

FOCS '14 Workshop

Arnab Bhattacharyya Indian Institute of Science

October 18, 2014

Plan for the day

- Talk 1: Mathematical primer (me)
- Talk 2: Polynomial pseudorandomness (P. Hatami)
- Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani)
- Talk 4: Applications to property testing (Yoshida)
- Talk 5: Applications to coding theory (Bhowmick)
- Talk 6: A different generalization of Fourier analysis and application to communication complexity (Viola)

Teaser

Given a quartic polynomial $P \colon \mathbb{F}_2^n \to \mathbb{F}_2$, can we decide in poly(n) time whether:

$$P = Q_1 Q_2 + Q_3 Q_4$$

where Q_1 , Q_2 , Q_3 , Q_4 are quadratic polys?

Yes! [B. '14, B.-Hatami-Tulsiani '15]

Some Preliminaries

Setting

F = finite field of fixed prime order

- For example, $\mathbb{F} = \mathbb{F}_2$ or $\mathbb{F} = \mathbb{F}_{97}$
- Theory simpler for fields of large (but fixed) size

Functions

Functions are always multivariate, on n variables

$$f \colon \mathbb{F}^n \to \mathbb{C} \quad (|f| \le 1)$$

and

 $P \colon \mathbb{F}^n \to \mathbb{F}$

Current bounds aim to be efficient wrt *n*

Polynomial

Polynomial of degree d is of the form:

$$\sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

where each $c_{i_1,\dots,i_n} \in \mathbb{F}$ and $i_1 + \dots + i_n \leq d$

Phase Polynomial

Phase polynomial of degree d is a function $f: \mathbb{F}^n \to \mathbb{C}$ of the form f(x) = e(P(x)) where:

- 1. $P: \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree d
- 2. $e(k) = e^{2\pi i k/|F|}$

Inner Product

The inner product of two functions

$$f,g\colon \mathbb{F}^n \to \mathbb{C}$$
 is:

$$\langle f, g \rangle = \mathbb{E}_{x \in \mathbb{F}^n} [f(x) \cdot \overline{g(x)}]$$

Magnitude captures correlation between f and g

Derivatives

Additive derivative in direction

 $h \in \mathbb{F}^n$ of function $P \colon \mathbb{F}^n \to \mathbb{F}$ is:

$$D_h P(x) = P(x+h) - P(x)$$

Derivatives

Multiplicative derivative in direction $h \in \mathbb{F}^n$ of function

$$f \colon \mathbb{F}^n \to \mathbb{C}$$
 is:

$$\Delta_h f(x) = f(x+h) \cdot \overline{f(x)}$$

Polynomial Factor

Factor of degree d and order m is a tuple of polynomials

$$\mathcal{B} = (P_1, P_2, \dots, P_m)$$
, each of degree d .

As shorthand, write:

$$\mathcal{B}(x) = (P_1(x), ..., P_m(x))$$

Fourier Analysis over **F**

Fourier Representation

Every function $f \colon \mathbb{F}^n \to \mathbb{C}$ is a linear combination of linear phases:

$$f(x) = \sum_{\alpha \in \mathbb{F}^n} \hat{f}(\alpha) e\left(\sum_i \alpha_i x_i\right)$$

Linear Phases

• The inner product of two linear phases is:

$$\langle e\left(\sum_{i} \alpha_{i} x_{i}\right), e\left(\sum_{i} \beta_{i} x_{i}\right) \rangle = \mathbb{E}_{x}\left[e\left(\sum_{i} (\alpha_{i} - \beta_{i}) x_{i}\right)\right] = 0$$

if $\alpha \neq \beta$ and is 1 otherwise.

So:

 $\hat{f}(\alpha) = \langle f, e(\sum_i \alpha_i x_i) \rangle = \text{correlation with linear phase}$

Random functions

With high probability, a random function $f \colon \mathbb{F}^n \to \mathbb{C}$ with |f| = 1 has each $\hat{f}(\alpha) \to 0$.

$$f(x) = g(x) + h(x)$$

where:

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

Every Fourier coefficient of h is less than ϵ , so h is "pseudorandom".

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

g has only $1/\epsilon^2$ nonzero Fourier coefficients

$$g(x) = \sum_{\alpha: \hat{f}(\alpha) \ge \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$
$$h(x) = \sum_{\alpha: \hat{f}(\alpha) < \epsilon} \hat{f}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} x_{i}\right)$$

The nonzero Fourier coefficients of g can be found in poly time [Goldreich-Levin '89]

Elements of Higher-Order Fourier Analysis

Higher-order Fourier analysis is the interplay between three different notions of pseudorandomness for functions and factors.

- 1. Bias
- 2. Gowers norm
- 3. Rank

Bias

Bias

For
$$f \colon \mathbb{F}^n \to \mathbb{C}$$
,
bias $(f) = |\mathbb{E}_x[f(x)]|$

For
$$P \colon \mathbb{F}^n \to \mathbb{F}$$
,
bias $(P) = |\mathbb{E}_x[e(P(x))]|$

[..., Naor-Naor '89, ...]

How well is *P* equidistributed?

Bias of Factor

A factor $\mathcal{B} = (P_1, ..., P_k)$ is α unbiased if every nonzero linear
combination of $P_1, ..., P_k$ has bias less
than α :

$$\operatorname{bias}\left(\sum_{i=1}^{k} c_{i} P_{i}\right) < \alpha$$

$$\forall (c_{1}, \dots, c_{k}) \in \mathbb{F}^{k} \setminus \{0\}$$

Bias implies equidistribution

Lemma: If \mathcal{B} is α -unbiased and of order k, then for any $c \in \mathbb{F}^k$:

$$\Pr[\mathcal{B}(x) = c] = \frac{1}{|\mathbb{F}|^k} \pm \alpha$$

Bias implies equidistribution

Lemma: If \mathcal{B} is α -unbiased and of order k, then for any $c \in \mathbb{F}^k$:

$$\Pr[\mathcal{B}(x) = c] = \frac{1}{|\mathbb{F}|^k} \pm \alpha$$

Corollary: If \mathcal{B} is α -unbiased and $\alpha < \frac{1}{|\mathbb{F}|^{k}}$, then \mathcal{B} maps onto \mathbb{F}^k .

Gowers Norm

Gowers Norm

Given $f: \mathbb{F}^n \to \mathbb{C}$, its Gowers norm of order d is:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},\dots,h_{d}} \Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d}} f(x)|^{1/2^{d}}$$

Gowers Norm

Given $f: \mathbb{F}^n \to \mathbb{C}$, its **Gowers norm of order** d is:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},\dots,h_{d}} \Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d}} f(x)|^{1/2^{d}}$$

Observation: If f = e(P) is a phase poly, then:

$$U^{d}(f) = |\mathbb{E}_{x,h_{1},h_{2},\dots,h_{d}} e(D_{h_{1}}D_{h_{2}} \cdots D_{h_{d}}P(x))|^{1/2^{d}}$$

Gowers norm for phase polys

• If f is a phase poly of degree d, then:

$$U^{d+1}(f) = 1$$

• Converse is true when $d < |\mathbb{F}|$.

Other Observations

•
$$U^1(f) = \sqrt{|\mathbb{E}[f]|^2} = \text{bias}(f)$$

•
$$U^2(f) = \sqrt[4]{\sum_{\alpha} \hat{f}^4(\alpha)}$$

•
$$U^{1}(f) \le U^{2}(f) \le U^{3}(f) \le \cdots$$
 (C.-S.)

<u>Pseudorandomness</u>

• For random $f \colon \mathbb{F}^n \to \mathbb{C}$ and fixed d, $U^d(f) \to 0$

 By monotonicity, low Gowers norm implies low bias and low Fourier coefficients.

Correlation with Polynomials

Lemma: $U^{d+1}(f) \ge \max |\langle f, e(P) \rangle|$ where max is over all polynomials P of degree d.

Proof: For any poly P of degree d:

$$\left| \mathbb{E}[f(x) \cdot e(-P(x))] \right| = U^{1}(f \cdot e(-P))$$

$$\leq U^{d+1}(f \cdot e(-P))$$

$$= U^{d+1}(f)$$

Gowers Inverse Theorem

Theorem: If $d < |\mathbb{F}|$, for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f) > \epsilon$, then $|\langle f, \mathbf{e}(P) \rangle| > \delta$ for some poly P of degree d.

Proof:

- [Green-Tao '09] Combinatorial for phase poly f (c.f. Madhur's talk later).
- [Bergelson-Tao-Ziegler `10] Ergodic theoretic proof for arbitrary f.

Small Fields

Consider
$$f: \mathbb{F}_2^1 \to \mathbb{C}$$
 with:

$$f(0) = 1$$

$$f(1) = i$$

f not a phase poly but $U^3(f) = 1!$

Small fields: worse news

Consider f = e(P) where $P: \mathbb{F}_2^n \to \mathbb{F}_2$ is symmetric polynomial of degree 4.

$$U^4(f) = \Omega(1)$$

but:

$$|\langle f, \mathbf{e}(C) \rangle| = \exp(-n)$$

for all cubic poly *C*.

[Lovett-Meshulam-Samorodnitsky '08, Green-Tao '09]

Nevertheless...

Just *define* non-classical phase polynomials of degree d to be functions $f \colon \mathbb{F}^n \to \mathbb{C}$ such that |f| = 1 and

$$\Delta_{h_1}\Delta_{h_2}\cdots\Delta_{h_{d+1}}f(x)=1$$
 for all $x,h_1,\ldots,h_{d+1}\in\mathbb{F}^n$

Inverse Theorem for small fields

Theorem: For all $\epsilon > 0$, there exists $\delta = \delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f) > \epsilon$, then $|\langle f, g \rangle| > \delta$ for some nonclassical phase poly g of degree d.

Proof:

- [Tao-Ziegler] Combinatorial for phase poly f.
- [Tao-Ziegler] Nonstandard proof for arbitrary f.

Pseudorandomness & Counting

Theorem: If $L_1, ..., L_m$ are m linear forms $(L_j(X_1, ..., X_k) = \sum_{i=1}^k \ell_{i,j} X_i)$, then:

$$\mathbb{E}_{X_1,\dots,X_k\in\mathbb{F}^n}\left[\prod_{j=1}^m f(L_j(X_1,\dots,X_k))\right] \leq U^t(f)$$

if $f \colon \mathbb{F}^n \to \mathbb{C}$ and t is the *complexity* of the linear forms L_1, \dots, L_m .

[Gowers-Wolf `10]

Examples

• If $f: \mathbb{F}^n \to \{0,1\}$ indicates a subset and we want to count the number of 3-term AP's:

$$\mathbb{E}_{X,Y}[f(X)\cdot f(X+Y)\cdot f(X+2Y)] \le \sum_{\alpha} \hat{f}^{3}(\alpha)$$

- Similarly, number of 4-term AP's controlled by 3rd order Gowers norm of f.
- More in Pooya's upcoming talk!

Rank

Rank

Given a polynomial $P \colon \mathbb{F}^n \to \mathbb{F}$ of degree d, its rank is the smallest integer r such that:

$$P(x) = \Gamma(Q_1(x), \dots, Q_r(x)) \quad \forall x \in \mathbb{F}^n$$

where $Q_1, ..., Q_r$ are polys of degree d-1 and $\Gamma: \mathbb{F}^r \to \mathbb{F}$ is arbitrary.

<u>Pseudorandomness</u>

• For random poly P of fixed degree d, rank $(P) = \omega(1)$

High rank is pseudorandom behavior

Rank & Gowers Norm

If $P: \mathbb{F}^n \to \mathbb{F}$ is a poly of degree d, P has high rank **if and only if** e(P) has low Gowers norm of order d!

Low rank implies large Gowers norm

Lemma: If $P(x) = \Gamma(Q_1(x), ..., Q_k(x))$ where $Q_1, ..., Q_k$ are polys of deg d-1, then $U^d(e(P)) \ge \frac{1}{|\mathbb{F}|^{k/2}}$.

Low rank implies large Gowers norm

<u>Lemma</u>: If $P(x) = \Gamma(Q_1(x), ..., Q_k(x))$ where $Q_1, ..., Q_k$ are polys of $\deg d - 1$, then $U^d(e(P)) \ge \frac{1}{|\mathbb{F}|^{k/2}}$.

Proof: By (linear) Fourier analysis:

$$e(P(x)) = \sum_{\alpha} \widehat{\Gamma}(\alpha) \cdot e\left(\sum_{i} \alpha_{i} \cdot Q_{i}(x)\right)$$

Therefore:

$$|\mathbb{E}_{x}\sum_{\alpha}\widehat{\Gamma}(\alpha)\cdot e\left(\sum_{i}\alpha_{i}\cdot Q_{i}(x)-P(x)\right)|=1$$

Then, there's an α such that

$$\langle e(P), e(\sum_i \alpha_i Q_i) \rangle \geq |\mathbb{F}|^{-k/2}$$
.

Inverse theorem for polys

Theorem: For all ϵ and d, there exists $R = R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and $U^d(e(P)) > \epsilon$, then rank(P) < R.

Bias-rank theorem

Theorem: For all ϵ and d, there exists $R = R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and bias $(P) > \epsilon$, then rank(P) < R.

Regularity of Factor

A factor $\mathcal{B} = (P_1, ..., P_k)$ is R-regular if every nonzero linear combination of $P_1, ..., P_k$ has rank more than R.

An Example

Claim: If a factor $\mathcal{B} = (P_1, ..., P_k)$ of degree d is sufficiently regular, then for any poly Q of degree d, there can be at most one P_i that is ϵ -correlated with Q.

An Example

<u>Claim</u>: If a factor $\mathcal{B} = (P_1, ..., P_k)$ of degree d is sufficiently regular, then for any poly Q of degree d, there can be at most one P_i that is ϵ -correlated with Q.

Proof:

$$Q \in \text{-correlated with } P_i \longrightarrow \text{bias}(Q - P_i) > \epsilon$$

 $Q \in \text{-correlated with } P_j \longrightarrow \text{bias}(Q - P_j) > \epsilon$

So, $rank(Q - P_i)$, $rank(Q - P_j)$ bounded. But then $rank(P_i - P_j)$ bounded, a contradiction.

Things I didn't talk about

- Decomposition theorem
 - For any d, R, ϵ , given function $f \colon \mathbb{F}^n \to \mathbb{C}$, can find functions f_S and f_R such that $f = f_S + f_R$, $U^{d+1}(f_R) < \epsilon$, and $f_S = \Gamma(\mathcal{B})$ for a factor \mathcal{B} of rank R and constant order.

- Gowers' proof of Szemeredi's theorem
- Ergodic-theoretic aspects

Plan for the day

- Talk 1: Mathematical primer (me)
- Talk 2: Polynomial pseudorandomness (P. Hatami)
- Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani)
- Talk 4: Applications to property testing (Yoshida)
- Talk 5: Applications to coding theory (Bhowmick)
- Talk 6: A different generalization of Fourier analysis and application to communication complexity (Viola)

A final example

Claim: Let $\mathcal{B} = (P_1, ..., P_m)$ be a sufficiently regular factor of degree d. Define:

$$F(x) = \Gamma(P_1(x), \dots, P_m(x))$$

Then, for any $Q_1, ..., Q_m$ with $\deg(Q_j) \le \deg(P_j)$, if $G(x) = \Gamma(Q_1(x), ..., Q_m(x))$

it holds that: $\deg(G) \leq \deg(F)$.

[B.-Fischer-Hatami-Hatami-Lovett '13]

Sketch of Proof

- Suppose $D = \deg(F)$.
- Using (standard) Fourier analysis, write:

$$e(F(x)) = \sum_{\alpha} c_{\alpha} e\left(\sum_{i} \alpha_{i} P_{i}(x)\right)$$

- Now, differentiate above expression D+1 times to get 1. But all the derivatives of $\omega^{\sum_i \alpha_i P_i(x)}$ are linearly independent. So, all coefficients of these derivatives cancel formally.
- Can expand out the derivative of $\omega^{G(x)}$ in the same way to get that it too equals 1.