Background on HigherOrder Fourier Analysis

FOCS '14 Workshop

Arnab Bhattacharyya
Indian Institute of Science
October 18, 2014

Plan for the day

- Talk 1: Mathematical primer (me)
- Talk 2: Polynomial pseudorandomness (P. Hatami)
- Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani)
- Talk 4: Applications to property testing (Yoshida)
- Talk 5: Applications to coding theory (Bhowmick)
- Talk 6: A different generalization of Fourier analysis and application to communication complexity (Viola)

Teaser

Given a quartic polynomial $P: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ can we decide in $\operatorname{poly}(n)$ time whether:

$$
P=Q_{1} Q_{2}+Q_{3} Q_{4}
$$

where $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ are quadratic polys?

Yes! [B. '14, B.-Hatami-Tulsiani '15]

Some Preliminaries

Setting

\mathbb{F} = finite field of fixed prime order

- For example, $\mathbb{F}=\mathbb{F}_{2}$ or $\mathbb{F}=\mathbb{F}_{97}$
- Theory simpler for fields of large (but fixed) size

Functions

Functions are always multivariate, on n variables
$f: \mathbb{F}^{n} \rightarrow \mathbb{C} \quad(|f| \leq 1)$
and
$P: \mathbb{F}^{n} \rightarrow \mathbb{F}$
Current bounds
aim to be
efficient wrt n

Polynomial

Polynomial of degree d is of the form:

$$
\sum_{i_{1}, \ldots, i_{n}} c_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

where each $c_{i_{1}, \ldots, i_{n}} \in \mathbb{F}$ and $i_{1}+\cdots+i_{n} \leq d$

Phase Polynomial

Phase polynomial of degree d is a function $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ of the form $f(x)=\mathrm{e}(P(x))$ where:

1. $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$ is a polynomial of degree d 2. $\mathrm{e}(k)=e^{2 \pi i k /|\mathbb{F}|}$

Inner Product

The inner product of two functions $f, g: \mathbb{F}^{n} \rightarrow \mathbb{C}$ is:

$$
\langle f, g\rangle=\mathbb{E}_{x \in \mathbb{F}^{n}}[f(x) \cdot \overline{g(x)}]
$$

Magnitude captures correlation between f and g

Derivatives

Additive derivative in direction $h \in \mathbb{F}^{n}$ of function $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$ is:

$$
D_{h} P(x)=P(x+h)-P(x)
$$

Derivatives

 Multiplicative derivative in direction $h \in \mathbb{F}^{n}$ of function $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ is:$$
\Delta_{h} f(x)=f(x+h) \cdot \overline{f(x)}
$$

Polynomial Factor

Factor of degree d and order m is a tuple of polynomials
$\mathcal{B}=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$, each of degree d.
As shorthand, write:

$$
\mathcal{B}(x)=\left(P_{1}(x), \ldots, P_{m}(x)\right)
$$

Fourier Analysis over \mathbb{F}

Fourier Representation

Every function $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ is a linear combination of linear phases:

Linear Phases

- The inner product of two linear phases is:
$\left\langle\mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right), e\left(\sum_{i} \beta_{i} x_{i}\right)\right\rangle=\mathbb{E}_{x}\left[\mathrm{e}\left(\sum_{i}\left(\alpha_{i}-\beta_{i}\right) x_{i}\right)\right]=0$
if $\alpha \neq \beta$ and is 1 otherwise.
- So:
$\hat{f}(\alpha)=\left\langle f, \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right)\right\rangle=$ correlation with linear phase

Random functions

With high probability, a random
function $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ with $|f|=1$ has

$$
\operatorname{each} \hat{f}(\alpha) \rightarrow 0
$$

Decomposition Theorem

$$
f(x)=g(x)+h(x)
$$

where:

$$
\begin{aligned}
& g(x)=\sum_{\alpha: \hat{f}(\alpha) \geq \epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right) \\
& h(x)=\sum_{\alpha: \hat{f}(\alpha)<\epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right)
\end{aligned}
$$

Decomposition Theorem

$$
\begin{aligned}
& g(x)=\sum_{\alpha: f(\alpha) \geq \epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right) \\
& h(x)=\sum_{\alpha: f(\alpha)<\epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right)
\end{aligned}
$$

Every Fourier coefficient of h is less than ϵ, so h is "pseudorandom".

Decomposition Theorem

$$
\begin{aligned}
& g(x)=\sum_{\alpha: \hat{f}(\alpha) \geq \epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right) \\
& h(x)=\sum_{\alpha: \hat{f}(\alpha)<\epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right)
\end{aligned}
$$

g has only $1 / \epsilon^{2}$ nonzero Fourier coefficients

Decomposition Theorem

$$
\begin{aligned}
& g(x)=\sum_{\alpha: \hat{f}(\alpha) \geq \epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right) \\
& h(x)=\sum_{\alpha: \hat{f}(\alpha)<\epsilon} \hat{f}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} x_{i}\right)
\end{aligned}
$$

The nonzero Fourier coefficients of g can be found in poly time [Goldreich-Levin '89]

Elements of Higher-Order Fourier Analysis

Higher-order Fourier analysis is the interplay between three different notions of pseudorandomness for functions and factors.

1. Bias
2. Gowers norm
3. Rank

Bias

Bias

For $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$,

$$
\operatorname{bias}(f)=\left|\mathbb{E}_{x}[f(x)]\right|
$$

For $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$,

$$
\operatorname{bias}(P)=\left|\mathbb{E}_{x}[\mathrm{e}(P(x))]\right|
$$

[..., Naor-Naor '89, ...]

How well is P equidistributed?

Bias of Factor

A factor $\mathcal{B}=\left(P_{1}, \ldots, P_{k}\right)$ is α unbiased if every nonzero linear combination of P_{1}, \ldots, P_{k} has bias less than α :

$$
\begin{aligned}
& \operatorname{bias}\left(\sum_{i=1}^{k} c_{i} P_{i}\right)<\alpha \\
& \quad \forall\left(c_{1}, \ldots, c_{k}\right) \in \mathbb{F}^{k} \backslash\{0\}
\end{aligned}
$$

Bias implies equidistribution

Lemma: If \mathcal{B} is α-unbiased and of order k, then for any $c \in \mathbb{F}^{k}$:

$$
\operatorname{Pr}[\mathcal{B}(x)=c]=\frac{1}{|\mathbb{F}|^{k}} \pm \alpha
$$

Bias implies equidistribution

Lemma: If \mathcal{B} is α-unbiased and of order k, then for any $c \in \mathbb{F}^{k}$:

$$
\operatorname{Pr}[\mathcal{B}(x)=c]=\frac{1}{|\mathbb{F}|^{k}} \pm \alpha
$$

Corollary: If \mathcal{B} is α-unbiased and $\alpha<\frac{1}{|\mathbb{F}|^{k}}$ then \mathcal{B} maps onto \mathbb{F}^{k}.

Gowers Norm

Gowers Norm

Given $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$, its Gowers norm of order d is:
[Gowers '01]

Gowers Norm

Given $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$, its Gowers norm of order \boldsymbol{d} is:

$$
U^{d}(f)=\left|\mathbb{E}_{x, h_{1}, h_{2}, \ldots, h_{d}} \Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d}} f(x)\right|^{1 / 2^{d}}
$$

Observation: If $f=\mathrm{e}(P)$ is a phase poly, then:
$U^{d}(f)=\left|\mathbb{E}_{x, h_{1}, h_{2}, \ldots, h_{d}} \mathrm{e}\left(D_{h_{1}} D_{h_{2}} \cdots D_{h_{d}} P(x)\right)\right|^{1 / 2^{d}}$

Gowers norm for phase polys

- If f is a phase poly of degree d, then:

$$
U^{d+1}(f)=1
$$

- Converse is true when $d<|\mathbb{F}|$.

Other Observations

- $U^{1}(f)=\sqrt{|\mathbb{E}[f]|^{2}}=\operatorname{bias}(f)$
- $U^{2}(f)=\sqrt[4]{\sum_{\alpha} \hat{f}^{4}(\alpha)}$
- $U^{1}(f) \leq U^{2}(f) \leq U^{3}(f) \leq \cdots$

Pseudorandomness

- For random $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ and fixed d,

$$
U^{d}(f) \rightarrow 0
$$

- By monotonicity, low Gowers norm implies low bias and low Fourier coefficients.

Correlation with Polynomials

Lemma: $U^{d+1}(f) \geq \max |\langle f, \mathrm{e}(P)\rangle|$ where max is over all polynomials P of degree d.

Proof: For any poly P of degree d :

$$
\begin{aligned}
|\mathbb{E}[f(x) \cdot \mathrm{e}(-P(x))]| & =U^{1}(f \cdot \mathrm{e}(-P)) \\
& \leq U^{d+1}(f \cdot \mathrm{e}(-P)) \\
& =U^{d+1}(f)
\end{aligned}
$$

Gowers Inverse Theorem

Theorem: If $d<|F|$, for all $\epsilon>0$, there exists $\delta=\delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f)>\epsilon$, then $|\langle f, \mathrm{e}(P)\rangle|>\delta$ for some poly P of degree d.

Proof:

- [Green-Tao 'og] Combinatorial for phase poly f (c.f. Madhur's talk later).
- [Bergelson-Tao-Ziegler '10] Ergodic theoretic proof for arbitrary f.

Small Fields

Consider $f: \mathbb{F}_{2}^{1} \rightarrow \mathbb{C}$ with:

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=i
\end{aligned}
$$

f not a phase poly but $U^{3}(f)=1$!

Small fields: worse news

Consider $f=\mathrm{e}(P)$ where $P: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is symmetric polynomial of degree 4.

$$
U^{4}(f)=\Omega(1)
$$

but:

$$
|\langle f, \mathrm{e}(C)\rangle|=\exp (-n)
$$

for all cubic poly C.
[Lovett-Meshulam-Samorodnitsky '08, Green-Tao `og]

Nevertheless...

Just define non-classical phase polynomials of degree d to be functions $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ such that $|f|=1$ and

$$
\Delta_{h_{1}} \Delta_{h_{2}} \cdots \Delta_{h_{d+1}} f(x)=1
$$

for all $x, h_{1}, \ldots, h_{d+1} \in \mathbb{F}^{n}$

Inverse Theorem for small fields

Theorem: For all $\epsilon>0$, there exists $\delta=\delta(\epsilon, d, \mathbb{F})$ such that if $U^{d+1}(f)>$ ϵ, then $|\langle f, g\rangle|>\delta$ for some nonclassical phase poly g of degree d.

Proof:

- [Tao-Ziegler] Combinatorial for phase poly f.
- [Tao-Ziegler] Nonstandard proof for arbitrary f.

Pseudorandomness \& Counting

Theorem: If L_{1}, \ldots, L_{m} are m linear forms $\left(L_{j}\left(X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{k} \ell_{i, j} X_{i}\right)$, then:

$$
\mathbb{E}_{X_{1}, \ldots, X_{k} \in \mathbb{F}^{n}}\left[\prod_{j=1}^{m} f\left(L_{j}\left(X_{1}, \ldots, X_{k}\right)\right] \leq U^{t}(f)\right.
$$

if $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$ and t is the complexity of the linear forms L_{1}, \ldots, L_{m}.

Examples

- If $f: \mathbb{F}^{n} \rightarrow\{0,1\}$ indicates a subset and we want to count the number of 3-term AP's:

$$
\mathbb{E}_{X, Y}[f(X) \cdot f(X+Y) \cdot f(X+2 Y)] \leq \sum_{\alpha} \hat{f}^{3}(\alpha)
$$

- Similarly, number of 4-term AP's controlled by 3 rd order Gowers norm of f.
- More in Pooya's upcoming talk!

Rank

Rank

Given a polynomial $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$ of degree d, its rank is the smallest integer r such that:

$$
P(x)=\Gamma\left(Q_{1}(x), \ldots, Q_{r}(x)\right) \quad \forall x \in \mathbb{F}^{n}
$$

where Q_{1}, \ldots, Q_{r} are polys of degree $d-1$ and $\Gamma: \mathbb{F}^{r} \rightarrow \mathbb{F}$ is arbitrary.

Pseudorandomness

- For random poly P of fixed degree d,

$$
\operatorname{rank}(P)=\omega(1)
$$

- High rank is pseudorandom behavior

Rank \& Gowers Norm

If $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$ is a poly of degree d, P has high rank if and only if $e(P)$ has low Gowers norm of order d !

Low rank implies large Gowers norm

Lemma: If $P(x)=\Gamma\left(Q_{1}(x), \ldots, Q_{k}(x)\right)$
where Q_{1}, \ldots, Q_{k} are polys of deg $d-1$, then
$U^{d}(\mathrm{e}(P)) \geq \frac{1}{|\mathrm{~F}|^{k / 2}}$.

Low rank implies large Gowers norm

Lemma: If $P(x)=\Gamma\left(Q_{1}(x), \ldots, Q_{k}(x)\right)$ where Q_{1}, \ldots, Q_{k} are polys of $\operatorname{deg} d-1$, then $U^{d}(\mathrm{e}(P)) \geq \frac{1}{|\mathbb{F}|^{k / 2}}$.
Proof: By (linear) Fourier analysis:

$$
\mathrm{e}(P(x))=\sum_{\alpha} \hat{\Gamma}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} \cdot Q_{i}(x)\right)
$$

Therefore:

$$
\left|\mathbb{E}_{x} \sum_{\alpha} \hat{\Gamma}(\alpha) \cdot \mathrm{e}\left(\sum_{i} \alpha_{i} \cdot Q_{i}(x)-P(x)\right)\right|=1
$$

Then, there's an α such that

$$
\left\langle\mathrm{e}(P), \mathrm{e}\left(\sum_{i} \alpha_{i} Q_{i}\right)\right\rangle \geq|\mathbb{F}|^{-k / 2}
$$

Inverse theorem for polys

Theorem: For all ϵ and d, there exists $R=R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and $U^{d}(\mathrm{e}(P))>\epsilon$, then $\operatorname{rank}(P)<R$.
[Tao-Ziegler '11]

Bias-rank theorem

Theorem: For all ϵ and d, there exists $R=R(\epsilon, d, \mathbb{F})$ such that if P is a poly of degree d and $\operatorname{bias}(P)>\epsilon$, then $\operatorname{rank}(P)<R$.
[Green-Tao `og, Kaufman-Lovett 'o8]

Regularity of Factor

A factor $\mathcal{B}=\left(P_{1}, \ldots, P_{k}\right)$ is \boldsymbol{R}-regular if every nonzero linear combination of P_{1}, \ldots, P_{k} has rank more than R.

An Example

Claim: If a factor $\mathcal{B}=\left(P_{1}, \ldots, P_{k}\right)$ of degree d is sufficiently regular, then for any poly Q of degree d, there can be at most one P_{i} that is ϵ-correlated with Q.

An Example

Claim: If a factor $\mathcal{B}=\left(P_{1}, \ldots, P_{k}\right)$ of degree d is sufficiently regular, then for any poly Q of degree d, there can be at most one P_{i} that is ϵ-correlated with Q.

Proof:

$Q \epsilon$-correlated with $P_{i} \longrightarrow \operatorname{bias}\left(Q-P_{i}\right)>\epsilon$
$Q \epsilon$-correlated with $P_{j} \longrightarrow \operatorname{bias}\left(Q-P_{j}\right)>\epsilon$
So, $\operatorname{rank}\left(Q-P_{i}\right), \operatorname{rank}\left(Q-P_{j}\right)$ bounded. But then $\operatorname{rank}\left(P_{i}-P_{j}\right)$ bounded, a contradiction.

Things I didn't talk about

- Decomposition theorem
- For any d, R, ϵ, given function $f: \mathbb{F}^{n} \rightarrow \mathbb{C}$, can find functions f_{S} and f_{R} such that $f=f_{S}+f_{R}, U^{d+1}\left(f_{R}\right)<\epsilon$, and $f_{S}=\Gamma(\mathcal{B})$ for a factor \mathcal{B} of rank R and constant order.
- Gowers' proof of Szemeredi's theorem
- Ergodic-theoretic aspects

Plan for the day

- Talk 1: Mathematical primer (me)
- Talk 2: Polynomial pseudorandomness (P. Hatami)
- Talk 3: Algorithmic h.o. Fourier analysis (Tulsiani)
- Talk 4: Applications to property testing (Yoshida)
- Talk 5: Applications to coding theory (Bhowmick)
- Talk 6: A different generalization of Fourier analysis and application to communication complexity (Viola)

A final example

Claim: Let $\mathcal{B}=\left(P_{1}, \ldots, P_{m}\right)$ be a sufficiently regular factor of degree d. Define:

$$
F(x)=\Gamma\left(P_{1}(x), \ldots, P_{m}(x)\right)
$$

Then, for any Q_{1}, \ldots, Q_{m} with $\operatorname{deg}\left(Q_{j}\right) \leq$ $\operatorname{deg}\left(P_{j}\right)$, if

$$
G(x)=\Gamma\left(Q_{1}(x), \ldots, Q_{m}(x)\right)
$$

it holds that: $\operatorname{deg}(G) \leq \operatorname{deg}(F)$.

Sketch of Proof

- Suppose $D=\operatorname{deg}(F)$.
- Using (standard) Fourier analysis, write:

$$
\mathrm{e}(F(x))=\sum_{\alpha} c_{\alpha} \mathrm{e}\left(\sum_{i} \alpha_{i} P_{i}(x)\right)
$$

- Now, differentiate above expression $D+1$ times to get 1 . But all the derivatives of $\omega^{\sum_{i} \alpha_{i} P_{i}(x)}$ are linearly independent. So, all coefficients of these derivatives cancel formally.
- Can expand out the derivative of $\omega^{G(x)}$ in the same way to get that it too equals 1.

